xref: /linux/net/core/flow_dissector.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <linux/igmp.h>
10 #include <linux/icmp.h>
11 #include <linux/sctp.h>
12 #include <linux/dccp.h>
13 #include <linux/if_tunnel.h>
14 #include <linux/if_pppox.h>
15 #include <linux/ppp_defs.h>
16 #include <linux/stddef.h>
17 #include <linux/if_ether.h>
18 #include <linux/mpls.h>
19 #include <net/flow_dissector.h>
20 #include <scsi/fc/fc_fcoe.h>
21 
22 static bool skb_flow_dissector_uses_key(struct flow_dissector *flow_dissector,
23 					enum flow_dissector_key_id key_id)
24 {
25 	return flow_dissector->used_keys & (1 << key_id);
26 }
27 
28 static void skb_flow_dissector_set_key(struct flow_dissector *flow_dissector,
29 				       enum flow_dissector_key_id key_id)
30 {
31 	flow_dissector->used_keys |= (1 << key_id);
32 }
33 
34 static void *skb_flow_dissector_target(struct flow_dissector *flow_dissector,
35 				       enum flow_dissector_key_id key_id,
36 				       void *target_container)
37 {
38 	return ((char *) target_container) + flow_dissector->offset[key_id];
39 }
40 
41 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
42 			     const struct flow_dissector_key *key,
43 			     unsigned int key_count)
44 {
45 	unsigned int i;
46 
47 	memset(flow_dissector, 0, sizeof(*flow_dissector));
48 
49 	for (i = 0; i < key_count; i++, key++) {
50 		/* User should make sure that every key target offset is withing
51 		 * boundaries of unsigned short.
52 		 */
53 		BUG_ON(key->offset > USHRT_MAX);
54 		BUG_ON(skb_flow_dissector_uses_key(flow_dissector,
55 						   key->key_id));
56 
57 		skb_flow_dissector_set_key(flow_dissector, key->key_id);
58 		flow_dissector->offset[key->key_id] = key->offset;
59 	}
60 
61 	/* Ensure that the dissector always includes control and basic key.
62 	 * That way we are able to avoid handling lack of these in fast path.
63 	 */
64 	BUG_ON(!skb_flow_dissector_uses_key(flow_dissector,
65 					    FLOW_DISSECTOR_KEY_CONTROL));
66 	BUG_ON(!skb_flow_dissector_uses_key(flow_dissector,
67 					    FLOW_DISSECTOR_KEY_BASIC));
68 }
69 EXPORT_SYMBOL(skb_flow_dissector_init);
70 
71 /**
72  * __skb_flow_get_ports - extract the upper layer ports and return them
73  * @skb: sk_buff to extract the ports from
74  * @thoff: transport header offset
75  * @ip_proto: protocol for which to get port offset
76  * @data: raw buffer pointer to the packet, if NULL use skb->data
77  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
78  *
79  * The function will try to retrieve the ports at offset thoff + poff where poff
80  * is the protocol port offset returned from proto_ports_offset
81  */
82 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
83 			    void *data, int hlen)
84 {
85 	int poff = proto_ports_offset(ip_proto);
86 
87 	if (!data) {
88 		data = skb->data;
89 		hlen = skb_headlen(skb);
90 	}
91 
92 	if (poff >= 0) {
93 		__be32 *ports, _ports;
94 
95 		ports = __skb_header_pointer(skb, thoff + poff,
96 					     sizeof(_ports), data, hlen, &_ports);
97 		if (ports)
98 			return *ports;
99 	}
100 
101 	return 0;
102 }
103 EXPORT_SYMBOL(__skb_flow_get_ports);
104 
105 /**
106  * __skb_flow_dissect - extract the flow_keys struct and return it
107  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
108  * @flow_dissector: list of keys to dissect
109  * @target_container: target structure to put dissected values into
110  * @data: raw buffer pointer to the packet, if NULL use skb->data
111  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
112  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
113  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
114  *
115  * The function will try to retrieve individual keys into target specified
116  * by flow_dissector from either the skbuff or a raw buffer specified by the
117  * rest parameters.
118  *
119  * Caller must take care of zeroing target container memory.
120  */
121 bool __skb_flow_dissect(const struct sk_buff *skb,
122 			struct flow_dissector *flow_dissector,
123 			void *target_container,
124 			void *data, __be16 proto, int nhoff, int hlen)
125 {
126 	struct flow_dissector_key_control *key_control;
127 	struct flow_dissector_key_basic *key_basic;
128 	struct flow_dissector_key_addrs *key_addrs;
129 	struct flow_dissector_key_ports *key_ports;
130 	struct flow_dissector_key_tags *key_tags;
131 	struct flow_dissector_key_keyid *key_keyid;
132 	u8 ip_proto = 0;
133 
134 	if (!data) {
135 		data = skb->data;
136 		proto = skb->protocol;
137 		nhoff = skb_network_offset(skb);
138 		hlen = skb_headlen(skb);
139 	}
140 
141 	/* It is ensured by skb_flow_dissector_init() that control key will
142 	 * be always present.
143 	 */
144 	key_control = skb_flow_dissector_target(flow_dissector,
145 						FLOW_DISSECTOR_KEY_CONTROL,
146 						target_container);
147 
148 	/* It is ensured by skb_flow_dissector_init() that basic key will
149 	 * be always present.
150 	 */
151 	key_basic = skb_flow_dissector_target(flow_dissector,
152 					      FLOW_DISSECTOR_KEY_BASIC,
153 					      target_container);
154 
155 	if (skb_flow_dissector_uses_key(flow_dissector,
156 					FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
157 		struct ethhdr *eth = eth_hdr(skb);
158 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
159 
160 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
161 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
162 							  target_container);
163 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
164 	}
165 
166 again:
167 	switch (proto) {
168 	case htons(ETH_P_IP): {
169 		const struct iphdr *iph;
170 		struct iphdr _iph;
171 ip:
172 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
173 		if (!iph || iph->ihl < 5)
174 			return false;
175 		nhoff += iph->ihl * 4;
176 
177 		ip_proto = iph->protocol;
178 		if (ip_is_fragment(iph))
179 			ip_proto = 0;
180 
181 		if (!skb_flow_dissector_uses_key(flow_dissector,
182 						 FLOW_DISSECTOR_KEY_IPV4_ADDRS))
183 			break;
184 
185 		key_addrs = skb_flow_dissector_target(flow_dissector,
186 			      FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container);
187 		memcpy(&key_addrs->v4addrs, &iph->saddr,
188 		       sizeof(key_addrs->v4addrs));
189 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
190 		break;
191 	}
192 	case htons(ETH_P_IPV6): {
193 		const struct ipv6hdr *iph;
194 		struct ipv6hdr _iph;
195 		__be32 flow_label;
196 
197 ipv6:
198 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
199 		if (!iph)
200 			return false;
201 
202 		ip_proto = iph->nexthdr;
203 		nhoff += sizeof(struct ipv6hdr);
204 
205 		if (skb_flow_dissector_uses_key(flow_dissector,
206 						FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
207 			struct flow_dissector_key_ipv6_addrs *key_ipv6_addrs;
208 
209 			key_ipv6_addrs = skb_flow_dissector_target(flow_dissector,
210 								   FLOW_DISSECTOR_KEY_IPV6_ADDRS,
211 								   target_container);
212 
213 			memcpy(key_ipv6_addrs, &iph->saddr, sizeof(*key_ipv6_addrs));
214 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
215 		}
216 
217 		flow_label = ip6_flowlabel(iph);
218 		if (flow_label) {
219 			if (skb_flow_dissector_uses_key(flow_dissector,
220 				FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
221 				key_tags = skb_flow_dissector_target(flow_dissector,
222 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
223 								     target_container);
224 				key_tags->flow_label = ntohl(flow_label);
225 			}
226 		}
227 
228 		break;
229 	}
230 	case htons(ETH_P_8021AD):
231 	case htons(ETH_P_8021Q): {
232 		const struct vlan_hdr *vlan;
233 		struct vlan_hdr _vlan;
234 
235 		vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
236 		if (!vlan)
237 			return false;
238 
239 		if (skb_flow_dissector_uses_key(flow_dissector,
240 						FLOW_DISSECTOR_KEY_VLANID)) {
241 			key_tags = skb_flow_dissector_target(flow_dissector,
242 							     FLOW_DISSECTOR_KEY_VLANID,
243 							     target_container);
244 
245 			key_tags->vlan_id = skb_vlan_tag_get_id(skb);
246 		}
247 
248 		proto = vlan->h_vlan_encapsulated_proto;
249 		nhoff += sizeof(*vlan);
250 		goto again;
251 	}
252 	case htons(ETH_P_PPP_SES): {
253 		struct {
254 			struct pppoe_hdr hdr;
255 			__be16 proto;
256 		} *hdr, _hdr;
257 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
258 		if (!hdr)
259 			return false;
260 		proto = hdr->proto;
261 		nhoff += PPPOE_SES_HLEN;
262 		switch (proto) {
263 		case htons(PPP_IP):
264 			goto ip;
265 		case htons(PPP_IPV6):
266 			goto ipv6;
267 		default:
268 			return false;
269 		}
270 	}
271 	case htons(ETH_P_TIPC): {
272 		struct {
273 			__be32 pre[3];
274 			__be32 srcnode;
275 		} *hdr, _hdr;
276 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
277 		if (!hdr)
278 			return false;
279 		key_basic->n_proto = proto;
280 		key_control->thoff = (u16)nhoff;
281 
282 		if (skb_flow_dissector_uses_key(flow_dissector,
283 						FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
284 			key_addrs = skb_flow_dissector_target(flow_dissector,
285 							      FLOW_DISSECTOR_KEY_TIPC_ADDRS,
286 							      target_container);
287 			key_addrs->tipcaddrs.srcnode = hdr->srcnode;
288 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
289 		}
290 		return true;
291 	}
292 
293 	case htons(ETH_P_MPLS_UC):
294 	case htons(ETH_P_MPLS_MC): {
295 		struct mpls_label *hdr, _hdr[2];
296 mpls:
297 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
298 					   hlen, &_hdr);
299 		if (!hdr)
300 			return false;
301 
302 		if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
303 		     MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
304 			if (skb_flow_dissector_uses_key(flow_dissector,
305 							FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
306 				key_keyid = skb_flow_dissector_target(flow_dissector,
307 								      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
308 								      target_container);
309 				key_keyid->keyid = hdr[1].entry &
310 					htonl(MPLS_LS_LABEL_MASK);
311 			}
312 
313 			key_basic->n_proto = proto;
314 			key_basic->ip_proto = ip_proto;
315 			key_control->thoff = (u16)nhoff;
316 
317 			return true;
318 		}
319 
320 		return true;
321 	}
322 
323 	case htons(ETH_P_FCOE):
324 		key_control->thoff = (u16)(nhoff + FCOE_HEADER_LEN);
325 		/* fall through */
326 	default:
327 		return false;
328 	}
329 
330 ip_proto_again:
331 	switch (ip_proto) {
332 	case IPPROTO_GRE: {
333 		struct gre_hdr {
334 			__be16 flags;
335 			__be16 proto;
336 		} *hdr, _hdr;
337 
338 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
339 		if (!hdr)
340 			return false;
341 		/*
342 		 * Only look inside GRE if version zero and no
343 		 * routing
344 		 */
345 		if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
346 			break;
347 
348 		proto = hdr->proto;
349 		nhoff += 4;
350 		if (hdr->flags & GRE_CSUM)
351 			nhoff += 4;
352 		if (hdr->flags & GRE_KEY) {
353 			const __be32 *keyid;
354 			__be32 _keyid;
355 
356 			keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
357 						     data, hlen, &_keyid);
358 
359 			if (!keyid)
360 				return false;
361 
362 			if (skb_flow_dissector_uses_key(flow_dissector,
363 							FLOW_DISSECTOR_KEY_GRE_KEYID)) {
364 				key_keyid = skb_flow_dissector_target(flow_dissector,
365 								      FLOW_DISSECTOR_KEY_GRE_KEYID,
366 								      target_container);
367 				key_keyid->keyid = *keyid;
368 			}
369 			nhoff += 4;
370 		}
371 		if (hdr->flags & GRE_SEQ)
372 			nhoff += 4;
373 		if (proto == htons(ETH_P_TEB)) {
374 			const struct ethhdr *eth;
375 			struct ethhdr _eth;
376 
377 			eth = __skb_header_pointer(skb, nhoff,
378 						   sizeof(_eth),
379 						   data, hlen, &_eth);
380 			if (!eth)
381 				return false;
382 			proto = eth->h_proto;
383 			nhoff += sizeof(*eth);
384 		}
385 		goto again;
386 	}
387 	case NEXTHDR_HOP:
388 	case NEXTHDR_ROUTING:
389 	case NEXTHDR_DEST: {
390 		u8 _opthdr[2], *opthdr;
391 
392 		if (proto != htons(ETH_P_IPV6))
393 			break;
394 
395 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
396 					      data, hlen, &_opthdr);
397 		if (!opthdr)
398 			return false;
399 
400 		ip_proto = opthdr[0];
401 		nhoff += (opthdr[1] + 1) << 3;
402 
403 		goto ip_proto_again;
404 	}
405 	case IPPROTO_IPIP:
406 		proto = htons(ETH_P_IP);
407 		goto ip;
408 	case IPPROTO_IPV6:
409 		proto = htons(ETH_P_IPV6);
410 		goto ipv6;
411 	case IPPROTO_MPLS:
412 		proto = htons(ETH_P_MPLS_UC);
413 		goto mpls;
414 	default:
415 		break;
416 	}
417 
418 	key_basic->n_proto = proto;
419 	key_basic->ip_proto = ip_proto;
420 	key_control->thoff = (u16)nhoff;
421 
422 	if (skb_flow_dissector_uses_key(flow_dissector,
423 					FLOW_DISSECTOR_KEY_PORTS)) {
424 		key_ports = skb_flow_dissector_target(flow_dissector,
425 						      FLOW_DISSECTOR_KEY_PORTS,
426 						      target_container);
427 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
428 							data, hlen);
429 	}
430 
431 	return true;
432 }
433 EXPORT_SYMBOL(__skb_flow_dissect);
434 
435 static u32 hashrnd __read_mostly;
436 static __always_inline void __flow_hash_secret_init(void)
437 {
438 	net_get_random_once(&hashrnd, sizeof(hashrnd));
439 }
440 
441 static __always_inline u32 __flow_hash_words(u32 *words, u32 length, u32 keyval)
442 {
443 	return jhash2(words, length, keyval);
444 }
445 
446 static inline void *flow_keys_hash_start(struct flow_keys *flow)
447 {
448 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
449 	return (void *)flow + FLOW_KEYS_HASH_OFFSET;
450 }
451 
452 static inline size_t flow_keys_hash_length(struct flow_keys *flow)
453 {
454 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
455 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
456 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
457 		     sizeof(*flow) - sizeof(flow->addrs));
458 
459 	switch (flow->control.addr_type) {
460 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
461 		diff -= sizeof(flow->addrs.v4addrs);
462 		break;
463 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
464 		diff -= sizeof(flow->addrs.v6addrs);
465 		break;
466 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
467 		diff -= sizeof(flow->addrs.tipcaddrs);
468 		break;
469 	}
470 	return (sizeof(*flow) - diff) / sizeof(u32);
471 }
472 
473 __be32 flow_get_u32_src(const struct flow_keys *flow)
474 {
475 	switch (flow->control.addr_type) {
476 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
477 		return flow->addrs.v4addrs.src;
478 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
479 		return (__force __be32)ipv6_addr_hash(
480 			&flow->addrs.v6addrs.src);
481 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
482 		return flow->addrs.tipcaddrs.srcnode;
483 	default:
484 		return 0;
485 	}
486 }
487 EXPORT_SYMBOL(flow_get_u32_src);
488 
489 __be32 flow_get_u32_dst(const struct flow_keys *flow)
490 {
491 	switch (flow->control.addr_type) {
492 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
493 		return flow->addrs.v4addrs.dst;
494 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
495 		return (__force __be32)ipv6_addr_hash(
496 			&flow->addrs.v6addrs.dst);
497 	default:
498 		return 0;
499 	}
500 }
501 EXPORT_SYMBOL(flow_get_u32_dst);
502 
503 static inline void __flow_hash_consistentify(struct flow_keys *keys)
504 {
505 	int addr_diff, i;
506 
507 	switch (keys->control.addr_type) {
508 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
509 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
510 			    (__force u32)keys->addrs.v4addrs.src;
511 		if ((addr_diff < 0) ||
512 		    (addr_diff == 0 &&
513 		     ((__force u16)keys->ports.dst <
514 		      (__force u16)keys->ports.src))) {
515 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
516 			swap(keys->ports.src, keys->ports.dst);
517 		}
518 		break;
519 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
520 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
521 				   &keys->addrs.v6addrs.src,
522 				   sizeof(keys->addrs.v6addrs.dst));
523 		if ((addr_diff < 0) ||
524 		    (addr_diff == 0 &&
525 		     ((__force u16)keys->ports.dst <
526 		      (__force u16)keys->ports.src))) {
527 			for (i = 0; i < 4; i++)
528 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
529 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
530 			swap(keys->ports.src, keys->ports.dst);
531 		}
532 		break;
533 	}
534 }
535 
536 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
537 {
538 	u32 hash;
539 
540 	__flow_hash_consistentify(keys);
541 
542 	hash = __flow_hash_words((u32 *)flow_keys_hash_start(keys),
543 				 flow_keys_hash_length(keys), keyval);
544 	if (!hash)
545 		hash = 1;
546 
547 	return hash;
548 }
549 
550 u32 flow_hash_from_keys(struct flow_keys *keys)
551 {
552 	__flow_hash_secret_init();
553 	return __flow_hash_from_keys(keys, hashrnd);
554 }
555 EXPORT_SYMBOL(flow_hash_from_keys);
556 
557 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
558 				  struct flow_keys *keys, u32 keyval)
559 {
560 	if (!skb_flow_dissect_flow_keys(skb, keys))
561 		return 0;
562 
563 	return __flow_hash_from_keys(keys, keyval);
564 }
565 
566 struct _flow_keys_digest_data {
567 	__be16	n_proto;
568 	u8	ip_proto;
569 	u8	padding;
570 	__be32	ports;
571 	__be32	src;
572 	__be32	dst;
573 };
574 
575 void make_flow_keys_digest(struct flow_keys_digest *digest,
576 			   const struct flow_keys *flow)
577 {
578 	struct _flow_keys_digest_data *data =
579 	    (struct _flow_keys_digest_data *)digest;
580 
581 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
582 
583 	memset(digest, 0, sizeof(*digest));
584 
585 	data->n_proto = flow->basic.n_proto;
586 	data->ip_proto = flow->basic.ip_proto;
587 	data->ports = flow->ports.ports;
588 	data->src = flow->addrs.v4addrs.src;
589 	data->dst = flow->addrs.v4addrs.dst;
590 }
591 EXPORT_SYMBOL(make_flow_keys_digest);
592 
593 /**
594  * __skb_get_hash: calculate a flow hash
595  * @skb: sk_buff to calculate flow hash from
596  *
597  * This function calculates a flow hash based on src/dst addresses
598  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
599  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
600  * if hash is a canonical 4-tuple hash over transport ports.
601  */
602 void __skb_get_hash(struct sk_buff *skb)
603 {
604 	struct flow_keys keys;
605 	u32 hash;
606 
607 	__flow_hash_secret_init();
608 
609 	hash = ___skb_get_hash(skb, &keys, hashrnd);
610 	if (!hash)
611 		return;
612 	if (keys.ports.ports)
613 		skb->l4_hash = 1;
614 	skb->sw_hash = 1;
615 	skb->hash = hash;
616 }
617 EXPORT_SYMBOL(__skb_get_hash);
618 
619 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
620 {
621 	struct flow_keys keys;
622 
623 	return ___skb_get_hash(skb, &keys, perturb);
624 }
625 EXPORT_SYMBOL(skb_get_hash_perturb);
626 
627 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
628 		   const struct flow_keys *keys, int hlen)
629 {
630 	u32 poff = keys->control.thoff;
631 
632 	switch (keys->basic.ip_proto) {
633 	case IPPROTO_TCP: {
634 		/* access doff as u8 to avoid unaligned access */
635 		const u8 *doff;
636 		u8 _doff;
637 
638 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
639 					    data, hlen, &_doff);
640 		if (!doff)
641 			return poff;
642 
643 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
644 		break;
645 	}
646 	case IPPROTO_UDP:
647 	case IPPROTO_UDPLITE:
648 		poff += sizeof(struct udphdr);
649 		break;
650 	/* For the rest, we do not really care about header
651 	 * extensions at this point for now.
652 	 */
653 	case IPPROTO_ICMP:
654 		poff += sizeof(struct icmphdr);
655 		break;
656 	case IPPROTO_ICMPV6:
657 		poff += sizeof(struct icmp6hdr);
658 		break;
659 	case IPPROTO_IGMP:
660 		poff += sizeof(struct igmphdr);
661 		break;
662 	case IPPROTO_DCCP:
663 		poff += sizeof(struct dccp_hdr);
664 		break;
665 	case IPPROTO_SCTP:
666 		poff += sizeof(struct sctphdr);
667 		break;
668 	}
669 
670 	return poff;
671 }
672 
673 /**
674  * skb_get_poff - get the offset to the payload
675  * @skb: sk_buff to get the payload offset from
676  *
677  * The function will get the offset to the payload as far as it could
678  * be dissected.  The main user is currently BPF, so that we can dynamically
679  * truncate packets without needing to push actual payload to the user
680  * space and can analyze headers only, instead.
681  */
682 u32 skb_get_poff(const struct sk_buff *skb)
683 {
684 	struct flow_keys keys;
685 
686 	if (!skb_flow_dissect_flow_keys(skb, &keys))
687 		return 0;
688 
689 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
690 }
691 
692 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
693 	{
694 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
695 		.offset = offsetof(struct flow_keys, control),
696 	},
697 	{
698 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
699 		.offset = offsetof(struct flow_keys, basic),
700 	},
701 	{
702 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
703 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
704 	},
705 	{
706 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
707 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
708 	},
709 	{
710 		.key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
711 		.offset = offsetof(struct flow_keys, addrs.tipcaddrs),
712 	},
713 	{
714 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
715 		.offset = offsetof(struct flow_keys, ports),
716 	},
717 	{
718 		.key_id = FLOW_DISSECTOR_KEY_VLANID,
719 		.offset = offsetof(struct flow_keys, tags),
720 	},
721 	{
722 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
723 		.offset = offsetof(struct flow_keys, tags),
724 	},
725 	{
726 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
727 		.offset = offsetof(struct flow_keys, keyid),
728 	},
729 };
730 
731 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
732 	{
733 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
734 		.offset = offsetof(struct flow_keys, control),
735 	},
736 	{
737 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
738 		.offset = offsetof(struct flow_keys, basic),
739 	},
740 };
741 
742 struct flow_dissector flow_keys_dissector __read_mostly;
743 EXPORT_SYMBOL(flow_keys_dissector);
744 
745 struct flow_dissector flow_keys_buf_dissector __read_mostly;
746 
747 static int __init init_default_flow_dissectors(void)
748 {
749 	skb_flow_dissector_init(&flow_keys_dissector,
750 				flow_keys_dissector_keys,
751 				ARRAY_SIZE(flow_keys_dissector_keys));
752 	skb_flow_dissector_init(&flow_keys_buf_dissector,
753 				flow_keys_buf_dissector_keys,
754 				ARRAY_SIZE(flow_keys_buf_dissector_keys));
755 	return 0;
756 }
757 
758 late_initcall_sync(init_default_flow_dissectors);
759