1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/slab.h> 21 #include <linux/types.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/socket.h> 25 #include <linux/netdevice.h> 26 #include <linux/proc_fs.h> 27 #ifdef CONFIG_SYSCTL 28 #include <linux/sysctl.h> 29 #endif 30 #include <linux/times.h> 31 #include <net/net_namespace.h> 32 #include <net/neighbour.h> 33 #include <net/dst.h> 34 #include <net/sock.h> 35 #include <net/netevent.h> 36 #include <net/netlink.h> 37 #include <linux/rtnetlink.h> 38 #include <linux/random.h> 39 #include <linux/string.h> 40 #include <linux/log2.h> 41 42 #define NEIGH_DEBUG 1 43 44 #define NEIGH_PRINTK(x...) printk(x) 45 #define NEIGH_NOPRINTK(x...) do { ; } while(0) 46 #define NEIGH_PRINTK1 NEIGH_NOPRINTK 47 #define NEIGH_PRINTK2 NEIGH_NOPRINTK 48 49 #if NEIGH_DEBUG >= 1 50 #undef NEIGH_PRINTK1 51 #define NEIGH_PRINTK1 NEIGH_PRINTK 52 #endif 53 #if NEIGH_DEBUG >= 2 54 #undef NEIGH_PRINTK2 55 #define NEIGH_PRINTK2 NEIGH_PRINTK 56 #endif 57 58 #define PNEIGH_HASHMASK 0xF 59 60 static void neigh_timer_handler(unsigned long arg); 61 static void __neigh_notify(struct neighbour *n, int type, int flags); 62 static void neigh_update_notify(struct neighbour *neigh); 63 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 64 65 static struct neigh_table *neigh_tables; 66 #ifdef CONFIG_PROC_FS 67 static const struct file_operations neigh_stat_seq_fops; 68 #endif 69 70 /* 71 Neighbour hash table buckets are protected with rwlock tbl->lock. 72 73 - All the scans/updates to hash buckets MUST be made under this lock. 74 - NOTHING clever should be made under this lock: no callbacks 75 to protocol backends, no attempts to send something to network. 76 It will result in deadlocks, if backend/driver wants to use neighbour 77 cache. 78 - If the entry requires some non-trivial actions, increase 79 its reference count and release table lock. 80 81 Neighbour entries are protected: 82 - with reference count. 83 - with rwlock neigh->lock 84 85 Reference count prevents destruction. 86 87 neigh->lock mainly serializes ll address data and its validity state. 88 However, the same lock is used to protect another entry fields: 89 - timer 90 - resolution queue 91 92 Again, nothing clever shall be made under neigh->lock, 93 the most complicated procedure, which we allow is dev->hard_header. 94 It is supposed, that dev->hard_header is simplistic and does 95 not make callbacks to neighbour tables. 96 97 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting 98 list of neighbour tables. This list is used only in process context, 99 */ 100 101 static DEFINE_RWLOCK(neigh_tbl_lock); 102 103 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 104 { 105 kfree_skb(skb); 106 return -ENETDOWN; 107 } 108 109 static void neigh_cleanup_and_release(struct neighbour *neigh) 110 { 111 if (neigh->parms->neigh_cleanup) 112 neigh->parms->neigh_cleanup(neigh); 113 114 __neigh_notify(neigh, RTM_DELNEIGH, 0); 115 neigh_release(neigh); 116 } 117 118 /* 119 * It is random distribution in the interval (1/2)*base...(3/2)*base. 120 * It corresponds to default IPv6 settings and is not overridable, 121 * because it is really reasonable choice. 122 */ 123 124 unsigned long neigh_rand_reach_time(unsigned long base) 125 { 126 return base ? (net_random() % base) + (base >> 1) : 0; 127 } 128 EXPORT_SYMBOL(neigh_rand_reach_time); 129 130 131 static int neigh_forced_gc(struct neigh_table *tbl) 132 { 133 int shrunk = 0; 134 int i; 135 struct neigh_hash_table *nht; 136 137 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 138 139 write_lock_bh(&tbl->lock); 140 nht = rcu_dereference_protected(tbl->nht, 141 lockdep_is_held(&tbl->lock)); 142 for (i = 0; i < (1 << nht->hash_shift); i++) { 143 struct neighbour *n; 144 struct neighbour __rcu **np; 145 146 np = &nht->hash_buckets[i]; 147 while ((n = rcu_dereference_protected(*np, 148 lockdep_is_held(&tbl->lock))) != NULL) { 149 /* Neighbour record may be discarded if: 150 * - nobody refers to it. 151 * - it is not permanent 152 */ 153 write_lock(&n->lock); 154 if (atomic_read(&n->refcnt) == 1 && 155 !(n->nud_state & NUD_PERMANENT)) { 156 rcu_assign_pointer(*np, 157 rcu_dereference_protected(n->next, 158 lockdep_is_held(&tbl->lock))); 159 n->dead = 1; 160 shrunk = 1; 161 write_unlock(&n->lock); 162 neigh_cleanup_and_release(n); 163 continue; 164 } 165 write_unlock(&n->lock); 166 np = &n->next; 167 } 168 } 169 170 tbl->last_flush = jiffies; 171 172 write_unlock_bh(&tbl->lock); 173 174 return shrunk; 175 } 176 177 static void neigh_add_timer(struct neighbour *n, unsigned long when) 178 { 179 neigh_hold(n); 180 if (unlikely(mod_timer(&n->timer, when))) { 181 printk("NEIGH: BUG, double timer add, state is %x\n", 182 n->nud_state); 183 dump_stack(); 184 } 185 } 186 187 static int neigh_del_timer(struct neighbour *n) 188 { 189 if ((n->nud_state & NUD_IN_TIMER) && 190 del_timer(&n->timer)) { 191 neigh_release(n); 192 return 1; 193 } 194 return 0; 195 } 196 197 static void pneigh_queue_purge(struct sk_buff_head *list) 198 { 199 struct sk_buff *skb; 200 201 while ((skb = skb_dequeue(list)) != NULL) { 202 dev_put(skb->dev); 203 kfree_skb(skb); 204 } 205 } 206 207 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) 208 { 209 int i; 210 struct neigh_hash_table *nht; 211 212 nht = rcu_dereference_protected(tbl->nht, 213 lockdep_is_held(&tbl->lock)); 214 215 for (i = 0; i < (1 << nht->hash_shift); i++) { 216 struct neighbour *n; 217 struct neighbour __rcu **np = &nht->hash_buckets[i]; 218 219 while ((n = rcu_dereference_protected(*np, 220 lockdep_is_held(&tbl->lock))) != NULL) { 221 if (dev && n->dev != dev) { 222 np = &n->next; 223 continue; 224 } 225 rcu_assign_pointer(*np, 226 rcu_dereference_protected(n->next, 227 lockdep_is_held(&tbl->lock))); 228 write_lock(&n->lock); 229 neigh_del_timer(n); 230 n->dead = 1; 231 232 if (atomic_read(&n->refcnt) != 1) { 233 /* The most unpleasant situation. 234 We must destroy neighbour entry, 235 but someone still uses it. 236 237 The destroy will be delayed until 238 the last user releases us, but 239 we must kill timers etc. and move 240 it to safe state. 241 */ 242 skb_queue_purge(&n->arp_queue); 243 n->arp_queue_len_bytes = 0; 244 n->output = neigh_blackhole; 245 if (n->nud_state & NUD_VALID) 246 n->nud_state = NUD_NOARP; 247 else 248 n->nud_state = NUD_NONE; 249 NEIGH_PRINTK2("neigh %p is stray.\n", n); 250 } 251 write_unlock(&n->lock); 252 neigh_cleanup_and_release(n); 253 } 254 } 255 } 256 257 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 258 { 259 write_lock_bh(&tbl->lock); 260 neigh_flush_dev(tbl, dev); 261 write_unlock_bh(&tbl->lock); 262 } 263 EXPORT_SYMBOL(neigh_changeaddr); 264 265 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 266 { 267 write_lock_bh(&tbl->lock); 268 neigh_flush_dev(tbl, dev); 269 pneigh_ifdown(tbl, dev); 270 write_unlock_bh(&tbl->lock); 271 272 del_timer_sync(&tbl->proxy_timer); 273 pneigh_queue_purge(&tbl->proxy_queue); 274 return 0; 275 } 276 EXPORT_SYMBOL(neigh_ifdown); 277 278 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev) 279 { 280 struct neighbour *n = NULL; 281 unsigned long now = jiffies; 282 int entries; 283 284 entries = atomic_inc_return(&tbl->entries) - 1; 285 if (entries >= tbl->gc_thresh3 || 286 (entries >= tbl->gc_thresh2 && 287 time_after(now, tbl->last_flush + 5 * HZ))) { 288 if (!neigh_forced_gc(tbl) && 289 entries >= tbl->gc_thresh3) 290 goto out_entries; 291 } 292 293 if (tbl->entry_size) 294 n = kzalloc(tbl->entry_size, GFP_ATOMIC); 295 else { 296 int sz = sizeof(*n) + tbl->key_len; 297 298 sz = ALIGN(sz, NEIGH_PRIV_ALIGN); 299 sz += dev->neigh_priv_len; 300 n = kzalloc(sz, GFP_ATOMIC); 301 } 302 if (!n) 303 goto out_entries; 304 305 skb_queue_head_init(&n->arp_queue); 306 rwlock_init(&n->lock); 307 seqlock_init(&n->ha_lock); 308 n->updated = n->used = now; 309 n->nud_state = NUD_NONE; 310 n->output = neigh_blackhole; 311 seqlock_init(&n->hh.hh_lock); 312 n->parms = neigh_parms_clone(&tbl->parms); 313 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n); 314 315 NEIGH_CACHE_STAT_INC(tbl, allocs); 316 n->tbl = tbl; 317 atomic_set(&n->refcnt, 1); 318 n->dead = 1; 319 out: 320 return n; 321 322 out_entries: 323 atomic_dec(&tbl->entries); 324 goto out; 325 } 326 327 static void neigh_get_hash_rnd(u32 *x) 328 { 329 get_random_bytes(x, sizeof(*x)); 330 *x |= 1; 331 } 332 333 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 334 { 335 size_t size = (1 << shift) * sizeof(struct neighbour *); 336 struct neigh_hash_table *ret; 337 struct neighbour __rcu **buckets; 338 int i; 339 340 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 341 if (!ret) 342 return NULL; 343 if (size <= PAGE_SIZE) 344 buckets = kzalloc(size, GFP_ATOMIC); 345 else 346 buckets = (struct neighbour __rcu **) 347 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 348 get_order(size)); 349 if (!buckets) { 350 kfree(ret); 351 return NULL; 352 } 353 ret->hash_buckets = buckets; 354 ret->hash_shift = shift; 355 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 356 neigh_get_hash_rnd(&ret->hash_rnd[i]); 357 return ret; 358 } 359 360 static void neigh_hash_free_rcu(struct rcu_head *head) 361 { 362 struct neigh_hash_table *nht = container_of(head, 363 struct neigh_hash_table, 364 rcu); 365 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 366 struct neighbour __rcu **buckets = nht->hash_buckets; 367 368 if (size <= PAGE_SIZE) 369 kfree(buckets); 370 else 371 free_pages((unsigned long)buckets, get_order(size)); 372 kfree(nht); 373 } 374 375 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 376 unsigned long new_shift) 377 { 378 unsigned int i, hash; 379 struct neigh_hash_table *new_nht, *old_nht; 380 381 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 382 383 old_nht = rcu_dereference_protected(tbl->nht, 384 lockdep_is_held(&tbl->lock)); 385 new_nht = neigh_hash_alloc(new_shift); 386 if (!new_nht) 387 return old_nht; 388 389 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 390 struct neighbour *n, *next; 391 392 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 393 lockdep_is_held(&tbl->lock)); 394 n != NULL; 395 n = next) { 396 hash = tbl->hash(n->primary_key, n->dev, 397 new_nht->hash_rnd); 398 399 hash >>= (32 - new_nht->hash_shift); 400 next = rcu_dereference_protected(n->next, 401 lockdep_is_held(&tbl->lock)); 402 403 rcu_assign_pointer(n->next, 404 rcu_dereference_protected( 405 new_nht->hash_buckets[hash], 406 lockdep_is_held(&tbl->lock))); 407 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 408 } 409 } 410 411 rcu_assign_pointer(tbl->nht, new_nht); 412 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 413 return new_nht; 414 } 415 416 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 417 struct net_device *dev) 418 { 419 struct neighbour *n; 420 int key_len = tbl->key_len; 421 u32 hash_val; 422 struct neigh_hash_table *nht; 423 424 NEIGH_CACHE_STAT_INC(tbl, lookups); 425 426 rcu_read_lock_bh(); 427 nht = rcu_dereference_bh(tbl->nht); 428 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 429 430 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 431 n != NULL; 432 n = rcu_dereference_bh(n->next)) { 433 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { 434 if (!atomic_inc_not_zero(&n->refcnt)) 435 n = NULL; 436 NEIGH_CACHE_STAT_INC(tbl, hits); 437 break; 438 } 439 } 440 441 rcu_read_unlock_bh(); 442 return n; 443 } 444 EXPORT_SYMBOL(neigh_lookup); 445 446 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 447 const void *pkey) 448 { 449 struct neighbour *n; 450 int key_len = tbl->key_len; 451 u32 hash_val; 452 struct neigh_hash_table *nht; 453 454 NEIGH_CACHE_STAT_INC(tbl, lookups); 455 456 rcu_read_lock_bh(); 457 nht = rcu_dereference_bh(tbl->nht); 458 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 459 460 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 461 n != NULL; 462 n = rcu_dereference_bh(n->next)) { 463 if (!memcmp(n->primary_key, pkey, key_len) && 464 net_eq(dev_net(n->dev), net)) { 465 if (!atomic_inc_not_zero(&n->refcnt)) 466 n = NULL; 467 NEIGH_CACHE_STAT_INC(tbl, hits); 468 break; 469 } 470 } 471 472 rcu_read_unlock_bh(); 473 return n; 474 } 475 EXPORT_SYMBOL(neigh_lookup_nodev); 476 477 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, 478 struct net_device *dev, bool want_ref) 479 { 480 u32 hash_val; 481 int key_len = tbl->key_len; 482 int error; 483 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev); 484 struct neigh_hash_table *nht; 485 486 if (!n) { 487 rc = ERR_PTR(-ENOBUFS); 488 goto out; 489 } 490 491 memcpy(n->primary_key, pkey, key_len); 492 n->dev = dev; 493 dev_hold(dev); 494 495 /* Protocol specific setup. */ 496 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 497 rc = ERR_PTR(error); 498 goto out_neigh_release; 499 } 500 501 if (dev->netdev_ops->ndo_neigh_construct) { 502 error = dev->netdev_ops->ndo_neigh_construct(n); 503 if (error < 0) { 504 rc = ERR_PTR(error); 505 goto out_neigh_release; 506 } 507 } 508 509 /* Device specific setup. */ 510 if (n->parms->neigh_setup && 511 (error = n->parms->neigh_setup(n)) < 0) { 512 rc = ERR_PTR(error); 513 goto out_neigh_release; 514 } 515 516 n->confirmed = jiffies - (n->parms->base_reachable_time << 1); 517 518 write_lock_bh(&tbl->lock); 519 nht = rcu_dereference_protected(tbl->nht, 520 lockdep_is_held(&tbl->lock)); 521 522 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 523 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 524 525 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 526 527 if (n->parms->dead) { 528 rc = ERR_PTR(-EINVAL); 529 goto out_tbl_unlock; 530 } 531 532 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 533 lockdep_is_held(&tbl->lock)); 534 n1 != NULL; 535 n1 = rcu_dereference_protected(n1->next, 536 lockdep_is_held(&tbl->lock))) { 537 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 538 if (want_ref) 539 neigh_hold(n1); 540 rc = n1; 541 goto out_tbl_unlock; 542 } 543 } 544 545 n->dead = 0; 546 if (want_ref) 547 neigh_hold(n); 548 rcu_assign_pointer(n->next, 549 rcu_dereference_protected(nht->hash_buckets[hash_val], 550 lockdep_is_held(&tbl->lock))); 551 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 552 write_unlock_bh(&tbl->lock); 553 NEIGH_PRINTK2("neigh %p is created.\n", n); 554 rc = n; 555 out: 556 return rc; 557 out_tbl_unlock: 558 write_unlock_bh(&tbl->lock); 559 out_neigh_release: 560 neigh_release(n); 561 goto out; 562 } 563 EXPORT_SYMBOL(__neigh_create); 564 565 static u32 pneigh_hash(const void *pkey, int key_len) 566 { 567 u32 hash_val = *(u32 *)(pkey + key_len - 4); 568 hash_val ^= (hash_val >> 16); 569 hash_val ^= hash_val >> 8; 570 hash_val ^= hash_val >> 4; 571 hash_val &= PNEIGH_HASHMASK; 572 return hash_val; 573 } 574 575 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 576 struct net *net, 577 const void *pkey, 578 int key_len, 579 struct net_device *dev) 580 { 581 while (n) { 582 if (!memcmp(n->key, pkey, key_len) && 583 net_eq(pneigh_net(n), net) && 584 (n->dev == dev || !n->dev)) 585 return n; 586 n = n->next; 587 } 588 return NULL; 589 } 590 591 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 592 struct net *net, const void *pkey, struct net_device *dev) 593 { 594 int key_len = tbl->key_len; 595 u32 hash_val = pneigh_hash(pkey, key_len); 596 597 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 598 net, pkey, key_len, dev); 599 } 600 EXPORT_SYMBOL_GPL(__pneigh_lookup); 601 602 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 603 struct net *net, const void *pkey, 604 struct net_device *dev, int creat) 605 { 606 struct pneigh_entry *n; 607 int key_len = tbl->key_len; 608 u32 hash_val = pneigh_hash(pkey, key_len); 609 610 read_lock_bh(&tbl->lock); 611 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 612 net, pkey, key_len, dev); 613 read_unlock_bh(&tbl->lock); 614 615 if (n || !creat) 616 goto out; 617 618 ASSERT_RTNL(); 619 620 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 621 if (!n) 622 goto out; 623 624 write_pnet(&n->net, hold_net(net)); 625 memcpy(n->key, pkey, key_len); 626 n->dev = dev; 627 if (dev) 628 dev_hold(dev); 629 630 if (tbl->pconstructor && tbl->pconstructor(n)) { 631 if (dev) 632 dev_put(dev); 633 release_net(net); 634 kfree(n); 635 n = NULL; 636 goto out; 637 } 638 639 write_lock_bh(&tbl->lock); 640 n->next = tbl->phash_buckets[hash_val]; 641 tbl->phash_buckets[hash_val] = n; 642 write_unlock_bh(&tbl->lock); 643 out: 644 return n; 645 } 646 EXPORT_SYMBOL(pneigh_lookup); 647 648 649 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 650 struct net_device *dev) 651 { 652 struct pneigh_entry *n, **np; 653 int key_len = tbl->key_len; 654 u32 hash_val = pneigh_hash(pkey, key_len); 655 656 write_lock_bh(&tbl->lock); 657 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 658 np = &n->next) { 659 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 660 net_eq(pneigh_net(n), net)) { 661 *np = n->next; 662 write_unlock_bh(&tbl->lock); 663 if (tbl->pdestructor) 664 tbl->pdestructor(n); 665 if (n->dev) 666 dev_put(n->dev); 667 release_net(pneigh_net(n)); 668 kfree(n); 669 return 0; 670 } 671 } 672 write_unlock_bh(&tbl->lock); 673 return -ENOENT; 674 } 675 676 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 677 { 678 struct pneigh_entry *n, **np; 679 u32 h; 680 681 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 682 np = &tbl->phash_buckets[h]; 683 while ((n = *np) != NULL) { 684 if (!dev || n->dev == dev) { 685 *np = n->next; 686 if (tbl->pdestructor) 687 tbl->pdestructor(n); 688 if (n->dev) 689 dev_put(n->dev); 690 release_net(pneigh_net(n)); 691 kfree(n); 692 continue; 693 } 694 np = &n->next; 695 } 696 } 697 return -ENOENT; 698 } 699 700 static void neigh_parms_destroy(struct neigh_parms *parms); 701 702 static inline void neigh_parms_put(struct neigh_parms *parms) 703 { 704 if (atomic_dec_and_test(&parms->refcnt)) 705 neigh_parms_destroy(parms); 706 } 707 708 /* 709 * neighbour must already be out of the table; 710 * 711 */ 712 void neigh_destroy(struct neighbour *neigh) 713 { 714 struct net_device *dev = neigh->dev; 715 716 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 717 718 if (!neigh->dead) { 719 pr_warn("Destroying alive neighbour %p\n", neigh); 720 dump_stack(); 721 return; 722 } 723 724 if (neigh_del_timer(neigh)) 725 pr_warn("Impossible event\n"); 726 727 skb_queue_purge(&neigh->arp_queue); 728 neigh->arp_queue_len_bytes = 0; 729 730 if (dev->netdev_ops->ndo_neigh_destroy) 731 dev->netdev_ops->ndo_neigh_destroy(neigh); 732 733 dev_put(dev); 734 neigh_parms_put(neigh->parms); 735 736 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); 737 738 atomic_dec(&neigh->tbl->entries); 739 kfree_rcu(neigh, rcu); 740 } 741 EXPORT_SYMBOL(neigh_destroy); 742 743 /* Neighbour state is suspicious; 744 disable fast path. 745 746 Called with write_locked neigh. 747 */ 748 static void neigh_suspect(struct neighbour *neigh) 749 { 750 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 751 752 neigh->output = neigh->ops->output; 753 } 754 755 /* Neighbour state is OK; 756 enable fast path. 757 758 Called with write_locked neigh. 759 */ 760 static void neigh_connect(struct neighbour *neigh) 761 { 762 NEIGH_PRINTK2("neigh %p is connected.\n", neigh); 763 764 neigh->output = neigh->ops->connected_output; 765 } 766 767 static void neigh_periodic_work(struct work_struct *work) 768 { 769 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 770 struct neighbour *n; 771 struct neighbour __rcu **np; 772 unsigned int i; 773 struct neigh_hash_table *nht; 774 775 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 776 777 write_lock_bh(&tbl->lock); 778 nht = rcu_dereference_protected(tbl->nht, 779 lockdep_is_held(&tbl->lock)); 780 781 /* 782 * periodically recompute ReachableTime from random function 783 */ 784 785 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 786 struct neigh_parms *p; 787 tbl->last_rand = jiffies; 788 for (p = &tbl->parms; p; p = p->next) 789 p->reachable_time = 790 neigh_rand_reach_time(p->base_reachable_time); 791 } 792 793 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 794 np = &nht->hash_buckets[i]; 795 796 while ((n = rcu_dereference_protected(*np, 797 lockdep_is_held(&tbl->lock))) != NULL) { 798 unsigned int state; 799 800 write_lock(&n->lock); 801 802 state = n->nud_state; 803 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 804 write_unlock(&n->lock); 805 goto next_elt; 806 } 807 808 if (time_before(n->used, n->confirmed)) 809 n->used = n->confirmed; 810 811 if (atomic_read(&n->refcnt) == 1 && 812 (state == NUD_FAILED || 813 time_after(jiffies, n->used + n->parms->gc_staletime))) { 814 *np = n->next; 815 n->dead = 1; 816 write_unlock(&n->lock); 817 neigh_cleanup_and_release(n); 818 continue; 819 } 820 write_unlock(&n->lock); 821 822 next_elt: 823 np = &n->next; 824 } 825 /* 826 * It's fine to release lock here, even if hash table 827 * grows while we are preempted. 828 */ 829 write_unlock_bh(&tbl->lock); 830 cond_resched(); 831 write_lock_bh(&tbl->lock); 832 nht = rcu_dereference_protected(tbl->nht, 833 lockdep_is_held(&tbl->lock)); 834 } 835 /* Cycle through all hash buckets every base_reachable_time/2 ticks. 836 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 837 * base_reachable_time. 838 */ 839 schedule_delayed_work(&tbl->gc_work, 840 tbl->parms.base_reachable_time >> 1); 841 write_unlock_bh(&tbl->lock); 842 } 843 844 static __inline__ int neigh_max_probes(struct neighbour *n) 845 { 846 struct neigh_parms *p = n->parms; 847 return (n->nud_state & NUD_PROBE) ? 848 p->ucast_probes : 849 p->ucast_probes + p->app_probes + p->mcast_probes; 850 } 851 852 static void neigh_invalidate(struct neighbour *neigh) 853 __releases(neigh->lock) 854 __acquires(neigh->lock) 855 { 856 struct sk_buff *skb; 857 858 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 859 NEIGH_PRINTK2("neigh %p is failed.\n", neigh); 860 neigh->updated = jiffies; 861 862 /* It is very thin place. report_unreachable is very complicated 863 routine. Particularly, it can hit the same neighbour entry! 864 865 So that, we try to be accurate and avoid dead loop. --ANK 866 */ 867 while (neigh->nud_state == NUD_FAILED && 868 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 869 write_unlock(&neigh->lock); 870 neigh->ops->error_report(neigh, skb); 871 write_lock(&neigh->lock); 872 } 873 skb_queue_purge(&neigh->arp_queue); 874 neigh->arp_queue_len_bytes = 0; 875 } 876 877 static void neigh_probe(struct neighbour *neigh) 878 __releases(neigh->lock) 879 { 880 struct sk_buff *skb = skb_peek(&neigh->arp_queue); 881 /* keep skb alive even if arp_queue overflows */ 882 if (skb) 883 skb = skb_copy(skb, GFP_ATOMIC); 884 write_unlock(&neigh->lock); 885 neigh->ops->solicit(neigh, skb); 886 atomic_inc(&neigh->probes); 887 kfree_skb(skb); 888 } 889 890 /* Called when a timer expires for a neighbour entry. */ 891 892 static void neigh_timer_handler(unsigned long arg) 893 { 894 unsigned long now, next; 895 struct neighbour *neigh = (struct neighbour *)arg; 896 unsigned int state; 897 int notify = 0; 898 899 write_lock(&neigh->lock); 900 901 state = neigh->nud_state; 902 now = jiffies; 903 next = now + HZ; 904 905 if (!(state & NUD_IN_TIMER)) 906 goto out; 907 908 if (state & NUD_REACHABLE) { 909 if (time_before_eq(now, 910 neigh->confirmed + neigh->parms->reachable_time)) { 911 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); 912 next = neigh->confirmed + neigh->parms->reachable_time; 913 } else if (time_before_eq(now, 914 neigh->used + neigh->parms->delay_probe_time)) { 915 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 916 neigh->nud_state = NUD_DELAY; 917 neigh->updated = jiffies; 918 neigh_suspect(neigh); 919 next = now + neigh->parms->delay_probe_time; 920 } else { 921 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 922 neigh->nud_state = NUD_STALE; 923 neigh->updated = jiffies; 924 neigh_suspect(neigh); 925 notify = 1; 926 } 927 } else if (state & NUD_DELAY) { 928 if (time_before_eq(now, 929 neigh->confirmed + neigh->parms->delay_probe_time)) { 930 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); 931 neigh->nud_state = NUD_REACHABLE; 932 neigh->updated = jiffies; 933 neigh_connect(neigh); 934 notify = 1; 935 next = neigh->confirmed + neigh->parms->reachable_time; 936 } else { 937 NEIGH_PRINTK2("neigh %p is probed.\n", neigh); 938 neigh->nud_state = NUD_PROBE; 939 neigh->updated = jiffies; 940 atomic_set(&neigh->probes, 0); 941 next = now + neigh->parms->retrans_time; 942 } 943 } else { 944 /* NUD_PROBE|NUD_INCOMPLETE */ 945 next = now + neigh->parms->retrans_time; 946 } 947 948 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 949 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 950 neigh->nud_state = NUD_FAILED; 951 notify = 1; 952 neigh_invalidate(neigh); 953 } 954 955 if (neigh->nud_state & NUD_IN_TIMER) { 956 if (time_before(next, jiffies + HZ/2)) 957 next = jiffies + HZ/2; 958 if (!mod_timer(&neigh->timer, next)) 959 neigh_hold(neigh); 960 } 961 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 962 neigh_probe(neigh); 963 } else { 964 out: 965 write_unlock(&neigh->lock); 966 } 967 968 if (notify) 969 neigh_update_notify(neigh); 970 971 neigh_release(neigh); 972 } 973 974 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 975 { 976 int rc; 977 bool immediate_probe = false; 978 979 write_lock_bh(&neigh->lock); 980 981 rc = 0; 982 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 983 goto out_unlock_bh; 984 985 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 986 if (neigh->parms->mcast_probes + neigh->parms->app_probes) { 987 unsigned long next, now = jiffies; 988 989 atomic_set(&neigh->probes, neigh->parms->ucast_probes); 990 neigh->nud_state = NUD_INCOMPLETE; 991 neigh->updated = now; 992 next = now + max(neigh->parms->retrans_time, HZ/2); 993 neigh_add_timer(neigh, next); 994 immediate_probe = true; 995 } else { 996 neigh->nud_state = NUD_FAILED; 997 neigh->updated = jiffies; 998 write_unlock_bh(&neigh->lock); 999 1000 kfree_skb(skb); 1001 return 1; 1002 } 1003 } else if (neigh->nud_state & NUD_STALE) { 1004 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 1005 neigh->nud_state = NUD_DELAY; 1006 neigh->updated = jiffies; 1007 neigh_add_timer(neigh, 1008 jiffies + neigh->parms->delay_probe_time); 1009 } 1010 1011 if (neigh->nud_state == NUD_INCOMPLETE) { 1012 if (skb) { 1013 while (neigh->arp_queue_len_bytes + skb->truesize > 1014 neigh->parms->queue_len_bytes) { 1015 struct sk_buff *buff; 1016 1017 buff = __skb_dequeue(&neigh->arp_queue); 1018 if (!buff) 1019 break; 1020 neigh->arp_queue_len_bytes -= buff->truesize; 1021 kfree_skb(buff); 1022 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1023 } 1024 skb_dst_force(skb); 1025 __skb_queue_tail(&neigh->arp_queue, skb); 1026 neigh->arp_queue_len_bytes += skb->truesize; 1027 } 1028 rc = 1; 1029 } 1030 out_unlock_bh: 1031 if (immediate_probe) 1032 neigh_probe(neigh); 1033 else 1034 write_unlock(&neigh->lock); 1035 local_bh_enable(); 1036 return rc; 1037 } 1038 EXPORT_SYMBOL(__neigh_event_send); 1039 1040 static void neigh_update_hhs(struct neighbour *neigh) 1041 { 1042 struct hh_cache *hh; 1043 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1044 = NULL; 1045 1046 if (neigh->dev->header_ops) 1047 update = neigh->dev->header_ops->cache_update; 1048 1049 if (update) { 1050 hh = &neigh->hh; 1051 if (hh->hh_len) { 1052 write_seqlock_bh(&hh->hh_lock); 1053 update(hh, neigh->dev, neigh->ha); 1054 write_sequnlock_bh(&hh->hh_lock); 1055 } 1056 } 1057 } 1058 1059 1060 1061 /* Generic update routine. 1062 -- lladdr is new lladdr or NULL, if it is not supplied. 1063 -- new is new state. 1064 -- flags 1065 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1066 if it is different. 1067 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1068 lladdr instead of overriding it 1069 if it is different. 1070 It also allows to retain current state 1071 if lladdr is unchanged. 1072 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1073 1074 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1075 NTF_ROUTER flag. 1076 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1077 a router. 1078 1079 Caller MUST hold reference count on the entry. 1080 */ 1081 1082 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1083 u32 flags) 1084 { 1085 u8 old; 1086 int err; 1087 int notify = 0; 1088 struct net_device *dev; 1089 int update_isrouter = 0; 1090 1091 write_lock_bh(&neigh->lock); 1092 1093 dev = neigh->dev; 1094 old = neigh->nud_state; 1095 err = -EPERM; 1096 1097 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1098 (old & (NUD_NOARP | NUD_PERMANENT))) 1099 goto out; 1100 1101 if (!(new & NUD_VALID)) { 1102 neigh_del_timer(neigh); 1103 if (old & NUD_CONNECTED) 1104 neigh_suspect(neigh); 1105 neigh->nud_state = new; 1106 err = 0; 1107 notify = old & NUD_VALID; 1108 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1109 (new & NUD_FAILED)) { 1110 neigh_invalidate(neigh); 1111 notify = 1; 1112 } 1113 goto out; 1114 } 1115 1116 /* Compare new lladdr with cached one */ 1117 if (!dev->addr_len) { 1118 /* First case: device needs no address. */ 1119 lladdr = neigh->ha; 1120 } else if (lladdr) { 1121 /* The second case: if something is already cached 1122 and a new address is proposed: 1123 - compare new & old 1124 - if they are different, check override flag 1125 */ 1126 if ((old & NUD_VALID) && 1127 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1128 lladdr = neigh->ha; 1129 } else { 1130 /* No address is supplied; if we know something, 1131 use it, otherwise discard the request. 1132 */ 1133 err = -EINVAL; 1134 if (!(old & NUD_VALID)) 1135 goto out; 1136 lladdr = neigh->ha; 1137 } 1138 1139 if (new & NUD_CONNECTED) 1140 neigh->confirmed = jiffies; 1141 neigh->updated = jiffies; 1142 1143 /* If entry was valid and address is not changed, 1144 do not change entry state, if new one is STALE. 1145 */ 1146 err = 0; 1147 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1148 if (old & NUD_VALID) { 1149 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1150 update_isrouter = 0; 1151 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1152 (old & NUD_CONNECTED)) { 1153 lladdr = neigh->ha; 1154 new = NUD_STALE; 1155 } else 1156 goto out; 1157 } else { 1158 if (lladdr == neigh->ha && new == NUD_STALE && 1159 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || 1160 (old & NUD_CONNECTED)) 1161 ) 1162 new = old; 1163 } 1164 } 1165 1166 if (new != old) { 1167 neigh_del_timer(neigh); 1168 if (new & NUD_IN_TIMER) 1169 neigh_add_timer(neigh, (jiffies + 1170 ((new & NUD_REACHABLE) ? 1171 neigh->parms->reachable_time : 1172 0))); 1173 neigh->nud_state = new; 1174 } 1175 1176 if (lladdr != neigh->ha) { 1177 write_seqlock(&neigh->ha_lock); 1178 memcpy(&neigh->ha, lladdr, dev->addr_len); 1179 write_sequnlock(&neigh->ha_lock); 1180 neigh_update_hhs(neigh); 1181 if (!(new & NUD_CONNECTED)) 1182 neigh->confirmed = jiffies - 1183 (neigh->parms->base_reachable_time << 1); 1184 notify = 1; 1185 } 1186 if (new == old) 1187 goto out; 1188 if (new & NUD_CONNECTED) 1189 neigh_connect(neigh); 1190 else 1191 neigh_suspect(neigh); 1192 if (!(old & NUD_VALID)) { 1193 struct sk_buff *skb; 1194 1195 /* Again: avoid dead loop if something went wrong */ 1196 1197 while (neigh->nud_state & NUD_VALID && 1198 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1199 struct dst_entry *dst = skb_dst(skb); 1200 struct neighbour *n2, *n1 = neigh; 1201 write_unlock_bh(&neigh->lock); 1202 1203 rcu_read_lock(); 1204 1205 /* Why not just use 'neigh' as-is? The problem is that 1206 * things such as shaper, eql, and sch_teql can end up 1207 * using alternative, different, neigh objects to output 1208 * the packet in the output path. So what we need to do 1209 * here is re-lookup the top-level neigh in the path so 1210 * we can reinject the packet there. 1211 */ 1212 n2 = NULL; 1213 if (dst) { 1214 n2 = dst_neigh_lookup_skb(dst, skb); 1215 if (n2) 1216 n1 = n2; 1217 } 1218 n1->output(n1, skb); 1219 if (n2) 1220 neigh_release(n2); 1221 rcu_read_unlock(); 1222 1223 write_lock_bh(&neigh->lock); 1224 } 1225 skb_queue_purge(&neigh->arp_queue); 1226 neigh->arp_queue_len_bytes = 0; 1227 } 1228 out: 1229 if (update_isrouter) { 1230 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1231 (neigh->flags | NTF_ROUTER) : 1232 (neigh->flags & ~NTF_ROUTER); 1233 } 1234 write_unlock_bh(&neigh->lock); 1235 1236 if (notify) 1237 neigh_update_notify(neigh); 1238 1239 return err; 1240 } 1241 EXPORT_SYMBOL(neigh_update); 1242 1243 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1244 u8 *lladdr, void *saddr, 1245 struct net_device *dev) 1246 { 1247 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1248 lladdr || !dev->addr_len); 1249 if (neigh) 1250 neigh_update(neigh, lladdr, NUD_STALE, 1251 NEIGH_UPDATE_F_OVERRIDE); 1252 return neigh; 1253 } 1254 EXPORT_SYMBOL(neigh_event_ns); 1255 1256 /* called with read_lock_bh(&n->lock); */ 1257 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst) 1258 { 1259 struct net_device *dev = dst->dev; 1260 __be16 prot = dst->ops->protocol; 1261 struct hh_cache *hh = &n->hh; 1262 1263 write_lock_bh(&n->lock); 1264 1265 /* Only one thread can come in here and initialize the 1266 * hh_cache entry. 1267 */ 1268 if (!hh->hh_len) 1269 dev->header_ops->cache(n, hh, prot); 1270 1271 write_unlock_bh(&n->lock); 1272 } 1273 1274 /* This function can be used in contexts, where only old dev_queue_xmit 1275 * worked, f.e. if you want to override normal output path (eql, shaper), 1276 * but resolution is not made yet. 1277 */ 1278 1279 int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb) 1280 { 1281 struct net_device *dev = skb->dev; 1282 1283 __skb_pull(skb, skb_network_offset(skb)); 1284 1285 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, 1286 skb->len) < 0 && 1287 dev->header_ops->rebuild(skb)) 1288 return 0; 1289 1290 return dev_queue_xmit(skb); 1291 } 1292 EXPORT_SYMBOL(neigh_compat_output); 1293 1294 /* Slow and careful. */ 1295 1296 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1297 { 1298 struct dst_entry *dst = skb_dst(skb); 1299 int rc = 0; 1300 1301 if (!dst) 1302 goto discard; 1303 1304 if (!neigh_event_send(neigh, skb)) { 1305 int err; 1306 struct net_device *dev = neigh->dev; 1307 unsigned int seq; 1308 1309 if (dev->header_ops->cache && !neigh->hh.hh_len) 1310 neigh_hh_init(neigh, dst); 1311 1312 do { 1313 __skb_pull(skb, skb_network_offset(skb)); 1314 seq = read_seqbegin(&neigh->ha_lock); 1315 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1316 neigh->ha, NULL, skb->len); 1317 } while (read_seqretry(&neigh->ha_lock, seq)); 1318 1319 if (err >= 0) 1320 rc = dev_queue_xmit(skb); 1321 else 1322 goto out_kfree_skb; 1323 } 1324 out: 1325 return rc; 1326 discard: 1327 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", 1328 dst, neigh); 1329 out_kfree_skb: 1330 rc = -EINVAL; 1331 kfree_skb(skb); 1332 goto out; 1333 } 1334 EXPORT_SYMBOL(neigh_resolve_output); 1335 1336 /* As fast as possible without hh cache */ 1337 1338 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1339 { 1340 struct net_device *dev = neigh->dev; 1341 unsigned int seq; 1342 int err; 1343 1344 do { 1345 __skb_pull(skb, skb_network_offset(skb)); 1346 seq = read_seqbegin(&neigh->ha_lock); 1347 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1348 neigh->ha, NULL, skb->len); 1349 } while (read_seqretry(&neigh->ha_lock, seq)); 1350 1351 if (err >= 0) 1352 err = dev_queue_xmit(skb); 1353 else { 1354 err = -EINVAL; 1355 kfree_skb(skb); 1356 } 1357 return err; 1358 } 1359 EXPORT_SYMBOL(neigh_connected_output); 1360 1361 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1362 { 1363 return dev_queue_xmit(skb); 1364 } 1365 EXPORT_SYMBOL(neigh_direct_output); 1366 1367 static void neigh_proxy_process(unsigned long arg) 1368 { 1369 struct neigh_table *tbl = (struct neigh_table *)arg; 1370 long sched_next = 0; 1371 unsigned long now = jiffies; 1372 struct sk_buff *skb, *n; 1373 1374 spin_lock(&tbl->proxy_queue.lock); 1375 1376 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1377 long tdif = NEIGH_CB(skb)->sched_next - now; 1378 1379 if (tdif <= 0) { 1380 struct net_device *dev = skb->dev; 1381 1382 __skb_unlink(skb, &tbl->proxy_queue); 1383 if (tbl->proxy_redo && netif_running(dev)) { 1384 rcu_read_lock(); 1385 tbl->proxy_redo(skb); 1386 rcu_read_unlock(); 1387 } else { 1388 kfree_skb(skb); 1389 } 1390 1391 dev_put(dev); 1392 } else if (!sched_next || tdif < sched_next) 1393 sched_next = tdif; 1394 } 1395 del_timer(&tbl->proxy_timer); 1396 if (sched_next) 1397 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1398 spin_unlock(&tbl->proxy_queue.lock); 1399 } 1400 1401 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1402 struct sk_buff *skb) 1403 { 1404 unsigned long now = jiffies; 1405 unsigned long sched_next = now + (net_random() % p->proxy_delay); 1406 1407 if (tbl->proxy_queue.qlen > p->proxy_qlen) { 1408 kfree_skb(skb); 1409 return; 1410 } 1411 1412 NEIGH_CB(skb)->sched_next = sched_next; 1413 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1414 1415 spin_lock(&tbl->proxy_queue.lock); 1416 if (del_timer(&tbl->proxy_timer)) { 1417 if (time_before(tbl->proxy_timer.expires, sched_next)) 1418 sched_next = tbl->proxy_timer.expires; 1419 } 1420 skb_dst_drop(skb); 1421 dev_hold(skb->dev); 1422 __skb_queue_tail(&tbl->proxy_queue, skb); 1423 mod_timer(&tbl->proxy_timer, sched_next); 1424 spin_unlock(&tbl->proxy_queue.lock); 1425 } 1426 EXPORT_SYMBOL(pneigh_enqueue); 1427 1428 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1429 struct net *net, int ifindex) 1430 { 1431 struct neigh_parms *p; 1432 1433 for (p = &tbl->parms; p; p = p->next) { 1434 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1435 (!p->dev && !ifindex)) 1436 return p; 1437 } 1438 1439 return NULL; 1440 } 1441 1442 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1443 struct neigh_table *tbl) 1444 { 1445 struct neigh_parms *p, *ref; 1446 struct net *net = dev_net(dev); 1447 const struct net_device_ops *ops = dev->netdev_ops; 1448 1449 ref = lookup_neigh_parms(tbl, net, 0); 1450 if (!ref) 1451 return NULL; 1452 1453 p = kmemdup(ref, sizeof(*p), GFP_KERNEL); 1454 if (p) { 1455 p->tbl = tbl; 1456 atomic_set(&p->refcnt, 1); 1457 p->reachable_time = 1458 neigh_rand_reach_time(p->base_reachable_time); 1459 1460 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1461 kfree(p); 1462 return NULL; 1463 } 1464 1465 dev_hold(dev); 1466 p->dev = dev; 1467 write_pnet(&p->net, hold_net(net)); 1468 p->sysctl_table = NULL; 1469 write_lock_bh(&tbl->lock); 1470 p->next = tbl->parms.next; 1471 tbl->parms.next = p; 1472 write_unlock_bh(&tbl->lock); 1473 } 1474 return p; 1475 } 1476 EXPORT_SYMBOL(neigh_parms_alloc); 1477 1478 static void neigh_rcu_free_parms(struct rcu_head *head) 1479 { 1480 struct neigh_parms *parms = 1481 container_of(head, struct neigh_parms, rcu_head); 1482 1483 neigh_parms_put(parms); 1484 } 1485 1486 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1487 { 1488 struct neigh_parms **p; 1489 1490 if (!parms || parms == &tbl->parms) 1491 return; 1492 write_lock_bh(&tbl->lock); 1493 for (p = &tbl->parms.next; *p; p = &(*p)->next) { 1494 if (*p == parms) { 1495 *p = parms->next; 1496 parms->dead = 1; 1497 write_unlock_bh(&tbl->lock); 1498 if (parms->dev) 1499 dev_put(parms->dev); 1500 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1501 return; 1502 } 1503 } 1504 write_unlock_bh(&tbl->lock); 1505 NEIGH_PRINTK1("neigh_parms_release: not found\n"); 1506 } 1507 EXPORT_SYMBOL(neigh_parms_release); 1508 1509 static void neigh_parms_destroy(struct neigh_parms *parms) 1510 { 1511 release_net(neigh_parms_net(parms)); 1512 kfree(parms); 1513 } 1514 1515 static struct lock_class_key neigh_table_proxy_queue_class; 1516 1517 static void neigh_table_init_no_netlink(struct neigh_table *tbl) 1518 { 1519 unsigned long now = jiffies; 1520 unsigned long phsize; 1521 1522 write_pnet(&tbl->parms.net, &init_net); 1523 atomic_set(&tbl->parms.refcnt, 1); 1524 tbl->parms.reachable_time = 1525 neigh_rand_reach_time(tbl->parms.base_reachable_time); 1526 1527 tbl->stats = alloc_percpu(struct neigh_statistics); 1528 if (!tbl->stats) 1529 panic("cannot create neighbour cache statistics"); 1530 1531 #ifdef CONFIG_PROC_FS 1532 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat, 1533 &neigh_stat_seq_fops, tbl)) 1534 panic("cannot create neighbour proc dir entry"); 1535 #endif 1536 1537 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1538 1539 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1540 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1541 1542 if (!tbl->nht || !tbl->phash_buckets) 1543 panic("cannot allocate neighbour cache hashes"); 1544 1545 rwlock_init(&tbl->lock); 1546 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); 1547 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time); 1548 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl); 1549 skb_queue_head_init_class(&tbl->proxy_queue, 1550 &neigh_table_proxy_queue_class); 1551 1552 tbl->last_flush = now; 1553 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1554 } 1555 1556 void neigh_table_init(struct neigh_table *tbl) 1557 { 1558 struct neigh_table *tmp; 1559 1560 neigh_table_init_no_netlink(tbl); 1561 write_lock(&neigh_tbl_lock); 1562 for (tmp = neigh_tables; tmp; tmp = tmp->next) { 1563 if (tmp->family == tbl->family) 1564 break; 1565 } 1566 tbl->next = neigh_tables; 1567 neigh_tables = tbl; 1568 write_unlock(&neigh_tbl_lock); 1569 1570 if (unlikely(tmp)) { 1571 pr_err("Registering multiple tables for family %d\n", 1572 tbl->family); 1573 dump_stack(); 1574 } 1575 } 1576 EXPORT_SYMBOL(neigh_table_init); 1577 1578 int neigh_table_clear(struct neigh_table *tbl) 1579 { 1580 struct neigh_table **tp; 1581 1582 /* It is not clean... Fix it to unload IPv6 module safely */ 1583 cancel_delayed_work_sync(&tbl->gc_work); 1584 del_timer_sync(&tbl->proxy_timer); 1585 pneigh_queue_purge(&tbl->proxy_queue); 1586 neigh_ifdown(tbl, NULL); 1587 if (atomic_read(&tbl->entries)) 1588 pr_crit("neighbour leakage\n"); 1589 write_lock(&neigh_tbl_lock); 1590 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { 1591 if (*tp == tbl) { 1592 *tp = tbl->next; 1593 break; 1594 } 1595 } 1596 write_unlock(&neigh_tbl_lock); 1597 1598 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1599 neigh_hash_free_rcu); 1600 tbl->nht = NULL; 1601 1602 kfree(tbl->phash_buckets); 1603 tbl->phash_buckets = NULL; 1604 1605 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1606 1607 free_percpu(tbl->stats); 1608 tbl->stats = NULL; 1609 1610 return 0; 1611 } 1612 EXPORT_SYMBOL(neigh_table_clear); 1613 1614 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1615 { 1616 struct net *net = sock_net(skb->sk); 1617 struct ndmsg *ndm; 1618 struct nlattr *dst_attr; 1619 struct neigh_table *tbl; 1620 struct net_device *dev = NULL; 1621 int err = -EINVAL; 1622 1623 ASSERT_RTNL(); 1624 if (nlmsg_len(nlh) < sizeof(*ndm)) 1625 goto out; 1626 1627 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1628 if (dst_attr == NULL) 1629 goto out; 1630 1631 ndm = nlmsg_data(nlh); 1632 if (ndm->ndm_ifindex) { 1633 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1634 if (dev == NULL) { 1635 err = -ENODEV; 1636 goto out; 1637 } 1638 } 1639 1640 read_lock(&neigh_tbl_lock); 1641 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1642 struct neighbour *neigh; 1643 1644 if (tbl->family != ndm->ndm_family) 1645 continue; 1646 read_unlock(&neigh_tbl_lock); 1647 1648 if (nla_len(dst_attr) < tbl->key_len) 1649 goto out; 1650 1651 if (ndm->ndm_flags & NTF_PROXY) { 1652 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1653 goto out; 1654 } 1655 1656 if (dev == NULL) 1657 goto out; 1658 1659 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1660 if (neigh == NULL) { 1661 err = -ENOENT; 1662 goto out; 1663 } 1664 1665 err = neigh_update(neigh, NULL, NUD_FAILED, 1666 NEIGH_UPDATE_F_OVERRIDE | 1667 NEIGH_UPDATE_F_ADMIN); 1668 neigh_release(neigh); 1669 goto out; 1670 } 1671 read_unlock(&neigh_tbl_lock); 1672 err = -EAFNOSUPPORT; 1673 1674 out: 1675 return err; 1676 } 1677 1678 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1679 { 1680 struct net *net = sock_net(skb->sk); 1681 struct ndmsg *ndm; 1682 struct nlattr *tb[NDA_MAX+1]; 1683 struct neigh_table *tbl; 1684 struct net_device *dev = NULL; 1685 int err; 1686 1687 ASSERT_RTNL(); 1688 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); 1689 if (err < 0) 1690 goto out; 1691 1692 err = -EINVAL; 1693 if (tb[NDA_DST] == NULL) 1694 goto out; 1695 1696 ndm = nlmsg_data(nlh); 1697 if (ndm->ndm_ifindex) { 1698 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1699 if (dev == NULL) { 1700 err = -ENODEV; 1701 goto out; 1702 } 1703 1704 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) 1705 goto out; 1706 } 1707 1708 read_lock(&neigh_tbl_lock); 1709 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1710 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; 1711 struct neighbour *neigh; 1712 void *dst, *lladdr; 1713 1714 if (tbl->family != ndm->ndm_family) 1715 continue; 1716 read_unlock(&neigh_tbl_lock); 1717 1718 if (nla_len(tb[NDA_DST]) < tbl->key_len) 1719 goto out; 1720 dst = nla_data(tb[NDA_DST]); 1721 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1722 1723 if (ndm->ndm_flags & NTF_PROXY) { 1724 struct pneigh_entry *pn; 1725 1726 err = -ENOBUFS; 1727 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1728 if (pn) { 1729 pn->flags = ndm->ndm_flags; 1730 err = 0; 1731 } 1732 goto out; 1733 } 1734 1735 if (dev == NULL) 1736 goto out; 1737 1738 neigh = neigh_lookup(tbl, dst, dev); 1739 if (neigh == NULL) { 1740 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1741 err = -ENOENT; 1742 goto out; 1743 } 1744 1745 neigh = __neigh_lookup_errno(tbl, dst, dev); 1746 if (IS_ERR(neigh)) { 1747 err = PTR_ERR(neigh); 1748 goto out; 1749 } 1750 } else { 1751 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1752 err = -EEXIST; 1753 neigh_release(neigh); 1754 goto out; 1755 } 1756 1757 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1758 flags &= ~NEIGH_UPDATE_F_OVERRIDE; 1759 } 1760 1761 if (ndm->ndm_flags & NTF_USE) { 1762 neigh_event_send(neigh, NULL); 1763 err = 0; 1764 } else 1765 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); 1766 neigh_release(neigh); 1767 goto out; 1768 } 1769 1770 read_unlock(&neigh_tbl_lock); 1771 err = -EAFNOSUPPORT; 1772 out: 1773 return err; 1774 } 1775 1776 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1777 { 1778 struct nlattr *nest; 1779 1780 nest = nla_nest_start(skb, NDTA_PARMS); 1781 if (nest == NULL) 1782 return -ENOBUFS; 1783 1784 if ((parms->dev && 1785 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || 1786 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) || 1787 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, parms->queue_len_bytes) || 1788 /* approximative value for deprecated QUEUE_LEN (in packets) */ 1789 nla_put_u32(skb, NDTPA_QUEUE_LEN, 1790 DIV_ROUND_UP(parms->queue_len_bytes, 1791 SKB_TRUESIZE(ETH_FRAME_LEN))) || 1792 nla_put_u32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen) || 1793 nla_put_u32(skb, NDTPA_APP_PROBES, parms->app_probes) || 1794 nla_put_u32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes) || 1795 nla_put_u32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes) || 1796 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) || 1797 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, 1798 parms->base_reachable_time) || 1799 nla_put_msecs(skb, NDTPA_GC_STALETIME, parms->gc_staletime) || 1800 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, 1801 parms->delay_probe_time) || 1802 nla_put_msecs(skb, NDTPA_RETRANS_TIME, parms->retrans_time) || 1803 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay) || 1804 nla_put_msecs(skb, NDTPA_PROXY_DELAY, parms->proxy_delay) || 1805 nla_put_msecs(skb, NDTPA_LOCKTIME, parms->locktime)) 1806 goto nla_put_failure; 1807 return nla_nest_end(skb, nest); 1808 1809 nla_put_failure: 1810 nla_nest_cancel(skb, nest); 1811 return -EMSGSIZE; 1812 } 1813 1814 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 1815 u32 pid, u32 seq, int type, int flags) 1816 { 1817 struct nlmsghdr *nlh; 1818 struct ndtmsg *ndtmsg; 1819 1820 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1821 if (nlh == NULL) 1822 return -EMSGSIZE; 1823 1824 ndtmsg = nlmsg_data(nlh); 1825 1826 read_lock_bh(&tbl->lock); 1827 ndtmsg->ndtm_family = tbl->family; 1828 ndtmsg->ndtm_pad1 = 0; 1829 ndtmsg->ndtm_pad2 = 0; 1830 1831 if (nla_put_string(skb, NDTA_NAME, tbl->id) || 1832 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) || 1833 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) || 1834 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) || 1835 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3)) 1836 goto nla_put_failure; 1837 { 1838 unsigned long now = jiffies; 1839 unsigned int flush_delta = now - tbl->last_flush; 1840 unsigned int rand_delta = now - tbl->last_rand; 1841 struct neigh_hash_table *nht; 1842 struct ndt_config ndc = { 1843 .ndtc_key_len = tbl->key_len, 1844 .ndtc_entry_size = tbl->entry_size, 1845 .ndtc_entries = atomic_read(&tbl->entries), 1846 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1847 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1848 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1849 }; 1850 1851 rcu_read_lock_bh(); 1852 nht = rcu_dereference_bh(tbl->nht); 1853 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 1854 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 1855 rcu_read_unlock_bh(); 1856 1857 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) 1858 goto nla_put_failure; 1859 } 1860 1861 { 1862 int cpu; 1863 struct ndt_stats ndst; 1864 1865 memset(&ndst, 0, sizeof(ndst)); 1866 1867 for_each_possible_cpu(cpu) { 1868 struct neigh_statistics *st; 1869 1870 st = per_cpu_ptr(tbl->stats, cpu); 1871 ndst.ndts_allocs += st->allocs; 1872 ndst.ndts_destroys += st->destroys; 1873 ndst.ndts_hash_grows += st->hash_grows; 1874 ndst.ndts_res_failed += st->res_failed; 1875 ndst.ndts_lookups += st->lookups; 1876 ndst.ndts_hits += st->hits; 1877 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1878 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1879 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1880 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1881 } 1882 1883 if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst)) 1884 goto nla_put_failure; 1885 } 1886 1887 BUG_ON(tbl->parms.dev); 1888 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1889 goto nla_put_failure; 1890 1891 read_unlock_bh(&tbl->lock); 1892 return nlmsg_end(skb, nlh); 1893 1894 nla_put_failure: 1895 read_unlock_bh(&tbl->lock); 1896 nlmsg_cancel(skb, nlh); 1897 return -EMSGSIZE; 1898 } 1899 1900 static int neightbl_fill_param_info(struct sk_buff *skb, 1901 struct neigh_table *tbl, 1902 struct neigh_parms *parms, 1903 u32 pid, u32 seq, int type, 1904 unsigned int flags) 1905 { 1906 struct ndtmsg *ndtmsg; 1907 struct nlmsghdr *nlh; 1908 1909 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1910 if (nlh == NULL) 1911 return -EMSGSIZE; 1912 1913 ndtmsg = nlmsg_data(nlh); 1914 1915 read_lock_bh(&tbl->lock); 1916 ndtmsg->ndtm_family = tbl->family; 1917 ndtmsg->ndtm_pad1 = 0; 1918 ndtmsg->ndtm_pad2 = 0; 1919 1920 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 1921 neightbl_fill_parms(skb, parms) < 0) 1922 goto errout; 1923 1924 read_unlock_bh(&tbl->lock); 1925 return nlmsg_end(skb, nlh); 1926 errout: 1927 read_unlock_bh(&tbl->lock); 1928 nlmsg_cancel(skb, nlh); 1929 return -EMSGSIZE; 1930 } 1931 1932 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 1933 [NDTA_NAME] = { .type = NLA_STRING }, 1934 [NDTA_THRESH1] = { .type = NLA_U32 }, 1935 [NDTA_THRESH2] = { .type = NLA_U32 }, 1936 [NDTA_THRESH3] = { .type = NLA_U32 }, 1937 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 1938 [NDTA_PARMS] = { .type = NLA_NESTED }, 1939 }; 1940 1941 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 1942 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 1943 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 1944 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 1945 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 1946 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 1947 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 1948 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 1949 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 1950 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 1951 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 1952 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 1953 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 1954 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 1955 }; 1956 1957 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1958 { 1959 struct net *net = sock_net(skb->sk); 1960 struct neigh_table *tbl; 1961 struct ndtmsg *ndtmsg; 1962 struct nlattr *tb[NDTA_MAX+1]; 1963 int err; 1964 1965 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 1966 nl_neightbl_policy); 1967 if (err < 0) 1968 goto errout; 1969 1970 if (tb[NDTA_NAME] == NULL) { 1971 err = -EINVAL; 1972 goto errout; 1973 } 1974 1975 ndtmsg = nlmsg_data(nlh); 1976 read_lock(&neigh_tbl_lock); 1977 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1978 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1979 continue; 1980 1981 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) 1982 break; 1983 } 1984 1985 if (tbl == NULL) { 1986 err = -ENOENT; 1987 goto errout_locked; 1988 } 1989 1990 /* 1991 * We acquire tbl->lock to be nice to the periodic timers and 1992 * make sure they always see a consistent set of values. 1993 */ 1994 write_lock_bh(&tbl->lock); 1995 1996 if (tb[NDTA_PARMS]) { 1997 struct nlattr *tbp[NDTPA_MAX+1]; 1998 struct neigh_parms *p; 1999 int i, ifindex = 0; 2000 2001 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], 2002 nl_ntbl_parm_policy); 2003 if (err < 0) 2004 goto errout_tbl_lock; 2005 2006 if (tbp[NDTPA_IFINDEX]) 2007 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 2008 2009 p = lookup_neigh_parms(tbl, net, ifindex); 2010 if (p == NULL) { 2011 err = -ENOENT; 2012 goto errout_tbl_lock; 2013 } 2014 2015 for (i = 1; i <= NDTPA_MAX; i++) { 2016 if (tbp[i] == NULL) 2017 continue; 2018 2019 switch (i) { 2020 case NDTPA_QUEUE_LEN: 2021 p->queue_len_bytes = nla_get_u32(tbp[i]) * 2022 SKB_TRUESIZE(ETH_FRAME_LEN); 2023 break; 2024 case NDTPA_QUEUE_LENBYTES: 2025 p->queue_len_bytes = nla_get_u32(tbp[i]); 2026 break; 2027 case NDTPA_PROXY_QLEN: 2028 p->proxy_qlen = nla_get_u32(tbp[i]); 2029 break; 2030 case NDTPA_APP_PROBES: 2031 p->app_probes = nla_get_u32(tbp[i]); 2032 break; 2033 case NDTPA_UCAST_PROBES: 2034 p->ucast_probes = nla_get_u32(tbp[i]); 2035 break; 2036 case NDTPA_MCAST_PROBES: 2037 p->mcast_probes = nla_get_u32(tbp[i]); 2038 break; 2039 case NDTPA_BASE_REACHABLE_TIME: 2040 p->base_reachable_time = nla_get_msecs(tbp[i]); 2041 break; 2042 case NDTPA_GC_STALETIME: 2043 p->gc_staletime = nla_get_msecs(tbp[i]); 2044 break; 2045 case NDTPA_DELAY_PROBE_TIME: 2046 p->delay_probe_time = nla_get_msecs(tbp[i]); 2047 break; 2048 case NDTPA_RETRANS_TIME: 2049 p->retrans_time = nla_get_msecs(tbp[i]); 2050 break; 2051 case NDTPA_ANYCAST_DELAY: 2052 p->anycast_delay = nla_get_msecs(tbp[i]); 2053 break; 2054 case NDTPA_PROXY_DELAY: 2055 p->proxy_delay = nla_get_msecs(tbp[i]); 2056 break; 2057 case NDTPA_LOCKTIME: 2058 p->locktime = nla_get_msecs(tbp[i]); 2059 break; 2060 } 2061 } 2062 } 2063 2064 if (tb[NDTA_THRESH1]) 2065 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2066 2067 if (tb[NDTA_THRESH2]) 2068 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2069 2070 if (tb[NDTA_THRESH3]) 2071 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2072 2073 if (tb[NDTA_GC_INTERVAL]) 2074 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2075 2076 err = 0; 2077 2078 errout_tbl_lock: 2079 write_unlock_bh(&tbl->lock); 2080 errout_locked: 2081 read_unlock(&neigh_tbl_lock); 2082 errout: 2083 return err; 2084 } 2085 2086 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2087 { 2088 struct net *net = sock_net(skb->sk); 2089 int family, tidx, nidx = 0; 2090 int tbl_skip = cb->args[0]; 2091 int neigh_skip = cb->args[1]; 2092 struct neigh_table *tbl; 2093 2094 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2095 2096 read_lock(&neigh_tbl_lock); 2097 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) { 2098 struct neigh_parms *p; 2099 2100 if (tidx < tbl_skip || (family && tbl->family != family)) 2101 continue; 2102 2103 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, 2104 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2105 NLM_F_MULTI) <= 0) 2106 break; 2107 2108 for (nidx = 0, p = tbl->parms.next; p; p = p->next) { 2109 if (!net_eq(neigh_parms_net(p), net)) 2110 continue; 2111 2112 if (nidx < neigh_skip) 2113 goto next; 2114 2115 if (neightbl_fill_param_info(skb, tbl, p, 2116 NETLINK_CB(cb->skb).portid, 2117 cb->nlh->nlmsg_seq, 2118 RTM_NEWNEIGHTBL, 2119 NLM_F_MULTI) <= 0) 2120 goto out; 2121 next: 2122 nidx++; 2123 } 2124 2125 neigh_skip = 0; 2126 } 2127 out: 2128 read_unlock(&neigh_tbl_lock); 2129 cb->args[0] = tidx; 2130 cb->args[1] = nidx; 2131 2132 return skb->len; 2133 } 2134 2135 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2136 u32 pid, u32 seq, int type, unsigned int flags) 2137 { 2138 unsigned long now = jiffies; 2139 struct nda_cacheinfo ci; 2140 struct nlmsghdr *nlh; 2141 struct ndmsg *ndm; 2142 2143 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2144 if (nlh == NULL) 2145 return -EMSGSIZE; 2146 2147 ndm = nlmsg_data(nlh); 2148 ndm->ndm_family = neigh->ops->family; 2149 ndm->ndm_pad1 = 0; 2150 ndm->ndm_pad2 = 0; 2151 ndm->ndm_flags = neigh->flags; 2152 ndm->ndm_type = neigh->type; 2153 ndm->ndm_ifindex = neigh->dev->ifindex; 2154 2155 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) 2156 goto nla_put_failure; 2157 2158 read_lock_bh(&neigh->lock); 2159 ndm->ndm_state = neigh->nud_state; 2160 if (neigh->nud_state & NUD_VALID) { 2161 char haddr[MAX_ADDR_LEN]; 2162 2163 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2164 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2165 read_unlock_bh(&neigh->lock); 2166 goto nla_put_failure; 2167 } 2168 } 2169 2170 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2171 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2172 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2173 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1; 2174 read_unlock_bh(&neigh->lock); 2175 2176 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || 2177 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) 2178 goto nla_put_failure; 2179 2180 return nlmsg_end(skb, nlh); 2181 2182 nla_put_failure: 2183 nlmsg_cancel(skb, nlh); 2184 return -EMSGSIZE; 2185 } 2186 2187 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2188 u32 pid, u32 seq, int type, unsigned int flags, 2189 struct neigh_table *tbl) 2190 { 2191 struct nlmsghdr *nlh; 2192 struct ndmsg *ndm; 2193 2194 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2195 if (nlh == NULL) 2196 return -EMSGSIZE; 2197 2198 ndm = nlmsg_data(nlh); 2199 ndm->ndm_family = tbl->family; 2200 ndm->ndm_pad1 = 0; 2201 ndm->ndm_pad2 = 0; 2202 ndm->ndm_flags = pn->flags | NTF_PROXY; 2203 ndm->ndm_type = NDA_DST; 2204 ndm->ndm_ifindex = pn->dev->ifindex; 2205 ndm->ndm_state = NUD_NONE; 2206 2207 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) 2208 goto nla_put_failure; 2209 2210 return nlmsg_end(skb, nlh); 2211 2212 nla_put_failure: 2213 nlmsg_cancel(skb, nlh); 2214 return -EMSGSIZE; 2215 } 2216 2217 static void neigh_update_notify(struct neighbour *neigh) 2218 { 2219 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2220 __neigh_notify(neigh, RTM_NEWNEIGH, 0); 2221 } 2222 2223 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2224 struct netlink_callback *cb) 2225 { 2226 struct net *net = sock_net(skb->sk); 2227 struct neighbour *n; 2228 int rc, h, s_h = cb->args[1]; 2229 int idx, s_idx = idx = cb->args[2]; 2230 struct neigh_hash_table *nht; 2231 2232 rcu_read_lock_bh(); 2233 nht = rcu_dereference_bh(tbl->nht); 2234 2235 for (h = s_h; h < (1 << nht->hash_shift); h++) { 2236 if (h > s_h) 2237 s_idx = 0; 2238 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2239 n != NULL; 2240 n = rcu_dereference_bh(n->next)) { 2241 if (!net_eq(dev_net(n->dev), net)) 2242 continue; 2243 if (idx < s_idx) 2244 goto next; 2245 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2246 cb->nlh->nlmsg_seq, 2247 RTM_NEWNEIGH, 2248 NLM_F_MULTI) <= 0) { 2249 rc = -1; 2250 goto out; 2251 } 2252 next: 2253 idx++; 2254 } 2255 } 2256 rc = skb->len; 2257 out: 2258 rcu_read_unlock_bh(); 2259 cb->args[1] = h; 2260 cb->args[2] = idx; 2261 return rc; 2262 } 2263 2264 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2265 struct netlink_callback *cb) 2266 { 2267 struct pneigh_entry *n; 2268 struct net *net = sock_net(skb->sk); 2269 int rc, h, s_h = cb->args[3]; 2270 int idx, s_idx = idx = cb->args[4]; 2271 2272 read_lock_bh(&tbl->lock); 2273 2274 for (h = s_h; h <= PNEIGH_HASHMASK; h++) { 2275 if (h > s_h) 2276 s_idx = 0; 2277 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2278 if (dev_net(n->dev) != net) 2279 continue; 2280 if (idx < s_idx) 2281 goto next; 2282 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2283 cb->nlh->nlmsg_seq, 2284 RTM_NEWNEIGH, 2285 NLM_F_MULTI, tbl) <= 0) { 2286 read_unlock_bh(&tbl->lock); 2287 rc = -1; 2288 goto out; 2289 } 2290 next: 2291 idx++; 2292 } 2293 } 2294 2295 read_unlock_bh(&tbl->lock); 2296 rc = skb->len; 2297 out: 2298 cb->args[3] = h; 2299 cb->args[4] = idx; 2300 return rc; 2301 2302 } 2303 2304 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2305 { 2306 struct neigh_table *tbl; 2307 int t, family, s_t; 2308 int proxy = 0; 2309 int err; 2310 2311 read_lock(&neigh_tbl_lock); 2312 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2313 2314 /* check for full ndmsg structure presence, family member is 2315 * the same for both structures 2316 */ 2317 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) && 2318 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY) 2319 proxy = 1; 2320 2321 s_t = cb->args[0]; 2322 2323 for (tbl = neigh_tables, t = 0; tbl; 2324 tbl = tbl->next, t++) { 2325 if (t < s_t || (family && tbl->family != family)) 2326 continue; 2327 if (t > s_t) 2328 memset(&cb->args[1], 0, sizeof(cb->args) - 2329 sizeof(cb->args[0])); 2330 if (proxy) 2331 err = pneigh_dump_table(tbl, skb, cb); 2332 else 2333 err = neigh_dump_table(tbl, skb, cb); 2334 if (err < 0) 2335 break; 2336 } 2337 read_unlock(&neigh_tbl_lock); 2338 2339 cb->args[0] = t; 2340 return skb->len; 2341 } 2342 2343 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2344 { 2345 int chain; 2346 struct neigh_hash_table *nht; 2347 2348 rcu_read_lock_bh(); 2349 nht = rcu_dereference_bh(tbl->nht); 2350 2351 read_lock(&tbl->lock); /* avoid resizes */ 2352 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2353 struct neighbour *n; 2354 2355 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 2356 n != NULL; 2357 n = rcu_dereference_bh(n->next)) 2358 cb(n, cookie); 2359 } 2360 read_unlock(&tbl->lock); 2361 rcu_read_unlock_bh(); 2362 } 2363 EXPORT_SYMBOL(neigh_for_each); 2364 2365 /* The tbl->lock must be held as a writer and BH disabled. */ 2366 void __neigh_for_each_release(struct neigh_table *tbl, 2367 int (*cb)(struct neighbour *)) 2368 { 2369 int chain; 2370 struct neigh_hash_table *nht; 2371 2372 nht = rcu_dereference_protected(tbl->nht, 2373 lockdep_is_held(&tbl->lock)); 2374 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2375 struct neighbour *n; 2376 struct neighbour __rcu **np; 2377 2378 np = &nht->hash_buckets[chain]; 2379 while ((n = rcu_dereference_protected(*np, 2380 lockdep_is_held(&tbl->lock))) != NULL) { 2381 int release; 2382 2383 write_lock(&n->lock); 2384 release = cb(n); 2385 if (release) { 2386 rcu_assign_pointer(*np, 2387 rcu_dereference_protected(n->next, 2388 lockdep_is_held(&tbl->lock))); 2389 n->dead = 1; 2390 } else 2391 np = &n->next; 2392 write_unlock(&n->lock); 2393 if (release) 2394 neigh_cleanup_and_release(n); 2395 } 2396 } 2397 } 2398 EXPORT_SYMBOL(__neigh_for_each_release); 2399 2400 #ifdef CONFIG_PROC_FS 2401 2402 static struct neighbour *neigh_get_first(struct seq_file *seq) 2403 { 2404 struct neigh_seq_state *state = seq->private; 2405 struct net *net = seq_file_net(seq); 2406 struct neigh_hash_table *nht = state->nht; 2407 struct neighbour *n = NULL; 2408 int bucket = state->bucket; 2409 2410 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2411 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 2412 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 2413 2414 while (n) { 2415 if (!net_eq(dev_net(n->dev), net)) 2416 goto next; 2417 if (state->neigh_sub_iter) { 2418 loff_t fakep = 0; 2419 void *v; 2420 2421 v = state->neigh_sub_iter(state, n, &fakep); 2422 if (!v) 2423 goto next; 2424 } 2425 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2426 break; 2427 if (n->nud_state & ~NUD_NOARP) 2428 break; 2429 next: 2430 n = rcu_dereference_bh(n->next); 2431 } 2432 2433 if (n) 2434 break; 2435 } 2436 state->bucket = bucket; 2437 2438 return n; 2439 } 2440 2441 static struct neighbour *neigh_get_next(struct seq_file *seq, 2442 struct neighbour *n, 2443 loff_t *pos) 2444 { 2445 struct neigh_seq_state *state = seq->private; 2446 struct net *net = seq_file_net(seq); 2447 struct neigh_hash_table *nht = state->nht; 2448 2449 if (state->neigh_sub_iter) { 2450 void *v = state->neigh_sub_iter(state, n, pos); 2451 if (v) 2452 return n; 2453 } 2454 n = rcu_dereference_bh(n->next); 2455 2456 while (1) { 2457 while (n) { 2458 if (!net_eq(dev_net(n->dev), net)) 2459 goto next; 2460 if (state->neigh_sub_iter) { 2461 void *v = state->neigh_sub_iter(state, n, pos); 2462 if (v) 2463 return n; 2464 goto next; 2465 } 2466 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2467 break; 2468 2469 if (n->nud_state & ~NUD_NOARP) 2470 break; 2471 next: 2472 n = rcu_dereference_bh(n->next); 2473 } 2474 2475 if (n) 2476 break; 2477 2478 if (++state->bucket >= (1 << nht->hash_shift)) 2479 break; 2480 2481 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 2482 } 2483 2484 if (n && pos) 2485 --(*pos); 2486 return n; 2487 } 2488 2489 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2490 { 2491 struct neighbour *n = neigh_get_first(seq); 2492 2493 if (n) { 2494 --(*pos); 2495 while (*pos) { 2496 n = neigh_get_next(seq, n, pos); 2497 if (!n) 2498 break; 2499 } 2500 } 2501 return *pos ? NULL : n; 2502 } 2503 2504 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2505 { 2506 struct neigh_seq_state *state = seq->private; 2507 struct net *net = seq_file_net(seq); 2508 struct neigh_table *tbl = state->tbl; 2509 struct pneigh_entry *pn = NULL; 2510 int bucket = state->bucket; 2511 2512 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2513 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2514 pn = tbl->phash_buckets[bucket]; 2515 while (pn && !net_eq(pneigh_net(pn), net)) 2516 pn = pn->next; 2517 if (pn) 2518 break; 2519 } 2520 state->bucket = bucket; 2521 2522 return pn; 2523 } 2524 2525 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2526 struct pneigh_entry *pn, 2527 loff_t *pos) 2528 { 2529 struct neigh_seq_state *state = seq->private; 2530 struct net *net = seq_file_net(seq); 2531 struct neigh_table *tbl = state->tbl; 2532 2533 do { 2534 pn = pn->next; 2535 } while (pn && !net_eq(pneigh_net(pn), net)); 2536 2537 while (!pn) { 2538 if (++state->bucket > PNEIGH_HASHMASK) 2539 break; 2540 pn = tbl->phash_buckets[state->bucket]; 2541 while (pn && !net_eq(pneigh_net(pn), net)) 2542 pn = pn->next; 2543 if (pn) 2544 break; 2545 } 2546 2547 if (pn && pos) 2548 --(*pos); 2549 2550 return pn; 2551 } 2552 2553 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2554 { 2555 struct pneigh_entry *pn = pneigh_get_first(seq); 2556 2557 if (pn) { 2558 --(*pos); 2559 while (*pos) { 2560 pn = pneigh_get_next(seq, pn, pos); 2561 if (!pn) 2562 break; 2563 } 2564 } 2565 return *pos ? NULL : pn; 2566 } 2567 2568 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2569 { 2570 struct neigh_seq_state *state = seq->private; 2571 void *rc; 2572 loff_t idxpos = *pos; 2573 2574 rc = neigh_get_idx(seq, &idxpos); 2575 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2576 rc = pneigh_get_idx(seq, &idxpos); 2577 2578 return rc; 2579 } 2580 2581 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2582 __acquires(rcu_bh) 2583 { 2584 struct neigh_seq_state *state = seq->private; 2585 2586 state->tbl = tbl; 2587 state->bucket = 0; 2588 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2589 2590 rcu_read_lock_bh(); 2591 state->nht = rcu_dereference_bh(tbl->nht); 2592 2593 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 2594 } 2595 EXPORT_SYMBOL(neigh_seq_start); 2596 2597 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2598 { 2599 struct neigh_seq_state *state; 2600 void *rc; 2601 2602 if (v == SEQ_START_TOKEN) { 2603 rc = neigh_get_first(seq); 2604 goto out; 2605 } 2606 2607 state = seq->private; 2608 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2609 rc = neigh_get_next(seq, v, NULL); 2610 if (rc) 2611 goto out; 2612 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2613 rc = pneigh_get_first(seq); 2614 } else { 2615 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2616 rc = pneigh_get_next(seq, v, NULL); 2617 } 2618 out: 2619 ++(*pos); 2620 return rc; 2621 } 2622 EXPORT_SYMBOL(neigh_seq_next); 2623 2624 void neigh_seq_stop(struct seq_file *seq, void *v) 2625 __releases(rcu_bh) 2626 { 2627 rcu_read_unlock_bh(); 2628 } 2629 EXPORT_SYMBOL(neigh_seq_stop); 2630 2631 /* statistics via seq_file */ 2632 2633 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2634 { 2635 struct neigh_table *tbl = seq->private; 2636 int cpu; 2637 2638 if (*pos == 0) 2639 return SEQ_START_TOKEN; 2640 2641 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 2642 if (!cpu_possible(cpu)) 2643 continue; 2644 *pos = cpu+1; 2645 return per_cpu_ptr(tbl->stats, cpu); 2646 } 2647 return NULL; 2648 } 2649 2650 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2651 { 2652 struct neigh_table *tbl = seq->private; 2653 int cpu; 2654 2655 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 2656 if (!cpu_possible(cpu)) 2657 continue; 2658 *pos = cpu+1; 2659 return per_cpu_ptr(tbl->stats, cpu); 2660 } 2661 return NULL; 2662 } 2663 2664 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2665 { 2666 2667 } 2668 2669 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2670 { 2671 struct neigh_table *tbl = seq->private; 2672 struct neigh_statistics *st = v; 2673 2674 if (v == SEQ_START_TOKEN) { 2675 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n"); 2676 return 0; 2677 } 2678 2679 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2680 "%08lx %08lx %08lx %08lx %08lx\n", 2681 atomic_read(&tbl->entries), 2682 2683 st->allocs, 2684 st->destroys, 2685 st->hash_grows, 2686 2687 st->lookups, 2688 st->hits, 2689 2690 st->res_failed, 2691 2692 st->rcv_probes_mcast, 2693 st->rcv_probes_ucast, 2694 2695 st->periodic_gc_runs, 2696 st->forced_gc_runs, 2697 st->unres_discards 2698 ); 2699 2700 return 0; 2701 } 2702 2703 static const struct seq_operations neigh_stat_seq_ops = { 2704 .start = neigh_stat_seq_start, 2705 .next = neigh_stat_seq_next, 2706 .stop = neigh_stat_seq_stop, 2707 .show = neigh_stat_seq_show, 2708 }; 2709 2710 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2711 { 2712 int ret = seq_open(file, &neigh_stat_seq_ops); 2713 2714 if (!ret) { 2715 struct seq_file *sf = file->private_data; 2716 sf->private = PDE(inode)->data; 2717 } 2718 return ret; 2719 }; 2720 2721 static const struct file_operations neigh_stat_seq_fops = { 2722 .owner = THIS_MODULE, 2723 .open = neigh_stat_seq_open, 2724 .read = seq_read, 2725 .llseek = seq_lseek, 2726 .release = seq_release, 2727 }; 2728 2729 #endif /* CONFIG_PROC_FS */ 2730 2731 static inline size_t neigh_nlmsg_size(void) 2732 { 2733 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2734 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2735 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2736 + nla_total_size(sizeof(struct nda_cacheinfo)) 2737 + nla_total_size(4); /* NDA_PROBES */ 2738 } 2739 2740 static void __neigh_notify(struct neighbour *n, int type, int flags) 2741 { 2742 struct net *net = dev_net(n->dev); 2743 struct sk_buff *skb; 2744 int err = -ENOBUFS; 2745 2746 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 2747 if (skb == NULL) 2748 goto errout; 2749 2750 err = neigh_fill_info(skb, n, 0, 0, type, flags); 2751 if (err < 0) { 2752 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 2753 WARN_ON(err == -EMSGSIZE); 2754 kfree_skb(skb); 2755 goto errout; 2756 } 2757 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 2758 return; 2759 errout: 2760 if (err < 0) 2761 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 2762 } 2763 2764 #ifdef CONFIG_ARPD 2765 void neigh_app_ns(struct neighbour *n) 2766 { 2767 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); 2768 } 2769 EXPORT_SYMBOL(neigh_app_ns); 2770 #endif /* CONFIG_ARPD */ 2771 2772 #ifdef CONFIG_SYSCTL 2773 2774 static int proc_unres_qlen(ctl_table *ctl, int write, void __user *buffer, 2775 size_t *lenp, loff_t *ppos) 2776 { 2777 int size, ret; 2778 ctl_table tmp = *ctl; 2779 2780 tmp.data = &size; 2781 size = DIV_ROUND_UP(*(int *)ctl->data, SKB_TRUESIZE(ETH_FRAME_LEN)); 2782 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); 2783 if (write && !ret) 2784 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 2785 return ret; 2786 } 2787 2788 enum { 2789 NEIGH_VAR_MCAST_PROBE, 2790 NEIGH_VAR_UCAST_PROBE, 2791 NEIGH_VAR_APP_PROBE, 2792 NEIGH_VAR_RETRANS_TIME, 2793 NEIGH_VAR_BASE_REACHABLE_TIME, 2794 NEIGH_VAR_DELAY_PROBE_TIME, 2795 NEIGH_VAR_GC_STALETIME, 2796 NEIGH_VAR_QUEUE_LEN, 2797 NEIGH_VAR_QUEUE_LEN_BYTES, 2798 NEIGH_VAR_PROXY_QLEN, 2799 NEIGH_VAR_ANYCAST_DELAY, 2800 NEIGH_VAR_PROXY_DELAY, 2801 NEIGH_VAR_LOCKTIME, 2802 NEIGH_VAR_RETRANS_TIME_MS, 2803 NEIGH_VAR_BASE_REACHABLE_TIME_MS, 2804 NEIGH_VAR_GC_INTERVAL, 2805 NEIGH_VAR_GC_THRESH1, 2806 NEIGH_VAR_GC_THRESH2, 2807 NEIGH_VAR_GC_THRESH3, 2808 NEIGH_VAR_MAX 2809 }; 2810 2811 static struct neigh_sysctl_table { 2812 struct ctl_table_header *sysctl_header; 2813 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; 2814 } neigh_sysctl_template __read_mostly = { 2815 .neigh_vars = { 2816 [NEIGH_VAR_MCAST_PROBE] = { 2817 .procname = "mcast_solicit", 2818 .maxlen = sizeof(int), 2819 .mode = 0644, 2820 .proc_handler = proc_dointvec, 2821 }, 2822 [NEIGH_VAR_UCAST_PROBE] = { 2823 .procname = "ucast_solicit", 2824 .maxlen = sizeof(int), 2825 .mode = 0644, 2826 .proc_handler = proc_dointvec, 2827 }, 2828 [NEIGH_VAR_APP_PROBE] = { 2829 .procname = "app_solicit", 2830 .maxlen = sizeof(int), 2831 .mode = 0644, 2832 .proc_handler = proc_dointvec, 2833 }, 2834 [NEIGH_VAR_RETRANS_TIME] = { 2835 .procname = "retrans_time", 2836 .maxlen = sizeof(int), 2837 .mode = 0644, 2838 .proc_handler = proc_dointvec_userhz_jiffies, 2839 }, 2840 [NEIGH_VAR_BASE_REACHABLE_TIME] = { 2841 .procname = "base_reachable_time", 2842 .maxlen = sizeof(int), 2843 .mode = 0644, 2844 .proc_handler = proc_dointvec_jiffies, 2845 }, 2846 [NEIGH_VAR_DELAY_PROBE_TIME] = { 2847 .procname = "delay_first_probe_time", 2848 .maxlen = sizeof(int), 2849 .mode = 0644, 2850 .proc_handler = proc_dointvec_jiffies, 2851 }, 2852 [NEIGH_VAR_GC_STALETIME] = { 2853 .procname = "gc_stale_time", 2854 .maxlen = sizeof(int), 2855 .mode = 0644, 2856 .proc_handler = proc_dointvec_jiffies, 2857 }, 2858 [NEIGH_VAR_QUEUE_LEN] = { 2859 .procname = "unres_qlen", 2860 .maxlen = sizeof(int), 2861 .mode = 0644, 2862 .proc_handler = proc_unres_qlen, 2863 }, 2864 [NEIGH_VAR_QUEUE_LEN_BYTES] = { 2865 .procname = "unres_qlen_bytes", 2866 .maxlen = sizeof(int), 2867 .mode = 0644, 2868 .proc_handler = proc_dointvec, 2869 }, 2870 [NEIGH_VAR_PROXY_QLEN] = { 2871 .procname = "proxy_qlen", 2872 .maxlen = sizeof(int), 2873 .mode = 0644, 2874 .proc_handler = proc_dointvec, 2875 }, 2876 [NEIGH_VAR_ANYCAST_DELAY] = { 2877 .procname = "anycast_delay", 2878 .maxlen = sizeof(int), 2879 .mode = 0644, 2880 .proc_handler = proc_dointvec_userhz_jiffies, 2881 }, 2882 [NEIGH_VAR_PROXY_DELAY] = { 2883 .procname = "proxy_delay", 2884 .maxlen = sizeof(int), 2885 .mode = 0644, 2886 .proc_handler = proc_dointvec_userhz_jiffies, 2887 }, 2888 [NEIGH_VAR_LOCKTIME] = { 2889 .procname = "locktime", 2890 .maxlen = sizeof(int), 2891 .mode = 0644, 2892 .proc_handler = proc_dointvec_userhz_jiffies, 2893 }, 2894 [NEIGH_VAR_RETRANS_TIME_MS] = { 2895 .procname = "retrans_time_ms", 2896 .maxlen = sizeof(int), 2897 .mode = 0644, 2898 .proc_handler = proc_dointvec_ms_jiffies, 2899 }, 2900 [NEIGH_VAR_BASE_REACHABLE_TIME_MS] = { 2901 .procname = "base_reachable_time_ms", 2902 .maxlen = sizeof(int), 2903 .mode = 0644, 2904 .proc_handler = proc_dointvec_ms_jiffies, 2905 }, 2906 [NEIGH_VAR_GC_INTERVAL] = { 2907 .procname = "gc_interval", 2908 .maxlen = sizeof(int), 2909 .mode = 0644, 2910 .proc_handler = proc_dointvec_jiffies, 2911 }, 2912 [NEIGH_VAR_GC_THRESH1] = { 2913 .procname = "gc_thresh1", 2914 .maxlen = sizeof(int), 2915 .mode = 0644, 2916 .proc_handler = proc_dointvec, 2917 }, 2918 [NEIGH_VAR_GC_THRESH2] = { 2919 .procname = "gc_thresh2", 2920 .maxlen = sizeof(int), 2921 .mode = 0644, 2922 .proc_handler = proc_dointvec, 2923 }, 2924 [NEIGH_VAR_GC_THRESH3] = { 2925 .procname = "gc_thresh3", 2926 .maxlen = sizeof(int), 2927 .mode = 0644, 2928 .proc_handler = proc_dointvec, 2929 }, 2930 {}, 2931 }, 2932 }; 2933 2934 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 2935 char *p_name, proc_handler *handler) 2936 { 2937 struct neigh_sysctl_table *t; 2938 const char *dev_name_source = NULL; 2939 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; 2940 2941 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 2942 if (!t) 2943 goto err; 2944 2945 t->neigh_vars[NEIGH_VAR_MCAST_PROBE].data = &p->mcast_probes; 2946 t->neigh_vars[NEIGH_VAR_UCAST_PROBE].data = &p->ucast_probes; 2947 t->neigh_vars[NEIGH_VAR_APP_PROBE].data = &p->app_probes; 2948 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].data = &p->retrans_time; 2949 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].data = &p->base_reachable_time; 2950 t->neigh_vars[NEIGH_VAR_DELAY_PROBE_TIME].data = &p->delay_probe_time; 2951 t->neigh_vars[NEIGH_VAR_GC_STALETIME].data = &p->gc_staletime; 2952 t->neigh_vars[NEIGH_VAR_QUEUE_LEN].data = &p->queue_len_bytes; 2953 t->neigh_vars[NEIGH_VAR_QUEUE_LEN_BYTES].data = &p->queue_len_bytes; 2954 t->neigh_vars[NEIGH_VAR_PROXY_QLEN].data = &p->proxy_qlen; 2955 t->neigh_vars[NEIGH_VAR_ANYCAST_DELAY].data = &p->anycast_delay; 2956 t->neigh_vars[NEIGH_VAR_PROXY_DELAY].data = &p->proxy_delay; 2957 t->neigh_vars[NEIGH_VAR_LOCKTIME].data = &p->locktime; 2958 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].data = &p->retrans_time; 2959 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].data = &p->base_reachable_time; 2960 2961 if (dev) { 2962 dev_name_source = dev->name; 2963 /* Terminate the table early */ 2964 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, 2965 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); 2966 } else { 2967 dev_name_source = "default"; 2968 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = (int *)(p + 1); 2969 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = (int *)(p + 1) + 1; 2970 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = (int *)(p + 1) + 2; 2971 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = (int *)(p + 1) + 3; 2972 } 2973 2974 2975 if (handler) { 2976 /* RetransTime */ 2977 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 2978 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].extra1 = dev; 2979 /* ReachableTime */ 2980 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 2981 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].extra1 = dev; 2982 /* RetransTime (in milliseconds)*/ 2983 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 2984 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].extra1 = dev; 2985 /* ReachableTime (in milliseconds) */ 2986 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 2987 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].extra1 = dev; 2988 } 2989 2990 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", 2991 p_name, dev_name_source); 2992 t->sysctl_header = 2993 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); 2994 if (!t->sysctl_header) 2995 goto free; 2996 2997 p->sysctl_table = t; 2998 return 0; 2999 3000 free: 3001 kfree(t); 3002 err: 3003 return -ENOBUFS; 3004 } 3005 EXPORT_SYMBOL(neigh_sysctl_register); 3006 3007 void neigh_sysctl_unregister(struct neigh_parms *p) 3008 { 3009 if (p->sysctl_table) { 3010 struct neigh_sysctl_table *t = p->sysctl_table; 3011 p->sysctl_table = NULL; 3012 unregister_net_sysctl_table(t->sysctl_header); 3013 kfree(t); 3014 } 3015 } 3016 EXPORT_SYMBOL(neigh_sysctl_unregister); 3017 3018 #endif /* CONFIG_SYSCTL */ 3019 3020 static int __init neigh_init(void) 3021 { 3022 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL); 3023 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL); 3024 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL); 3025 3026 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3027 NULL); 3028 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL); 3029 3030 return 0; 3031 } 3032 3033 subsys_initcall(neigh_init); 3034 3035