xref: /linux/net/core/flow_dissector.c (revision c894ec016c9d0418dd832202225a8c64f450d71e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <linux/filter.h>
9 #include <net/dsa.h>
10 #include <net/dst_metadata.h>
11 #include <net/ip.h>
12 #include <net/ipv6.h>
13 #include <net/gre.h>
14 #include <net/pptp.h>
15 #include <net/tipc.h>
16 #include <linux/igmp.h>
17 #include <linux/icmp.h>
18 #include <linux/sctp.h>
19 #include <linux/dccp.h>
20 #include <linux/if_tunnel.h>
21 #include <linux/if_pppox.h>
22 #include <linux/ppp_defs.h>
23 #include <linux/stddef.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_hsr.h>
26 #include <linux/mpls.h>
27 #include <linux/tcp.h>
28 #include <linux/ptp_classify.h>
29 #include <net/flow_dissector.h>
30 #include <scsi/fc/fc_fcoe.h>
31 #include <uapi/linux/batadv_packet.h>
32 #include <linux/bpf.h>
33 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
34 #include <net/netfilter/nf_conntrack_core.h>
35 #include <net/netfilter/nf_conntrack_labels.h>
36 #endif
37 #include <linux/bpf-netns.h>
38 
39 static void dissector_set_key(struct flow_dissector *flow_dissector,
40 			      enum flow_dissector_key_id key_id)
41 {
42 	flow_dissector->used_keys |= (1 << key_id);
43 }
44 
45 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
46 			     const struct flow_dissector_key *key,
47 			     unsigned int key_count)
48 {
49 	unsigned int i;
50 
51 	memset(flow_dissector, 0, sizeof(*flow_dissector));
52 
53 	for (i = 0; i < key_count; i++, key++) {
54 		/* User should make sure that every key target offset is within
55 		 * boundaries of unsigned short.
56 		 */
57 		BUG_ON(key->offset > USHRT_MAX);
58 		BUG_ON(dissector_uses_key(flow_dissector,
59 					  key->key_id));
60 
61 		dissector_set_key(flow_dissector, key->key_id);
62 		flow_dissector->offset[key->key_id] = key->offset;
63 	}
64 
65 	/* Ensure that the dissector always includes control and basic key.
66 	 * That way we are able to avoid handling lack of these in fast path.
67 	 */
68 	BUG_ON(!dissector_uses_key(flow_dissector,
69 				   FLOW_DISSECTOR_KEY_CONTROL));
70 	BUG_ON(!dissector_uses_key(flow_dissector,
71 				   FLOW_DISSECTOR_KEY_BASIC));
72 }
73 EXPORT_SYMBOL(skb_flow_dissector_init);
74 
75 #ifdef CONFIG_BPF_SYSCALL
76 int flow_dissector_bpf_prog_attach_check(struct net *net,
77 					 struct bpf_prog *prog)
78 {
79 	enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
80 
81 	if (net == &init_net) {
82 		/* BPF flow dissector in the root namespace overrides
83 		 * any per-net-namespace one. When attaching to root,
84 		 * make sure we don't have any BPF program attached
85 		 * to the non-root namespaces.
86 		 */
87 		struct net *ns;
88 
89 		for_each_net(ns) {
90 			if (ns == &init_net)
91 				continue;
92 			if (rcu_access_pointer(ns->bpf.run_array[type]))
93 				return -EEXIST;
94 		}
95 	} else {
96 		/* Make sure root flow dissector is not attached
97 		 * when attaching to the non-root namespace.
98 		 */
99 		if (rcu_access_pointer(init_net.bpf.run_array[type]))
100 			return -EEXIST;
101 	}
102 
103 	return 0;
104 }
105 #endif /* CONFIG_BPF_SYSCALL */
106 
107 /**
108  * __skb_flow_get_ports - extract the upper layer ports and return them
109  * @skb: sk_buff to extract the ports from
110  * @thoff: transport header offset
111  * @ip_proto: protocol for which to get port offset
112  * @data: raw buffer pointer to the packet, if NULL use skb->data
113  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
114  *
115  * The function will try to retrieve the ports at offset thoff + poff where poff
116  * is the protocol port offset returned from proto_ports_offset
117  */
118 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
119 			    const void *data, int hlen)
120 {
121 	int poff = proto_ports_offset(ip_proto);
122 
123 	if (!data) {
124 		data = skb->data;
125 		hlen = skb_headlen(skb);
126 	}
127 
128 	if (poff >= 0) {
129 		__be32 *ports, _ports;
130 
131 		ports = __skb_header_pointer(skb, thoff + poff,
132 					     sizeof(_ports), data, hlen, &_ports);
133 		if (ports)
134 			return *ports;
135 	}
136 
137 	return 0;
138 }
139 EXPORT_SYMBOL(__skb_flow_get_ports);
140 
141 static bool icmp_has_id(u8 type)
142 {
143 	switch (type) {
144 	case ICMP_ECHO:
145 	case ICMP_ECHOREPLY:
146 	case ICMP_TIMESTAMP:
147 	case ICMP_TIMESTAMPREPLY:
148 	case ICMPV6_ECHO_REQUEST:
149 	case ICMPV6_ECHO_REPLY:
150 		return true;
151 	}
152 
153 	return false;
154 }
155 
156 /**
157  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
158  * @skb: sk_buff to extract from
159  * @key_icmp: struct flow_dissector_key_icmp to fill
160  * @data: raw buffer pointer to the packet
161  * @thoff: offset to extract at
162  * @hlen: packet header length
163  */
164 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
165 			   struct flow_dissector_key_icmp *key_icmp,
166 			   const void *data, int thoff, int hlen)
167 {
168 	struct icmphdr *ih, _ih;
169 
170 	ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
171 	if (!ih)
172 		return;
173 
174 	key_icmp->type = ih->type;
175 	key_icmp->code = ih->code;
176 
177 	/* As we use 0 to signal that the Id field is not present,
178 	 * avoid confusion with packets without such field
179 	 */
180 	if (icmp_has_id(ih->type))
181 		key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1;
182 	else
183 		key_icmp->id = 0;
184 }
185 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
186 
187 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
188  * using skb_flow_get_icmp_tci().
189  */
190 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
191 				    struct flow_dissector *flow_dissector,
192 				    void *target_container, const void *data,
193 				    int thoff, int hlen)
194 {
195 	struct flow_dissector_key_icmp *key_icmp;
196 
197 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
198 		return;
199 
200 	key_icmp = skb_flow_dissector_target(flow_dissector,
201 					     FLOW_DISSECTOR_KEY_ICMP,
202 					     target_container);
203 
204 	skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
205 }
206 
207 static void __skb_flow_dissect_l2tpv3(const struct sk_buff *skb,
208 				      struct flow_dissector *flow_dissector,
209 				      void *target_container, const void *data,
210 				      int nhoff, int hlen)
211 {
212 	struct flow_dissector_key_l2tpv3 *key_l2tpv3;
213 	struct {
214 		__be32 session_id;
215 	} *hdr, _hdr;
216 
217 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_L2TPV3))
218 		return;
219 
220 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
221 	if (!hdr)
222 		return;
223 
224 	key_l2tpv3 = skb_flow_dissector_target(flow_dissector,
225 					       FLOW_DISSECTOR_KEY_L2TPV3,
226 					       target_container);
227 
228 	key_l2tpv3->session_id = hdr->session_id;
229 }
230 
231 void skb_flow_dissect_meta(const struct sk_buff *skb,
232 			   struct flow_dissector *flow_dissector,
233 			   void *target_container)
234 {
235 	struct flow_dissector_key_meta *meta;
236 
237 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
238 		return;
239 
240 	meta = skb_flow_dissector_target(flow_dissector,
241 					 FLOW_DISSECTOR_KEY_META,
242 					 target_container);
243 	meta->ingress_ifindex = skb->skb_iif;
244 }
245 EXPORT_SYMBOL(skb_flow_dissect_meta);
246 
247 static void
248 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
249 				   struct flow_dissector *flow_dissector,
250 				   void *target_container)
251 {
252 	struct flow_dissector_key_control *ctrl;
253 
254 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
255 		return;
256 
257 	ctrl = skb_flow_dissector_target(flow_dissector,
258 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
259 					 target_container);
260 	ctrl->addr_type = type;
261 }
262 
263 void
264 skb_flow_dissect_ct(const struct sk_buff *skb,
265 		    struct flow_dissector *flow_dissector,
266 		    void *target_container, u16 *ctinfo_map,
267 		    size_t mapsize, bool post_ct, u16 zone)
268 {
269 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
270 	struct flow_dissector_key_ct *key;
271 	enum ip_conntrack_info ctinfo;
272 	struct nf_conn_labels *cl;
273 	struct nf_conn *ct;
274 
275 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
276 		return;
277 
278 	ct = nf_ct_get(skb, &ctinfo);
279 	if (!ct && !post_ct)
280 		return;
281 
282 	key = skb_flow_dissector_target(flow_dissector,
283 					FLOW_DISSECTOR_KEY_CT,
284 					target_container);
285 
286 	if (!ct) {
287 		key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
288 				TCA_FLOWER_KEY_CT_FLAGS_INVALID;
289 		key->ct_zone = zone;
290 		return;
291 	}
292 
293 	if (ctinfo < mapsize)
294 		key->ct_state = ctinfo_map[ctinfo];
295 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
296 	key->ct_zone = ct->zone.id;
297 #endif
298 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
299 	key->ct_mark = READ_ONCE(ct->mark);
300 #endif
301 
302 	cl = nf_ct_labels_find(ct);
303 	if (cl)
304 		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
305 #endif /* CONFIG_NF_CONNTRACK */
306 }
307 EXPORT_SYMBOL(skb_flow_dissect_ct);
308 
309 void
310 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
311 			     struct flow_dissector *flow_dissector,
312 			     void *target_container)
313 {
314 	struct ip_tunnel_info *info;
315 	struct ip_tunnel_key *key;
316 
317 	/* A quick check to see if there might be something to do. */
318 	if (!dissector_uses_key(flow_dissector,
319 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
320 	    !dissector_uses_key(flow_dissector,
321 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
322 	    !dissector_uses_key(flow_dissector,
323 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
324 	    !dissector_uses_key(flow_dissector,
325 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
326 	    !dissector_uses_key(flow_dissector,
327 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
328 	    !dissector_uses_key(flow_dissector,
329 				FLOW_DISSECTOR_KEY_ENC_IP) &&
330 	    !dissector_uses_key(flow_dissector,
331 				FLOW_DISSECTOR_KEY_ENC_OPTS))
332 		return;
333 
334 	info = skb_tunnel_info(skb);
335 	if (!info)
336 		return;
337 
338 	key = &info->key;
339 
340 	switch (ip_tunnel_info_af(info)) {
341 	case AF_INET:
342 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
343 						   flow_dissector,
344 						   target_container);
345 		if (dissector_uses_key(flow_dissector,
346 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
347 			struct flow_dissector_key_ipv4_addrs *ipv4;
348 
349 			ipv4 = skb_flow_dissector_target(flow_dissector,
350 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
351 							 target_container);
352 			ipv4->src = key->u.ipv4.src;
353 			ipv4->dst = key->u.ipv4.dst;
354 		}
355 		break;
356 	case AF_INET6:
357 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
358 						   flow_dissector,
359 						   target_container);
360 		if (dissector_uses_key(flow_dissector,
361 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
362 			struct flow_dissector_key_ipv6_addrs *ipv6;
363 
364 			ipv6 = skb_flow_dissector_target(flow_dissector,
365 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
366 							 target_container);
367 			ipv6->src = key->u.ipv6.src;
368 			ipv6->dst = key->u.ipv6.dst;
369 		}
370 		break;
371 	}
372 
373 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
374 		struct flow_dissector_key_keyid *keyid;
375 
376 		keyid = skb_flow_dissector_target(flow_dissector,
377 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
378 						  target_container);
379 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
380 	}
381 
382 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
383 		struct flow_dissector_key_ports *tp;
384 
385 		tp = skb_flow_dissector_target(flow_dissector,
386 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
387 					       target_container);
388 		tp->src = key->tp_src;
389 		tp->dst = key->tp_dst;
390 	}
391 
392 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
393 		struct flow_dissector_key_ip *ip;
394 
395 		ip = skb_flow_dissector_target(flow_dissector,
396 					       FLOW_DISSECTOR_KEY_ENC_IP,
397 					       target_container);
398 		ip->tos = key->tos;
399 		ip->ttl = key->ttl;
400 	}
401 
402 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
403 		struct flow_dissector_key_enc_opts *enc_opt;
404 
405 		enc_opt = skb_flow_dissector_target(flow_dissector,
406 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
407 						    target_container);
408 
409 		if (info->options_len) {
410 			enc_opt->len = info->options_len;
411 			ip_tunnel_info_opts_get(enc_opt->data, info);
412 			enc_opt->dst_opt_type = info->key.tun_flags &
413 						TUNNEL_OPTIONS_PRESENT;
414 		}
415 	}
416 }
417 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
418 
419 void skb_flow_dissect_hash(const struct sk_buff *skb,
420 			   struct flow_dissector *flow_dissector,
421 			   void *target_container)
422 {
423 	struct flow_dissector_key_hash *key;
424 
425 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
426 		return;
427 
428 	key = skb_flow_dissector_target(flow_dissector,
429 					FLOW_DISSECTOR_KEY_HASH,
430 					target_container);
431 
432 	key->hash = skb_get_hash_raw(skb);
433 }
434 EXPORT_SYMBOL(skb_flow_dissect_hash);
435 
436 static enum flow_dissect_ret
437 __skb_flow_dissect_mpls(const struct sk_buff *skb,
438 			struct flow_dissector *flow_dissector,
439 			void *target_container, const void *data, int nhoff,
440 			int hlen, int lse_index, bool *entropy_label)
441 {
442 	struct mpls_label *hdr, _hdr;
443 	u32 entry, label, bos;
444 
445 	if (!dissector_uses_key(flow_dissector,
446 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
447 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
448 		return FLOW_DISSECT_RET_OUT_GOOD;
449 
450 	if (lse_index >= FLOW_DIS_MPLS_MAX)
451 		return FLOW_DISSECT_RET_OUT_GOOD;
452 
453 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
454 				   hlen, &_hdr);
455 	if (!hdr)
456 		return FLOW_DISSECT_RET_OUT_BAD;
457 
458 	entry = ntohl(hdr->entry);
459 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
460 	bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
461 
462 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
463 		struct flow_dissector_key_mpls *key_mpls;
464 		struct flow_dissector_mpls_lse *lse;
465 
466 		key_mpls = skb_flow_dissector_target(flow_dissector,
467 						     FLOW_DISSECTOR_KEY_MPLS,
468 						     target_container);
469 		lse = &key_mpls->ls[lse_index];
470 
471 		lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
472 		lse->mpls_bos = bos;
473 		lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
474 		lse->mpls_label = label;
475 		dissector_set_mpls_lse(key_mpls, lse_index);
476 	}
477 
478 	if (*entropy_label &&
479 	    dissector_uses_key(flow_dissector,
480 			       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
481 		struct flow_dissector_key_keyid *key_keyid;
482 
483 		key_keyid = skb_flow_dissector_target(flow_dissector,
484 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
485 						      target_container);
486 		key_keyid->keyid = cpu_to_be32(label);
487 	}
488 
489 	*entropy_label = label == MPLS_LABEL_ENTROPY;
490 
491 	return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
492 }
493 
494 static enum flow_dissect_ret
495 __skb_flow_dissect_arp(const struct sk_buff *skb,
496 		       struct flow_dissector *flow_dissector,
497 		       void *target_container, const void *data,
498 		       int nhoff, int hlen)
499 {
500 	struct flow_dissector_key_arp *key_arp;
501 	struct {
502 		unsigned char ar_sha[ETH_ALEN];
503 		unsigned char ar_sip[4];
504 		unsigned char ar_tha[ETH_ALEN];
505 		unsigned char ar_tip[4];
506 	} *arp_eth, _arp_eth;
507 	const struct arphdr *arp;
508 	struct arphdr _arp;
509 
510 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
511 		return FLOW_DISSECT_RET_OUT_GOOD;
512 
513 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
514 				   hlen, &_arp);
515 	if (!arp)
516 		return FLOW_DISSECT_RET_OUT_BAD;
517 
518 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
519 	    arp->ar_pro != htons(ETH_P_IP) ||
520 	    arp->ar_hln != ETH_ALEN ||
521 	    arp->ar_pln != 4 ||
522 	    (arp->ar_op != htons(ARPOP_REPLY) &&
523 	     arp->ar_op != htons(ARPOP_REQUEST)))
524 		return FLOW_DISSECT_RET_OUT_BAD;
525 
526 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
527 				       sizeof(_arp_eth), data,
528 				       hlen, &_arp_eth);
529 	if (!arp_eth)
530 		return FLOW_DISSECT_RET_OUT_BAD;
531 
532 	key_arp = skb_flow_dissector_target(flow_dissector,
533 					    FLOW_DISSECTOR_KEY_ARP,
534 					    target_container);
535 
536 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
537 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
538 
539 	/* Only store the lower byte of the opcode;
540 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
541 	 */
542 	key_arp->op = ntohs(arp->ar_op) & 0xff;
543 
544 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
545 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
546 
547 	return FLOW_DISSECT_RET_OUT_GOOD;
548 }
549 
550 static enum flow_dissect_ret
551 __skb_flow_dissect_gre(const struct sk_buff *skb,
552 		       struct flow_dissector_key_control *key_control,
553 		       struct flow_dissector *flow_dissector,
554 		       void *target_container, const void *data,
555 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
556 		       unsigned int flags)
557 {
558 	struct flow_dissector_key_keyid *key_keyid;
559 	struct gre_base_hdr *hdr, _hdr;
560 	int offset = 0;
561 	u16 gre_ver;
562 
563 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
564 				   data, *p_hlen, &_hdr);
565 	if (!hdr)
566 		return FLOW_DISSECT_RET_OUT_BAD;
567 
568 	/* Only look inside GRE without routing */
569 	if (hdr->flags & GRE_ROUTING)
570 		return FLOW_DISSECT_RET_OUT_GOOD;
571 
572 	/* Only look inside GRE for version 0 and 1 */
573 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
574 	if (gre_ver > 1)
575 		return FLOW_DISSECT_RET_OUT_GOOD;
576 
577 	*p_proto = hdr->protocol;
578 	if (gre_ver) {
579 		/* Version1 must be PPTP, and check the flags */
580 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
581 			return FLOW_DISSECT_RET_OUT_GOOD;
582 	}
583 
584 	offset += sizeof(struct gre_base_hdr);
585 
586 	if (hdr->flags & GRE_CSUM)
587 		offset += sizeof_field(struct gre_full_hdr, csum) +
588 			  sizeof_field(struct gre_full_hdr, reserved1);
589 
590 	if (hdr->flags & GRE_KEY) {
591 		const __be32 *keyid;
592 		__be32 _keyid;
593 
594 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
595 					     sizeof(_keyid),
596 					     data, *p_hlen, &_keyid);
597 		if (!keyid)
598 			return FLOW_DISSECT_RET_OUT_BAD;
599 
600 		if (dissector_uses_key(flow_dissector,
601 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
602 			key_keyid = skb_flow_dissector_target(flow_dissector,
603 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
604 							      target_container);
605 			if (gre_ver == 0)
606 				key_keyid->keyid = *keyid;
607 			else
608 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
609 		}
610 		offset += sizeof_field(struct gre_full_hdr, key);
611 	}
612 
613 	if (hdr->flags & GRE_SEQ)
614 		offset += sizeof_field(struct pptp_gre_header, seq);
615 
616 	if (gre_ver == 0) {
617 		if (*p_proto == htons(ETH_P_TEB)) {
618 			const struct ethhdr *eth;
619 			struct ethhdr _eth;
620 
621 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
622 						   sizeof(_eth),
623 						   data, *p_hlen, &_eth);
624 			if (!eth)
625 				return FLOW_DISSECT_RET_OUT_BAD;
626 			*p_proto = eth->h_proto;
627 			offset += sizeof(*eth);
628 
629 			/* Cap headers that we access via pointers at the
630 			 * end of the Ethernet header as our maximum alignment
631 			 * at that point is only 2 bytes.
632 			 */
633 			if (NET_IP_ALIGN)
634 				*p_hlen = *p_nhoff + offset;
635 		}
636 	} else { /* version 1, must be PPTP */
637 		u8 _ppp_hdr[PPP_HDRLEN];
638 		u8 *ppp_hdr;
639 
640 		if (hdr->flags & GRE_ACK)
641 			offset += sizeof_field(struct pptp_gre_header, ack);
642 
643 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
644 					       sizeof(_ppp_hdr),
645 					       data, *p_hlen, _ppp_hdr);
646 		if (!ppp_hdr)
647 			return FLOW_DISSECT_RET_OUT_BAD;
648 
649 		switch (PPP_PROTOCOL(ppp_hdr)) {
650 		case PPP_IP:
651 			*p_proto = htons(ETH_P_IP);
652 			break;
653 		case PPP_IPV6:
654 			*p_proto = htons(ETH_P_IPV6);
655 			break;
656 		default:
657 			/* Could probably catch some more like MPLS */
658 			break;
659 		}
660 
661 		offset += PPP_HDRLEN;
662 	}
663 
664 	*p_nhoff += offset;
665 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
666 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
667 		return FLOW_DISSECT_RET_OUT_GOOD;
668 
669 	return FLOW_DISSECT_RET_PROTO_AGAIN;
670 }
671 
672 /**
673  * __skb_flow_dissect_batadv() - dissect batman-adv header
674  * @skb: sk_buff to with the batman-adv header
675  * @key_control: flow dissectors control key
676  * @data: raw buffer pointer to the packet, if NULL use skb->data
677  * @p_proto: pointer used to update the protocol to process next
678  * @p_nhoff: pointer used to update inner network header offset
679  * @hlen: packet header length
680  * @flags: any combination of FLOW_DISSECTOR_F_*
681  *
682  * ETH_P_BATMAN packets are tried to be dissected. Only
683  * &struct batadv_unicast packets are actually processed because they contain an
684  * inner ethernet header and are usually followed by actual network header. This
685  * allows the flow dissector to continue processing the packet.
686  *
687  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
688  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
689  *  otherwise FLOW_DISSECT_RET_OUT_BAD
690  */
691 static enum flow_dissect_ret
692 __skb_flow_dissect_batadv(const struct sk_buff *skb,
693 			  struct flow_dissector_key_control *key_control,
694 			  const void *data, __be16 *p_proto, int *p_nhoff,
695 			  int hlen, unsigned int flags)
696 {
697 	struct {
698 		struct batadv_unicast_packet batadv_unicast;
699 		struct ethhdr eth;
700 	} *hdr, _hdr;
701 
702 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
703 				   &_hdr);
704 	if (!hdr)
705 		return FLOW_DISSECT_RET_OUT_BAD;
706 
707 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
708 		return FLOW_DISSECT_RET_OUT_BAD;
709 
710 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
711 		return FLOW_DISSECT_RET_OUT_BAD;
712 
713 	*p_proto = hdr->eth.h_proto;
714 	*p_nhoff += sizeof(*hdr);
715 
716 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
717 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
718 		return FLOW_DISSECT_RET_OUT_GOOD;
719 
720 	return FLOW_DISSECT_RET_PROTO_AGAIN;
721 }
722 
723 static void
724 __skb_flow_dissect_tcp(const struct sk_buff *skb,
725 		       struct flow_dissector *flow_dissector,
726 		       void *target_container, const void *data,
727 		       int thoff, int hlen)
728 {
729 	struct flow_dissector_key_tcp *key_tcp;
730 	struct tcphdr *th, _th;
731 
732 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
733 		return;
734 
735 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
736 	if (!th)
737 		return;
738 
739 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
740 		return;
741 
742 	key_tcp = skb_flow_dissector_target(flow_dissector,
743 					    FLOW_DISSECTOR_KEY_TCP,
744 					    target_container);
745 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
746 }
747 
748 static void
749 __skb_flow_dissect_ports(const struct sk_buff *skb,
750 			 struct flow_dissector *flow_dissector,
751 			 void *target_container, const void *data,
752 			 int nhoff, u8 ip_proto, int hlen)
753 {
754 	enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
755 	struct flow_dissector_key_ports *key_ports;
756 
757 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
758 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
759 	else if (dissector_uses_key(flow_dissector,
760 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
761 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
762 
763 	if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
764 		return;
765 
766 	key_ports = skb_flow_dissector_target(flow_dissector,
767 					      dissector_ports,
768 					      target_container);
769 	key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
770 						data, hlen);
771 }
772 
773 static void
774 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
775 			struct flow_dissector *flow_dissector,
776 			void *target_container, const void *data,
777 			const struct iphdr *iph)
778 {
779 	struct flow_dissector_key_ip *key_ip;
780 
781 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
782 		return;
783 
784 	key_ip = skb_flow_dissector_target(flow_dissector,
785 					   FLOW_DISSECTOR_KEY_IP,
786 					   target_container);
787 	key_ip->tos = iph->tos;
788 	key_ip->ttl = iph->ttl;
789 }
790 
791 static void
792 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
793 			struct flow_dissector *flow_dissector,
794 			void *target_container, const void *data,
795 			const struct ipv6hdr *iph)
796 {
797 	struct flow_dissector_key_ip *key_ip;
798 
799 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
800 		return;
801 
802 	key_ip = skb_flow_dissector_target(flow_dissector,
803 					   FLOW_DISSECTOR_KEY_IP,
804 					   target_container);
805 	key_ip->tos = ipv6_get_dsfield(iph);
806 	key_ip->ttl = iph->hop_limit;
807 }
808 
809 /* Maximum number of protocol headers that can be parsed in
810  * __skb_flow_dissect
811  */
812 #define MAX_FLOW_DISSECT_HDRS	15
813 
814 static bool skb_flow_dissect_allowed(int *num_hdrs)
815 {
816 	++*num_hdrs;
817 
818 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
819 }
820 
821 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
822 				     struct flow_dissector *flow_dissector,
823 				     void *target_container)
824 {
825 	struct flow_dissector_key_ports *key_ports = NULL;
826 	struct flow_dissector_key_control *key_control;
827 	struct flow_dissector_key_basic *key_basic;
828 	struct flow_dissector_key_addrs *key_addrs;
829 	struct flow_dissector_key_tags *key_tags;
830 
831 	key_control = skb_flow_dissector_target(flow_dissector,
832 						FLOW_DISSECTOR_KEY_CONTROL,
833 						target_container);
834 	key_control->thoff = flow_keys->thoff;
835 	if (flow_keys->is_frag)
836 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
837 	if (flow_keys->is_first_frag)
838 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
839 	if (flow_keys->is_encap)
840 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
841 
842 	key_basic = skb_flow_dissector_target(flow_dissector,
843 					      FLOW_DISSECTOR_KEY_BASIC,
844 					      target_container);
845 	key_basic->n_proto = flow_keys->n_proto;
846 	key_basic->ip_proto = flow_keys->ip_proto;
847 
848 	if (flow_keys->addr_proto == ETH_P_IP &&
849 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
850 		key_addrs = skb_flow_dissector_target(flow_dissector,
851 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
852 						      target_container);
853 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
854 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
855 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
856 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
857 		   dissector_uses_key(flow_dissector,
858 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
859 		key_addrs = skb_flow_dissector_target(flow_dissector,
860 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
861 						      target_container);
862 		memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src,
863 		       sizeof(key_addrs->v6addrs.src));
864 		memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst,
865 		       sizeof(key_addrs->v6addrs.dst));
866 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
867 	}
868 
869 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
870 		key_ports = skb_flow_dissector_target(flow_dissector,
871 						      FLOW_DISSECTOR_KEY_PORTS,
872 						      target_container);
873 	else if (dissector_uses_key(flow_dissector,
874 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
875 		key_ports = skb_flow_dissector_target(flow_dissector,
876 						      FLOW_DISSECTOR_KEY_PORTS_RANGE,
877 						      target_container);
878 
879 	if (key_ports) {
880 		key_ports->src = flow_keys->sport;
881 		key_ports->dst = flow_keys->dport;
882 	}
883 
884 	if (dissector_uses_key(flow_dissector,
885 			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
886 		key_tags = skb_flow_dissector_target(flow_dissector,
887 						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
888 						     target_container);
889 		key_tags->flow_label = ntohl(flow_keys->flow_label);
890 	}
891 }
892 
893 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
894 		     __be16 proto, int nhoff, int hlen, unsigned int flags)
895 {
896 	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
897 	u32 result;
898 
899 	/* Pass parameters to the BPF program */
900 	memset(flow_keys, 0, sizeof(*flow_keys));
901 	flow_keys->n_proto = proto;
902 	flow_keys->nhoff = nhoff;
903 	flow_keys->thoff = flow_keys->nhoff;
904 
905 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
906 		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
907 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
908 		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
909 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
910 		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
911 	flow_keys->flags = flags;
912 
913 	result = bpf_prog_run_pin_on_cpu(prog, ctx);
914 
915 	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
916 	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
917 				   flow_keys->nhoff, hlen);
918 
919 	return result;
920 }
921 
922 static bool is_pppoe_ses_hdr_valid(const struct pppoe_hdr *hdr)
923 {
924 	return hdr->ver == 1 && hdr->type == 1 && hdr->code == 0;
925 }
926 
927 /**
928  * __skb_flow_dissect - extract the flow_keys struct and return it
929  * @net: associated network namespace, derived from @skb if NULL
930  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
931  * @flow_dissector: list of keys to dissect
932  * @target_container: target structure to put dissected values into
933  * @data: raw buffer pointer to the packet, if NULL use skb->data
934  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
935  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
936  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
937  * @flags: flags that control the dissection process, e.g.
938  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
939  *
940  * The function will try to retrieve individual keys into target specified
941  * by flow_dissector from either the skbuff or a raw buffer specified by the
942  * rest parameters.
943  *
944  * Caller must take care of zeroing target container memory.
945  */
946 bool __skb_flow_dissect(const struct net *net,
947 			const struct sk_buff *skb,
948 			struct flow_dissector *flow_dissector,
949 			void *target_container, const void *data,
950 			__be16 proto, int nhoff, int hlen, unsigned int flags)
951 {
952 	struct flow_dissector_key_control *key_control;
953 	struct flow_dissector_key_basic *key_basic;
954 	struct flow_dissector_key_addrs *key_addrs;
955 	struct flow_dissector_key_tags *key_tags;
956 	struct flow_dissector_key_vlan *key_vlan;
957 	enum flow_dissect_ret fdret;
958 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
959 	bool mpls_el = false;
960 	int mpls_lse = 0;
961 	int num_hdrs = 0;
962 	u8 ip_proto = 0;
963 	bool ret;
964 
965 	if (!data) {
966 		data = skb->data;
967 		proto = skb_vlan_tag_present(skb) ?
968 			 skb->vlan_proto : skb->protocol;
969 		nhoff = skb_network_offset(skb);
970 		hlen = skb_headlen(skb);
971 #if IS_ENABLED(CONFIG_NET_DSA)
972 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
973 			     proto == htons(ETH_P_XDSA))) {
974 			struct metadata_dst *md_dst = skb_metadata_dst(skb);
975 			const struct dsa_device_ops *ops;
976 			int offset = 0;
977 
978 			ops = skb->dev->dsa_ptr->tag_ops;
979 			/* Only DSA header taggers break flow dissection */
980 			if (ops->needed_headroom &&
981 			    (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)) {
982 				if (ops->flow_dissect)
983 					ops->flow_dissect(skb, &proto, &offset);
984 				else
985 					dsa_tag_generic_flow_dissect(skb,
986 								     &proto,
987 								     &offset);
988 				hlen -= offset;
989 				nhoff += offset;
990 			}
991 		}
992 #endif
993 	}
994 
995 	/* It is ensured by skb_flow_dissector_init() that control key will
996 	 * be always present.
997 	 */
998 	key_control = skb_flow_dissector_target(flow_dissector,
999 						FLOW_DISSECTOR_KEY_CONTROL,
1000 						target_container);
1001 
1002 	/* It is ensured by skb_flow_dissector_init() that basic key will
1003 	 * be always present.
1004 	 */
1005 	key_basic = skb_flow_dissector_target(flow_dissector,
1006 					      FLOW_DISSECTOR_KEY_BASIC,
1007 					      target_container);
1008 
1009 	if (skb) {
1010 		if (!net) {
1011 			if (skb->dev)
1012 				net = dev_net(skb->dev);
1013 			else if (skb->sk)
1014 				net = sock_net(skb->sk);
1015 		}
1016 	}
1017 
1018 	WARN_ON_ONCE(!net);
1019 	if (net) {
1020 		enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
1021 		struct bpf_prog_array *run_array;
1022 
1023 		rcu_read_lock();
1024 		run_array = rcu_dereference(init_net.bpf.run_array[type]);
1025 		if (!run_array)
1026 			run_array = rcu_dereference(net->bpf.run_array[type]);
1027 
1028 		if (run_array) {
1029 			struct bpf_flow_keys flow_keys;
1030 			struct bpf_flow_dissector ctx = {
1031 				.flow_keys = &flow_keys,
1032 				.data = data,
1033 				.data_end = data + hlen,
1034 			};
1035 			__be16 n_proto = proto;
1036 			struct bpf_prog *prog;
1037 			u32 result;
1038 
1039 			if (skb) {
1040 				ctx.skb = skb;
1041 				/* we can't use 'proto' in the skb case
1042 				 * because it might be set to skb->vlan_proto
1043 				 * which has been pulled from the data
1044 				 */
1045 				n_proto = skb->protocol;
1046 			}
1047 
1048 			prog = READ_ONCE(run_array->items[0].prog);
1049 			result = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
1050 						  hlen, flags);
1051 			if (result == BPF_FLOW_DISSECTOR_CONTINUE)
1052 				goto dissect_continue;
1053 			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1054 						 target_container);
1055 			rcu_read_unlock();
1056 			return result == BPF_OK;
1057 		}
1058 dissect_continue:
1059 		rcu_read_unlock();
1060 	}
1061 
1062 	if (dissector_uses_key(flow_dissector,
1063 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1064 		struct ethhdr *eth = eth_hdr(skb);
1065 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
1066 
1067 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1068 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
1069 							  target_container);
1070 		memcpy(key_eth_addrs, eth, sizeof(*key_eth_addrs));
1071 	}
1072 
1073 	if (dissector_uses_key(flow_dissector,
1074 			       FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) {
1075 		struct flow_dissector_key_num_of_vlans *key_num_of_vlans;
1076 
1077 		key_num_of_vlans = skb_flow_dissector_target(flow_dissector,
1078 							     FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
1079 							     target_container);
1080 		key_num_of_vlans->num_of_vlans = 0;
1081 	}
1082 
1083 proto_again:
1084 	fdret = FLOW_DISSECT_RET_CONTINUE;
1085 
1086 	switch (proto) {
1087 	case htons(ETH_P_IP): {
1088 		const struct iphdr *iph;
1089 		struct iphdr _iph;
1090 
1091 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1092 		if (!iph || iph->ihl < 5) {
1093 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1094 			break;
1095 		}
1096 
1097 		nhoff += iph->ihl * 4;
1098 
1099 		ip_proto = iph->protocol;
1100 
1101 		if (dissector_uses_key(flow_dissector,
1102 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1103 			key_addrs = skb_flow_dissector_target(flow_dissector,
1104 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1105 							      target_container);
1106 
1107 			memcpy(&key_addrs->v4addrs.src, &iph->saddr,
1108 			       sizeof(key_addrs->v4addrs.src));
1109 			memcpy(&key_addrs->v4addrs.dst, &iph->daddr,
1110 			       sizeof(key_addrs->v4addrs.dst));
1111 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1112 		}
1113 
1114 		__skb_flow_dissect_ipv4(skb, flow_dissector,
1115 					target_container, data, iph);
1116 
1117 		if (ip_is_fragment(iph)) {
1118 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1119 
1120 			if (iph->frag_off & htons(IP_OFFSET)) {
1121 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1122 				break;
1123 			} else {
1124 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
1125 				if (!(flags &
1126 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1127 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
1128 					break;
1129 				}
1130 			}
1131 		}
1132 
1133 		break;
1134 	}
1135 	case htons(ETH_P_IPV6): {
1136 		const struct ipv6hdr *iph;
1137 		struct ipv6hdr _iph;
1138 
1139 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1140 		if (!iph) {
1141 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1142 			break;
1143 		}
1144 
1145 		ip_proto = iph->nexthdr;
1146 		nhoff += sizeof(struct ipv6hdr);
1147 
1148 		if (dissector_uses_key(flow_dissector,
1149 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1150 			key_addrs = skb_flow_dissector_target(flow_dissector,
1151 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1152 							      target_container);
1153 
1154 			memcpy(&key_addrs->v6addrs.src, &iph->saddr,
1155 			       sizeof(key_addrs->v6addrs.src));
1156 			memcpy(&key_addrs->v6addrs.dst, &iph->daddr,
1157 			       sizeof(key_addrs->v6addrs.dst));
1158 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1159 		}
1160 
1161 		if ((dissector_uses_key(flow_dissector,
1162 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1163 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1164 		    ip6_flowlabel(iph)) {
1165 			__be32 flow_label = ip6_flowlabel(iph);
1166 
1167 			if (dissector_uses_key(flow_dissector,
1168 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1169 				key_tags = skb_flow_dissector_target(flow_dissector,
1170 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
1171 								     target_container);
1172 				key_tags->flow_label = ntohl(flow_label);
1173 			}
1174 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1175 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1176 				break;
1177 			}
1178 		}
1179 
1180 		__skb_flow_dissect_ipv6(skb, flow_dissector,
1181 					target_container, data, iph);
1182 
1183 		break;
1184 	}
1185 	case htons(ETH_P_8021AD):
1186 	case htons(ETH_P_8021Q): {
1187 		const struct vlan_hdr *vlan = NULL;
1188 		struct vlan_hdr _vlan;
1189 		__be16 saved_vlan_tpid = proto;
1190 
1191 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1192 		    skb && skb_vlan_tag_present(skb)) {
1193 			proto = skb->protocol;
1194 		} else {
1195 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1196 						    data, hlen, &_vlan);
1197 			if (!vlan) {
1198 				fdret = FLOW_DISSECT_RET_OUT_BAD;
1199 				break;
1200 			}
1201 
1202 			proto = vlan->h_vlan_encapsulated_proto;
1203 			nhoff += sizeof(*vlan);
1204 		}
1205 
1206 		if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_NUM_OF_VLANS) &&
1207 		    !(key_control->flags & FLOW_DIS_ENCAPSULATION)) {
1208 			struct flow_dissector_key_num_of_vlans *key_nvs;
1209 
1210 			key_nvs = skb_flow_dissector_target(flow_dissector,
1211 							    FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
1212 							    target_container);
1213 			key_nvs->num_of_vlans++;
1214 		}
1215 
1216 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1217 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1218 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1219 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1220 		} else {
1221 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1222 			break;
1223 		}
1224 
1225 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1226 			key_vlan = skb_flow_dissector_target(flow_dissector,
1227 							     dissector_vlan,
1228 							     target_container);
1229 
1230 			if (!vlan) {
1231 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1232 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1233 			} else {
1234 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1235 					VLAN_VID_MASK;
1236 				key_vlan->vlan_priority =
1237 					(ntohs(vlan->h_vlan_TCI) &
1238 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1239 			}
1240 			key_vlan->vlan_tpid = saved_vlan_tpid;
1241 			key_vlan->vlan_eth_type = proto;
1242 		}
1243 
1244 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1245 		break;
1246 	}
1247 	case htons(ETH_P_PPP_SES): {
1248 		struct {
1249 			struct pppoe_hdr hdr;
1250 			__be16 proto;
1251 		} *hdr, _hdr;
1252 		u16 ppp_proto;
1253 
1254 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1255 		if (!hdr) {
1256 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1257 			break;
1258 		}
1259 
1260 		if (!is_pppoe_ses_hdr_valid(&hdr->hdr)) {
1261 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1262 			break;
1263 		}
1264 
1265 		/* least significant bit of the most significant octet
1266 		 * indicates if protocol field was compressed
1267 		 */
1268 		ppp_proto = ntohs(hdr->proto);
1269 		if (ppp_proto & 0x0100) {
1270 			ppp_proto = ppp_proto >> 8;
1271 			nhoff += PPPOE_SES_HLEN - 1;
1272 		} else {
1273 			nhoff += PPPOE_SES_HLEN;
1274 		}
1275 
1276 		if (ppp_proto == PPP_IP) {
1277 			proto = htons(ETH_P_IP);
1278 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1279 		} else if (ppp_proto == PPP_IPV6) {
1280 			proto = htons(ETH_P_IPV6);
1281 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1282 		} else if (ppp_proto == PPP_MPLS_UC) {
1283 			proto = htons(ETH_P_MPLS_UC);
1284 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1285 		} else if (ppp_proto == PPP_MPLS_MC) {
1286 			proto = htons(ETH_P_MPLS_MC);
1287 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1288 		} else if (ppp_proto_is_valid(ppp_proto)) {
1289 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1290 		} else {
1291 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1292 			break;
1293 		}
1294 
1295 		if (dissector_uses_key(flow_dissector,
1296 				       FLOW_DISSECTOR_KEY_PPPOE)) {
1297 			struct flow_dissector_key_pppoe *key_pppoe;
1298 
1299 			key_pppoe = skb_flow_dissector_target(flow_dissector,
1300 							      FLOW_DISSECTOR_KEY_PPPOE,
1301 							      target_container);
1302 			key_pppoe->session_id = hdr->hdr.sid;
1303 			key_pppoe->ppp_proto = htons(ppp_proto);
1304 			key_pppoe->type = htons(ETH_P_PPP_SES);
1305 		}
1306 		break;
1307 	}
1308 	case htons(ETH_P_TIPC): {
1309 		struct tipc_basic_hdr *hdr, _hdr;
1310 
1311 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1312 					   data, hlen, &_hdr);
1313 		if (!hdr) {
1314 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1315 			break;
1316 		}
1317 
1318 		if (dissector_uses_key(flow_dissector,
1319 				       FLOW_DISSECTOR_KEY_TIPC)) {
1320 			key_addrs = skb_flow_dissector_target(flow_dissector,
1321 							      FLOW_DISSECTOR_KEY_TIPC,
1322 							      target_container);
1323 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1324 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1325 		}
1326 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1327 		break;
1328 	}
1329 
1330 	case htons(ETH_P_MPLS_UC):
1331 	case htons(ETH_P_MPLS_MC):
1332 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1333 						target_container, data,
1334 						nhoff, hlen, mpls_lse,
1335 						&mpls_el);
1336 		nhoff += sizeof(struct mpls_label);
1337 		mpls_lse++;
1338 		break;
1339 	case htons(ETH_P_FCOE):
1340 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1341 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1342 			break;
1343 		}
1344 
1345 		nhoff += FCOE_HEADER_LEN;
1346 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1347 		break;
1348 
1349 	case htons(ETH_P_ARP):
1350 	case htons(ETH_P_RARP):
1351 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1352 					       target_container, data,
1353 					       nhoff, hlen);
1354 		break;
1355 
1356 	case htons(ETH_P_BATMAN):
1357 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1358 						  &proto, &nhoff, hlen, flags);
1359 		break;
1360 
1361 	case htons(ETH_P_1588): {
1362 		struct ptp_header *hdr, _hdr;
1363 
1364 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
1365 					   hlen, &_hdr);
1366 		if (!hdr) {
1367 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1368 			break;
1369 		}
1370 
1371 		nhoff += ntohs(hdr->message_length);
1372 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1373 		break;
1374 	}
1375 
1376 	case htons(ETH_P_PRP):
1377 	case htons(ETH_P_HSR): {
1378 		struct hsr_tag *hdr, _hdr;
1379 
1380 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen,
1381 					   &_hdr);
1382 		if (!hdr) {
1383 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1384 			break;
1385 		}
1386 
1387 		proto = hdr->encap_proto;
1388 		nhoff += HSR_HLEN;
1389 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1390 		break;
1391 	}
1392 
1393 	default:
1394 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1395 		break;
1396 	}
1397 
1398 	/* Process result of proto processing */
1399 	switch (fdret) {
1400 	case FLOW_DISSECT_RET_OUT_GOOD:
1401 		goto out_good;
1402 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1403 		if (skb_flow_dissect_allowed(&num_hdrs))
1404 			goto proto_again;
1405 		goto out_good;
1406 	case FLOW_DISSECT_RET_CONTINUE:
1407 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1408 		break;
1409 	case FLOW_DISSECT_RET_OUT_BAD:
1410 	default:
1411 		goto out_bad;
1412 	}
1413 
1414 ip_proto_again:
1415 	fdret = FLOW_DISSECT_RET_CONTINUE;
1416 
1417 	switch (ip_proto) {
1418 	case IPPROTO_GRE:
1419 		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
1420 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1421 			break;
1422 		}
1423 
1424 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1425 					       target_container, data,
1426 					       &proto, &nhoff, &hlen, flags);
1427 		break;
1428 
1429 	case NEXTHDR_HOP:
1430 	case NEXTHDR_ROUTING:
1431 	case NEXTHDR_DEST: {
1432 		u8 _opthdr[2], *opthdr;
1433 
1434 		if (proto != htons(ETH_P_IPV6))
1435 			break;
1436 
1437 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1438 					      data, hlen, &_opthdr);
1439 		if (!opthdr) {
1440 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1441 			break;
1442 		}
1443 
1444 		ip_proto = opthdr[0];
1445 		nhoff += (opthdr[1] + 1) << 3;
1446 
1447 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1448 		break;
1449 	}
1450 	case NEXTHDR_FRAGMENT: {
1451 		struct frag_hdr _fh, *fh;
1452 
1453 		if (proto != htons(ETH_P_IPV6))
1454 			break;
1455 
1456 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1457 					  data, hlen, &_fh);
1458 
1459 		if (!fh) {
1460 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1461 			break;
1462 		}
1463 
1464 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1465 
1466 		nhoff += sizeof(_fh);
1467 		ip_proto = fh->nexthdr;
1468 
1469 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1470 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1471 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1472 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1473 				break;
1474 			}
1475 		}
1476 
1477 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1478 		break;
1479 	}
1480 	case IPPROTO_IPIP:
1481 		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
1482 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1483 			break;
1484 		}
1485 
1486 		proto = htons(ETH_P_IP);
1487 
1488 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1489 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1490 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1491 			break;
1492 		}
1493 
1494 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1495 		break;
1496 
1497 	case IPPROTO_IPV6:
1498 		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
1499 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1500 			break;
1501 		}
1502 
1503 		proto = htons(ETH_P_IPV6);
1504 
1505 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1506 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1507 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1508 			break;
1509 		}
1510 
1511 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1512 		break;
1513 
1514 
1515 	case IPPROTO_MPLS:
1516 		proto = htons(ETH_P_MPLS_UC);
1517 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1518 		break;
1519 
1520 	case IPPROTO_TCP:
1521 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1522 				       data, nhoff, hlen);
1523 		break;
1524 
1525 	case IPPROTO_ICMP:
1526 	case IPPROTO_ICMPV6:
1527 		__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1528 					data, nhoff, hlen);
1529 		break;
1530 	case IPPROTO_L2TP:
1531 		__skb_flow_dissect_l2tpv3(skb, flow_dissector, target_container,
1532 					  data, nhoff, hlen);
1533 		break;
1534 
1535 	default:
1536 		break;
1537 	}
1538 
1539 	if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1540 		__skb_flow_dissect_ports(skb, flow_dissector, target_container,
1541 					 data, nhoff, ip_proto, hlen);
1542 
1543 	/* Process result of IP proto processing */
1544 	switch (fdret) {
1545 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1546 		if (skb_flow_dissect_allowed(&num_hdrs))
1547 			goto proto_again;
1548 		break;
1549 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1550 		if (skb_flow_dissect_allowed(&num_hdrs))
1551 			goto ip_proto_again;
1552 		break;
1553 	case FLOW_DISSECT_RET_OUT_GOOD:
1554 	case FLOW_DISSECT_RET_CONTINUE:
1555 		break;
1556 	case FLOW_DISSECT_RET_OUT_BAD:
1557 	default:
1558 		goto out_bad;
1559 	}
1560 
1561 out_good:
1562 	ret = true;
1563 
1564 out:
1565 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1566 	key_basic->n_proto = proto;
1567 	key_basic->ip_proto = ip_proto;
1568 
1569 	return ret;
1570 
1571 out_bad:
1572 	ret = false;
1573 	goto out;
1574 }
1575 EXPORT_SYMBOL(__skb_flow_dissect);
1576 
1577 static siphash_aligned_key_t hashrnd;
1578 static __always_inline void __flow_hash_secret_init(void)
1579 {
1580 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1581 }
1582 
1583 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1584 {
1585 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1586 	return &flow->FLOW_KEYS_HASH_START_FIELD;
1587 }
1588 
1589 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1590 {
1591 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1592 
1593 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1594 
1595 	switch (flow->control.addr_type) {
1596 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1597 		diff -= sizeof(flow->addrs.v4addrs);
1598 		break;
1599 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1600 		diff -= sizeof(flow->addrs.v6addrs);
1601 		break;
1602 	case FLOW_DISSECTOR_KEY_TIPC:
1603 		diff -= sizeof(flow->addrs.tipckey);
1604 		break;
1605 	}
1606 	return sizeof(*flow) - diff;
1607 }
1608 
1609 __be32 flow_get_u32_src(const struct flow_keys *flow)
1610 {
1611 	switch (flow->control.addr_type) {
1612 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1613 		return flow->addrs.v4addrs.src;
1614 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1615 		return (__force __be32)ipv6_addr_hash(
1616 			&flow->addrs.v6addrs.src);
1617 	case FLOW_DISSECTOR_KEY_TIPC:
1618 		return flow->addrs.tipckey.key;
1619 	default:
1620 		return 0;
1621 	}
1622 }
1623 EXPORT_SYMBOL(flow_get_u32_src);
1624 
1625 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1626 {
1627 	switch (flow->control.addr_type) {
1628 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1629 		return flow->addrs.v4addrs.dst;
1630 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1631 		return (__force __be32)ipv6_addr_hash(
1632 			&flow->addrs.v6addrs.dst);
1633 	default:
1634 		return 0;
1635 	}
1636 }
1637 EXPORT_SYMBOL(flow_get_u32_dst);
1638 
1639 /* Sort the source and destination IP and the ports,
1640  * to have consistent hash within the two directions
1641  */
1642 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1643 {
1644 	int addr_diff, i;
1645 
1646 	switch (keys->control.addr_type) {
1647 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1648 		if ((__force u32)keys->addrs.v4addrs.dst <
1649 		    (__force u32)keys->addrs.v4addrs.src)
1650 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1651 
1652 		if ((__force u16)keys->ports.dst <
1653 		    (__force u16)keys->ports.src) {
1654 			swap(keys->ports.src, keys->ports.dst);
1655 		}
1656 		break;
1657 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1658 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1659 				   &keys->addrs.v6addrs.src,
1660 				   sizeof(keys->addrs.v6addrs.dst));
1661 		if (addr_diff < 0) {
1662 			for (i = 0; i < 4; i++)
1663 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1664 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1665 		}
1666 		if ((__force u16)keys->ports.dst <
1667 		    (__force u16)keys->ports.src) {
1668 			swap(keys->ports.src, keys->ports.dst);
1669 		}
1670 		break;
1671 	}
1672 }
1673 
1674 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1675 					const siphash_key_t *keyval)
1676 {
1677 	u32 hash;
1678 
1679 	__flow_hash_consistentify(keys);
1680 
1681 	hash = siphash(flow_keys_hash_start(keys),
1682 		       flow_keys_hash_length(keys), keyval);
1683 	if (!hash)
1684 		hash = 1;
1685 
1686 	return hash;
1687 }
1688 
1689 u32 flow_hash_from_keys(struct flow_keys *keys)
1690 {
1691 	__flow_hash_secret_init();
1692 	return __flow_hash_from_keys(keys, &hashrnd);
1693 }
1694 EXPORT_SYMBOL(flow_hash_from_keys);
1695 
1696 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1697 				  struct flow_keys *keys,
1698 				  const siphash_key_t *keyval)
1699 {
1700 	skb_flow_dissect_flow_keys(skb, keys,
1701 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1702 
1703 	return __flow_hash_from_keys(keys, keyval);
1704 }
1705 
1706 struct _flow_keys_digest_data {
1707 	__be16	n_proto;
1708 	u8	ip_proto;
1709 	u8	padding;
1710 	__be32	ports;
1711 	__be32	src;
1712 	__be32	dst;
1713 };
1714 
1715 void make_flow_keys_digest(struct flow_keys_digest *digest,
1716 			   const struct flow_keys *flow)
1717 {
1718 	struct _flow_keys_digest_data *data =
1719 	    (struct _flow_keys_digest_data *)digest;
1720 
1721 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1722 
1723 	memset(digest, 0, sizeof(*digest));
1724 
1725 	data->n_proto = flow->basic.n_proto;
1726 	data->ip_proto = flow->basic.ip_proto;
1727 	data->ports = flow->ports.ports;
1728 	data->src = flow->addrs.v4addrs.src;
1729 	data->dst = flow->addrs.v4addrs.dst;
1730 }
1731 EXPORT_SYMBOL(make_flow_keys_digest);
1732 
1733 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1734 
1735 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1736 {
1737 	struct flow_keys keys;
1738 
1739 	__flow_hash_secret_init();
1740 
1741 	memset(&keys, 0, sizeof(keys));
1742 	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1743 			   &keys, NULL, 0, 0, 0,
1744 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1745 
1746 	return __flow_hash_from_keys(&keys, &hashrnd);
1747 }
1748 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1749 
1750 /**
1751  * __skb_get_hash: calculate a flow hash
1752  * @skb: sk_buff to calculate flow hash from
1753  *
1754  * This function calculates a flow hash based on src/dst addresses
1755  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1756  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1757  * if hash is a canonical 4-tuple hash over transport ports.
1758  */
1759 void __skb_get_hash(struct sk_buff *skb)
1760 {
1761 	struct flow_keys keys;
1762 	u32 hash;
1763 
1764 	__flow_hash_secret_init();
1765 
1766 	hash = ___skb_get_hash(skb, &keys, &hashrnd);
1767 
1768 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1769 }
1770 EXPORT_SYMBOL(__skb_get_hash);
1771 
1772 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1773 			   const siphash_key_t *perturb)
1774 {
1775 	struct flow_keys keys;
1776 
1777 	return ___skb_get_hash(skb, &keys, perturb);
1778 }
1779 EXPORT_SYMBOL(skb_get_hash_perturb);
1780 
1781 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1782 		   const struct flow_keys_basic *keys, int hlen)
1783 {
1784 	u32 poff = keys->control.thoff;
1785 
1786 	/* skip L4 headers for fragments after the first */
1787 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1788 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1789 		return poff;
1790 
1791 	switch (keys->basic.ip_proto) {
1792 	case IPPROTO_TCP: {
1793 		/* access doff as u8 to avoid unaligned access */
1794 		const u8 *doff;
1795 		u8 _doff;
1796 
1797 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1798 					    data, hlen, &_doff);
1799 		if (!doff)
1800 			return poff;
1801 
1802 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1803 		break;
1804 	}
1805 	case IPPROTO_UDP:
1806 	case IPPROTO_UDPLITE:
1807 		poff += sizeof(struct udphdr);
1808 		break;
1809 	/* For the rest, we do not really care about header
1810 	 * extensions at this point for now.
1811 	 */
1812 	case IPPROTO_ICMP:
1813 		poff += sizeof(struct icmphdr);
1814 		break;
1815 	case IPPROTO_ICMPV6:
1816 		poff += sizeof(struct icmp6hdr);
1817 		break;
1818 	case IPPROTO_IGMP:
1819 		poff += sizeof(struct igmphdr);
1820 		break;
1821 	case IPPROTO_DCCP:
1822 		poff += sizeof(struct dccp_hdr);
1823 		break;
1824 	case IPPROTO_SCTP:
1825 		poff += sizeof(struct sctphdr);
1826 		break;
1827 	}
1828 
1829 	return poff;
1830 }
1831 
1832 /**
1833  * skb_get_poff - get the offset to the payload
1834  * @skb: sk_buff to get the payload offset from
1835  *
1836  * The function will get the offset to the payload as far as it could
1837  * be dissected.  The main user is currently BPF, so that we can dynamically
1838  * truncate packets without needing to push actual payload to the user
1839  * space and can analyze headers only, instead.
1840  */
1841 u32 skb_get_poff(const struct sk_buff *skb)
1842 {
1843 	struct flow_keys_basic keys;
1844 
1845 	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1846 					      NULL, 0, 0, 0, 0))
1847 		return 0;
1848 
1849 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1850 }
1851 
1852 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1853 {
1854 	memset(keys, 0, sizeof(*keys));
1855 
1856 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1857 	    sizeof(keys->addrs.v6addrs.src));
1858 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1859 	    sizeof(keys->addrs.v6addrs.dst));
1860 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1861 	keys->ports.src = fl6->fl6_sport;
1862 	keys->ports.dst = fl6->fl6_dport;
1863 	keys->keyid.keyid = fl6->fl6_gre_key;
1864 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1865 	keys->basic.ip_proto = fl6->flowi6_proto;
1866 
1867 	return flow_hash_from_keys(keys);
1868 }
1869 EXPORT_SYMBOL(__get_hash_from_flowi6);
1870 
1871 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1872 	{
1873 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1874 		.offset = offsetof(struct flow_keys, control),
1875 	},
1876 	{
1877 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1878 		.offset = offsetof(struct flow_keys, basic),
1879 	},
1880 	{
1881 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1882 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1883 	},
1884 	{
1885 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1886 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1887 	},
1888 	{
1889 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1890 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1891 	},
1892 	{
1893 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1894 		.offset = offsetof(struct flow_keys, ports),
1895 	},
1896 	{
1897 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1898 		.offset = offsetof(struct flow_keys, vlan),
1899 	},
1900 	{
1901 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1902 		.offset = offsetof(struct flow_keys, tags),
1903 	},
1904 	{
1905 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1906 		.offset = offsetof(struct flow_keys, keyid),
1907 	},
1908 };
1909 
1910 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1911 	{
1912 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1913 		.offset = offsetof(struct flow_keys, control),
1914 	},
1915 	{
1916 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1917 		.offset = offsetof(struct flow_keys, basic),
1918 	},
1919 	{
1920 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1921 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1922 	},
1923 	{
1924 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1925 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1926 	},
1927 	{
1928 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1929 		.offset = offsetof(struct flow_keys, ports),
1930 	},
1931 };
1932 
1933 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1934 	{
1935 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1936 		.offset = offsetof(struct flow_keys, control),
1937 	},
1938 	{
1939 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1940 		.offset = offsetof(struct flow_keys, basic),
1941 	},
1942 };
1943 
1944 struct flow_dissector flow_keys_dissector __read_mostly;
1945 EXPORT_SYMBOL(flow_keys_dissector);
1946 
1947 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1948 EXPORT_SYMBOL(flow_keys_basic_dissector);
1949 
1950 static int __init init_default_flow_dissectors(void)
1951 {
1952 	skb_flow_dissector_init(&flow_keys_dissector,
1953 				flow_keys_dissector_keys,
1954 				ARRAY_SIZE(flow_keys_dissector_keys));
1955 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1956 				flow_keys_dissector_symmetric_keys,
1957 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1958 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1959 				flow_keys_basic_dissector_keys,
1960 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1961 	return 0;
1962 }
1963 core_initcall(init_default_flow_dissectors);
1964