xref: /linux/net/core/flow_dissector.c (revision c411ed854584a71b0e86ac3019b60e4789d88086)
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/dsa.h>
8 #include <net/ip.h>
9 #include <net/ipv6.h>
10 #include <net/gre.h>
11 #include <net/pptp.h>
12 #include <linux/igmp.h>
13 #include <linux/icmp.h>
14 #include <linux/sctp.h>
15 #include <linux/dccp.h>
16 #include <linux/if_tunnel.h>
17 #include <linux/if_pppox.h>
18 #include <linux/ppp_defs.h>
19 #include <linux/stddef.h>
20 #include <linux/if_ether.h>
21 #include <linux/mpls.h>
22 #include <linux/tcp.h>
23 #include <net/flow_dissector.h>
24 #include <scsi/fc/fc_fcoe.h>
25 
26 static void dissector_set_key(struct flow_dissector *flow_dissector,
27 			      enum flow_dissector_key_id key_id)
28 {
29 	flow_dissector->used_keys |= (1 << key_id);
30 }
31 
32 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
33 			     const struct flow_dissector_key *key,
34 			     unsigned int key_count)
35 {
36 	unsigned int i;
37 
38 	memset(flow_dissector, 0, sizeof(*flow_dissector));
39 
40 	for (i = 0; i < key_count; i++, key++) {
41 		/* User should make sure that every key target offset is withing
42 		 * boundaries of unsigned short.
43 		 */
44 		BUG_ON(key->offset > USHRT_MAX);
45 		BUG_ON(dissector_uses_key(flow_dissector,
46 					  key->key_id));
47 
48 		dissector_set_key(flow_dissector, key->key_id);
49 		flow_dissector->offset[key->key_id] = key->offset;
50 	}
51 
52 	/* Ensure that the dissector always includes control and basic key.
53 	 * That way we are able to avoid handling lack of these in fast path.
54 	 */
55 	BUG_ON(!dissector_uses_key(flow_dissector,
56 				   FLOW_DISSECTOR_KEY_CONTROL));
57 	BUG_ON(!dissector_uses_key(flow_dissector,
58 				   FLOW_DISSECTOR_KEY_BASIC));
59 }
60 EXPORT_SYMBOL(skb_flow_dissector_init);
61 
62 /**
63  * skb_flow_get_be16 - extract be16 entity
64  * @skb: sk_buff to extract from
65  * @poff: offset to extract at
66  * @data: raw buffer pointer to the packet
67  * @hlen: packet header length
68  *
69  * The function will try to retrieve a be32 entity at
70  * offset poff
71  */
72 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
73 				void *data, int hlen)
74 {
75 	__be16 *u, _u;
76 
77 	u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
78 	if (u)
79 		return *u;
80 
81 	return 0;
82 }
83 
84 /**
85  * __skb_flow_get_ports - extract the upper layer ports and return them
86  * @skb: sk_buff to extract the ports from
87  * @thoff: transport header offset
88  * @ip_proto: protocol for which to get port offset
89  * @data: raw buffer pointer to the packet, if NULL use skb->data
90  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
91  *
92  * The function will try to retrieve the ports at offset thoff + poff where poff
93  * is the protocol port offset returned from proto_ports_offset
94  */
95 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
96 			    void *data, int hlen)
97 {
98 	int poff = proto_ports_offset(ip_proto);
99 
100 	if (!data) {
101 		data = skb->data;
102 		hlen = skb_headlen(skb);
103 	}
104 
105 	if (poff >= 0) {
106 		__be32 *ports, _ports;
107 
108 		ports = __skb_header_pointer(skb, thoff + poff,
109 					     sizeof(_ports), data, hlen, &_ports);
110 		if (ports)
111 			return *ports;
112 	}
113 
114 	return 0;
115 }
116 EXPORT_SYMBOL(__skb_flow_get_ports);
117 
118 enum flow_dissect_ret {
119 	FLOW_DISSECT_RET_OUT_GOOD,
120 	FLOW_DISSECT_RET_OUT_BAD,
121 	FLOW_DISSECT_RET_OUT_PROTO_AGAIN,
122 };
123 
124 static enum flow_dissect_ret
125 __skb_flow_dissect_mpls(const struct sk_buff *skb,
126 			struct flow_dissector *flow_dissector,
127 			void *target_container, void *data, int nhoff, int hlen)
128 {
129 	struct flow_dissector_key_keyid *key_keyid;
130 	struct mpls_label *hdr, _hdr[2];
131 	u32 entry, label;
132 
133 	if (!dissector_uses_key(flow_dissector,
134 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
135 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
136 		return FLOW_DISSECT_RET_OUT_GOOD;
137 
138 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
139 				   hlen, &_hdr);
140 	if (!hdr)
141 		return FLOW_DISSECT_RET_OUT_BAD;
142 
143 	entry = ntohl(hdr[0].entry);
144 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
145 
146 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
147 		struct flow_dissector_key_mpls *key_mpls;
148 
149 		key_mpls = skb_flow_dissector_target(flow_dissector,
150 						     FLOW_DISSECTOR_KEY_MPLS,
151 						     target_container);
152 		key_mpls->mpls_label = label;
153 		key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
154 					>> MPLS_LS_TTL_SHIFT;
155 		key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
156 					>> MPLS_LS_TC_SHIFT;
157 		key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
158 					>> MPLS_LS_S_SHIFT;
159 	}
160 
161 	if (label == MPLS_LABEL_ENTROPY) {
162 		key_keyid = skb_flow_dissector_target(flow_dissector,
163 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
164 						      target_container);
165 		key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
166 	}
167 	return FLOW_DISSECT_RET_OUT_GOOD;
168 }
169 
170 static enum flow_dissect_ret
171 __skb_flow_dissect_arp(const struct sk_buff *skb,
172 		       struct flow_dissector *flow_dissector,
173 		       void *target_container, void *data, int nhoff, int hlen)
174 {
175 	struct flow_dissector_key_arp *key_arp;
176 	struct {
177 		unsigned char ar_sha[ETH_ALEN];
178 		unsigned char ar_sip[4];
179 		unsigned char ar_tha[ETH_ALEN];
180 		unsigned char ar_tip[4];
181 	} *arp_eth, _arp_eth;
182 	const struct arphdr *arp;
183 	struct arphdr _arp;
184 
185 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
186 		return FLOW_DISSECT_RET_OUT_GOOD;
187 
188 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
189 				   hlen, &_arp);
190 	if (!arp)
191 		return FLOW_DISSECT_RET_OUT_BAD;
192 
193 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
194 	    arp->ar_pro != htons(ETH_P_IP) ||
195 	    arp->ar_hln != ETH_ALEN ||
196 	    arp->ar_pln != 4 ||
197 	    (arp->ar_op != htons(ARPOP_REPLY) &&
198 	     arp->ar_op != htons(ARPOP_REQUEST)))
199 		return FLOW_DISSECT_RET_OUT_BAD;
200 
201 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
202 				       sizeof(_arp_eth), data,
203 				       hlen, &_arp_eth);
204 	if (!arp_eth)
205 		return FLOW_DISSECT_RET_OUT_BAD;
206 
207 	key_arp = skb_flow_dissector_target(flow_dissector,
208 					    FLOW_DISSECTOR_KEY_ARP,
209 					    target_container);
210 
211 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
212 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
213 
214 	/* Only store the lower byte of the opcode;
215 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
216 	 */
217 	key_arp->op = ntohs(arp->ar_op) & 0xff;
218 
219 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
220 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
221 
222 	return FLOW_DISSECT_RET_OUT_GOOD;
223 }
224 
225 static enum flow_dissect_ret
226 __skb_flow_dissect_gre(const struct sk_buff *skb,
227 		       struct flow_dissector_key_control *key_control,
228 		       struct flow_dissector *flow_dissector,
229 		       void *target_container, void *data,
230 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
231 		       unsigned int flags)
232 {
233 	struct flow_dissector_key_keyid *key_keyid;
234 	struct gre_base_hdr *hdr, _hdr;
235 	int offset = 0;
236 	u16 gre_ver;
237 
238 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
239 				   data, *p_hlen, &_hdr);
240 	if (!hdr)
241 		return FLOW_DISSECT_RET_OUT_BAD;
242 
243 	/* Only look inside GRE without routing */
244 	if (hdr->flags & GRE_ROUTING)
245 		return FLOW_DISSECT_RET_OUT_GOOD;
246 
247 	/* Only look inside GRE for version 0 and 1 */
248 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
249 	if (gre_ver > 1)
250 		return FLOW_DISSECT_RET_OUT_GOOD;
251 
252 	*p_proto = hdr->protocol;
253 	if (gre_ver) {
254 		/* Version1 must be PPTP, and check the flags */
255 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
256 			return FLOW_DISSECT_RET_OUT_GOOD;
257 	}
258 
259 	offset += sizeof(struct gre_base_hdr);
260 
261 	if (hdr->flags & GRE_CSUM)
262 		offset += sizeof(((struct gre_full_hdr *) 0)->csum) +
263 			  sizeof(((struct gre_full_hdr *) 0)->reserved1);
264 
265 	if (hdr->flags & GRE_KEY) {
266 		const __be32 *keyid;
267 		__be32 _keyid;
268 
269 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
270 					     sizeof(_keyid),
271 					     data, *p_hlen, &_keyid);
272 		if (!keyid)
273 			return FLOW_DISSECT_RET_OUT_BAD;
274 
275 		if (dissector_uses_key(flow_dissector,
276 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
277 			key_keyid = skb_flow_dissector_target(flow_dissector,
278 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
279 							      target_container);
280 			if (gre_ver == 0)
281 				key_keyid->keyid = *keyid;
282 			else
283 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
284 		}
285 		offset += sizeof(((struct gre_full_hdr *) 0)->key);
286 	}
287 
288 	if (hdr->flags & GRE_SEQ)
289 		offset += sizeof(((struct pptp_gre_header *) 0)->seq);
290 
291 	if (gre_ver == 0) {
292 		if (*p_proto == htons(ETH_P_TEB)) {
293 			const struct ethhdr *eth;
294 			struct ethhdr _eth;
295 
296 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
297 						   sizeof(_eth),
298 						   data, *p_hlen, &_eth);
299 			if (!eth)
300 				return FLOW_DISSECT_RET_OUT_BAD;
301 			*p_proto = eth->h_proto;
302 			offset += sizeof(*eth);
303 
304 			/* Cap headers that we access via pointers at the
305 			 * end of the Ethernet header as our maximum alignment
306 			 * at that point is only 2 bytes.
307 			 */
308 			if (NET_IP_ALIGN)
309 				*p_hlen = *p_nhoff + offset;
310 		}
311 	} else { /* version 1, must be PPTP */
312 		u8 _ppp_hdr[PPP_HDRLEN];
313 		u8 *ppp_hdr;
314 
315 		if (hdr->flags & GRE_ACK)
316 			offset += sizeof(((struct pptp_gre_header *) 0)->ack);
317 
318 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
319 					       sizeof(_ppp_hdr),
320 					       data, *p_hlen, _ppp_hdr);
321 		if (!ppp_hdr)
322 			return FLOW_DISSECT_RET_OUT_BAD;
323 
324 		switch (PPP_PROTOCOL(ppp_hdr)) {
325 		case PPP_IP:
326 			*p_proto = htons(ETH_P_IP);
327 			break;
328 		case PPP_IPV6:
329 			*p_proto = htons(ETH_P_IPV6);
330 			break;
331 		default:
332 			/* Could probably catch some more like MPLS */
333 			break;
334 		}
335 
336 		offset += PPP_HDRLEN;
337 	}
338 
339 	*p_nhoff += offset;
340 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
341 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
342 		return FLOW_DISSECT_RET_OUT_GOOD;
343 
344 	return FLOW_DISSECT_RET_OUT_PROTO_AGAIN;
345 }
346 
347 static void
348 __skb_flow_dissect_tcp(const struct sk_buff *skb,
349 		       struct flow_dissector *flow_dissector,
350 		       void *target_container, void *data, int thoff, int hlen)
351 {
352 	struct flow_dissector_key_tcp *key_tcp;
353 	struct tcphdr *th, _th;
354 
355 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
356 		return;
357 
358 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
359 	if (!th)
360 		return;
361 
362 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
363 		return;
364 
365 	key_tcp = skb_flow_dissector_target(flow_dissector,
366 					    FLOW_DISSECTOR_KEY_TCP,
367 					    target_container);
368 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
369 }
370 
371 static void
372 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
373 			struct flow_dissector *flow_dissector,
374 			void *target_container, void *data, const struct iphdr *iph)
375 {
376 	struct flow_dissector_key_ip *key_ip;
377 
378 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
379 		return;
380 
381 	key_ip = skb_flow_dissector_target(flow_dissector,
382 					   FLOW_DISSECTOR_KEY_IP,
383 					   target_container);
384 	key_ip->tos = iph->tos;
385 	key_ip->ttl = iph->ttl;
386 }
387 
388 static void
389 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
390 			struct flow_dissector *flow_dissector,
391 			void *target_container, void *data, const struct ipv6hdr *iph)
392 {
393 	struct flow_dissector_key_ip *key_ip;
394 
395 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
396 		return;
397 
398 	key_ip = skb_flow_dissector_target(flow_dissector,
399 					   FLOW_DISSECTOR_KEY_IP,
400 					   target_container);
401 	key_ip->tos = ipv6_get_dsfield(iph);
402 	key_ip->ttl = iph->hop_limit;
403 }
404 
405 /**
406  * __skb_flow_dissect - extract the flow_keys struct and return it
407  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
408  * @flow_dissector: list of keys to dissect
409  * @target_container: target structure to put dissected values into
410  * @data: raw buffer pointer to the packet, if NULL use skb->data
411  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
412  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
413  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
414  *
415  * The function will try to retrieve individual keys into target specified
416  * by flow_dissector from either the skbuff or a raw buffer specified by the
417  * rest parameters.
418  *
419  * Caller must take care of zeroing target container memory.
420  */
421 bool __skb_flow_dissect(const struct sk_buff *skb,
422 			struct flow_dissector *flow_dissector,
423 			void *target_container,
424 			void *data, __be16 proto, int nhoff, int hlen,
425 			unsigned int flags)
426 {
427 	struct flow_dissector_key_control *key_control;
428 	struct flow_dissector_key_basic *key_basic;
429 	struct flow_dissector_key_addrs *key_addrs;
430 	struct flow_dissector_key_ports *key_ports;
431 	struct flow_dissector_key_icmp *key_icmp;
432 	struct flow_dissector_key_tags *key_tags;
433 	struct flow_dissector_key_vlan *key_vlan;
434 	bool skip_vlan = false;
435 	u8 ip_proto = 0;
436 	bool ret;
437 
438 	if (!data) {
439 		data = skb->data;
440 		proto = skb_vlan_tag_present(skb) ?
441 			 skb->vlan_proto : skb->protocol;
442 		nhoff = skb_network_offset(skb);
443 		hlen = skb_headlen(skb);
444 #if IS_ENABLED(CONFIG_NET_DSA)
445 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
446 			const struct dsa_device_ops *ops;
447 			int offset;
448 
449 			ops = skb->dev->dsa_ptr->tag_ops;
450 			if (ops->flow_dissect &&
451 			    !ops->flow_dissect(skb, &proto, &offset)) {
452 				hlen -= offset;
453 				nhoff += offset;
454 			}
455 		}
456 #endif
457 	}
458 
459 	/* It is ensured by skb_flow_dissector_init() that control key will
460 	 * be always present.
461 	 */
462 	key_control = skb_flow_dissector_target(flow_dissector,
463 						FLOW_DISSECTOR_KEY_CONTROL,
464 						target_container);
465 
466 	/* It is ensured by skb_flow_dissector_init() that basic key will
467 	 * be always present.
468 	 */
469 	key_basic = skb_flow_dissector_target(flow_dissector,
470 					      FLOW_DISSECTOR_KEY_BASIC,
471 					      target_container);
472 
473 	if (dissector_uses_key(flow_dissector,
474 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
475 		struct ethhdr *eth = eth_hdr(skb);
476 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
477 
478 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
479 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
480 							  target_container);
481 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
482 	}
483 
484 proto_again:
485 	switch (proto) {
486 	case htons(ETH_P_IP): {
487 		const struct iphdr *iph;
488 		struct iphdr _iph;
489 ip:
490 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
491 		if (!iph || iph->ihl < 5)
492 			goto out_bad;
493 		nhoff += iph->ihl * 4;
494 
495 		ip_proto = iph->protocol;
496 
497 		if (dissector_uses_key(flow_dissector,
498 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
499 			key_addrs = skb_flow_dissector_target(flow_dissector,
500 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
501 							      target_container);
502 
503 			memcpy(&key_addrs->v4addrs, &iph->saddr,
504 			       sizeof(key_addrs->v4addrs));
505 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
506 		}
507 
508 		if (ip_is_fragment(iph)) {
509 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
510 
511 			if (iph->frag_off & htons(IP_OFFSET)) {
512 				goto out_good;
513 			} else {
514 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
515 				if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
516 					goto out_good;
517 			}
518 		}
519 
520 		__skb_flow_dissect_ipv4(skb, flow_dissector,
521 					target_container, data, iph);
522 
523 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
524 			goto out_good;
525 
526 		break;
527 	}
528 	case htons(ETH_P_IPV6): {
529 		const struct ipv6hdr *iph;
530 		struct ipv6hdr _iph;
531 
532 ipv6:
533 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
534 		if (!iph)
535 			goto out_bad;
536 
537 		ip_proto = iph->nexthdr;
538 		nhoff += sizeof(struct ipv6hdr);
539 
540 		if (dissector_uses_key(flow_dissector,
541 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
542 			key_addrs = skb_flow_dissector_target(flow_dissector,
543 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
544 							      target_container);
545 
546 			memcpy(&key_addrs->v6addrs, &iph->saddr,
547 			       sizeof(key_addrs->v6addrs));
548 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
549 		}
550 
551 		if ((dissector_uses_key(flow_dissector,
552 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
553 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
554 		    ip6_flowlabel(iph)) {
555 			__be32 flow_label = ip6_flowlabel(iph);
556 
557 			if (dissector_uses_key(flow_dissector,
558 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
559 				key_tags = skb_flow_dissector_target(flow_dissector,
560 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
561 								     target_container);
562 				key_tags->flow_label = ntohl(flow_label);
563 			}
564 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
565 				goto out_good;
566 		}
567 
568 		__skb_flow_dissect_ipv6(skb, flow_dissector,
569 					target_container, data, iph);
570 
571 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
572 			goto out_good;
573 
574 		break;
575 	}
576 	case htons(ETH_P_8021AD):
577 	case htons(ETH_P_8021Q): {
578 		const struct vlan_hdr *vlan;
579 		struct vlan_hdr _vlan;
580 		bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
581 
582 		if (vlan_tag_present)
583 			proto = skb->protocol;
584 
585 		if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
586 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
587 						    data, hlen, &_vlan);
588 			if (!vlan)
589 				goto out_bad;
590 			proto = vlan->h_vlan_encapsulated_proto;
591 			nhoff += sizeof(*vlan);
592 			if (skip_vlan)
593 				goto proto_again;
594 		}
595 
596 		skip_vlan = true;
597 		if (dissector_uses_key(flow_dissector,
598 				       FLOW_DISSECTOR_KEY_VLAN)) {
599 			key_vlan = skb_flow_dissector_target(flow_dissector,
600 							     FLOW_DISSECTOR_KEY_VLAN,
601 							     target_container);
602 
603 			if (vlan_tag_present) {
604 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
605 				key_vlan->vlan_priority =
606 					(skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
607 			} else {
608 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
609 					VLAN_VID_MASK;
610 				key_vlan->vlan_priority =
611 					(ntohs(vlan->h_vlan_TCI) &
612 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
613 			}
614 		}
615 
616 		goto proto_again;
617 	}
618 	case htons(ETH_P_PPP_SES): {
619 		struct {
620 			struct pppoe_hdr hdr;
621 			__be16 proto;
622 		} *hdr, _hdr;
623 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
624 		if (!hdr)
625 			goto out_bad;
626 		proto = hdr->proto;
627 		nhoff += PPPOE_SES_HLEN;
628 		switch (proto) {
629 		case htons(PPP_IP):
630 			goto ip;
631 		case htons(PPP_IPV6):
632 			goto ipv6;
633 		default:
634 			goto out_bad;
635 		}
636 	}
637 	case htons(ETH_P_TIPC): {
638 		struct {
639 			__be32 pre[3];
640 			__be32 srcnode;
641 		} *hdr, _hdr;
642 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
643 		if (!hdr)
644 			goto out_bad;
645 
646 		if (dissector_uses_key(flow_dissector,
647 				       FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
648 			key_addrs = skb_flow_dissector_target(flow_dissector,
649 							      FLOW_DISSECTOR_KEY_TIPC_ADDRS,
650 							      target_container);
651 			key_addrs->tipcaddrs.srcnode = hdr->srcnode;
652 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
653 		}
654 		goto out_good;
655 	}
656 
657 	case htons(ETH_P_MPLS_UC):
658 	case htons(ETH_P_MPLS_MC):
659 mpls:
660 		switch (__skb_flow_dissect_mpls(skb, flow_dissector,
661 						target_container, data,
662 						nhoff, hlen)) {
663 		case FLOW_DISSECT_RET_OUT_GOOD:
664 			goto out_good;
665 		case FLOW_DISSECT_RET_OUT_BAD:
666 		default:
667 			goto out_bad;
668 		}
669 	case htons(ETH_P_FCOE):
670 		if ((hlen - nhoff) < FCOE_HEADER_LEN)
671 			goto out_bad;
672 
673 		nhoff += FCOE_HEADER_LEN;
674 		goto out_good;
675 
676 	case htons(ETH_P_ARP):
677 	case htons(ETH_P_RARP):
678 		switch (__skb_flow_dissect_arp(skb, flow_dissector,
679 					       target_container, data,
680 					       nhoff, hlen)) {
681 		case FLOW_DISSECT_RET_OUT_GOOD:
682 			goto out_good;
683 		case FLOW_DISSECT_RET_OUT_BAD:
684 		default:
685 			goto out_bad;
686 		}
687 	default:
688 		goto out_bad;
689 	}
690 
691 ip_proto_again:
692 	switch (ip_proto) {
693 	case IPPROTO_GRE:
694 		switch (__skb_flow_dissect_gre(skb, key_control, flow_dissector,
695 					       target_container, data,
696 					       &proto, &nhoff, &hlen, flags)) {
697 		case FLOW_DISSECT_RET_OUT_GOOD:
698 			goto out_good;
699 		case FLOW_DISSECT_RET_OUT_BAD:
700 			goto out_bad;
701 		case FLOW_DISSECT_RET_OUT_PROTO_AGAIN:
702 			goto proto_again;
703 		}
704 	case NEXTHDR_HOP:
705 	case NEXTHDR_ROUTING:
706 	case NEXTHDR_DEST: {
707 		u8 _opthdr[2], *opthdr;
708 
709 		if (proto != htons(ETH_P_IPV6))
710 			break;
711 
712 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
713 					      data, hlen, &_opthdr);
714 		if (!opthdr)
715 			goto out_bad;
716 
717 		ip_proto = opthdr[0];
718 		nhoff += (opthdr[1] + 1) << 3;
719 
720 		goto ip_proto_again;
721 	}
722 	case NEXTHDR_FRAGMENT: {
723 		struct frag_hdr _fh, *fh;
724 
725 		if (proto != htons(ETH_P_IPV6))
726 			break;
727 
728 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
729 					  data, hlen, &_fh);
730 
731 		if (!fh)
732 			goto out_bad;
733 
734 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
735 
736 		nhoff += sizeof(_fh);
737 		ip_proto = fh->nexthdr;
738 
739 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
740 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
741 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
742 				goto ip_proto_again;
743 		}
744 		goto out_good;
745 	}
746 	case IPPROTO_IPIP:
747 		proto = htons(ETH_P_IP);
748 
749 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
750 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
751 			goto out_good;
752 
753 		goto ip;
754 	case IPPROTO_IPV6:
755 		proto = htons(ETH_P_IPV6);
756 
757 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
758 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
759 			goto out_good;
760 
761 		goto ipv6;
762 	case IPPROTO_MPLS:
763 		proto = htons(ETH_P_MPLS_UC);
764 		goto mpls;
765 	case IPPROTO_TCP:
766 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
767 				       data, nhoff, hlen);
768 		break;
769 	default:
770 		break;
771 	}
772 
773 	if (dissector_uses_key(flow_dissector,
774 			       FLOW_DISSECTOR_KEY_PORTS)) {
775 		key_ports = skb_flow_dissector_target(flow_dissector,
776 						      FLOW_DISSECTOR_KEY_PORTS,
777 						      target_container);
778 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
779 							data, hlen);
780 	}
781 
782 	if (dissector_uses_key(flow_dissector,
783 			       FLOW_DISSECTOR_KEY_ICMP)) {
784 		key_icmp = skb_flow_dissector_target(flow_dissector,
785 						     FLOW_DISSECTOR_KEY_ICMP,
786 						     target_container);
787 		key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
788 	}
789 
790 out_good:
791 	ret = true;
792 
793 	key_control->thoff = (u16)nhoff;
794 out:
795 	key_basic->n_proto = proto;
796 	key_basic->ip_proto = ip_proto;
797 
798 	return ret;
799 
800 out_bad:
801 	ret = false;
802 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
803 	goto out;
804 }
805 EXPORT_SYMBOL(__skb_flow_dissect);
806 
807 static u32 hashrnd __read_mostly;
808 static __always_inline void __flow_hash_secret_init(void)
809 {
810 	net_get_random_once(&hashrnd, sizeof(hashrnd));
811 }
812 
813 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
814 					     u32 keyval)
815 {
816 	return jhash2(words, length, keyval);
817 }
818 
819 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
820 {
821 	const void *p = flow;
822 
823 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
824 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
825 }
826 
827 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
828 {
829 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
830 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
831 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
832 		     sizeof(*flow) - sizeof(flow->addrs));
833 
834 	switch (flow->control.addr_type) {
835 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
836 		diff -= sizeof(flow->addrs.v4addrs);
837 		break;
838 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
839 		diff -= sizeof(flow->addrs.v6addrs);
840 		break;
841 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
842 		diff -= sizeof(flow->addrs.tipcaddrs);
843 		break;
844 	}
845 	return (sizeof(*flow) - diff) / sizeof(u32);
846 }
847 
848 __be32 flow_get_u32_src(const struct flow_keys *flow)
849 {
850 	switch (flow->control.addr_type) {
851 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
852 		return flow->addrs.v4addrs.src;
853 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
854 		return (__force __be32)ipv6_addr_hash(
855 			&flow->addrs.v6addrs.src);
856 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
857 		return flow->addrs.tipcaddrs.srcnode;
858 	default:
859 		return 0;
860 	}
861 }
862 EXPORT_SYMBOL(flow_get_u32_src);
863 
864 __be32 flow_get_u32_dst(const struct flow_keys *flow)
865 {
866 	switch (flow->control.addr_type) {
867 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
868 		return flow->addrs.v4addrs.dst;
869 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
870 		return (__force __be32)ipv6_addr_hash(
871 			&flow->addrs.v6addrs.dst);
872 	default:
873 		return 0;
874 	}
875 }
876 EXPORT_SYMBOL(flow_get_u32_dst);
877 
878 static inline void __flow_hash_consistentify(struct flow_keys *keys)
879 {
880 	int addr_diff, i;
881 
882 	switch (keys->control.addr_type) {
883 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
884 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
885 			    (__force u32)keys->addrs.v4addrs.src;
886 		if ((addr_diff < 0) ||
887 		    (addr_diff == 0 &&
888 		     ((__force u16)keys->ports.dst <
889 		      (__force u16)keys->ports.src))) {
890 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
891 			swap(keys->ports.src, keys->ports.dst);
892 		}
893 		break;
894 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
895 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
896 				   &keys->addrs.v6addrs.src,
897 				   sizeof(keys->addrs.v6addrs.dst));
898 		if ((addr_diff < 0) ||
899 		    (addr_diff == 0 &&
900 		     ((__force u16)keys->ports.dst <
901 		      (__force u16)keys->ports.src))) {
902 			for (i = 0; i < 4; i++)
903 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
904 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
905 			swap(keys->ports.src, keys->ports.dst);
906 		}
907 		break;
908 	}
909 }
910 
911 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
912 {
913 	u32 hash;
914 
915 	__flow_hash_consistentify(keys);
916 
917 	hash = __flow_hash_words(flow_keys_hash_start(keys),
918 				 flow_keys_hash_length(keys), keyval);
919 	if (!hash)
920 		hash = 1;
921 
922 	return hash;
923 }
924 
925 u32 flow_hash_from_keys(struct flow_keys *keys)
926 {
927 	__flow_hash_secret_init();
928 	return __flow_hash_from_keys(keys, hashrnd);
929 }
930 EXPORT_SYMBOL(flow_hash_from_keys);
931 
932 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
933 				  struct flow_keys *keys, u32 keyval)
934 {
935 	skb_flow_dissect_flow_keys(skb, keys,
936 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
937 
938 	return __flow_hash_from_keys(keys, keyval);
939 }
940 
941 struct _flow_keys_digest_data {
942 	__be16	n_proto;
943 	u8	ip_proto;
944 	u8	padding;
945 	__be32	ports;
946 	__be32	src;
947 	__be32	dst;
948 };
949 
950 void make_flow_keys_digest(struct flow_keys_digest *digest,
951 			   const struct flow_keys *flow)
952 {
953 	struct _flow_keys_digest_data *data =
954 	    (struct _flow_keys_digest_data *)digest;
955 
956 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
957 
958 	memset(digest, 0, sizeof(*digest));
959 
960 	data->n_proto = flow->basic.n_proto;
961 	data->ip_proto = flow->basic.ip_proto;
962 	data->ports = flow->ports.ports;
963 	data->src = flow->addrs.v4addrs.src;
964 	data->dst = flow->addrs.v4addrs.dst;
965 }
966 EXPORT_SYMBOL(make_flow_keys_digest);
967 
968 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
969 
970 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
971 {
972 	struct flow_keys keys;
973 
974 	__flow_hash_secret_init();
975 
976 	memset(&keys, 0, sizeof(keys));
977 	__skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
978 			   NULL, 0, 0, 0,
979 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
980 
981 	return __flow_hash_from_keys(&keys, hashrnd);
982 }
983 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
984 
985 /**
986  * __skb_get_hash: calculate a flow hash
987  * @skb: sk_buff to calculate flow hash from
988  *
989  * This function calculates a flow hash based on src/dst addresses
990  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
991  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
992  * if hash is a canonical 4-tuple hash over transport ports.
993  */
994 void __skb_get_hash(struct sk_buff *skb)
995 {
996 	struct flow_keys keys;
997 	u32 hash;
998 
999 	__flow_hash_secret_init();
1000 
1001 	hash = ___skb_get_hash(skb, &keys, hashrnd);
1002 
1003 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1004 }
1005 EXPORT_SYMBOL(__skb_get_hash);
1006 
1007 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
1008 {
1009 	struct flow_keys keys;
1010 
1011 	return ___skb_get_hash(skb, &keys, perturb);
1012 }
1013 EXPORT_SYMBOL(skb_get_hash_perturb);
1014 
1015 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1016 		   const struct flow_keys *keys, int hlen)
1017 {
1018 	u32 poff = keys->control.thoff;
1019 
1020 	/* skip L4 headers for fragments after the first */
1021 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1022 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1023 		return poff;
1024 
1025 	switch (keys->basic.ip_proto) {
1026 	case IPPROTO_TCP: {
1027 		/* access doff as u8 to avoid unaligned access */
1028 		const u8 *doff;
1029 		u8 _doff;
1030 
1031 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1032 					    data, hlen, &_doff);
1033 		if (!doff)
1034 			return poff;
1035 
1036 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1037 		break;
1038 	}
1039 	case IPPROTO_UDP:
1040 	case IPPROTO_UDPLITE:
1041 		poff += sizeof(struct udphdr);
1042 		break;
1043 	/* For the rest, we do not really care about header
1044 	 * extensions at this point for now.
1045 	 */
1046 	case IPPROTO_ICMP:
1047 		poff += sizeof(struct icmphdr);
1048 		break;
1049 	case IPPROTO_ICMPV6:
1050 		poff += sizeof(struct icmp6hdr);
1051 		break;
1052 	case IPPROTO_IGMP:
1053 		poff += sizeof(struct igmphdr);
1054 		break;
1055 	case IPPROTO_DCCP:
1056 		poff += sizeof(struct dccp_hdr);
1057 		break;
1058 	case IPPROTO_SCTP:
1059 		poff += sizeof(struct sctphdr);
1060 		break;
1061 	}
1062 
1063 	return poff;
1064 }
1065 
1066 /**
1067  * skb_get_poff - get the offset to the payload
1068  * @skb: sk_buff to get the payload offset from
1069  *
1070  * The function will get the offset to the payload as far as it could
1071  * be dissected.  The main user is currently BPF, so that we can dynamically
1072  * truncate packets without needing to push actual payload to the user
1073  * space and can analyze headers only, instead.
1074  */
1075 u32 skb_get_poff(const struct sk_buff *skb)
1076 {
1077 	struct flow_keys keys;
1078 
1079 	if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
1080 		return 0;
1081 
1082 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1083 }
1084 
1085 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1086 {
1087 	memset(keys, 0, sizeof(*keys));
1088 
1089 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1090 	    sizeof(keys->addrs.v6addrs.src));
1091 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1092 	    sizeof(keys->addrs.v6addrs.dst));
1093 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1094 	keys->ports.src = fl6->fl6_sport;
1095 	keys->ports.dst = fl6->fl6_dport;
1096 	keys->keyid.keyid = fl6->fl6_gre_key;
1097 	keys->tags.flow_label = (__force u32)fl6->flowlabel;
1098 	keys->basic.ip_proto = fl6->flowi6_proto;
1099 
1100 	return flow_hash_from_keys(keys);
1101 }
1102 EXPORT_SYMBOL(__get_hash_from_flowi6);
1103 
1104 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
1105 {
1106 	memset(keys, 0, sizeof(*keys));
1107 
1108 	keys->addrs.v4addrs.src = fl4->saddr;
1109 	keys->addrs.v4addrs.dst = fl4->daddr;
1110 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1111 	keys->ports.src = fl4->fl4_sport;
1112 	keys->ports.dst = fl4->fl4_dport;
1113 	keys->keyid.keyid = fl4->fl4_gre_key;
1114 	keys->basic.ip_proto = fl4->flowi4_proto;
1115 
1116 	return flow_hash_from_keys(keys);
1117 }
1118 EXPORT_SYMBOL(__get_hash_from_flowi4);
1119 
1120 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1121 	{
1122 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1123 		.offset = offsetof(struct flow_keys, control),
1124 	},
1125 	{
1126 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1127 		.offset = offsetof(struct flow_keys, basic),
1128 	},
1129 	{
1130 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1131 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1132 	},
1133 	{
1134 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1135 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1136 	},
1137 	{
1138 		.key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
1139 		.offset = offsetof(struct flow_keys, addrs.tipcaddrs),
1140 	},
1141 	{
1142 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1143 		.offset = offsetof(struct flow_keys, ports),
1144 	},
1145 	{
1146 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1147 		.offset = offsetof(struct flow_keys, vlan),
1148 	},
1149 	{
1150 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1151 		.offset = offsetof(struct flow_keys, tags),
1152 	},
1153 	{
1154 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1155 		.offset = offsetof(struct flow_keys, keyid),
1156 	},
1157 };
1158 
1159 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1160 	{
1161 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1162 		.offset = offsetof(struct flow_keys, control),
1163 	},
1164 	{
1165 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1166 		.offset = offsetof(struct flow_keys, basic),
1167 	},
1168 	{
1169 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1170 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1171 	},
1172 	{
1173 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1174 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1175 	},
1176 	{
1177 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1178 		.offset = offsetof(struct flow_keys, ports),
1179 	},
1180 };
1181 
1182 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
1183 	{
1184 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1185 		.offset = offsetof(struct flow_keys, control),
1186 	},
1187 	{
1188 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1189 		.offset = offsetof(struct flow_keys, basic),
1190 	},
1191 };
1192 
1193 struct flow_dissector flow_keys_dissector __read_mostly;
1194 EXPORT_SYMBOL(flow_keys_dissector);
1195 
1196 struct flow_dissector flow_keys_buf_dissector __read_mostly;
1197 
1198 static int __init init_default_flow_dissectors(void)
1199 {
1200 	skb_flow_dissector_init(&flow_keys_dissector,
1201 				flow_keys_dissector_keys,
1202 				ARRAY_SIZE(flow_keys_dissector_keys));
1203 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1204 				flow_keys_dissector_symmetric_keys,
1205 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1206 	skb_flow_dissector_init(&flow_keys_buf_dissector,
1207 				flow_keys_buf_dissector_keys,
1208 				ARRAY_SIZE(flow_keys_buf_dissector_keys));
1209 	return 0;
1210 }
1211 
1212 core_initcall(init_default_flow_dissectors);
1213