xref: /linux/net/core/flow_dissector.c (revision cad4977344b35ea116ec5fefe91a76b1dfa113f5)
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/dsa.h>
8 #include <net/dst_metadata.h>
9 #include <net/ip.h>
10 #include <net/ipv6.h>
11 #include <net/gre.h>
12 #include <net/pptp.h>
13 #include <net/tipc.h>
14 #include <linux/igmp.h>
15 #include <linux/icmp.h>
16 #include <linux/sctp.h>
17 #include <linux/dccp.h>
18 #include <linux/if_tunnel.h>
19 #include <linux/if_pppox.h>
20 #include <linux/ppp_defs.h>
21 #include <linux/stddef.h>
22 #include <linux/if_ether.h>
23 #include <linux/mpls.h>
24 #include <linux/tcp.h>
25 #include <net/flow_dissector.h>
26 #include <scsi/fc/fc_fcoe.h>
27 #include <uapi/linux/batadv_packet.h>
28 #include <linux/bpf.h>
29 
30 static DEFINE_MUTEX(flow_dissector_mutex);
31 
32 static void dissector_set_key(struct flow_dissector *flow_dissector,
33 			      enum flow_dissector_key_id key_id)
34 {
35 	flow_dissector->used_keys |= (1 << key_id);
36 }
37 
38 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
39 			     const struct flow_dissector_key *key,
40 			     unsigned int key_count)
41 {
42 	unsigned int i;
43 
44 	memset(flow_dissector, 0, sizeof(*flow_dissector));
45 
46 	for (i = 0; i < key_count; i++, key++) {
47 		/* User should make sure that every key target offset is withing
48 		 * boundaries of unsigned short.
49 		 */
50 		BUG_ON(key->offset > USHRT_MAX);
51 		BUG_ON(dissector_uses_key(flow_dissector,
52 					  key->key_id));
53 
54 		dissector_set_key(flow_dissector, key->key_id);
55 		flow_dissector->offset[key->key_id] = key->offset;
56 	}
57 
58 	/* Ensure that the dissector always includes control and basic key.
59 	 * That way we are able to avoid handling lack of these in fast path.
60 	 */
61 	BUG_ON(!dissector_uses_key(flow_dissector,
62 				   FLOW_DISSECTOR_KEY_CONTROL));
63 	BUG_ON(!dissector_uses_key(flow_dissector,
64 				   FLOW_DISSECTOR_KEY_BASIC));
65 }
66 EXPORT_SYMBOL(skb_flow_dissector_init);
67 
68 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
69 				       struct bpf_prog *prog)
70 {
71 	struct bpf_prog *attached;
72 	struct net *net;
73 
74 	net = current->nsproxy->net_ns;
75 	mutex_lock(&flow_dissector_mutex);
76 	attached = rcu_dereference_protected(net->flow_dissector_prog,
77 					     lockdep_is_held(&flow_dissector_mutex));
78 	if (attached) {
79 		/* Only one BPF program can be attached at a time */
80 		mutex_unlock(&flow_dissector_mutex);
81 		return -EEXIST;
82 	}
83 	rcu_assign_pointer(net->flow_dissector_prog, prog);
84 	mutex_unlock(&flow_dissector_mutex);
85 	return 0;
86 }
87 
88 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
89 {
90 	struct bpf_prog *attached;
91 	struct net *net;
92 
93 	net = current->nsproxy->net_ns;
94 	mutex_lock(&flow_dissector_mutex);
95 	attached = rcu_dereference_protected(net->flow_dissector_prog,
96 					     lockdep_is_held(&flow_dissector_mutex));
97 	if (!attached) {
98 		mutex_unlock(&flow_dissector_mutex);
99 		return -ENOENT;
100 	}
101 	bpf_prog_put(attached);
102 	RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
103 	mutex_unlock(&flow_dissector_mutex);
104 	return 0;
105 }
106 /**
107  * skb_flow_get_be16 - extract be16 entity
108  * @skb: sk_buff to extract from
109  * @poff: offset to extract at
110  * @data: raw buffer pointer to the packet
111  * @hlen: packet header length
112  *
113  * The function will try to retrieve a be32 entity at
114  * offset poff
115  */
116 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
117 				void *data, int hlen)
118 {
119 	__be16 *u, _u;
120 
121 	u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
122 	if (u)
123 		return *u;
124 
125 	return 0;
126 }
127 
128 /**
129  * __skb_flow_get_ports - extract the upper layer ports and return them
130  * @skb: sk_buff to extract the ports from
131  * @thoff: transport header offset
132  * @ip_proto: protocol for which to get port offset
133  * @data: raw buffer pointer to the packet, if NULL use skb->data
134  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
135  *
136  * The function will try to retrieve the ports at offset thoff + poff where poff
137  * is the protocol port offset returned from proto_ports_offset
138  */
139 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
140 			    void *data, int hlen)
141 {
142 	int poff = proto_ports_offset(ip_proto);
143 
144 	if (!data) {
145 		data = skb->data;
146 		hlen = skb_headlen(skb);
147 	}
148 
149 	if (poff >= 0) {
150 		__be32 *ports, _ports;
151 
152 		ports = __skb_header_pointer(skb, thoff + poff,
153 					     sizeof(_ports), data, hlen, &_ports);
154 		if (ports)
155 			return *ports;
156 	}
157 
158 	return 0;
159 }
160 EXPORT_SYMBOL(__skb_flow_get_ports);
161 
162 static void
163 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
164 				   struct flow_dissector *flow_dissector,
165 				   void *target_container)
166 {
167 	struct flow_dissector_key_control *ctrl;
168 
169 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
170 		return;
171 
172 	ctrl = skb_flow_dissector_target(flow_dissector,
173 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
174 					 target_container);
175 	ctrl->addr_type = type;
176 }
177 
178 void
179 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
180 			     struct flow_dissector *flow_dissector,
181 			     void *target_container)
182 {
183 	struct ip_tunnel_info *info;
184 	struct ip_tunnel_key *key;
185 
186 	/* A quick check to see if there might be something to do. */
187 	if (!dissector_uses_key(flow_dissector,
188 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
189 	    !dissector_uses_key(flow_dissector,
190 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
191 	    !dissector_uses_key(flow_dissector,
192 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
193 	    !dissector_uses_key(flow_dissector,
194 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
195 	    !dissector_uses_key(flow_dissector,
196 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
197 	    !dissector_uses_key(flow_dissector,
198 				FLOW_DISSECTOR_KEY_ENC_IP) &&
199 	    !dissector_uses_key(flow_dissector,
200 				FLOW_DISSECTOR_KEY_ENC_OPTS))
201 		return;
202 
203 	info = skb_tunnel_info(skb);
204 	if (!info)
205 		return;
206 
207 	key = &info->key;
208 
209 	switch (ip_tunnel_info_af(info)) {
210 	case AF_INET:
211 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
212 						   flow_dissector,
213 						   target_container);
214 		if (dissector_uses_key(flow_dissector,
215 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
216 			struct flow_dissector_key_ipv4_addrs *ipv4;
217 
218 			ipv4 = skb_flow_dissector_target(flow_dissector,
219 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
220 							 target_container);
221 			ipv4->src = key->u.ipv4.src;
222 			ipv4->dst = key->u.ipv4.dst;
223 		}
224 		break;
225 	case AF_INET6:
226 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
227 						   flow_dissector,
228 						   target_container);
229 		if (dissector_uses_key(flow_dissector,
230 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
231 			struct flow_dissector_key_ipv6_addrs *ipv6;
232 
233 			ipv6 = skb_flow_dissector_target(flow_dissector,
234 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
235 							 target_container);
236 			ipv6->src = key->u.ipv6.src;
237 			ipv6->dst = key->u.ipv6.dst;
238 		}
239 		break;
240 	}
241 
242 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
243 		struct flow_dissector_key_keyid *keyid;
244 
245 		keyid = skb_flow_dissector_target(flow_dissector,
246 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
247 						  target_container);
248 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
249 	}
250 
251 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
252 		struct flow_dissector_key_ports *tp;
253 
254 		tp = skb_flow_dissector_target(flow_dissector,
255 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
256 					       target_container);
257 		tp->src = key->tp_src;
258 		tp->dst = key->tp_dst;
259 	}
260 
261 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
262 		struct flow_dissector_key_ip *ip;
263 
264 		ip = skb_flow_dissector_target(flow_dissector,
265 					       FLOW_DISSECTOR_KEY_ENC_IP,
266 					       target_container);
267 		ip->tos = key->tos;
268 		ip->ttl = key->ttl;
269 	}
270 
271 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
272 		struct flow_dissector_key_enc_opts *enc_opt;
273 
274 		enc_opt = skb_flow_dissector_target(flow_dissector,
275 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
276 						    target_container);
277 
278 		if (info->options_len) {
279 			enc_opt->len = info->options_len;
280 			ip_tunnel_info_opts_get(enc_opt->data, info);
281 			enc_opt->dst_opt_type = info->key.tun_flags &
282 						TUNNEL_OPTIONS_PRESENT;
283 		}
284 	}
285 }
286 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
287 
288 static enum flow_dissect_ret
289 __skb_flow_dissect_mpls(const struct sk_buff *skb,
290 			struct flow_dissector *flow_dissector,
291 			void *target_container, void *data, int nhoff, int hlen)
292 {
293 	struct flow_dissector_key_keyid *key_keyid;
294 	struct mpls_label *hdr, _hdr[2];
295 	u32 entry, label;
296 
297 	if (!dissector_uses_key(flow_dissector,
298 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
299 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
300 		return FLOW_DISSECT_RET_OUT_GOOD;
301 
302 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
303 				   hlen, &_hdr);
304 	if (!hdr)
305 		return FLOW_DISSECT_RET_OUT_BAD;
306 
307 	entry = ntohl(hdr[0].entry);
308 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
309 
310 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
311 		struct flow_dissector_key_mpls *key_mpls;
312 
313 		key_mpls = skb_flow_dissector_target(flow_dissector,
314 						     FLOW_DISSECTOR_KEY_MPLS,
315 						     target_container);
316 		key_mpls->mpls_label = label;
317 		key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
318 					>> MPLS_LS_TTL_SHIFT;
319 		key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
320 					>> MPLS_LS_TC_SHIFT;
321 		key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
322 					>> MPLS_LS_S_SHIFT;
323 	}
324 
325 	if (label == MPLS_LABEL_ENTROPY) {
326 		key_keyid = skb_flow_dissector_target(flow_dissector,
327 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
328 						      target_container);
329 		key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
330 	}
331 	return FLOW_DISSECT_RET_OUT_GOOD;
332 }
333 
334 static enum flow_dissect_ret
335 __skb_flow_dissect_arp(const struct sk_buff *skb,
336 		       struct flow_dissector *flow_dissector,
337 		       void *target_container, void *data, int nhoff, int hlen)
338 {
339 	struct flow_dissector_key_arp *key_arp;
340 	struct {
341 		unsigned char ar_sha[ETH_ALEN];
342 		unsigned char ar_sip[4];
343 		unsigned char ar_tha[ETH_ALEN];
344 		unsigned char ar_tip[4];
345 	} *arp_eth, _arp_eth;
346 	const struct arphdr *arp;
347 	struct arphdr _arp;
348 
349 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
350 		return FLOW_DISSECT_RET_OUT_GOOD;
351 
352 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
353 				   hlen, &_arp);
354 	if (!arp)
355 		return FLOW_DISSECT_RET_OUT_BAD;
356 
357 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
358 	    arp->ar_pro != htons(ETH_P_IP) ||
359 	    arp->ar_hln != ETH_ALEN ||
360 	    arp->ar_pln != 4 ||
361 	    (arp->ar_op != htons(ARPOP_REPLY) &&
362 	     arp->ar_op != htons(ARPOP_REQUEST)))
363 		return FLOW_DISSECT_RET_OUT_BAD;
364 
365 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
366 				       sizeof(_arp_eth), data,
367 				       hlen, &_arp_eth);
368 	if (!arp_eth)
369 		return FLOW_DISSECT_RET_OUT_BAD;
370 
371 	key_arp = skb_flow_dissector_target(flow_dissector,
372 					    FLOW_DISSECTOR_KEY_ARP,
373 					    target_container);
374 
375 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
376 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
377 
378 	/* Only store the lower byte of the opcode;
379 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
380 	 */
381 	key_arp->op = ntohs(arp->ar_op) & 0xff;
382 
383 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
384 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
385 
386 	return FLOW_DISSECT_RET_OUT_GOOD;
387 }
388 
389 static enum flow_dissect_ret
390 __skb_flow_dissect_gre(const struct sk_buff *skb,
391 		       struct flow_dissector_key_control *key_control,
392 		       struct flow_dissector *flow_dissector,
393 		       void *target_container, void *data,
394 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
395 		       unsigned int flags)
396 {
397 	struct flow_dissector_key_keyid *key_keyid;
398 	struct gre_base_hdr *hdr, _hdr;
399 	int offset = 0;
400 	u16 gre_ver;
401 
402 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
403 				   data, *p_hlen, &_hdr);
404 	if (!hdr)
405 		return FLOW_DISSECT_RET_OUT_BAD;
406 
407 	/* Only look inside GRE without routing */
408 	if (hdr->flags & GRE_ROUTING)
409 		return FLOW_DISSECT_RET_OUT_GOOD;
410 
411 	/* Only look inside GRE for version 0 and 1 */
412 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
413 	if (gre_ver > 1)
414 		return FLOW_DISSECT_RET_OUT_GOOD;
415 
416 	*p_proto = hdr->protocol;
417 	if (gre_ver) {
418 		/* Version1 must be PPTP, and check the flags */
419 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
420 			return FLOW_DISSECT_RET_OUT_GOOD;
421 	}
422 
423 	offset += sizeof(struct gre_base_hdr);
424 
425 	if (hdr->flags & GRE_CSUM)
426 		offset += FIELD_SIZEOF(struct gre_full_hdr, csum) +
427 			  FIELD_SIZEOF(struct gre_full_hdr, reserved1);
428 
429 	if (hdr->flags & GRE_KEY) {
430 		const __be32 *keyid;
431 		__be32 _keyid;
432 
433 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
434 					     sizeof(_keyid),
435 					     data, *p_hlen, &_keyid);
436 		if (!keyid)
437 			return FLOW_DISSECT_RET_OUT_BAD;
438 
439 		if (dissector_uses_key(flow_dissector,
440 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
441 			key_keyid = skb_flow_dissector_target(flow_dissector,
442 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
443 							      target_container);
444 			if (gre_ver == 0)
445 				key_keyid->keyid = *keyid;
446 			else
447 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
448 		}
449 		offset += FIELD_SIZEOF(struct gre_full_hdr, key);
450 	}
451 
452 	if (hdr->flags & GRE_SEQ)
453 		offset += FIELD_SIZEOF(struct pptp_gre_header, seq);
454 
455 	if (gre_ver == 0) {
456 		if (*p_proto == htons(ETH_P_TEB)) {
457 			const struct ethhdr *eth;
458 			struct ethhdr _eth;
459 
460 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
461 						   sizeof(_eth),
462 						   data, *p_hlen, &_eth);
463 			if (!eth)
464 				return FLOW_DISSECT_RET_OUT_BAD;
465 			*p_proto = eth->h_proto;
466 			offset += sizeof(*eth);
467 
468 			/* Cap headers that we access via pointers at the
469 			 * end of the Ethernet header as our maximum alignment
470 			 * at that point is only 2 bytes.
471 			 */
472 			if (NET_IP_ALIGN)
473 				*p_hlen = *p_nhoff + offset;
474 		}
475 	} else { /* version 1, must be PPTP */
476 		u8 _ppp_hdr[PPP_HDRLEN];
477 		u8 *ppp_hdr;
478 
479 		if (hdr->flags & GRE_ACK)
480 			offset += FIELD_SIZEOF(struct pptp_gre_header, ack);
481 
482 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
483 					       sizeof(_ppp_hdr),
484 					       data, *p_hlen, _ppp_hdr);
485 		if (!ppp_hdr)
486 			return FLOW_DISSECT_RET_OUT_BAD;
487 
488 		switch (PPP_PROTOCOL(ppp_hdr)) {
489 		case PPP_IP:
490 			*p_proto = htons(ETH_P_IP);
491 			break;
492 		case PPP_IPV6:
493 			*p_proto = htons(ETH_P_IPV6);
494 			break;
495 		default:
496 			/* Could probably catch some more like MPLS */
497 			break;
498 		}
499 
500 		offset += PPP_HDRLEN;
501 	}
502 
503 	*p_nhoff += offset;
504 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
505 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
506 		return FLOW_DISSECT_RET_OUT_GOOD;
507 
508 	return FLOW_DISSECT_RET_PROTO_AGAIN;
509 }
510 
511 /**
512  * __skb_flow_dissect_batadv() - dissect batman-adv header
513  * @skb: sk_buff to with the batman-adv header
514  * @key_control: flow dissectors control key
515  * @data: raw buffer pointer to the packet, if NULL use skb->data
516  * @p_proto: pointer used to update the protocol to process next
517  * @p_nhoff: pointer used to update inner network header offset
518  * @hlen: packet header length
519  * @flags: any combination of FLOW_DISSECTOR_F_*
520  *
521  * ETH_P_BATMAN packets are tried to be dissected. Only
522  * &struct batadv_unicast packets are actually processed because they contain an
523  * inner ethernet header and are usually followed by actual network header. This
524  * allows the flow dissector to continue processing the packet.
525  *
526  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
527  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
528  *  otherwise FLOW_DISSECT_RET_OUT_BAD
529  */
530 static enum flow_dissect_ret
531 __skb_flow_dissect_batadv(const struct sk_buff *skb,
532 			  struct flow_dissector_key_control *key_control,
533 			  void *data, __be16 *p_proto, int *p_nhoff, int hlen,
534 			  unsigned int flags)
535 {
536 	struct {
537 		struct batadv_unicast_packet batadv_unicast;
538 		struct ethhdr eth;
539 	} *hdr, _hdr;
540 
541 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
542 				   &_hdr);
543 	if (!hdr)
544 		return FLOW_DISSECT_RET_OUT_BAD;
545 
546 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
547 		return FLOW_DISSECT_RET_OUT_BAD;
548 
549 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
550 		return FLOW_DISSECT_RET_OUT_BAD;
551 
552 	*p_proto = hdr->eth.h_proto;
553 	*p_nhoff += sizeof(*hdr);
554 
555 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
556 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
557 		return FLOW_DISSECT_RET_OUT_GOOD;
558 
559 	return FLOW_DISSECT_RET_PROTO_AGAIN;
560 }
561 
562 static void
563 __skb_flow_dissect_tcp(const struct sk_buff *skb,
564 		       struct flow_dissector *flow_dissector,
565 		       void *target_container, void *data, int thoff, int hlen)
566 {
567 	struct flow_dissector_key_tcp *key_tcp;
568 	struct tcphdr *th, _th;
569 
570 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
571 		return;
572 
573 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
574 	if (!th)
575 		return;
576 
577 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
578 		return;
579 
580 	key_tcp = skb_flow_dissector_target(flow_dissector,
581 					    FLOW_DISSECTOR_KEY_TCP,
582 					    target_container);
583 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
584 }
585 
586 static void
587 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
588 			struct flow_dissector *flow_dissector,
589 			void *target_container, void *data, const struct iphdr *iph)
590 {
591 	struct flow_dissector_key_ip *key_ip;
592 
593 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
594 		return;
595 
596 	key_ip = skb_flow_dissector_target(flow_dissector,
597 					   FLOW_DISSECTOR_KEY_IP,
598 					   target_container);
599 	key_ip->tos = iph->tos;
600 	key_ip->ttl = iph->ttl;
601 }
602 
603 static void
604 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
605 			struct flow_dissector *flow_dissector,
606 			void *target_container, void *data, const struct ipv6hdr *iph)
607 {
608 	struct flow_dissector_key_ip *key_ip;
609 
610 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
611 		return;
612 
613 	key_ip = skb_flow_dissector_target(flow_dissector,
614 					   FLOW_DISSECTOR_KEY_IP,
615 					   target_container);
616 	key_ip->tos = ipv6_get_dsfield(iph);
617 	key_ip->ttl = iph->hop_limit;
618 }
619 
620 /* Maximum number of protocol headers that can be parsed in
621  * __skb_flow_dissect
622  */
623 #define MAX_FLOW_DISSECT_HDRS	15
624 
625 static bool skb_flow_dissect_allowed(int *num_hdrs)
626 {
627 	++*num_hdrs;
628 
629 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
630 }
631 
632 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
633 				     struct flow_dissector *flow_dissector,
634 				     void *target_container)
635 {
636 	struct flow_dissector_key_control *key_control;
637 	struct flow_dissector_key_basic *key_basic;
638 	struct flow_dissector_key_addrs *key_addrs;
639 	struct flow_dissector_key_ports *key_ports;
640 
641 	key_control = skb_flow_dissector_target(flow_dissector,
642 						FLOW_DISSECTOR_KEY_CONTROL,
643 						target_container);
644 	key_control->thoff = flow_keys->thoff;
645 	if (flow_keys->is_frag)
646 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
647 	if (flow_keys->is_first_frag)
648 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
649 	if (flow_keys->is_encap)
650 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
651 
652 	key_basic = skb_flow_dissector_target(flow_dissector,
653 					      FLOW_DISSECTOR_KEY_BASIC,
654 					      target_container);
655 	key_basic->n_proto = flow_keys->n_proto;
656 	key_basic->ip_proto = flow_keys->ip_proto;
657 
658 	if (flow_keys->addr_proto == ETH_P_IP &&
659 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
660 		key_addrs = skb_flow_dissector_target(flow_dissector,
661 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
662 						      target_container);
663 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
664 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
665 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
666 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
667 		   dissector_uses_key(flow_dissector,
668 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
669 		key_addrs = skb_flow_dissector_target(flow_dissector,
670 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
671 						      target_container);
672 		memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
673 		       sizeof(key_addrs->v6addrs));
674 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
675 	}
676 
677 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) {
678 		key_ports = skb_flow_dissector_target(flow_dissector,
679 						      FLOW_DISSECTOR_KEY_PORTS,
680 						      target_container);
681 		key_ports->src = flow_keys->sport;
682 		key_ports->dst = flow_keys->dport;
683 	}
684 }
685 
686 /**
687  * __skb_flow_dissect - extract the flow_keys struct and return it
688  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
689  * @flow_dissector: list of keys to dissect
690  * @target_container: target structure to put dissected values into
691  * @data: raw buffer pointer to the packet, if NULL use skb->data
692  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
693  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
694  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
695  *
696  * The function will try to retrieve individual keys into target specified
697  * by flow_dissector from either the skbuff or a raw buffer specified by the
698  * rest parameters.
699  *
700  * Caller must take care of zeroing target container memory.
701  */
702 bool __skb_flow_dissect(const struct sk_buff *skb,
703 			struct flow_dissector *flow_dissector,
704 			void *target_container,
705 			void *data, __be16 proto, int nhoff, int hlen,
706 			unsigned int flags)
707 {
708 	struct flow_dissector_key_control *key_control;
709 	struct flow_dissector_key_basic *key_basic;
710 	struct flow_dissector_key_addrs *key_addrs;
711 	struct flow_dissector_key_ports *key_ports;
712 	struct flow_dissector_key_icmp *key_icmp;
713 	struct flow_dissector_key_tags *key_tags;
714 	struct flow_dissector_key_vlan *key_vlan;
715 	enum flow_dissect_ret fdret;
716 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
717 	struct bpf_prog *attached = NULL;
718 	int num_hdrs = 0;
719 	u8 ip_proto = 0;
720 	bool ret;
721 
722 	if (!data) {
723 		data = skb->data;
724 		proto = skb_vlan_tag_present(skb) ?
725 			 skb->vlan_proto : skb->protocol;
726 		nhoff = skb_network_offset(skb);
727 		hlen = skb_headlen(skb);
728 #if IS_ENABLED(CONFIG_NET_DSA)
729 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
730 			const struct dsa_device_ops *ops;
731 			int offset;
732 
733 			ops = skb->dev->dsa_ptr->tag_ops;
734 			if (ops->flow_dissect &&
735 			    !ops->flow_dissect(skb, &proto, &offset)) {
736 				hlen -= offset;
737 				nhoff += offset;
738 			}
739 		}
740 #endif
741 	}
742 
743 	/* It is ensured by skb_flow_dissector_init() that control key will
744 	 * be always present.
745 	 */
746 	key_control = skb_flow_dissector_target(flow_dissector,
747 						FLOW_DISSECTOR_KEY_CONTROL,
748 						target_container);
749 
750 	/* It is ensured by skb_flow_dissector_init() that basic key will
751 	 * be always present.
752 	 */
753 	key_basic = skb_flow_dissector_target(flow_dissector,
754 					      FLOW_DISSECTOR_KEY_BASIC,
755 					      target_container);
756 
757 	rcu_read_lock();
758 	if (skb) {
759 		if (skb->dev)
760 			attached = rcu_dereference(dev_net(skb->dev)->flow_dissector_prog);
761 		else if (skb->sk)
762 			attached = rcu_dereference(sock_net(skb->sk)->flow_dissector_prog);
763 		else
764 			WARN_ON_ONCE(1);
765 	}
766 	if (attached) {
767 		/* Note that even though the const qualifier is discarded
768 		 * throughout the execution of the BPF program, all changes(the
769 		 * control block) are reverted after the BPF program returns.
770 		 * Therefore, __skb_flow_dissect does not alter the skb.
771 		 */
772 		struct bpf_flow_keys flow_keys = {};
773 		struct bpf_skb_data_end cb_saved;
774 		struct bpf_skb_data_end *cb;
775 		u32 result;
776 
777 		cb = (struct bpf_skb_data_end *)skb->cb;
778 
779 		/* Save Control Block */
780 		memcpy(&cb_saved, cb, sizeof(cb_saved));
781 		memset(cb, 0, sizeof(cb_saved));
782 
783 		/* Pass parameters to the BPF program */
784 		cb->qdisc_cb.flow_keys = &flow_keys;
785 		flow_keys.nhoff = nhoff;
786 
787 		bpf_compute_data_pointers((struct sk_buff *)skb);
788 		result = BPF_PROG_RUN(attached, skb);
789 
790 		/* Restore state */
791 		memcpy(cb, &cb_saved, sizeof(cb_saved));
792 
793 		__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
794 					 target_container);
795 		key_control->thoff = min_t(u16, key_control->thoff, skb->len);
796 		rcu_read_unlock();
797 		return result == BPF_OK;
798 	}
799 	rcu_read_unlock();
800 
801 	if (dissector_uses_key(flow_dissector,
802 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
803 		struct ethhdr *eth = eth_hdr(skb);
804 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
805 
806 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
807 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
808 							  target_container);
809 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
810 	}
811 
812 proto_again:
813 	fdret = FLOW_DISSECT_RET_CONTINUE;
814 
815 	switch (proto) {
816 	case htons(ETH_P_IP): {
817 		const struct iphdr *iph;
818 		struct iphdr _iph;
819 
820 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
821 		if (!iph || iph->ihl < 5) {
822 			fdret = FLOW_DISSECT_RET_OUT_BAD;
823 			break;
824 		}
825 
826 		nhoff += iph->ihl * 4;
827 
828 		ip_proto = iph->protocol;
829 
830 		if (dissector_uses_key(flow_dissector,
831 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
832 			key_addrs = skb_flow_dissector_target(flow_dissector,
833 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
834 							      target_container);
835 
836 			memcpy(&key_addrs->v4addrs, &iph->saddr,
837 			       sizeof(key_addrs->v4addrs));
838 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
839 		}
840 
841 		if (ip_is_fragment(iph)) {
842 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
843 
844 			if (iph->frag_off & htons(IP_OFFSET)) {
845 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
846 				break;
847 			} else {
848 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
849 				if (!(flags &
850 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
851 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
852 					break;
853 				}
854 			}
855 		}
856 
857 		__skb_flow_dissect_ipv4(skb, flow_dissector,
858 					target_container, data, iph);
859 
860 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
861 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
862 			break;
863 		}
864 
865 		break;
866 	}
867 	case htons(ETH_P_IPV6): {
868 		const struct ipv6hdr *iph;
869 		struct ipv6hdr _iph;
870 
871 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
872 		if (!iph) {
873 			fdret = FLOW_DISSECT_RET_OUT_BAD;
874 			break;
875 		}
876 
877 		ip_proto = iph->nexthdr;
878 		nhoff += sizeof(struct ipv6hdr);
879 
880 		if (dissector_uses_key(flow_dissector,
881 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
882 			key_addrs = skb_flow_dissector_target(flow_dissector,
883 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
884 							      target_container);
885 
886 			memcpy(&key_addrs->v6addrs, &iph->saddr,
887 			       sizeof(key_addrs->v6addrs));
888 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
889 		}
890 
891 		if ((dissector_uses_key(flow_dissector,
892 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
893 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
894 		    ip6_flowlabel(iph)) {
895 			__be32 flow_label = ip6_flowlabel(iph);
896 
897 			if (dissector_uses_key(flow_dissector,
898 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
899 				key_tags = skb_flow_dissector_target(flow_dissector,
900 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
901 								     target_container);
902 				key_tags->flow_label = ntohl(flow_label);
903 			}
904 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
905 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
906 				break;
907 			}
908 		}
909 
910 		__skb_flow_dissect_ipv6(skb, flow_dissector,
911 					target_container, data, iph);
912 
913 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
914 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
915 
916 		break;
917 	}
918 	case htons(ETH_P_8021AD):
919 	case htons(ETH_P_8021Q): {
920 		const struct vlan_hdr *vlan = NULL;
921 		struct vlan_hdr _vlan;
922 		__be16 saved_vlan_tpid = proto;
923 
924 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
925 		    skb && skb_vlan_tag_present(skb)) {
926 			proto = skb->protocol;
927 		} else {
928 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
929 						    data, hlen, &_vlan);
930 			if (!vlan) {
931 				fdret = FLOW_DISSECT_RET_OUT_BAD;
932 				break;
933 			}
934 
935 			proto = vlan->h_vlan_encapsulated_proto;
936 			nhoff += sizeof(*vlan);
937 		}
938 
939 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
940 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
941 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
942 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
943 		} else {
944 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
945 			break;
946 		}
947 
948 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
949 			key_vlan = skb_flow_dissector_target(flow_dissector,
950 							     dissector_vlan,
951 							     target_container);
952 
953 			if (!vlan) {
954 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
955 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
956 			} else {
957 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
958 					VLAN_VID_MASK;
959 				key_vlan->vlan_priority =
960 					(ntohs(vlan->h_vlan_TCI) &
961 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
962 			}
963 			key_vlan->vlan_tpid = saved_vlan_tpid;
964 		}
965 
966 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
967 		break;
968 	}
969 	case htons(ETH_P_PPP_SES): {
970 		struct {
971 			struct pppoe_hdr hdr;
972 			__be16 proto;
973 		} *hdr, _hdr;
974 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
975 		if (!hdr) {
976 			fdret = FLOW_DISSECT_RET_OUT_BAD;
977 			break;
978 		}
979 
980 		proto = hdr->proto;
981 		nhoff += PPPOE_SES_HLEN;
982 		switch (proto) {
983 		case htons(PPP_IP):
984 			proto = htons(ETH_P_IP);
985 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
986 			break;
987 		case htons(PPP_IPV6):
988 			proto = htons(ETH_P_IPV6);
989 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
990 			break;
991 		default:
992 			fdret = FLOW_DISSECT_RET_OUT_BAD;
993 			break;
994 		}
995 		break;
996 	}
997 	case htons(ETH_P_TIPC): {
998 		struct tipc_basic_hdr *hdr, _hdr;
999 
1000 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1001 					   data, hlen, &_hdr);
1002 		if (!hdr) {
1003 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1004 			break;
1005 		}
1006 
1007 		if (dissector_uses_key(flow_dissector,
1008 				       FLOW_DISSECTOR_KEY_TIPC)) {
1009 			key_addrs = skb_flow_dissector_target(flow_dissector,
1010 							      FLOW_DISSECTOR_KEY_TIPC,
1011 							      target_container);
1012 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1013 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1014 		}
1015 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1016 		break;
1017 	}
1018 
1019 	case htons(ETH_P_MPLS_UC):
1020 	case htons(ETH_P_MPLS_MC):
1021 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1022 						target_container, data,
1023 						nhoff, hlen);
1024 		break;
1025 	case htons(ETH_P_FCOE):
1026 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1027 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1028 			break;
1029 		}
1030 
1031 		nhoff += FCOE_HEADER_LEN;
1032 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1033 		break;
1034 
1035 	case htons(ETH_P_ARP):
1036 	case htons(ETH_P_RARP):
1037 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1038 					       target_container, data,
1039 					       nhoff, hlen);
1040 		break;
1041 
1042 	case htons(ETH_P_BATMAN):
1043 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1044 						  &proto, &nhoff, hlen, flags);
1045 		break;
1046 
1047 	default:
1048 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1049 		break;
1050 	}
1051 
1052 	/* Process result of proto processing */
1053 	switch (fdret) {
1054 	case FLOW_DISSECT_RET_OUT_GOOD:
1055 		goto out_good;
1056 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1057 		if (skb_flow_dissect_allowed(&num_hdrs))
1058 			goto proto_again;
1059 		goto out_good;
1060 	case FLOW_DISSECT_RET_CONTINUE:
1061 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1062 		break;
1063 	case FLOW_DISSECT_RET_OUT_BAD:
1064 	default:
1065 		goto out_bad;
1066 	}
1067 
1068 ip_proto_again:
1069 	fdret = FLOW_DISSECT_RET_CONTINUE;
1070 
1071 	switch (ip_proto) {
1072 	case IPPROTO_GRE:
1073 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1074 					       target_container, data,
1075 					       &proto, &nhoff, &hlen, flags);
1076 		break;
1077 
1078 	case NEXTHDR_HOP:
1079 	case NEXTHDR_ROUTING:
1080 	case NEXTHDR_DEST: {
1081 		u8 _opthdr[2], *opthdr;
1082 
1083 		if (proto != htons(ETH_P_IPV6))
1084 			break;
1085 
1086 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1087 					      data, hlen, &_opthdr);
1088 		if (!opthdr) {
1089 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1090 			break;
1091 		}
1092 
1093 		ip_proto = opthdr[0];
1094 		nhoff += (opthdr[1] + 1) << 3;
1095 
1096 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1097 		break;
1098 	}
1099 	case NEXTHDR_FRAGMENT: {
1100 		struct frag_hdr _fh, *fh;
1101 
1102 		if (proto != htons(ETH_P_IPV6))
1103 			break;
1104 
1105 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1106 					  data, hlen, &_fh);
1107 
1108 		if (!fh) {
1109 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1110 			break;
1111 		}
1112 
1113 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1114 
1115 		nhoff += sizeof(_fh);
1116 		ip_proto = fh->nexthdr;
1117 
1118 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1119 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1120 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1121 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1122 				break;
1123 			}
1124 		}
1125 
1126 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1127 		break;
1128 	}
1129 	case IPPROTO_IPIP:
1130 		proto = htons(ETH_P_IP);
1131 
1132 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1133 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1134 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1135 			break;
1136 		}
1137 
1138 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1139 		break;
1140 
1141 	case IPPROTO_IPV6:
1142 		proto = htons(ETH_P_IPV6);
1143 
1144 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1145 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1146 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1147 			break;
1148 		}
1149 
1150 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1151 		break;
1152 
1153 
1154 	case IPPROTO_MPLS:
1155 		proto = htons(ETH_P_MPLS_UC);
1156 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1157 		break;
1158 
1159 	case IPPROTO_TCP:
1160 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1161 				       data, nhoff, hlen);
1162 		break;
1163 
1164 	default:
1165 		break;
1166 	}
1167 
1168 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
1169 	    !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
1170 		key_ports = skb_flow_dissector_target(flow_dissector,
1171 						      FLOW_DISSECTOR_KEY_PORTS,
1172 						      target_container);
1173 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
1174 							data, hlen);
1175 	}
1176 
1177 	if (dissector_uses_key(flow_dissector,
1178 			       FLOW_DISSECTOR_KEY_ICMP)) {
1179 		key_icmp = skb_flow_dissector_target(flow_dissector,
1180 						     FLOW_DISSECTOR_KEY_ICMP,
1181 						     target_container);
1182 		key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
1183 	}
1184 
1185 	/* Process result of IP proto processing */
1186 	switch (fdret) {
1187 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1188 		if (skb_flow_dissect_allowed(&num_hdrs))
1189 			goto proto_again;
1190 		break;
1191 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1192 		if (skb_flow_dissect_allowed(&num_hdrs))
1193 			goto ip_proto_again;
1194 		break;
1195 	case FLOW_DISSECT_RET_OUT_GOOD:
1196 	case FLOW_DISSECT_RET_CONTINUE:
1197 		break;
1198 	case FLOW_DISSECT_RET_OUT_BAD:
1199 	default:
1200 		goto out_bad;
1201 	}
1202 
1203 out_good:
1204 	ret = true;
1205 
1206 out:
1207 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1208 	key_basic->n_proto = proto;
1209 	key_basic->ip_proto = ip_proto;
1210 
1211 	return ret;
1212 
1213 out_bad:
1214 	ret = false;
1215 	goto out;
1216 }
1217 EXPORT_SYMBOL(__skb_flow_dissect);
1218 
1219 static u32 hashrnd __read_mostly;
1220 static __always_inline void __flow_hash_secret_init(void)
1221 {
1222 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1223 }
1224 
1225 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
1226 					     u32 keyval)
1227 {
1228 	return jhash2(words, length, keyval);
1229 }
1230 
1231 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
1232 {
1233 	const void *p = flow;
1234 
1235 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
1236 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
1237 }
1238 
1239 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1240 {
1241 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1242 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1243 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
1244 		     sizeof(*flow) - sizeof(flow->addrs));
1245 
1246 	switch (flow->control.addr_type) {
1247 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1248 		diff -= sizeof(flow->addrs.v4addrs);
1249 		break;
1250 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1251 		diff -= sizeof(flow->addrs.v6addrs);
1252 		break;
1253 	case FLOW_DISSECTOR_KEY_TIPC:
1254 		diff -= sizeof(flow->addrs.tipckey);
1255 		break;
1256 	}
1257 	return (sizeof(*flow) - diff) / sizeof(u32);
1258 }
1259 
1260 __be32 flow_get_u32_src(const struct flow_keys *flow)
1261 {
1262 	switch (flow->control.addr_type) {
1263 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1264 		return flow->addrs.v4addrs.src;
1265 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1266 		return (__force __be32)ipv6_addr_hash(
1267 			&flow->addrs.v6addrs.src);
1268 	case FLOW_DISSECTOR_KEY_TIPC:
1269 		return flow->addrs.tipckey.key;
1270 	default:
1271 		return 0;
1272 	}
1273 }
1274 EXPORT_SYMBOL(flow_get_u32_src);
1275 
1276 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1277 {
1278 	switch (flow->control.addr_type) {
1279 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1280 		return flow->addrs.v4addrs.dst;
1281 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1282 		return (__force __be32)ipv6_addr_hash(
1283 			&flow->addrs.v6addrs.dst);
1284 	default:
1285 		return 0;
1286 	}
1287 }
1288 EXPORT_SYMBOL(flow_get_u32_dst);
1289 
1290 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1291 {
1292 	int addr_diff, i;
1293 
1294 	switch (keys->control.addr_type) {
1295 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1296 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1297 			    (__force u32)keys->addrs.v4addrs.src;
1298 		if ((addr_diff < 0) ||
1299 		    (addr_diff == 0 &&
1300 		     ((__force u16)keys->ports.dst <
1301 		      (__force u16)keys->ports.src))) {
1302 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1303 			swap(keys->ports.src, keys->ports.dst);
1304 		}
1305 		break;
1306 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1307 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1308 				   &keys->addrs.v6addrs.src,
1309 				   sizeof(keys->addrs.v6addrs.dst));
1310 		if ((addr_diff < 0) ||
1311 		    (addr_diff == 0 &&
1312 		     ((__force u16)keys->ports.dst <
1313 		      (__force u16)keys->ports.src))) {
1314 			for (i = 0; i < 4; i++)
1315 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1316 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1317 			swap(keys->ports.src, keys->ports.dst);
1318 		}
1319 		break;
1320 	}
1321 }
1322 
1323 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
1324 {
1325 	u32 hash;
1326 
1327 	__flow_hash_consistentify(keys);
1328 
1329 	hash = __flow_hash_words(flow_keys_hash_start(keys),
1330 				 flow_keys_hash_length(keys), keyval);
1331 	if (!hash)
1332 		hash = 1;
1333 
1334 	return hash;
1335 }
1336 
1337 u32 flow_hash_from_keys(struct flow_keys *keys)
1338 {
1339 	__flow_hash_secret_init();
1340 	return __flow_hash_from_keys(keys, hashrnd);
1341 }
1342 EXPORT_SYMBOL(flow_hash_from_keys);
1343 
1344 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1345 				  struct flow_keys *keys, u32 keyval)
1346 {
1347 	skb_flow_dissect_flow_keys(skb, keys,
1348 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1349 
1350 	return __flow_hash_from_keys(keys, keyval);
1351 }
1352 
1353 struct _flow_keys_digest_data {
1354 	__be16	n_proto;
1355 	u8	ip_proto;
1356 	u8	padding;
1357 	__be32	ports;
1358 	__be32	src;
1359 	__be32	dst;
1360 };
1361 
1362 void make_flow_keys_digest(struct flow_keys_digest *digest,
1363 			   const struct flow_keys *flow)
1364 {
1365 	struct _flow_keys_digest_data *data =
1366 	    (struct _flow_keys_digest_data *)digest;
1367 
1368 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1369 
1370 	memset(digest, 0, sizeof(*digest));
1371 
1372 	data->n_proto = flow->basic.n_proto;
1373 	data->ip_proto = flow->basic.ip_proto;
1374 	data->ports = flow->ports.ports;
1375 	data->src = flow->addrs.v4addrs.src;
1376 	data->dst = flow->addrs.v4addrs.dst;
1377 }
1378 EXPORT_SYMBOL(make_flow_keys_digest);
1379 
1380 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1381 
1382 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1383 {
1384 	struct flow_keys keys;
1385 
1386 	__flow_hash_secret_init();
1387 
1388 	memset(&keys, 0, sizeof(keys));
1389 	__skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
1390 			   NULL, 0, 0, 0,
1391 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1392 
1393 	return __flow_hash_from_keys(&keys, hashrnd);
1394 }
1395 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1396 
1397 /**
1398  * __skb_get_hash: calculate a flow hash
1399  * @skb: sk_buff to calculate flow hash from
1400  *
1401  * This function calculates a flow hash based on src/dst addresses
1402  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1403  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1404  * if hash is a canonical 4-tuple hash over transport ports.
1405  */
1406 void __skb_get_hash(struct sk_buff *skb)
1407 {
1408 	struct flow_keys keys;
1409 	u32 hash;
1410 
1411 	__flow_hash_secret_init();
1412 
1413 	hash = ___skb_get_hash(skb, &keys, hashrnd);
1414 
1415 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1416 }
1417 EXPORT_SYMBOL(__skb_get_hash);
1418 
1419 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
1420 {
1421 	struct flow_keys keys;
1422 
1423 	return ___skb_get_hash(skb, &keys, perturb);
1424 }
1425 EXPORT_SYMBOL(skb_get_hash_perturb);
1426 
1427 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1428 		   const struct flow_keys_basic *keys, int hlen)
1429 {
1430 	u32 poff = keys->control.thoff;
1431 
1432 	/* skip L4 headers for fragments after the first */
1433 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1434 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1435 		return poff;
1436 
1437 	switch (keys->basic.ip_proto) {
1438 	case IPPROTO_TCP: {
1439 		/* access doff as u8 to avoid unaligned access */
1440 		const u8 *doff;
1441 		u8 _doff;
1442 
1443 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1444 					    data, hlen, &_doff);
1445 		if (!doff)
1446 			return poff;
1447 
1448 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1449 		break;
1450 	}
1451 	case IPPROTO_UDP:
1452 	case IPPROTO_UDPLITE:
1453 		poff += sizeof(struct udphdr);
1454 		break;
1455 	/* For the rest, we do not really care about header
1456 	 * extensions at this point for now.
1457 	 */
1458 	case IPPROTO_ICMP:
1459 		poff += sizeof(struct icmphdr);
1460 		break;
1461 	case IPPROTO_ICMPV6:
1462 		poff += sizeof(struct icmp6hdr);
1463 		break;
1464 	case IPPROTO_IGMP:
1465 		poff += sizeof(struct igmphdr);
1466 		break;
1467 	case IPPROTO_DCCP:
1468 		poff += sizeof(struct dccp_hdr);
1469 		break;
1470 	case IPPROTO_SCTP:
1471 		poff += sizeof(struct sctphdr);
1472 		break;
1473 	}
1474 
1475 	return poff;
1476 }
1477 
1478 /**
1479  * skb_get_poff - get the offset to the payload
1480  * @skb: sk_buff to get the payload offset from
1481  *
1482  * The function will get the offset to the payload as far as it could
1483  * be dissected.  The main user is currently BPF, so that we can dynamically
1484  * truncate packets without needing to push actual payload to the user
1485  * space and can analyze headers only, instead.
1486  */
1487 u32 skb_get_poff(const struct sk_buff *skb)
1488 {
1489 	struct flow_keys_basic keys;
1490 
1491 	if (!skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
1492 		return 0;
1493 
1494 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1495 }
1496 
1497 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1498 {
1499 	memset(keys, 0, sizeof(*keys));
1500 
1501 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1502 	    sizeof(keys->addrs.v6addrs.src));
1503 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1504 	    sizeof(keys->addrs.v6addrs.dst));
1505 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1506 	keys->ports.src = fl6->fl6_sport;
1507 	keys->ports.dst = fl6->fl6_dport;
1508 	keys->keyid.keyid = fl6->fl6_gre_key;
1509 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1510 	keys->basic.ip_proto = fl6->flowi6_proto;
1511 
1512 	return flow_hash_from_keys(keys);
1513 }
1514 EXPORT_SYMBOL(__get_hash_from_flowi6);
1515 
1516 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1517 	{
1518 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1519 		.offset = offsetof(struct flow_keys, control),
1520 	},
1521 	{
1522 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1523 		.offset = offsetof(struct flow_keys, basic),
1524 	},
1525 	{
1526 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1527 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1528 	},
1529 	{
1530 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1531 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1532 	},
1533 	{
1534 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1535 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1536 	},
1537 	{
1538 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1539 		.offset = offsetof(struct flow_keys, ports),
1540 	},
1541 	{
1542 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1543 		.offset = offsetof(struct flow_keys, vlan),
1544 	},
1545 	{
1546 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1547 		.offset = offsetof(struct flow_keys, tags),
1548 	},
1549 	{
1550 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1551 		.offset = offsetof(struct flow_keys, keyid),
1552 	},
1553 };
1554 
1555 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1556 	{
1557 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1558 		.offset = offsetof(struct flow_keys, control),
1559 	},
1560 	{
1561 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1562 		.offset = offsetof(struct flow_keys, basic),
1563 	},
1564 	{
1565 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1566 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1567 	},
1568 	{
1569 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1570 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1571 	},
1572 	{
1573 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1574 		.offset = offsetof(struct flow_keys, ports),
1575 	},
1576 };
1577 
1578 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1579 	{
1580 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1581 		.offset = offsetof(struct flow_keys, control),
1582 	},
1583 	{
1584 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1585 		.offset = offsetof(struct flow_keys, basic),
1586 	},
1587 };
1588 
1589 struct flow_dissector flow_keys_dissector __read_mostly;
1590 EXPORT_SYMBOL(flow_keys_dissector);
1591 
1592 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1593 EXPORT_SYMBOL(flow_keys_basic_dissector);
1594 
1595 static int __init init_default_flow_dissectors(void)
1596 {
1597 	skb_flow_dissector_init(&flow_keys_dissector,
1598 				flow_keys_dissector_keys,
1599 				ARRAY_SIZE(flow_keys_dissector_keys));
1600 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1601 				flow_keys_dissector_symmetric_keys,
1602 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1603 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1604 				flow_keys_basic_dissector_keys,
1605 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1606 	return 0;
1607 }
1608 
1609 core_initcall(init_default_flow_dissectors);
1610