1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #include <linux/config.h> 19 #include <linux/types.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/socket.h> 23 #include <linux/sched.h> 24 #include <linux/netdevice.h> 25 #include <linux/proc_fs.h> 26 #ifdef CONFIG_SYSCTL 27 #include <linux/sysctl.h> 28 #endif 29 #include <linux/times.h> 30 #include <net/neighbour.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <linux/rtnetlink.h> 34 #include <linux/random.h> 35 #include <linux/string.h> 36 37 #define NEIGH_DEBUG 1 38 39 #define NEIGH_PRINTK(x...) printk(x) 40 #define NEIGH_NOPRINTK(x...) do { ; } while(0) 41 #define NEIGH_PRINTK0 NEIGH_PRINTK 42 #define NEIGH_PRINTK1 NEIGH_NOPRINTK 43 #define NEIGH_PRINTK2 NEIGH_NOPRINTK 44 45 #if NEIGH_DEBUG >= 1 46 #undef NEIGH_PRINTK1 47 #define NEIGH_PRINTK1 NEIGH_PRINTK 48 #endif 49 #if NEIGH_DEBUG >= 2 50 #undef NEIGH_PRINTK2 51 #define NEIGH_PRINTK2 NEIGH_PRINTK 52 #endif 53 54 #define PNEIGH_HASHMASK 0xF 55 56 static void neigh_timer_handler(unsigned long arg); 57 #ifdef CONFIG_ARPD 58 static void neigh_app_notify(struct neighbour *n); 59 #endif 60 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 61 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev); 62 63 static struct neigh_table *neigh_tables; 64 static struct file_operations neigh_stat_seq_fops; 65 66 /* 67 Neighbour hash table buckets are protected with rwlock tbl->lock. 68 69 - All the scans/updates to hash buckets MUST be made under this lock. 70 - NOTHING clever should be made under this lock: no callbacks 71 to protocol backends, no attempts to send something to network. 72 It will result in deadlocks, if backend/driver wants to use neighbour 73 cache. 74 - If the entry requires some non-trivial actions, increase 75 its reference count and release table lock. 76 77 Neighbour entries are protected: 78 - with reference count. 79 - with rwlock neigh->lock 80 81 Reference count prevents destruction. 82 83 neigh->lock mainly serializes ll address data and its validity state. 84 However, the same lock is used to protect another entry fields: 85 - timer 86 - resolution queue 87 88 Again, nothing clever shall be made under neigh->lock, 89 the most complicated procedure, which we allow is dev->hard_header. 90 It is supposed, that dev->hard_header is simplistic and does 91 not make callbacks to neighbour tables. 92 93 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting 94 list of neighbour tables. This list is used only in process context, 95 */ 96 97 static DEFINE_RWLOCK(neigh_tbl_lock); 98 99 static int neigh_blackhole(struct sk_buff *skb) 100 { 101 kfree_skb(skb); 102 return -ENETDOWN; 103 } 104 105 /* 106 * It is random distribution in the interval (1/2)*base...(3/2)*base. 107 * It corresponds to default IPv6 settings and is not overridable, 108 * because it is really reasonable choice. 109 */ 110 111 unsigned long neigh_rand_reach_time(unsigned long base) 112 { 113 return (base ? (net_random() % base) + (base >> 1) : 0); 114 } 115 116 117 static int neigh_forced_gc(struct neigh_table *tbl) 118 { 119 int shrunk = 0; 120 int i; 121 122 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 123 124 write_lock_bh(&tbl->lock); 125 for (i = 0; i <= tbl->hash_mask; i++) { 126 struct neighbour *n, **np; 127 128 np = &tbl->hash_buckets[i]; 129 while ((n = *np) != NULL) { 130 /* Neighbour record may be discarded if: 131 * - nobody refers to it. 132 * - it is not permanent 133 */ 134 write_lock(&n->lock); 135 if (atomic_read(&n->refcnt) == 1 && 136 !(n->nud_state & NUD_PERMANENT)) { 137 *np = n->next; 138 n->dead = 1; 139 shrunk = 1; 140 write_unlock(&n->lock); 141 neigh_release(n); 142 continue; 143 } 144 write_unlock(&n->lock); 145 np = &n->next; 146 } 147 } 148 149 tbl->last_flush = jiffies; 150 151 write_unlock_bh(&tbl->lock); 152 153 return shrunk; 154 } 155 156 static int neigh_del_timer(struct neighbour *n) 157 { 158 if ((n->nud_state & NUD_IN_TIMER) && 159 del_timer(&n->timer)) { 160 neigh_release(n); 161 return 1; 162 } 163 return 0; 164 } 165 166 static void pneigh_queue_purge(struct sk_buff_head *list) 167 { 168 struct sk_buff *skb; 169 170 while ((skb = skb_dequeue(list)) != NULL) { 171 dev_put(skb->dev); 172 kfree_skb(skb); 173 } 174 } 175 176 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 177 { 178 int i; 179 180 write_lock_bh(&tbl->lock); 181 182 for (i=0; i <= tbl->hash_mask; i++) { 183 struct neighbour *n, **np; 184 185 np = &tbl->hash_buckets[i]; 186 while ((n = *np) != NULL) { 187 if (dev && n->dev != dev) { 188 np = &n->next; 189 continue; 190 } 191 *np = n->next; 192 write_lock_bh(&n->lock); 193 n->dead = 1; 194 neigh_del_timer(n); 195 write_unlock_bh(&n->lock); 196 neigh_release(n); 197 } 198 } 199 200 write_unlock_bh(&tbl->lock); 201 } 202 203 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 204 { 205 int i; 206 207 write_lock_bh(&tbl->lock); 208 209 for (i = 0; i <= tbl->hash_mask; i++) { 210 struct neighbour *n, **np = &tbl->hash_buckets[i]; 211 212 while ((n = *np) != NULL) { 213 if (dev && n->dev != dev) { 214 np = &n->next; 215 continue; 216 } 217 *np = n->next; 218 write_lock(&n->lock); 219 neigh_del_timer(n); 220 n->dead = 1; 221 222 if (atomic_read(&n->refcnt) != 1) { 223 /* The most unpleasant situation. 224 We must destroy neighbour entry, 225 but someone still uses it. 226 227 The destroy will be delayed until 228 the last user releases us, but 229 we must kill timers etc. and move 230 it to safe state. 231 */ 232 skb_queue_purge(&n->arp_queue); 233 n->output = neigh_blackhole; 234 if (n->nud_state & NUD_VALID) 235 n->nud_state = NUD_NOARP; 236 else 237 n->nud_state = NUD_NONE; 238 NEIGH_PRINTK2("neigh %p is stray.\n", n); 239 } 240 write_unlock(&n->lock); 241 neigh_release(n); 242 } 243 } 244 245 pneigh_ifdown(tbl, dev); 246 write_unlock_bh(&tbl->lock); 247 248 del_timer_sync(&tbl->proxy_timer); 249 pneigh_queue_purge(&tbl->proxy_queue); 250 return 0; 251 } 252 253 static struct neighbour *neigh_alloc(struct neigh_table *tbl) 254 { 255 struct neighbour *n = NULL; 256 unsigned long now = jiffies; 257 int entries; 258 259 entries = atomic_inc_return(&tbl->entries) - 1; 260 if (entries >= tbl->gc_thresh3 || 261 (entries >= tbl->gc_thresh2 && 262 time_after(now, tbl->last_flush + 5 * HZ))) { 263 if (!neigh_forced_gc(tbl) && 264 entries >= tbl->gc_thresh3) 265 goto out_entries; 266 } 267 268 n = kmem_cache_alloc(tbl->kmem_cachep, SLAB_ATOMIC); 269 if (!n) 270 goto out_entries; 271 272 memset(n, 0, tbl->entry_size); 273 274 skb_queue_head_init(&n->arp_queue); 275 rwlock_init(&n->lock); 276 n->updated = n->used = now; 277 n->nud_state = NUD_NONE; 278 n->output = neigh_blackhole; 279 n->parms = neigh_parms_clone(&tbl->parms); 280 init_timer(&n->timer); 281 n->timer.function = neigh_timer_handler; 282 n->timer.data = (unsigned long)n; 283 284 NEIGH_CACHE_STAT_INC(tbl, allocs); 285 n->tbl = tbl; 286 atomic_set(&n->refcnt, 1); 287 n->dead = 1; 288 out: 289 return n; 290 291 out_entries: 292 atomic_dec(&tbl->entries); 293 goto out; 294 } 295 296 static struct neighbour **neigh_hash_alloc(unsigned int entries) 297 { 298 unsigned long size = entries * sizeof(struct neighbour *); 299 struct neighbour **ret; 300 301 if (size <= PAGE_SIZE) { 302 ret = kmalloc(size, GFP_ATOMIC); 303 } else { 304 ret = (struct neighbour **) 305 __get_free_pages(GFP_ATOMIC, get_order(size)); 306 } 307 if (ret) 308 memset(ret, 0, size); 309 310 return ret; 311 } 312 313 static void neigh_hash_free(struct neighbour **hash, unsigned int entries) 314 { 315 unsigned long size = entries * sizeof(struct neighbour *); 316 317 if (size <= PAGE_SIZE) 318 kfree(hash); 319 else 320 free_pages((unsigned long)hash, get_order(size)); 321 } 322 323 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries) 324 { 325 struct neighbour **new_hash, **old_hash; 326 unsigned int i, new_hash_mask, old_entries; 327 328 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 329 330 BUG_ON(new_entries & (new_entries - 1)); 331 new_hash = neigh_hash_alloc(new_entries); 332 if (!new_hash) 333 return; 334 335 old_entries = tbl->hash_mask + 1; 336 new_hash_mask = new_entries - 1; 337 old_hash = tbl->hash_buckets; 338 339 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 340 for (i = 0; i < old_entries; i++) { 341 struct neighbour *n, *next; 342 343 for (n = old_hash[i]; n; n = next) { 344 unsigned int hash_val = tbl->hash(n->primary_key, n->dev); 345 346 hash_val &= new_hash_mask; 347 next = n->next; 348 349 n->next = new_hash[hash_val]; 350 new_hash[hash_val] = n; 351 } 352 } 353 tbl->hash_buckets = new_hash; 354 tbl->hash_mask = new_hash_mask; 355 356 neigh_hash_free(old_hash, old_entries); 357 } 358 359 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 360 struct net_device *dev) 361 { 362 struct neighbour *n; 363 int key_len = tbl->key_len; 364 u32 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask; 365 366 NEIGH_CACHE_STAT_INC(tbl, lookups); 367 368 read_lock_bh(&tbl->lock); 369 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) { 370 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { 371 neigh_hold(n); 372 NEIGH_CACHE_STAT_INC(tbl, hits); 373 break; 374 } 375 } 376 read_unlock_bh(&tbl->lock); 377 return n; 378 } 379 380 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey) 381 { 382 struct neighbour *n; 383 int key_len = tbl->key_len; 384 u32 hash_val = tbl->hash(pkey, NULL) & tbl->hash_mask; 385 386 NEIGH_CACHE_STAT_INC(tbl, lookups); 387 388 read_lock_bh(&tbl->lock); 389 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) { 390 if (!memcmp(n->primary_key, pkey, key_len)) { 391 neigh_hold(n); 392 NEIGH_CACHE_STAT_INC(tbl, hits); 393 break; 394 } 395 } 396 read_unlock_bh(&tbl->lock); 397 return n; 398 } 399 400 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, 401 struct net_device *dev) 402 { 403 u32 hash_val; 404 int key_len = tbl->key_len; 405 int error; 406 struct neighbour *n1, *rc, *n = neigh_alloc(tbl); 407 408 if (!n) { 409 rc = ERR_PTR(-ENOBUFS); 410 goto out; 411 } 412 413 memcpy(n->primary_key, pkey, key_len); 414 n->dev = dev; 415 dev_hold(dev); 416 417 /* Protocol specific setup. */ 418 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 419 rc = ERR_PTR(error); 420 goto out_neigh_release; 421 } 422 423 /* Device specific setup. */ 424 if (n->parms->neigh_setup && 425 (error = n->parms->neigh_setup(n)) < 0) { 426 rc = ERR_PTR(error); 427 goto out_neigh_release; 428 } 429 430 n->confirmed = jiffies - (n->parms->base_reachable_time << 1); 431 432 write_lock_bh(&tbl->lock); 433 434 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1)) 435 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1); 436 437 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask; 438 439 if (n->parms->dead) { 440 rc = ERR_PTR(-EINVAL); 441 goto out_tbl_unlock; 442 } 443 444 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) { 445 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 446 neigh_hold(n1); 447 rc = n1; 448 goto out_tbl_unlock; 449 } 450 } 451 452 n->next = tbl->hash_buckets[hash_val]; 453 tbl->hash_buckets[hash_val] = n; 454 n->dead = 0; 455 neigh_hold(n); 456 write_unlock_bh(&tbl->lock); 457 NEIGH_PRINTK2("neigh %p is created.\n", n); 458 rc = n; 459 out: 460 return rc; 461 out_tbl_unlock: 462 write_unlock_bh(&tbl->lock); 463 out_neigh_release: 464 neigh_release(n); 465 goto out; 466 } 467 468 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey, 469 struct net_device *dev, int creat) 470 { 471 struct pneigh_entry *n; 472 int key_len = tbl->key_len; 473 u32 hash_val = *(u32 *)(pkey + key_len - 4); 474 475 hash_val ^= (hash_val >> 16); 476 hash_val ^= hash_val >> 8; 477 hash_val ^= hash_val >> 4; 478 hash_val &= PNEIGH_HASHMASK; 479 480 read_lock_bh(&tbl->lock); 481 482 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) { 483 if (!memcmp(n->key, pkey, key_len) && 484 (n->dev == dev || !n->dev)) { 485 read_unlock_bh(&tbl->lock); 486 goto out; 487 } 488 } 489 read_unlock_bh(&tbl->lock); 490 n = NULL; 491 if (!creat) 492 goto out; 493 494 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 495 if (!n) 496 goto out; 497 498 memcpy(n->key, pkey, key_len); 499 n->dev = dev; 500 if (dev) 501 dev_hold(dev); 502 503 if (tbl->pconstructor && tbl->pconstructor(n)) { 504 if (dev) 505 dev_put(dev); 506 kfree(n); 507 n = NULL; 508 goto out; 509 } 510 511 write_lock_bh(&tbl->lock); 512 n->next = tbl->phash_buckets[hash_val]; 513 tbl->phash_buckets[hash_val] = n; 514 write_unlock_bh(&tbl->lock); 515 out: 516 return n; 517 } 518 519 520 int pneigh_delete(struct neigh_table *tbl, const void *pkey, 521 struct net_device *dev) 522 { 523 struct pneigh_entry *n, **np; 524 int key_len = tbl->key_len; 525 u32 hash_val = *(u32 *)(pkey + key_len - 4); 526 527 hash_val ^= (hash_val >> 16); 528 hash_val ^= hash_val >> 8; 529 hash_val ^= hash_val >> 4; 530 hash_val &= PNEIGH_HASHMASK; 531 532 write_lock_bh(&tbl->lock); 533 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 534 np = &n->next) { 535 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) { 536 *np = n->next; 537 write_unlock_bh(&tbl->lock); 538 if (tbl->pdestructor) 539 tbl->pdestructor(n); 540 if (n->dev) 541 dev_put(n->dev); 542 kfree(n); 543 return 0; 544 } 545 } 546 write_unlock_bh(&tbl->lock); 547 return -ENOENT; 548 } 549 550 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 551 { 552 struct pneigh_entry *n, **np; 553 u32 h; 554 555 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 556 np = &tbl->phash_buckets[h]; 557 while ((n = *np) != NULL) { 558 if (!dev || n->dev == dev) { 559 *np = n->next; 560 if (tbl->pdestructor) 561 tbl->pdestructor(n); 562 if (n->dev) 563 dev_put(n->dev); 564 kfree(n); 565 continue; 566 } 567 np = &n->next; 568 } 569 } 570 return -ENOENT; 571 } 572 573 574 /* 575 * neighbour must already be out of the table; 576 * 577 */ 578 void neigh_destroy(struct neighbour *neigh) 579 { 580 struct hh_cache *hh; 581 582 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 583 584 if (!neigh->dead) { 585 printk(KERN_WARNING 586 "Destroying alive neighbour %p\n", neigh); 587 dump_stack(); 588 return; 589 } 590 591 if (neigh_del_timer(neigh)) 592 printk(KERN_WARNING "Impossible event.\n"); 593 594 while ((hh = neigh->hh) != NULL) { 595 neigh->hh = hh->hh_next; 596 hh->hh_next = NULL; 597 write_lock_bh(&hh->hh_lock); 598 hh->hh_output = neigh_blackhole; 599 write_unlock_bh(&hh->hh_lock); 600 if (atomic_dec_and_test(&hh->hh_refcnt)) 601 kfree(hh); 602 } 603 604 if (neigh->ops && neigh->ops->destructor) 605 (neigh->ops->destructor)(neigh); 606 607 skb_queue_purge(&neigh->arp_queue); 608 609 dev_put(neigh->dev); 610 neigh_parms_put(neigh->parms); 611 612 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); 613 614 atomic_dec(&neigh->tbl->entries); 615 kmem_cache_free(neigh->tbl->kmem_cachep, neigh); 616 } 617 618 /* Neighbour state is suspicious; 619 disable fast path. 620 621 Called with write_locked neigh. 622 */ 623 static void neigh_suspect(struct neighbour *neigh) 624 { 625 struct hh_cache *hh; 626 627 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 628 629 neigh->output = neigh->ops->output; 630 631 for (hh = neigh->hh; hh; hh = hh->hh_next) 632 hh->hh_output = neigh->ops->output; 633 } 634 635 /* Neighbour state is OK; 636 enable fast path. 637 638 Called with write_locked neigh. 639 */ 640 static void neigh_connect(struct neighbour *neigh) 641 { 642 struct hh_cache *hh; 643 644 NEIGH_PRINTK2("neigh %p is connected.\n", neigh); 645 646 neigh->output = neigh->ops->connected_output; 647 648 for (hh = neigh->hh; hh; hh = hh->hh_next) 649 hh->hh_output = neigh->ops->hh_output; 650 } 651 652 static void neigh_periodic_timer(unsigned long arg) 653 { 654 struct neigh_table *tbl = (struct neigh_table *)arg; 655 struct neighbour *n, **np; 656 unsigned long expire, now = jiffies; 657 658 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 659 660 write_lock(&tbl->lock); 661 662 /* 663 * periodically recompute ReachableTime from random function 664 */ 665 666 if (time_after(now, tbl->last_rand + 300 * HZ)) { 667 struct neigh_parms *p; 668 tbl->last_rand = now; 669 for (p = &tbl->parms; p; p = p->next) 670 p->reachable_time = 671 neigh_rand_reach_time(p->base_reachable_time); 672 } 673 674 np = &tbl->hash_buckets[tbl->hash_chain_gc]; 675 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask); 676 677 while ((n = *np) != NULL) { 678 unsigned int state; 679 680 write_lock(&n->lock); 681 682 state = n->nud_state; 683 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 684 write_unlock(&n->lock); 685 goto next_elt; 686 } 687 688 if (time_before(n->used, n->confirmed)) 689 n->used = n->confirmed; 690 691 if (atomic_read(&n->refcnt) == 1 && 692 (state == NUD_FAILED || 693 time_after(now, n->used + n->parms->gc_staletime))) { 694 *np = n->next; 695 n->dead = 1; 696 write_unlock(&n->lock); 697 neigh_release(n); 698 continue; 699 } 700 write_unlock(&n->lock); 701 702 next_elt: 703 np = &n->next; 704 } 705 706 /* Cycle through all hash buckets every base_reachable_time/2 ticks. 707 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 708 * base_reachable_time. 709 */ 710 expire = tbl->parms.base_reachable_time >> 1; 711 expire /= (tbl->hash_mask + 1); 712 if (!expire) 713 expire = 1; 714 715 mod_timer(&tbl->gc_timer, now + expire); 716 717 write_unlock(&tbl->lock); 718 } 719 720 static __inline__ int neigh_max_probes(struct neighbour *n) 721 { 722 struct neigh_parms *p = n->parms; 723 return (n->nud_state & NUD_PROBE ? 724 p->ucast_probes : 725 p->ucast_probes + p->app_probes + p->mcast_probes); 726 } 727 728 729 /* Called when a timer expires for a neighbour entry. */ 730 731 static void neigh_timer_handler(unsigned long arg) 732 { 733 unsigned long now, next; 734 struct neighbour *neigh = (struct neighbour *)arg; 735 unsigned state; 736 int notify = 0; 737 738 write_lock(&neigh->lock); 739 740 state = neigh->nud_state; 741 now = jiffies; 742 next = now + HZ; 743 744 if (!(state & NUD_IN_TIMER)) { 745 #ifndef CONFIG_SMP 746 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n"); 747 #endif 748 goto out; 749 } 750 751 if (state & NUD_REACHABLE) { 752 if (time_before_eq(now, 753 neigh->confirmed + neigh->parms->reachable_time)) { 754 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); 755 next = neigh->confirmed + neigh->parms->reachable_time; 756 } else if (time_before_eq(now, 757 neigh->used + neigh->parms->delay_probe_time)) { 758 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 759 neigh->nud_state = NUD_DELAY; 760 neigh_suspect(neigh); 761 next = now + neigh->parms->delay_probe_time; 762 } else { 763 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 764 neigh->nud_state = NUD_STALE; 765 neigh_suspect(neigh); 766 } 767 } else if (state & NUD_DELAY) { 768 if (time_before_eq(now, 769 neigh->confirmed + neigh->parms->delay_probe_time)) { 770 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); 771 neigh->nud_state = NUD_REACHABLE; 772 neigh_connect(neigh); 773 next = neigh->confirmed + neigh->parms->reachable_time; 774 } else { 775 NEIGH_PRINTK2("neigh %p is probed.\n", neigh); 776 neigh->nud_state = NUD_PROBE; 777 atomic_set(&neigh->probes, 0); 778 next = now + neigh->parms->retrans_time; 779 } 780 } else { 781 /* NUD_PROBE|NUD_INCOMPLETE */ 782 next = now + neigh->parms->retrans_time; 783 } 784 785 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 786 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 787 struct sk_buff *skb; 788 789 neigh->nud_state = NUD_FAILED; 790 notify = 1; 791 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 792 NEIGH_PRINTK2("neigh %p is failed.\n", neigh); 793 794 /* It is very thin place. report_unreachable is very complicated 795 routine. Particularly, it can hit the same neighbour entry! 796 797 So that, we try to be accurate and avoid dead loop. --ANK 798 */ 799 while (neigh->nud_state == NUD_FAILED && 800 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 801 write_unlock(&neigh->lock); 802 neigh->ops->error_report(neigh, skb); 803 write_lock(&neigh->lock); 804 } 805 skb_queue_purge(&neigh->arp_queue); 806 } 807 808 if (neigh->nud_state & NUD_IN_TIMER) { 809 neigh_hold(neigh); 810 if (time_before(next, jiffies + HZ/2)) 811 next = jiffies + HZ/2; 812 neigh->timer.expires = next; 813 add_timer(&neigh->timer); 814 } 815 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 816 struct sk_buff *skb = skb_peek(&neigh->arp_queue); 817 /* keep skb alive even if arp_queue overflows */ 818 if (skb) 819 skb_get(skb); 820 write_unlock(&neigh->lock); 821 neigh->ops->solicit(neigh, skb); 822 atomic_inc(&neigh->probes); 823 if (skb) 824 kfree_skb(skb); 825 } else { 826 out: 827 write_unlock(&neigh->lock); 828 } 829 830 #ifdef CONFIG_ARPD 831 if (notify && neigh->parms->app_probes) 832 neigh_app_notify(neigh); 833 #endif 834 neigh_release(neigh); 835 } 836 837 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 838 { 839 int rc; 840 unsigned long now; 841 842 write_lock_bh(&neigh->lock); 843 844 rc = 0; 845 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 846 goto out_unlock_bh; 847 848 now = jiffies; 849 850 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 851 if (neigh->parms->mcast_probes + neigh->parms->app_probes) { 852 atomic_set(&neigh->probes, neigh->parms->ucast_probes); 853 neigh->nud_state = NUD_INCOMPLETE; 854 neigh_hold(neigh); 855 neigh->timer.expires = now + 1; 856 add_timer(&neigh->timer); 857 } else { 858 neigh->nud_state = NUD_FAILED; 859 write_unlock_bh(&neigh->lock); 860 861 if (skb) 862 kfree_skb(skb); 863 return 1; 864 } 865 } else if (neigh->nud_state & NUD_STALE) { 866 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 867 neigh_hold(neigh); 868 neigh->nud_state = NUD_DELAY; 869 neigh->timer.expires = jiffies + neigh->parms->delay_probe_time; 870 add_timer(&neigh->timer); 871 } 872 873 if (neigh->nud_state == NUD_INCOMPLETE) { 874 if (skb) { 875 if (skb_queue_len(&neigh->arp_queue) >= 876 neigh->parms->queue_len) { 877 struct sk_buff *buff; 878 buff = neigh->arp_queue.next; 879 __skb_unlink(buff, &neigh->arp_queue); 880 kfree_skb(buff); 881 } 882 __skb_queue_tail(&neigh->arp_queue, skb); 883 } 884 rc = 1; 885 } 886 out_unlock_bh: 887 write_unlock_bh(&neigh->lock); 888 return rc; 889 } 890 891 static __inline__ void neigh_update_hhs(struct neighbour *neigh) 892 { 893 struct hh_cache *hh; 894 void (*update)(struct hh_cache*, struct net_device*, unsigned char *) = 895 neigh->dev->header_cache_update; 896 897 if (update) { 898 for (hh = neigh->hh; hh; hh = hh->hh_next) { 899 write_lock_bh(&hh->hh_lock); 900 update(hh, neigh->dev, neigh->ha); 901 write_unlock_bh(&hh->hh_lock); 902 } 903 } 904 } 905 906 907 908 /* Generic update routine. 909 -- lladdr is new lladdr or NULL, if it is not supplied. 910 -- new is new state. 911 -- flags 912 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 913 if it is different. 914 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 915 lladdr instead of overriding it 916 if it is different. 917 It also allows to retain current state 918 if lladdr is unchanged. 919 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 920 921 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 922 NTF_ROUTER flag. 923 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 924 a router. 925 926 Caller MUST hold reference count on the entry. 927 */ 928 929 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 930 u32 flags) 931 { 932 u8 old; 933 int err; 934 #ifdef CONFIG_ARPD 935 int notify = 0; 936 #endif 937 struct net_device *dev; 938 int update_isrouter = 0; 939 940 write_lock_bh(&neigh->lock); 941 942 dev = neigh->dev; 943 old = neigh->nud_state; 944 err = -EPERM; 945 946 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 947 (old & (NUD_NOARP | NUD_PERMANENT))) 948 goto out; 949 950 if (!(new & NUD_VALID)) { 951 neigh_del_timer(neigh); 952 if (old & NUD_CONNECTED) 953 neigh_suspect(neigh); 954 neigh->nud_state = new; 955 err = 0; 956 #ifdef CONFIG_ARPD 957 notify = old & NUD_VALID; 958 #endif 959 goto out; 960 } 961 962 /* Compare new lladdr with cached one */ 963 if (!dev->addr_len) { 964 /* First case: device needs no address. */ 965 lladdr = neigh->ha; 966 } else if (lladdr) { 967 /* The second case: if something is already cached 968 and a new address is proposed: 969 - compare new & old 970 - if they are different, check override flag 971 */ 972 if ((old & NUD_VALID) && 973 !memcmp(lladdr, neigh->ha, dev->addr_len)) 974 lladdr = neigh->ha; 975 } else { 976 /* No address is supplied; if we know something, 977 use it, otherwise discard the request. 978 */ 979 err = -EINVAL; 980 if (!(old & NUD_VALID)) 981 goto out; 982 lladdr = neigh->ha; 983 } 984 985 if (new & NUD_CONNECTED) 986 neigh->confirmed = jiffies; 987 neigh->updated = jiffies; 988 989 /* If entry was valid and address is not changed, 990 do not change entry state, if new one is STALE. 991 */ 992 err = 0; 993 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 994 if (old & NUD_VALID) { 995 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 996 update_isrouter = 0; 997 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 998 (old & NUD_CONNECTED)) { 999 lladdr = neigh->ha; 1000 new = NUD_STALE; 1001 } else 1002 goto out; 1003 } else { 1004 if (lladdr == neigh->ha && new == NUD_STALE && 1005 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || 1006 (old & NUD_CONNECTED)) 1007 ) 1008 new = old; 1009 } 1010 } 1011 1012 if (new != old) { 1013 neigh_del_timer(neigh); 1014 if (new & NUD_IN_TIMER) { 1015 neigh_hold(neigh); 1016 neigh->timer.expires = jiffies + 1017 ((new & NUD_REACHABLE) ? 1018 neigh->parms->reachable_time : 0); 1019 add_timer(&neigh->timer); 1020 } 1021 neigh->nud_state = new; 1022 } 1023 1024 if (lladdr != neigh->ha) { 1025 memcpy(&neigh->ha, lladdr, dev->addr_len); 1026 neigh_update_hhs(neigh); 1027 if (!(new & NUD_CONNECTED)) 1028 neigh->confirmed = jiffies - 1029 (neigh->parms->base_reachable_time << 1); 1030 #ifdef CONFIG_ARPD 1031 notify = 1; 1032 #endif 1033 } 1034 if (new == old) 1035 goto out; 1036 if (new & NUD_CONNECTED) 1037 neigh_connect(neigh); 1038 else 1039 neigh_suspect(neigh); 1040 if (!(old & NUD_VALID)) { 1041 struct sk_buff *skb; 1042 1043 /* Again: avoid dead loop if something went wrong */ 1044 1045 while (neigh->nud_state & NUD_VALID && 1046 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1047 struct neighbour *n1 = neigh; 1048 write_unlock_bh(&neigh->lock); 1049 /* On shaper/eql skb->dst->neighbour != neigh :( */ 1050 if (skb->dst && skb->dst->neighbour) 1051 n1 = skb->dst->neighbour; 1052 n1->output(skb); 1053 write_lock_bh(&neigh->lock); 1054 } 1055 skb_queue_purge(&neigh->arp_queue); 1056 } 1057 out: 1058 if (update_isrouter) { 1059 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1060 (neigh->flags | NTF_ROUTER) : 1061 (neigh->flags & ~NTF_ROUTER); 1062 } 1063 write_unlock_bh(&neigh->lock); 1064 #ifdef CONFIG_ARPD 1065 if (notify && neigh->parms->app_probes) 1066 neigh_app_notify(neigh); 1067 #endif 1068 return err; 1069 } 1070 1071 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1072 u8 *lladdr, void *saddr, 1073 struct net_device *dev) 1074 { 1075 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1076 lladdr || !dev->addr_len); 1077 if (neigh) 1078 neigh_update(neigh, lladdr, NUD_STALE, 1079 NEIGH_UPDATE_F_OVERRIDE); 1080 return neigh; 1081 } 1082 1083 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst, 1084 u16 protocol) 1085 { 1086 struct hh_cache *hh; 1087 struct net_device *dev = dst->dev; 1088 1089 for (hh = n->hh; hh; hh = hh->hh_next) 1090 if (hh->hh_type == protocol) 1091 break; 1092 1093 if (!hh && (hh = kmalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) { 1094 memset(hh, 0, sizeof(struct hh_cache)); 1095 rwlock_init(&hh->hh_lock); 1096 hh->hh_type = protocol; 1097 atomic_set(&hh->hh_refcnt, 0); 1098 hh->hh_next = NULL; 1099 if (dev->hard_header_cache(n, hh)) { 1100 kfree(hh); 1101 hh = NULL; 1102 } else { 1103 atomic_inc(&hh->hh_refcnt); 1104 hh->hh_next = n->hh; 1105 n->hh = hh; 1106 if (n->nud_state & NUD_CONNECTED) 1107 hh->hh_output = n->ops->hh_output; 1108 else 1109 hh->hh_output = n->ops->output; 1110 } 1111 } 1112 if (hh) { 1113 atomic_inc(&hh->hh_refcnt); 1114 dst->hh = hh; 1115 } 1116 } 1117 1118 /* This function can be used in contexts, where only old dev_queue_xmit 1119 worked, f.e. if you want to override normal output path (eql, shaper), 1120 but resolution is not made yet. 1121 */ 1122 1123 int neigh_compat_output(struct sk_buff *skb) 1124 { 1125 struct net_device *dev = skb->dev; 1126 1127 __skb_pull(skb, skb->nh.raw - skb->data); 1128 1129 if (dev->hard_header && 1130 dev->hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, 1131 skb->len) < 0 && 1132 dev->rebuild_header(skb)) 1133 return 0; 1134 1135 return dev_queue_xmit(skb); 1136 } 1137 1138 /* Slow and careful. */ 1139 1140 int neigh_resolve_output(struct sk_buff *skb) 1141 { 1142 struct dst_entry *dst = skb->dst; 1143 struct neighbour *neigh; 1144 int rc = 0; 1145 1146 if (!dst || !(neigh = dst->neighbour)) 1147 goto discard; 1148 1149 __skb_pull(skb, skb->nh.raw - skb->data); 1150 1151 if (!neigh_event_send(neigh, skb)) { 1152 int err; 1153 struct net_device *dev = neigh->dev; 1154 if (dev->hard_header_cache && !dst->hh) { 1155 write_lock_bh(&neigh->lock); 1156 if (!dst->hh) 1157 neigh_hh_init(neigh, dst, dst->ops->protocol); 1158 err = dev->hard_header(skb, dev, ntohs(skb->protocol), 1159 neigh->ha, NULL, skb->len); 1160 write_unlock_bh(&neigh->lock); 1161 } else { 1162 read_lock_bh(&neigh->lock); 1163 err = dev->hard_header(skb, dev, ntohs(skb->protocol), 1164 neigh->ha, NULL, skb->len); 1165 read_unlock_bh(&neigh->lock); 1166 } 1167 if (err >= 0) 1168 rc = neigh->ops->queue_xmit(skb); 1169 else 1170 goto out_kfree_skb; 1171 } 1172 out: 1173 return rc; 1174 discard: 1175 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", 1176 dst, dst ? dst->neighbour : NULL); 1177 out_kfree_skb: 1178 rc = -EINVAL; 1179 kfree_skb(skb); 1180 goto out; 1181 } 1182 1183 /* As fast as possible without hh cache */ 1184 1185 int neigh_connected_output(struct sk_buff *skb) 1186 { 1187 int err; 1188 struct dst_entry *dst = skb->dst; 1189 struct neighbour *neigh = dst->neighbour; 1190 struct net_device *dev = neigh->dev; 1191 1192 __skb_pull(skb, skb->nh.raw - skb->data); 1193 1194 read_lock_bh(&neigh->lock); 1195 err = dev->hard_header(skb, dev, ntohs(skb->protocol), 1196 neigh->ha, NULL, skb->len); 1197 read_unlock_bh(&neigh->lock); 1198 if (err >= 0) 1199 err = neigh->ops->queue_xmit(skb); 1200 else { 1201 err = -EINVAL; 1202 kfree_skb(skb); 1203 } 1204 return err; 1205 } 1206 1207 static void neigh_proxy_process(unsigned long arg) 1208 { 1209 struct neigh_table *tbl = (struct neigh_table *)arg; 1210 long sched_next = 0; 1211 unsigned long now = jiffies; 1212 struct sk_buff *skb; 1213 1214 spin_lock(&tbl->proxy_queue.lock); 1215 1216 skb = tbl->proxy_queue.next; 1217 1218 while (skb != (struct sk_buff *)&tbl->proxy_queue) { 1219 struct sk_buff *back = skb; 1220 long tdif = NEIGH_CB(back)->sched_next - now; 1221 1222 skb = skb->next; 1223 if (tdif <= 0) { 1224 struct net_device *dev = back->dev; 1225 __skb_unlink(back, &tbl->proxy_queue); 1226 if (tbl->proxy_redo && netif_running(dev)) 1227 tbl->proxy_redo(back); 1228 else 1229 kfree_skb(back); 1230 1231 dev_put(dev); 1232 } else if (!sched_next || tdif < sched_next) 1233 sched_next = tdif; 1234 } 1235 del_timer(&tbl->proxy_timer); 1236 if (sched_next) 1237 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1238 spin_unlock(&tbl->proxy_queue.lock); 1239 } 1240 1241 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1242 struct sk_buff *skb) 1243 { 1244 unsigned long now = jiffies; 1245 unsigned long sched_next = now + (net_random() % p->proxy_delay); 1246 1247 if (tbl->proxy_queue.qlen > p->proxy_qlen) { 1248 kfree_skb(skb); 1249 return; 1250 } 1251 1252 NEIGH_CB(skb)->sched_next = sched_next; 1253 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1254 1255 spin_lock(&tbl->proxy_queue.lock); 1256 if (del_timer(&tbl->proxy_timer)) { 1257 if (time_before(tbl->proxy_timer.expires, sched_next)) 1258 sched_next = tbl->proxy_timer.expires; 1259 } 1260 dst_release(skb->dst); 1261 skb->dst = NULL; 1262 dev_hold(skb->dev); 1263 __skb_queue_tail(&tbl->proxy_queue, skb); 1264 mod_timer(&tbl->proxy_timer, sched_next); 1265 spin_unlock(&tbl->proxy_queue.lock); 1266 } 1267 1268 1269 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1270 struct neigh_table *tbl) 1271 { 1272 struct neigh_parms *p = kmalloc(sizeof(*p), GFP_KERNEL); 1273 1274 if (p) { 1275 memcpy(p, &tbl->parms, sizeof(*p)); 1276 p->tbl = tbl; 1277 atomic_set(&p->refcnt, 1); 1278 INIT_RCU_HEAD(&p->rcu_head); 1279 p->reachable_time = 1280 neigh_rand_reach_time(p->base_reachable_time); 1281 if (dev) { 1282 if (dev->neigh_setup && dev->neigh_setup(dev, p)) { 1283 kfree(p); 1284 return NULL; 1285 } 1286 1287 dev_hold(dev); 1288 p->dev = dev; 1289 } 1290 p->sysctl_table = NULL; 1291 write_lock_bh(&tbl->lock); 1292 p->next = tbl->parms.next; 1293 tbl->parms.next = p; 1294 write_unlock_bh(&tbl->lock); 1295 } 1296 return p; 1297 } 1298 1299 static void neigh_rcu_free_parms(struct rcu_head *head) 1300 { 1301 struct neigh_parms *parms = 1302 container_of(head, struct neigh_parms, rcu_head); 1303 1304 neigh_parms_put(parms); 1305 } 1306 1307 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1308 { 1309 struct neigh_parms **p; 1310 1311 if (!parms || parms == &tbl->parms) 1312 return; 1313 write_lock_bh(&tbl->lock); 1314 for (p = &tbl->parms.next; *p; p = &(*p)->next) { 1315 if (*p == parms) { 1316 *p = parms->next; 1317 parms->dead = 1; 1318 write_unlock_bh(&tbl->lock); 1319 if (parms->dev) 1320 dev_put(parms->dev); 1321 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1322 return; 1323 } 1324 } 1325 write_unlock_bh(&tbl->lock); 1326 NEIGH_PRINTK1("neigh_parms_release: not found\n"); 1327 } 1328 1329 void neigh_parms_destroy(struct neigh_parms *parms) 1330 { 1331 kfree(parms); 1332 } 1333 1334 1335 void neigh_table_init(struct neigh_table *tbl) 1336 { 1337 unsigned long now = jiffies; 1338 unsigned long phsize; 1339 1340 atomic_set(&tbl->parms.refcnt, 1); 1341 INIT_RCU_HEAD(&tbl->parms.rcu_head); 1342 tbl->parms.reachable_time = 1343 neigh_rand_reach_time(tbl->parms.base_reachable_time); 1344 1345 if (!tbl->kmem_cachep) 1346 tbl->kmem_cachep = kmem_cache_create(tbl->id, 1347 tbl->entry_size, 1348 0, SLAB_HWCACHE_ALIGN, 1349 NULL, NULL); 1350 1351 if (!tbl->kmem_cachep) 1352 panic("cannot create neighbour cache"); 1353 1354 tbl->stats = alloc_percpu(struct neigh_statistics); 1355 if (!tbl->stats) 1356 panic("cannot create neighbour cache statistics"); 1357 1358 #ifdef CONFIG_PROC_FS 1359 tbl->pde = create_proc_entry(tbl->id, 0, proc_net_stat); 1360 if (!tbl->pde) 1361 panic("cannot create neighbour proc dir entry"); 1362 tbl->pde->proc_fops = &neigh_stat_seq_fops; 1363 tbl->pde->data = tbl; 1364 #endif 1365 1366 tbl->hash_mask = 1; 1367 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1); 1368 1369 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1370 tbl->phash_buckets = kmalloc(phsize, GFP_KERNEL); 1371 1372 if (!tbl->hash_buckets || !tbl->phash_buckets) 1373 panic("cannot allocate neighbour cache hashes"); 1374 1375 memset(tbl->phash_buckets, 0, phsize); 1376 1377 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 1378 1379 rwlock_init(&tbl->lock); 1380 init_timer(&tbl->gc_timer); 1381 tbl->gc_timer.data = (unsigned long)tbl; 1382 tbl->gc_timer.function = neigh_periodic_timer; 1383 tbl->gc_timer.expires = now + 1; 1384 add_timer(&tbl->gc_timer); 1385 1386 init_timer(&tbl->proxy_timer); 1387 tbl->proxy_timer.data = (unsigned long)tbl; 1388 tbl->proxy_timer.function = neigh_proxy_process; 1389 skb_queue_head_init(&tbl->proxy_queue); 1390 1391 tbl->last_flush = now; 1392 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1393 write_lock(&neigh_tbl_lock); 1394 tbl->next = neigh_tables; 1395 neigh_tables = tbl; 1396 write_unlock(&neigh_tbl_lock); 1397 } 1398 1399 int neigh_table_clear(struct neigh_table *tbl) 1400 { 1401 struct neigh_table **tp; 1402 1403 /* It is not clean... Fix it to unload IPv6 module safely */ 1404 del_timer_sync(&tbl->gc_timer); 1405 del_timer_sync(&tbl->proxy_timer); 1406 pneigh_queue_purge(&tbl->proxy_queue); 1407 neigh_ifdown(tbl, NULL); 1408 if (atomic_read(&tbl->entries)) 1409 printk(KERN_CRIT "neighbour leakage\n"); 1410 write_lock(&neigh_tbl_lock); 1411 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { 1412 if (*tp == tbl) { 1413 *tp = tbl->next; 1414 break; 1415 } 1416 } 1417 write_unlock(&neigh_tbl_lock); 1418 1419 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1); 1420 tbl->hash_buckets = NULL; 1421 1422 kfree(tbl->phash_buckets); 1423 tbl->phash_buckets = NULL; 1424 1425 return 0; 1426 } 1427 1428 int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1429 { 1430 struct ndmsg *ndm = NLMSG_DATA(nlh); 1431 struct rtattr **nda = arg; 1432 struct neigh_table *tbl; 1433 struct net_device *dev = NULL; 1434 int err = -ENODEV; 1435 1436 if (ndm->ndm_ifindex && 1437 (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL) 1438 goto out; 1439 1440 read_lock(&neigh_tbl_lock); 1441 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1442 struct rtattr *dst_attr = nda[NDA_DST - 1]; 1443 struct neighbour *n; 1444 1445 if (tbl->family != ndm->ndm_family) 1446 continue; 1447 read_unlock(&neigh_tbl_lock); 1448 1449 err = -EINVAL; 1450 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len) 1451 goto out_dev_put; 1452 1453 if (ndm->ndm_flags & NTF_PROXY) { 1454 err = pneigh_delete(tbl, RTA_DATA(dst_attr), dev); 1455 goto out_dev_put; 1456 } 1457 1458 if (!dev) 1459 goto out; 1460 1461 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev); 1462 if (n) { 1463 err = neigh_update(n, NULL, NUD_FAILED, 1464 NEIGH_UPDATE_F_OVERRIDE| 1465 NEIGH_UPDATE_F_ADMIN); 1466 neigh_release(n); 1467 } 1468 goto out_dev_put; 1469 } 1470 read_unlock(&neigh_tbl_lock); 1471 err = -EADDRNOTAVAIL; 1472 out_dev_put: 1473 if (dev) 1474 dev_put(dev); 1475 out: 1476 return err; 1477 } 1478 1479 int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1480 { 1481 struct ndmsg *ndm = NLMSG_DATA(nlh); 1482 struct rtattr **nda = arg; 1483 struct neigh_table *tbl; 1484 struct net_device *dev = NULL; 1485 int err = -ENODEV; 1486 1487 if (ndm->ndm_ifindex && 1488 (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL) 1489 goto out; 1490 1491 read_lock(&neigh_tbl_lock); 1492 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1493 struct rtattr *lladdr_attr = nda[NDA_LLADDR - 1]; 1494 struct rtattr *dst_attr = nda[NDA_DST - 1]; 1495 int override = 1; 1496 struct neighbour *n; 1497 1498 if (tbl->family != ndm->ndm_family) 1499 continue; 1500 read_unlock(&neigh_tbl_lock); 1501 1502 err = -EINVAL; 1503 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len) 1504 goto out_dev_put; 1505 1506 if (ndm->ndm_flags & NTF_PROXY) { 1507 err = -ENOBUFS; 1508 if (pneigh_lookup(tbl, RTA_DATA(dst_attr), dev, 1)) 1509 err = 0; 1510 goto out_dev_put; 1511 } 1512 1513 err = -EINVAL; 1514 if (!dev) 1515 goto out; 1516 if (lladdr_attr && RTA_PAYLOAD(lladdr_attr) < dev->addr_len) 1517 goto out_dev_put; 1518 1519 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev); 1520 if (n) { 1521 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1522 err = -EEXIST; 1523 neigh_release(n); 1524 goto out_dev_put; 1525 } 1526 1527 override = nlh->nlmsg_flags & NLM_F_REPLACE; 1528 } else if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1529 err = -ENOENT; 1530 goto out_dev_put; 1531 } else { 1532 n = __neigh_lookup_errno(tbl, RTA_DATA(dst_attr), dev); 1533 if (IS_ERR(n)) { 1534 err = PTR_ERR(n); 1535 goto out_dev_put; 1536 } 1537 } 1538 1539 err = neigh_update(n, 1540 lladdr_attr ? RTA_DATA(lladdr_attr) : NULL, 1541 ndm->ndm_state, 1542 (override ? NEIGH_UPDATE_F_OVERRIDE : 0) | 1543 NEIGH_UPDATE_F_ADMIN); 1544 1545 neigh_release(n); 1546 goto out_dev_put; 1547 } 1548 1549 read_unlock(&neigh_tbl_lock); 1550 err = -EADDRNOTAVAIL; 1551 out_dev_put: 1552 if (dev) 1553 dev_put(dev); 1554 out: 1555 return err; 1556 } 1557 1558 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1559 { 1560 struct rtattr *nest = NULL; 1561 1562 nest = RTA_NEST(skb, NDTA_PARMS); 1563 1564 if (parms->dev) 1565 RTA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex); 1566 1567 RTA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)); 1568 RTA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len); 1569 RTA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen); 1570 RTA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes); 1571 RTA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes); 1572 RTA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes); 1573 RTA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time); 1574 RTA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME, 1575 parms->base_reachable_time); 1576 RTA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime); 1577 RTA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time); 1578 RTA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time); 1579 RTA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay); 1580 RTA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay); 1581 RTA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime); 1582 1583 return RTA_NEST_END(skb, nest); 1584 1585 rtattr_failure: 1586 return RTA_NEST_CANCEL(skb, nest); 1587 } 1588 1589 static int neightbl_fill_info(struct neigh_table *tbl, struct sk_buff *skb, 1590 struct netlink_callback *cb) 1591 { 1592 struct nlmsghdr *nlh; 1593 struct ndtmsg *ndtmsg; 1594 1595 nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg), 1596 NLM_F_MULTI); 1597 1598 ndtmsg = NLMSG_DATA(nlh); 1599 1600 read_lock_bh(&tbl->lock); 1601 ndtmsg->ndtm_family = tbl->family; 1602 ndtmsg->ndtm_pad1 = 0; 1603 ndtmsg->ndtm_pad2 = 0; 1604 1605 RTA_PUT_STRING(skb, NDTA_NAME, tbl->id); 1606 RTA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval); 1607 RTA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1); 1608 RTA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2); 1609 RTA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3); 1610 1611 { 1612 unsigned long now = jiffies; 1613 unsigned int flush_delta = now - tbl->last_flush; 1614 unsigned int rand_delta = now - tbl->last_rand; 1615 1616 struct ndt_config ndc = { 1617 .ndtc_key_len = tbl->key_len, 1618 .ndtc_entry_size = tbl->entry_size, 1619 .ndtc_entries = atomic_read(&tbl->entries), 1620 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1621 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1622 .ndtc_hash_rnd = tbl->hash_rnd, 1623 .ndtc_hash_mask = tbl->hash_mask, 1624 .ndtc_hash_chain_gc = tbl->hash_chain_gc, 1625 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1626 }; 1627 1628 RTA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc); 1629 } 1630 1631 { 1632 int cpu; 1633 struct ndt_stats ndst; 1634 1635 memset(&ndst, 0, sizeof(ndst)); 1636 1637 for (cpu = 0; cpu < NR_CPUS; cpu++) { 1638 struct neigh_statistics *st; 1639 1640 if (!cpu_possible(cpu)) 1641 continue; 1642 1643 st = per_cpu_ptr(tbl->stats, cpu); 1644 ndst.ndts_allocs += st->allocs; 1645 ndst.ndts_destroys += st->destroys; 1646 ndst.ndts_hash_grows += st->hash_grows; 1647 ndst.ndts_res_failed += st->res_failed; 1648 ndst.ndts_lookups += st->lookups; 1649 ndst.ndts_hits += st->hits; 1650 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1651 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1652 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1653 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1654 } 1655 1656 RTA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst); 1657 } 1658 1659 BUG_ON(tbl->parms.dev); 1660 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1661 goto rtattr_failure; 1662 1663 read_unlock_bh(&tbl->lock); 1664 return NLMSG_END(skb, nlh); 1665 1666 rtattr_failure: 1667 read_unlock_bh(&tbl->lock); 1668 return NLMSG_CANCEL(skb, nlh); 1669 1670 nlmsg_failure: 1671 return -1; 1672 } 1673 1674 static int neightbl_fill_param_info(struct neigh_table *tbl, 1675 struct neigh_parms *parms, 1676 struct sk_buff *skb, 1677 struct netlink_callback *cb) 1678 { 1679 struct ndtmsg *ndtmsg; 1680 struct nlmsghdr *nlh; 1681 1682 nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg), 1683 NLM_F_MULTI); 1684 1685 ndtmsg = NLMSG_DATA(nlh); 1686 1687 read_lock_bh(&tbl->lock); 1688 ndtmsg->ndtm_family = tbl->family; 1689 ndtmsg->ndtm_pad1 = 0; 1690 ndtmsg->ndtm_pad2 = 0; 1691 RTA_PUT_STRING(skb, NDTA_NAME, tbl->id); 1692 1693 if (neightbl_fill_parms(skb, parms) < 0) 1694 goto rtattr_failure; 1695 1696 read_unlock_bh(&tbl->lock); 1697 return NLMSG_END(skb, nlh); 1698 1699 rtattr_failure: 1700 read_unlock_bh(&tbl->lock); 1701 return NLMSG_CANCEL(skb, nlh); 1702 1703 nlmsg_failure: 1704 return -1; 1705 } 1706 1707 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl, 1708 int ifindex) 1709 { 1710 struct neigh_parms *p; 1711 1712 for (p = &tbl->parms; p; p = p->next) 1713 if ((p->dev && p->dev->ifindex == ifindex) || 1714 (!p->dev && !ifindex)) 1715 return p; 1716 1717 return NULL; 1718 } 1719 1720 int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1721 { 1722 struct neigh_table *tbl; 1723 struct ndtmsg *ndtmsg = NLMSG_DATA(nlh); 1724 struct rtattr **tb = arg; 1725 int err = -EINVAL; 1726 1727 if (!tb[NDTA_NAME - 1] || !RTA_PAYLOAD(tb[NDTA_NAME - 1])) 1728 return -EINVAL; 1729 1730 read_lock(&neigh_tbl_lock); 1731 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1732 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1733 continue; 1734 1735 if (!rtattr_strcmp(tb[NDTA_NAME - 1], tbl->id)) 1736 break; 1737 } 1738 1739 if (tbl == NULL) { 1740 err = -ENOENT; 1741 goto errout; 1742 } 1743 1744 /* 1745 * We acquire tbl->lock to be nice to the periodic timers and 1746 * make sure they always see a consistent set of values. 1747 */ 1748 write_lock_bh(&tbl->lock); 1749 1750 if (tb[NDTA_THRESH1 - 1]) 1751 tbl->gc_thresh1 = RTA_GET_U32(tb[NDTA_THRESH1 - 1]); 1752 1753 if (tb[NDTA_THRESH2 - 1]) 1754 tbl->gc_thresh2 = RTA_GET_U32(tb[NDTA_THRESH2 - 1]); 1755 1756 if (tb[NDTA_THRESH3 - 1]) 1757 tbl->gc_thresh3 = RTA_GET_U32(tb[NDTA_THRESH3 - 1]); 1758 1759 if (tb[NDTA_GC_INTERVAL - 1]) 1760 tbl->gc_interval = RTA_GET_MSECS(tb[NDTA_GC_INTERVAL - 1]); 1761 1762 if (tb[NDTA_PARMS - 1]) { 1763 struct rtattr *tbp[NDTPA_MAX]; 1764 struct neigh_parms *p; 1765 u32 ifindex = 0; 1766 1767 if (rtattr_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS - 1]) < 0) 1768 goto rtattr_failure; 1769 1770 if (tbp[NDTPA_IFINDEX - 1]) 1771 ifindex = RTA_GET_U32(tbp[NDTPA_IFINDEX - 1]); 1772 1773 p = lookup_neigh_params(tbl, ifindex); 1774 if (p == NULL) { 1775 err = -ENOENT; 1776 goto rtattr_failure; 1777 } 1778 1779 if (tbp[NDTPA_QUEUE_LEN - 1]) 1780 p->queue_len = RTA_GET_U32(tbp[NDTPA_QUEUE_LEN - 1]); 1781 1782 if (tbp[NDTPA_PROXY_QLEN - 1]) 1783 p->proxy_qlen = RTA_GET_U32(tbp[NDTPA_PROXY_QLEN - 1]); 1784 1785 if (tbp[NDTPA_APP_PROBES - 1]) 1786 p->app_probes = RTA_GET_U32(tbp[NDTPA_APP_PROBES - 1]); 1787 1788 if (tbp[NDTPA_UCAST_PROBES - 1]) 1789 p->ucast_probes = 1790 RTA_GET_U32(tbp[NDTPA_UCAST_PROBES - 1]); 1791 1792 if (tbp[NDTPA_MCAST_PROBES - 1]) 1793 p->mcast_probes = 1794 RTA_GET_U32(tbp[NDTPA_MCAST_PROBES - 1]); 1795 1796 if (tbp[NDTPA_BASE_REACHABLE_TIME - 1]) 1797 p->base_reachable_time = 1798 RTA_GET_MSECS(tbp[NDTPA_BASE_REACHABLE_TIME - 1]); 1799 1800 if (tbp[NDTPA_GC_STALETIME - 1]) 1801 p->gc_staletime = 1802 RTA_GET_MSECS(tbp[NDTPA_GC_STALETIME - 1]); 1803 1804 if (tbp[NDTPA_DELAY_PROBE_TIME - 1]) 1805 p->delay_probe_time = 1806 RTA_GET_MSECS(tbp[NDTPA_DELAY_PROBE_TIME - 1]); 1807 1808 if (tbp[NDTPA_RETRANS_TIME - 1]) 1809 p->retrans_time = 1810 RTA_GET_MSECS(tbp[NDTPA_RETRANS_TIME - 1]); 1811 1812 if (tbp[NDTPA_ANYCAST_DELAY - 1]) 1813 p->anycast_delay = 1814 RTA_GET_MSECS(tbp[NDTPA_ANYCAST_DELAY - 1]); 1815 1816 if (tbp[NDTPA_PROXY_DELAY - 1]) 1817 p->proxy_delay = 1818 RTA_GET_MSECS(tbp[NDTPA_PROXY_DELAY - 1]); 1819 1820 if (tbp[NDTPA_LOCKTIME - 1]) 1821 p->locktime = RTA_GET_MSECS(tbp[NDTPA_LOCKTIME - 1]); 1822 } 1823 1824 err = 0; 1825 1826 rtattr_failure: 1827 write_unlock_bh(&tbl->lock); 1828 errout: 1829 read_unlock(&neigh_tbl_lock); 1830 return err; 1831 } 1832 1833 int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 1834 { 1835 int idx, family; 1836 int s_idx = cb->args[0]; 1837 struct neigh_table *tbl; 1838 1839 family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family; 1840 1841 read_lock(&neigh_tbl_lock); 1842 for (tbl = neigh_tables, idx = 0; tbl; tbl = tbl->next) { 1843 struct neigh_parms *p; 1844 1845 if (idx < s_idx || (family && tbl->family != family)) 1846 continue; 1847 1848 if (neightbl_fill_info(tbl, skb, cb) <= 0) 1849 break; 1850 1851 for (++idx, p = tbl->parms.next; p; p = p->next, idx++) { 1852 if (idx < s_idx) 1853 continue; 1854 1855 if (neightbl_fill_param_info(tbl, p, skb, cb) <= 0) 1856 goto out; 1857 } 1858 1859 } 1860 out: 1861 read_unlock(&neigh_tbl_lock); 1862 cb->args[0] = idx; 1863 1864 return skb->len; 1865 } 1866 1867 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *n, 1868 u32 pid, u32 seq, int event, unsigned int flags) 1869 { 1870 unsigned long now = jiffies; 1871 unsigned char *b = skb->tail; 1872 struct nda_cacheinfo ci; 1873 int locked = 0; 1874 u32 probes; 1875 struct nlmsghdr *nlh = NLMSG_NEW(skb, pid, seq, event, 1876 sizeof(struct ndmsg), flags); 1877 struct ndmsg *ndm = NLMSG_DATA(nlh); 1878 1879 ndm->ndm_family = n->ops->family; 1880 ndm->ndm_pad1 = 0; 1881 ndm->ndm_pad2 = 0; 1882 ndm->ndm_flags = n->flags; 1883 ndm->ndm_type = n->type; 1884 ndm->ndm_ifindex = n->dev->ifindex; 1885 RTA_PUT(skb, NDA_DST, n->tbl->key_len, n->primary_key); 1886 read_lock_bh(&n->lock); 1887 locked = 1; 1888 ndm->ndm_state = n->nud_state; 1889 if (n->nud_state & NUD_VALID) 1890 RTA_PUT(skb, NDA_LLADDR, n->dev->addr_len, n->ha); 1891 ci.ndm_used = now - n->used; 1892 ci.ndm_confirmed = now - n->confirmed; 1893 ci.ndm_updated = now - n->updated; 1894 ci.ndm_refcnt = atomic_read(&n->refcnt) - 1; 1895 probes = atomic_read(&n->probes); 1896 read_unlock_bh(&n->lock); 1897 locked = 0; 1898 RTA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci); 1899 RTA_PUT(skb, NDA_PROBES, sizeof(probes), &probes); 1900 nlh->nlmsg_len = skb->tail - b; 1901 return skb->len; 1902 1903 nlmsg_failure: 1904 rtattr_failure: 1905 if (locked) 1906 read_unlock_bh(&n->lock); 1907 skb_trim(skb, b - skb->data); 1908 return -1; 1909 } 1910 1911 1912 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 1913 struct netlink_callback *cb) 1914 { 1915 struct neighbour *n; 1916 int rc, h, s_h = cb->args[1]; 1917 int idx, s_idx = idx = cb->args[2]; 1918 1919 for (h = 0; h <= tbl->hash_mask; h++) { 1920 if (h < s_h) 1921 continue; 1922 if (h > s_h) 1923 s_idx = 0; 1924 read_lock_bh(&tbl->lock); 1925 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) { 1926 if (idx < s_idx) 1927 continue; 1928 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 1929 cb->nlh->nlmsg_seq, 1930 RTM_NEWNEIGH, 1931 NLM_F_MULTI) <= 0) { 1932 read_unlock_bh(&tbl->lock); 1933 rc = -1; 1934 goto out; 1935 } 1936 } 1937 read_unlock_bh(&tbl->lock); 1938 } 1939 rc = skb->len; 1940 out: 1941 cb->args[1] = h; 1942 cb->args[2] = idx; 1943 return rc; 1944 } 1945 1946 int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 1947 { 1948 struct neigh_table *tbl; 1949 int t, family, s_t; 1950 1951 read_lock(&neigh_tbl_lock); 1952 family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family; 1953 s_t = cb->args[0]; 1954 1955 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) { 1956 if (t < s_t || (family && tbl->family != family)) 1957 continue; 1958 if (t > s_t) 1959 memset(&cb->args[1], 0, sizeof(cb->args) - 1960 sizeof(cb->args[0])); 1961 if (neigh_dump_table(tbl, skb, cb) < 0) 1962 break; 1963 } 1964 read_unlock(&neigh_tbl_lock); 1965 1966 cb->args[0] = t; 1967 return skb->len; 1968 } 1969 1970 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 1971 { 1972 int chain; 1973 1974 read_lock_bh(&tbl->lock); 1975 for (chain = 0; chain <= tbl->hash_mask; chain++) { 1976 struct neighbour *n; 1977 1978 for (n = tbl->hash_buckets[chain]; n; n = n->next) 1979 cb(n, cookie); 1980 } 1981 read_unlock_bh(&tbl->lock); 1982 } 1983 EXPORT_SYMBOL(neigh_for_each); 1984 1985 /* The tbl->lock must be held as a writer and BH disabled. */ 1986 void __neigh_for_each_release(struct neigh_table *tbl, 1987 int (*cb)(struct neighbour *)) 1988 { 1989 int chain; 1990 1991 for (chain = 0; chain <= tbl->hash_mask; chain++) { 1992 struct neighbour *n, **np; 1993 1994 np = &tbl->hash_buckets[chain]; 1995 while ((n = *np) != NULL) { 1996 int release; 1997 1998 write_lock(&n->lock); 1999 release = cb(n); 2000 if (release) { 2001 *np = n->next; 2002 n->dead = 1; 2003 } else 2004 np = &n->next; 2005 write_unlock(&n->lock); 2006 if (release) 2007 neigh_release(n); 2008 } 2009 } 2010 } 2011 EXPORT_SYMBOL(__neigh_for_each_release); 2012 2013 #ifdef CONFIG_PROC_FS 2014 2015 static struct neighbour *neigh_get_first(struct seq_file *seq) 2016 { 2017 struct neigh_seq_state *state = seq->private; 2018 struct neigh_table *tbl = state->tbl; 2019 struct neighbour *n = NULL; 2020 int bucket = state->bucket; 2021 2022 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2023 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) { 2024 n = tbl->hash_buckets[bucket]; 2025 2026 while (n) { 2027 if (state->neigh_sub_iter) { 2028 loff_t fakep = 0; 2029 void *v; 2030 2031 v = state->neigh_sub_iter(state, n, &fakep); 2032 if (!v) 2033 goto next; 2034 } 2035 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2036 break; 2037 if (n->nud_state & ~NUD_NOARP) 2038 break; 2039 next: 2040 n = n->next; 2041 } 2042 2043 if (n) 2044 break; 2045 } 2046 state->bucket = bucket; 2047 2048 return n; 2049 } 2050 2051 static struct neighbour *neigh_get_next(struct seq_file *seq, 2052 struct neighbour *n, 2053 loff_t *pos) 2054 { 2055 struct neigh_seq_state *state = seq->private; 2056 struct neigh_table *tbl = state->tbl; 2057 2058 if (state->neigh_sub_iter) { 2059 void *v = state->neigh_sub_iter(state, n, pos); 2060 if (v) 2061 return n; 2062 } 2063 n = n->next; 2064 2065 while (1) { 2066 while (n) { 2067 if (state->neigh_sub_iter) { 2068 void *v = state->neigh_sub_iter(state, n, pos); 2069 if (v) 2070 return n; 2071 goto next; 2072 } 2073 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2074 break; 2075 2076 if (n->nud_state & ~NUD_NOARP) 2077 break; 2078 next: 2079 n = n->next; 2080 } 2081 2082 if (n) 2083 break; 2084 2085 if (++state->bucket > tbl->hash_mask) 2086 break; 2087 2088 n = tbl->hash_buckets[state->bucket]; 2089 } 2090 2091 if (n && pos) 2092 --(*pos); 2093 return n; 2094 } 2095 2096 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2097 { 2098 struct neighbour *n = neigh_get_first(seq); 2099 2100 if (n) { 2101 while (*pos) { 2102 n = neigh_get_next(seq, n, pos); 2103 if (!n) 2104 break; 2105 } 2106 } 2107 return *pos ? NULL : n; 2108 } 2109 2110 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2111 { 2112 struct neigh_seq_state *state = seq->private; 2113 struct neigh_table *tbl = state->tbl; 2114 struct pneigh_entry *pn = NULL; 2115 int bucket = state->bucket; 2116 2117 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2118 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2119 pn = tbl->phash_buckets[bucket]; 2120 if (pn) 2121 break; 2122 } 2123 state->bucket = bucket; 2124 2125 return pn; 2126 } 2127 2128 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2129 struct pneigh_entry *pn, 2130 loff_t *pos) 2131 { 2132 struct neigh_seq_state *state = seq->private; 2133 struct neigh_table *tbl = state->tbl; 2134 2135 pn = pn->next; 2136 while (!pn) { 2137 if (++state->bucket > PNEIGH_HASHMASK) 2138 break; 2139 pn = tbl->phash_buckets[state->bucket]; 2140 if (pn) 2141 break; 2142 } 2143 2144 if (pn && pos) 2145 --(*pos); 2146 2147 return pn; 2148 } 2149 2150 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2151 { 2152 struct pneigh_entry *pn = pneigh_get_first(seq); 2153 2154 if (pn) { 2155 while (*pos) { 2156 pn = pneigh_get_next(seq, pn, pos); 2157 if (!pn) 2158 break; 2159 } 2160 } 2161 return *pos ? NULL : pn; 2162 } 2163 2164 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2165 { 2166 struct neigh_seq_state *state = seq->private; 2167 void *rc; 2168 2169 rc = neigh_get_idx(seq, pos); 2170 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2171 rc = pneigh_get_idx(seq, pos); 2172 2173 return rc; 2174 } 2175 2176 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2177 { 2178 struct neigh_seq_state *state = seq->private; 2179 loff_t pos_minus_one; 2180 2181 state->tbl = tbl; 2182 state->bucket = 0; 2183 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2184 2185 read_lock_bh(&tbl->lock); 2186 2187 pos_minus_one = *pos - 1; 2188 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN; 2189 } 2190 EXPORT_SYMBOL(neigh_seq_start); 2191 2192 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2193 { 2194 struct neigh_seq_state *state; 2195 void *rc; 2196 2197 if (v == SEQ_START_TOKEN) { 2198 rc = neigh_get_idx(seq, pos); 2199 goto out; 2200 } 2201 2202 state = seq->private; 2203 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2204 rc = neigh_get_next(seq, v, NULL); 2205 if (rc) 2206 goto out; 2207 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2208 rc = pneigh_get_first(seq); 2209 } else { 2210 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2211 rc = pneigh_get_next(seq, v, NULL); 2212 } 2213 out: 2214 ++(*pos); 2215 return rc; 2216 } 2217 EXPORT_SYMBOL(neigh_seq_next); 2218 2219 void neigh_seq_stop(struct seq_file *seq, void *v) 2220 { 2221 struct neigh_seq_state *state = seq->private; 2222 struct neigh_table *tbl = state->tbl; 2223 2224 read_unlock_bh(&tbl->lock); 2225 } 2226 EXPORT_SYMBOL(neigh_seq_stop); 2227 2228 /* statistics via seq_file */ 2229 2230 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2231 { 2232 struct proc_dir_entry *pde = seq->private; 2233 struct neigh_table *tbl = pde->data; 2234 int cpu; 2235 2236 if (*pos == 0) 2237 return SEQ_START_TOKEN; 2238 2239 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) { 2240 if (!cpu_possible(cpu)) 2241 continue; 2242 *pos = cpu+1; 2243 return per_cpu_ptr(tbl->stats, cpu); 2244 } 2245 return NULL; 2246 } 2247 2248 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2249 { 2250 struct proc_dir_entry *pde = seq->private; 2251 struct neigh_table *tbl = pde->data; 2252 int cpu; 2253 2254 for (cpu = *pos; cpu < NR_CPUS; ++cpu) { 2255 if (!cpu_possible(cpu)) 2256 continue; 2257 *pos = cpu+1; 2258 return per_cpu_ptr(tbl->stats, cpu); 2259 } 2260 return NULL; 2261 } 2262 2263 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2264 { 2265 2266 } 2267 2268 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2269 { 2270 struct proc_dir_entry *pde = seq->private; 2271 struct neigh_table *tbl = pde->data; 2272 struct neigh_statistics *st = v; 2273 2274 if (v == SEQ_START_TOKEN) { 2275 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n"); 2276 return 0; 2277 } 2278 2279 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2280 "%08lx %08lx %08lx %08lx\n", 2281 atomic_read(&tbl->entries), 2282 2283 st->allocs, 2284 st->destroys, 2285 st->hash_grows, 2286 2287 st->lookups, 2288 st->hits, 2289 2290 st->res_failed, 2291 2292 st->rcv_probes_mcast, 2293 st->rcv_probes_ucast, 2294 2295 st->periodic_gc_runs, 2296 st->forced_gc_runs 2297 ); 2298 2299 return 0; 2300 } 2301 2302 static struct seq_operations neigh_stat_seq_ops = { 2303 .start = neigh_stat_seq_start, 2304 .next = neigh_stat_seq_next, 2305 .stop = neigh_stat_seq_stop, 2306 .show = neigh_stat_seq_show, 2307 }; 2308 2309 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2310 { 2311 int ret = seq_open(file, &neigh_stat_seq_ops); 2312 2313 if (!ret) { 2314 struct seq_file *sf = file->private_data; 2315 sf->private = PDE(inode); 2316 } 2317 return ret; 2318 }; 2319 2320 static struct file_operations neigh_stat_seq_fops = { 2321 .owner = THIS_MODULE, 2322 .open = neigh_stat_seq_open, 2323 .read = seq_read, 2324 .llseek = seq_lseek, 2325 .release = seq_release, 2326 }; 2327 2328 #endif /* CONFIG_PROC_FS */ 2329 2330 #ifdef CONFIG_ARPD 2331 void neigh_app_ns(struct neighbour *n) 2332 { 2333 struct nlmsghdr *nlh; 2334 int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256); 2335 struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC); 2336 2337 if (!skb) 2338 return; 2339 2340 if (neigh_fill_info(skb, n, 0, 0, RTM_GETNEIGH, 0) < 0) { 2341 kfree_skb(skb); 2342 return; 2343 } 2344 nlh = (struct nlmsghdr *)skb->data; 2345 nlh->nlmsg_flags = NLM_F_REQUEST; 2346 NETLINK_CB(skb).dst_group = RTNLGRP_NEIGH; 2347 netlink_broadcast(rtnl, skb, 0, RTNLGRP_NEIGH, GFP_ATOMIC); 2348 } 2349 2350 static void neigh_app_notify(struct neighbour *n) 2351 { 2352 struct nlmsghdr *nlh; 2353 int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256); 2354 struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC); 2355 2356 if (!skb) 2357 return; 2358 2359 if (neigh_fill_info(skb, n, 0, 0, RTM_NEWNEIGH, 0) < 0) { 2360 kfree_skb(skb); 2361 return; 2362 } 2363 nlh = (struct nlmsghdr *)skb->data; 2364 NETLINK_CB(skb).dst_group = RTNLGRP_NEIGH; 2365 netlink_broadcast(rtnl, skb, 0, RTNLGRP_NEIGH, GFP_ATOMIC); 2366 } 2367 2368 #endif /* CONFIG_ARPD */ 2369 2370 #ifdef CONFIG_SYSCTL 2371 2372 static struct neigh_sysctl_table { 2373 struct ctl_table_header *sysctl_header; 2374 ctl_table neigh_vars[__NET_NEIGH_MAX]; 2375 ctl_table neigh_dev[2]; 2376 ctl_table neigh_neigh_dir[2]; 2377 ctl_table neigh_proto_dir[2]; 2378 ctl_table neigh_root_dir[2]; 2379 } neigh_sysctl_template = { 2380 .neigh_vars = { 2381 { 2382 .ctl_name = NET_NEIGH_MCAST_SOLICIT, 2383 .procname = "mcast_solicit", 2384 .maxlen = sizeof(int), 2385 .mode = 0644, 2386 .proc_handler = &proc_dointvec, 2387 }, 2388 { 2389 .ctl_name = NET_NEIGH_UCAST_SOLICIT, 2390 .procname = "ucast_solicit", 2391 .maxlen = sizeof(int), 2392 .mode = 0644, 2393 .proc_handler = &proc_dointvec, 2394 }, 2395 { 2396 .ctl_name = NET_NEIGH_APP_SOLICIT, 2397 .procname = "app_solicit", 2398 .maxlen = sizeof(int), 2399 .mode = 0644, 2400 .proc_handler = &proc_dointvec, 2401 }, 2402 { 2403 .ctl_name = NET_NEIGH_RETRANS_TIME, 2404 .procname = "retrans_time", 2405 .maxlen = sizeof(int), 2406 .mode = 0644, 2407 .proc_handler = &proc_dointvec_userhz_jiffies, 2408 }, 2409 { 2410 .ctl_name = NET_NEIGH_REACHABLE_TIME, 2411 .procname = "base_reachable_time", 2412 .maxlen = sizeof(int), 2413 .mode = 0644, 2414 .proc_handler = &proc_dointvec_jiffies, 2415 .strategy = &sysctl_jiffies, 2416 }, 2417 { 2418 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME, 2419 .procname = "delay_first_probe_time", 2420 .maxlen = sizeof(int), 2421 .mode = 0644, 2422 .proc_handler = &proc_dointvec_jiffies, 2423 .strategy = &sysctl_jiffies, 2424 }, 2425 { 2426 .ctl_name = NET_NEIGH_GC_STALE_TIME, 2427 .procname = "gc_stale_time", 2428 .maxlen = sizeof(int), 2429 .mode = 0644, 2430 .proc_handler = &proc_dointvec_jiffies, 2431 .strategy = &sysctl_jiffies, 2432 }, 2433 { 2434 .ctl_name = NET_NEIGH_UNRES_QLEN, 2435 .procname = "unres_qlen", 2436 .maxlen = sizeof(int), 2437 .mode = 0644, 2438 .proc_handler = &proc_dointvec, 2439 }, 2440 { 2441 .ctl_name = NET_NEIGH_PROXY_QLEN, 2442 .procname = "proxy_qlen", 2443 .maxlen = sizeof(int), 2444 .mode = 0644, 2445 .proc_handler = &proc_dointvec, 2446 }, 2447 { 2448 .ctl_name = NET_NEIGH_ANYCAST_DELAY, 2449 .procname = "anycast_delay", 2450 .maxlen = sizeof(int), 2451 .mode = 0644, 2452 .proc_handler = &proc_dointvec_userhz_jiffies, 2453 }, 2454 { 2455 .ctl_name = NET_NEIGH_PROXY_DELAY, 2456 .procname = "proxy_delay", 2457 .maxlen = sizeof(int), 2458 .mode = 0644, 2459 .proc_handler = &proc_dointvec_userhz_jiffies, 2460 }, 2461 { 2462 .ctl_name = NET_NEIGH_LOCKTIME, 2463 .procname = "locktime", 2464 .maxlen = sizeof(int), 2465 .mode = 0644, 2466 .proc_handler = &proc_dointvec_userhz_jiffies, 2467 }, 2468 { 2469 .ctl_name = NET_NEIGH_GC_INTERVAL, 2470 .procname = "gc_interval", 2471 .maxlen = sizeof(int), 2472 .mode = 0644, 2473 .proc_handler = &proc_dointvec_jiffies, 2474 .strategy = &sysctl_jiffies, 2475 }, 2476 { 2477 .ctl_name = NET_NEIGH_GC_THRESH1, 2478 .procname = "gc_thresh1", 2479 .maxlen = sizeof(int), 2480 .mode = 0644, 2481 .proc_handler = &proc_dointvec, 2482 }, 2483 { 2484 .ctl_name = NET_NEIGH_GC_THRESH2, 2485 .procname = "gc_thresh2", 2486 .maxlen = sizeof(int), 2487 .mode = 0644, 2488 .proc_handler = &proc_dointvec, 2489 }, 2490 { 2491 .ctl_name = NET_NEIGH_GC_THRESH3, 2492 .procname = "gc_thresh3", 2493 .maxlen = sizeof(int), 2494 .mode = 0644, 2495 .proc_handler = &proc_dointvec, 2496 }, 2497 { 2498 .ctl_name = NET_NEIGH_RETRANS_TIME_MS, 2499 .procname = "retrans_time_ms", 2500 .maxlen = sizeof(int), 2501 .mode = 0644, 2502 .proc_handler = &proc_dointvec_ms_jiffies, 2503 .strategy = &sysctl_ms_jiffies, 2504 }, 2505 { 2506 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS, 2507 .procname = "base_reachable_time_ms", 2508 .maxlen = sizeof(int), 2509 .mode = 0644, 2510 .proc_handler = &proc_dointvec_ms_jiffies, 2511 .strategy = &sysctl_ms_jiffies, 2512 }, 2513 }, 2514 .neigh_dev = { 2515 { 2516 .ctl_name = NET_PROTO_CONF_DEFAULT, 2517 .procname = "default", 2518 .mode = 0555, 2519 }, 2520 }, 2521 .neigh_neigh_dir = { 2522 { 2523 .procname = "neigh", 2524 .mode = 0555, 2525 }, 2526 }, 2527 .neigh_proto_dir = { 2528 { 2529 .mode = 0555, 2530 }, 2531 }, 2532 .neigh_root_dir = { 2533 { 2534 .ctl_name = CTL_NET, 2535 .procname = "net", 2536 .mode = 0555, 2537 }, 2538 }, 2539 }; 2540 2541 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 2542 int p_id, int pdev_id, char *p_name, 2543 proc_handler *handler, ctl_handler *strategy) 2544 { 2545 struct neigh_sysctl_table *t = kmalloc(sizeof(*t), GFP_KERNEL); 2546 const char *dev_name_source = NULL; 2547 char *dev_name = NULL; 2548 int err = 0; 2549 2550 if (!t) 2551 return -ENOBUFS; 2552 memcpy(t, &neigh_sysctl_template, sizeof(*t)); 2553 t->neigh_vars[0].data = &p->mcast_probes; 2554 t->neigh_vars[1].data = &p->ucast_probes; 2555 t->neigh_vars[2].data = &p->app_probes; 2556 t->neigh_vars[3].data = &p->retrans_time; 2557 t->neigh_vars[4].data = &p->base_reachable_time; 2558 t->neigh_vars[5].data = &p->delay_probe_time; 2559 t->neigh_vars[6].data = &p->gc_staletime; 2560 t->neigh_vars[7].data = &p->queue_len; 2561 t->neigh_vars[8].data = &p->proxy_qlen; 2562 t->neigh_vars[9].data = &p->anycast_delay; 2563 t->neigh_vars[10].data = &p->proxy_delay; 2564 t->neigh_vars[11].data = &p->locktime; 2565 2566 if (dev) { 2567 dev_name_source = dev->name; 2568 t->neigh_dev[0].ctl_name = dev->ifindex; 2569 t->neigh_vars[12].procname = NULL; 2570 t->neigh_vars[13].procname = NULL; 2571 t->neigh_vars[14].procname = NULL; 2572 t->neigh_vars[15].procname = NULL; 2573 } else { 2574 dev_name_source = t->neigh_dev[0].procname; 2575 t->neigh_vars[12].data = (int *)(p + 1); 2576 t->neigh_vars[13].data = (int *)(p + 1) + 1; 2577 t->neigh_vars[14].data = (int *)(p + 1) + 2; 2578 t->neigh_vars[15].data = (int *)(p + 1) + 3; 2579 } 2580 2581 t->neigh_vars[16].data = &p->retrans_time; 2582 t->neigh_vars[17].data = &p->base_reachable_time; 2583 2584 if (handler || strategy) { 2585 /* RetransTime */ 2586 t->neigh_vars[3].proc_handler = handler; 2587 t->neigh_vars[3].strategy = strategy; 2588 t->neigh_vars[3].extra1 = dev; 2589 /* ReachableTime */ 2590 t->neigh_vars[4].proc_handler = handler; 2591 t->neigh_vars[4].strategy = strategy; 2592 t->neigh_vars[4].extra1 = dev; 2593 /* RetransTime (in milliseconds)*/ 2594 t->neigh_vars[16].proc_handler = handler; 2595 t->neigh_vars[16].strategy = strategy; 2596 t->neigh_vars[16].extra1 = dev; 2597 /* ReachableTime (in milliseconds) */ 2598 t->neigh_vars[17].proc_handler = handler; 2599 t->neigh_vars[17].strategy = strategy; 2600 t->neigh_vars[17].extra1 = dev; 2601 } 2602 2603 dev_name = kstrdup(dev_name_source, GFP_KERNEL); 2604 if (!dev_name) { 2605 err = -ENOBUFS; 2606 goto free; 2607 } 2608 2609 t->neigh_dev[0].procname = dev_name; 2610 2611 t->neigh_neigh_dir[0].ctl_name = pdev_id; 2612 2613 t->neigh_proto_dir[0].procname = p_name; 2614 t->neigh_proto_dir[0].ctl_name = p_id; 2615 2616 t->neigh_dev[0].child = t->neigh_vars; 2617 t->neigh_neigh_dir[0].child = t->neigh_dev; 2618 t->neigh_proto_dir[0].child = t->neigh_neigh_dir; 2619 t->neigh_root_dir[0].child = t->neigh_proto_dir; 2620 2621 t->sysctl_header = register_sysctl_table(t->neigh_root_dir, 0); 2622 if (!t->sysctl_header) { 2623 err = -ENOBUFS; 2624 goto free_procname; 2625 } 2626 p->sysctl_table = t; 2627 return 0; 2628 2629 /* error path */ 2630 free_procname: 2631 kfree(dev_name); 2632 free: 2633 kfree(t); 2634 2635 return err; 2636 } 2637 2638 void neigh_sysctl_unregister(struct neigh_parms *p) 2639 { 2640 if (p->sysctl_table) { 2641 struct neigh_sysctl_table *t = p->sysctl_table; 2642 p->sysctl_table = NULL; 2643 unregister_sysctl_table(t->sysctl_header); 2644 kfree(t->neigh_dev[0].procname); 2645 kfree(t); 2646 } 2647 } 2648 2649 #endif /* CONFIG_SYSCTL */ 2650 2651 EXPORT_SYMBOL(__neigh_event_send); 2652 EXPORT_SYMBOL(neigh_add); 2653 EXPORT_SYMBOL(neigh_changeaddr); 2654 EXPORT_SYMBOL(neigh_compat_output); 2655 EXPORT_SYMBOL(neigh_connected_output); 2656 EXPORT_SYMBOL(neigh_create); 2657 EXPORT_SYMBOL(neigh_delete); 2658 EXPORT_SYMBOL(neigh_destroy); 2659 EXPORT_SYMBOL(neigh_dump_info); 2660 EXPORT_SYMBOL(neigh_event_ns); 2661 EXPORT_SYMBOL(neigh_ifdown); 2662 EXPORT_SYMBOL(neigh_lookup); 2663 EXPORT_SYMBOL(neigh_lookup_nodev); 2664 EXPORT_SYMBOL(neigh_parms_alloc); 2665 EXPORT_SYMBOL(neigh_parms_release); 2666 EXPORT_SYMBOL(neigh_rand_reach_time); 2667 EXPORT_SYMBOL(neigh_resolve_output); 2668 EXPORT_SYMBOL(neigh_table_clear); 2669 EXPORT_SYMBOL(neigh_table_init); 2670 EXPORT_SYMBOL(neigh_update); 2671 EXPORT_SYMBOL(neigh_update_hhs); 2672 EXPORT_SYMBOL(pneigh_enqueue); 2673 EXPORT_SYMBOL(pneigh_lookup); 2674 EXPORT_SYMBOL(neightbl_dump_info); 2675 EXPORT_SYMBOL(neightbl_set); 2676 2677 #ifdef CONFIG_ARPD 2678 EXPORT_SYMBOL(neigh_app_ns); 2679 #endif 2680 #ifdef CONFIG_SYSCTL 2681 EXPORT_SYMBOL(neigh_sysctl_register); 2682 EXPORT_SYMBOL(neigh_sysctl_unregister); 2683 #endif 2684