xref: /linux/net/core/flow_dissector.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <linux/igmp.h>
10 #include <linux/icmp.h>
11 #include <linux/sctp.h>
12 #include <linux/dccp.h>
13 #include <linux/if_tunnel.h>
14 #include <linux/if_pppox.h>
15 #include <linux/ppp_defs.h>
16 #include <linux/stddef.h>
17 #include <linux/if_ether.h>
18 #include <linux/mpls.h>
19 #include <net/flow_dissector.h>
20 #include <scsi/fc/fc_fcoe.h>
21 
22 static bool dissector_uses_key(const struct flow_dissector *flow_dissector,
23 			       enum flow_dissector_key_id key_id)
24 {
25 	return flow_dissector->used_keys & (1 << key_id);
26 }
27 
28 static void dissector_set_key(struct flow_dissector *flow_dissector,
29 			      enum flow_dissector_key_id key_id)
30 {
31 	flow_dissector->used_keys |= (1 << key_id);
32 }
33 
34 static void *skb_flow_dissector_target(struct flow_dissector *flow_dissector,
35 				       enum flow_dissector_key_id key_id,
36 				       void *target_container)
37 {
38 	return ((char *) target_container) + flow_dissector->offset[key_id];
39 }
40 
41 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
42 			     const struct flow_dissector_key *key,
43 			     unsigned int key_count)
44 {
45 	unsigned int i;
46 
47 	memset(flow_dissector, 0, sizeof(*flow_dissector));
48 
49 	for (i = 0; i < key_count; i++, key++) {
50 		/* User should make sure that every key target offset is withing
51 		 * boundaries of unsigned short.
52 		 */
53 		BUG_ON(key->offset > USHRT_MAX);
54 		BUG_ON(dissector_uses_key(flow_dissector,
55 					  key->key_id));
56 
57 		dissector_set_key(flow_dissector, key->key_id);
58 		flow_dissector->offset[key->key_id] = key->offset;
59 	}
60 
61 	/* Ensure that the dissector always includes control and basic key.
62 	 * That way we are able to avoid handling lack of these in fast path.
63 	 */
64 	BUG_ON(!dissector_uses_key(flow_dissector,
65 				   FLOW_DISSECTOR_KEY_CONTROL));
66 	BUG_ON(!dissector_uses_key(flow_dissector,
67 				   FLOW_DISSECTOR_KEY_BASIC));
68 }
69 EXPORT_SYMBOL(skb_flow_dissector_init);
70 
71 /**
72  * __skb_flow_get_ports - extract the upper layer ports and return them
73  * @skb: sk_buff to extract the ports from
74  * @thoff: transport header offset
75  * @ip_proto: protocol for which to get port offset
76  * @data: raw buffer pointer to the packet, if NULL use skb->data
77  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
78  *
79  * The function will try to retrieve the ports at offset thoff + poff where poff
80  * is the protocol port offset returned from proto_ports_offset
81  */
82 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
83 			    void *data, int hlen)
84 {
85 	int poff = proto_ports_offset(ip_proto);
86 
87 	if (!data) {
88 		data = skb->data;
89 		hlen = skb_headlen(skb);
90 	}
91 
92 	if (poff >= 0) {
93 		__be32 *ports, _ports;
94 
95 		ports = __skb_header_pointer(skb, thoff + poff,
96 					     sizeof(_ports), data, hlen, &_ports);
97 		if (ports)
98 			return *ports;
99 	}
100 
101 	return 0;
102 }
103 EXPORT_SYMBOL(__skb_flow_get_ports);
104 
105 /**
106  * __skb_flow_dissect - extract the flow_keys struct and return it
107  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
108  * @flow_dissector: list of keys to dissect
109  * @target_container: target structure to put dissected values into
110  * @data: raw buffer pointer to the packet, if NULL use skb->data
111  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
112  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
113  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
114  *
115  * The function will try to retrieve individual keys into target specified
116  * by flow_dissector from either the skbuff or a raw buffer specified by the
117  * rest parameters.
118  *
119  * Caller must take care of zeroing target container memory.
120  */
121 bool __skb_flow_dissect(const struct sk_buff *skb,
122 			struct flow_dissector *flow_dissector,
123 			void *target_container,
124 			void *data, __be16 proto, int nhoff, int hlen,
125 			unsigned int flags)
126 {
127 	struct flow_dissector_key_control *key_control;
128 	struct flow_dissector_key_basic *key_basic;
129 	struct flow_dissector_key_addrs *key_addrs;
130 	struct flow_dissector_key_ports *key_ports;
131 	struct flow_dissector_key_tags *key_tags;
132 	struct flow_dissector_key_keyid *key_keyid;
133 	u8 ip_proto = 0;
134 	bool ret = false;
135 
136 	if (!data) {
137 		data = skb->data;
138 		proto = skb->protocol;
139 		nhoff = skb_network_offset(skb);
140 		hlen = skb_headlen(skb);
141 	}
142 
143 	/* It is ensured by skb_flow_dissector_init() that control key will
144 	 * be always present.
145 	 */
146 	key_control = skb_flow_dissector_target(flow_dissector,
147 						FLOW_DISSECTOR_KEY_CONTROL,
148 						target_container);
149 
150 	/* It is ensured by skb_flow_dissector_init() that basic key will
151 	 * be always present.
152 	 */
153 	key_basic = skb_flow_dissector_target(flow_dissector,
154 					      FLOW_DISSECTOR_KEY_BASIC,
155 					      target_container);
156 
157 	if (dissector_uses_key(flow_dissector,
158 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
159 		struct ethhdr *eth = eth_hdr(skb);
160 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
161 
162 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
163 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
164 							  target_container);
165 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
166 	}
167 
168 again:
169 	switch (proto) {
170 	case htons(ETH_P_IP): {
171 		const struct iphdr *iph;
172 		struct iphdr _iph;
173 ip:
174 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
175 		if (!iph || iph->ihl < 5)
176 			goto out_bad;
177 		nhoff += iph->ihl * 4;
178 
179 		ip_proto = iph->protocol;
180 
181 		if (!dissector_uses_key(flow_dissector,
182 					FLOW_DISSECTOR_KEY_IPV4_ADDRS))
183 			break;
184 
185 		key_addrs = skb_flow_dissector_target(flow_dissector,
186 			      FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container);
187 		memcpy(&key_addrs->v4addrs, &iph->saddr,
188 		       sizeof(key_addrs->v4addrs));
189 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
190 
191 		if (ip_is_fragment(iph)) {
192 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
193 
194 			if (iph->frag_off & htons(IP_OFFSET)) {
195 				goto out_good;
196 			} else {
197 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
198 				if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
199 					goto out_good;
200 			}
201 		}
202 
203 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
204 			goto out_good;
205 
206 		break;
207 	}
208 	case htons(ETH_P_IPV6): {
209 		const struct ipv6hdr *iph;
210 		struct ipv6hdr _iph;
211 
212 ipv6:
213 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
214 		if (!iph)
215 			goto out_bad;
216 
217 		ip_proto = iph->nexthdr;
218 		nhoff += sizeof(struct ipv6hdr);
219 
220 		if (dissector_uses_key(flow_dissector,
221 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
222 			struct flow_dissector_key_ipv6_addrs *key_ipv6_addrs;
223 
224 			key_ipv6_addrs = skb_flow_dissector_target(flow_dissector,
225 								   FLOW_DISSECTOR_KEY_IPV6_ADDRS,
226 								   target_container);
227 
228 			memcpy(key_ipv6_addrs, &iph->saddr, sizeof(*key_ipv6_addrs));
229 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
230 		}
231 
232 		if ((dissector_uses_key(flow_dissector,
233 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
234 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
235 		    ip6_flowlabel(iph)) {
236 			__be32 flow_label = ip6_flowlabel(iph);
237 
238 			if (dissector_uses_key(flow_dissector,
239 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
240 				key_tags = skb_flow_dissector_target(flow_dissector,
241 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
242 								     target_container);
243 				key_tags->flow_label = ntohl(flow_label);
244 			}
245 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
246 				goto out_good;
247 		}
248 
249 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
250 			goto out_good;
251 
252 		break;
253 	}
254 	case htons(ETH_P_8021AD):
255 	case htons(ETH_P_8021Q): {
256 		const struct vlan_hdr *vlan;
257 		struct vlan_hdr _vlan;
258 
259 		vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
260 		if (!vlan)
261 			goto out_bad;
262 
263 		if (dissector_uses_key(flow_dissector,
264 				       FLOW_DISSECTOR_KEY_VLANID)) {
265 			key_tags = skb_flow_dissector_target(flow_dissector,
266 							     FLOW_DISSECTOR_KEY_VLANID,
267 							     target_container);
268 
269 			key_tags->vlan_id = skb_vlan_tag_get_id(skb);
270 		}
271 
272 		proto = vlan->h_vlan_encapsulated_proto;
273 		nhoff += sizeof(*vlan);
274 		goto again;
275 	}
276 	case htons(ETH_P_PPP_SES): {
277 		struct {
278 			struct pppoe_hdr hdr;
279 			__be16 proto;
280 		} *hdr, _hdr;
281 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
282 		if (!hdr)
283 			goto out_bad;
284 		proto = hdr->proto;
285 		nhoff += PPPOE_SES_HLEN;
286 		switch (proto) {
287 		case htons(PPP_IP):
288 			goto ip;
289 		case htons(PPP_IPV6):
290 			goto ipv6;
291 		default:
292 			goto out_bad;
293 		}
294 	}
295 	case htons(ETH_P_TIPC): {
296 		struct {
297 			__be32 pre[3];
298 			__be32 srcnode;
299 		} *hdr, _hdr;
300 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
301 		if (!hdr)
302 			goto out_bad;
303 
304 		if (dissector_uses_key(flow_dissector,
305 				       FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
306 			key_addrs = skb_flow_dissector_target(flow_dissector,
307 							      FLOW_DISSECTOR_KEY_TIPC_ADDRS,
308 							      target_container);
309 			key_addrs->tipcaddrs.srcnode = hdr->srcnode;
310 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
311 		}
312 		goto out_good;
313 	}
314 
315 	case htons(ETH_P_MPLS_UC):
316 	case htons(ETH_P_MPLS_MC): {
317 		struct mpls_label *hdr, _hdr[2];
318 mpls:
319 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
320 					   hlen, &_hdr);
321 		if (!hdr)
322 			goto out_bad;
323 
324 		if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
325 		     MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
326 			if (dissector_uses_key(flow_dissector,
327 					       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
328 				key_keyid = skb_flow_dissector_target(flow_dissector,
329 								      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
330 								      target_container);
331 				key_keyid->keyid = hdr[1].entry &
332 					htonl(MPLS_LS_LABEL_MASK);
333 			}
334 
335 			goto out_good;
336 		}
337 
338 		goto out_good;
339 	}
340 
341 	case htons(ETH_P_FCOE):
342 		key_control->thoff = (u16)(nhoff + FCOE_HEADER_LEN);
343 		/* fall through */
344 	default:
345 		goto out_bad;
346 	}
347 
348 ip_proto_again:
349 	switch (ip_proto) {
350 	case IPPROTO_GRE: {
351 		struct gre_hdr {
352 			__be16 flags;
353 			__be16 proto;
354 		} *hdr, _hdr;
355 
356 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
357 		if (!hdr)
358 			goto out_bad;
359 		/*
360 		 * Only look inside GRE if version zero and no
361 		 * routing
362 		 */
363 		if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
364 			break;
365 
366 		proto = hdr->proto;
367 		nhoff += 4;
368 		if (hdr->flags & GRE_CSUM)
369 			nhoff += 4;
370 		if (hdr->flags & GRE_KEY) {
371 			const __be32 *keyid;
372 			__be32 _keyid;
373 
374 			keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
375 						     data, hlen, &_keyid);
376 
377 			if (!keyid)
378 				goto out_bad;
379 
380 			if (dissector_uses_key(flow_dissector,
381 					       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
382 				key_keyid = skb_flow_dissector_target(flow_dissector,
383 								      FLOW_DISSECTOR_KEY_GRE_KEYID,
384 								      target_container);
385 				key_keyid->keyid = *keyid;
386 			}
387 			nhoff += 4;
388 		}
389 		if (hdr->flags & GRE_SEQ)
390 			nhoff += 4;
391 		if (proto == htons(ETH_P_TEB)) {
392 			const struct ethhdr *eth;
393 			struct ethhdr _eth;
394 
395 			eth = __skb_header_pointer(skb, nhoff,
396 						   sizeof(_eth),
397 						   data, hlen, &_eth);
398 			if (!eth)
399 				goto out_bad;
400 			proto = eth->h_proto;
401 			nhoff += sizeof(*eth);
402 
403 			/* Cap headers that we access via pointers at the
404 			 * end of the Ethernet header as our maximum alignment
405 			 * at that point is only 2 bytes.
406 			 */
407 			if (NET_IP_ALIGN)
408 				hlen = nhoff;
409 		}
410 
411 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
412 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
413 			goto out_good;
414 
415 		goto again;
416 	}
417 	case NEXTHDR_HOP:
418 	case NEXTHDR_ROUTING:
419 	case NEXTHDR_DEST: {
420 		u8 _opthdr[2], *opthdr;
421 
422 		if (proto != htons(ETH_P_IPV6))
423 			break;
424 
425 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
426 					      data, hlen, &_opthdr);
427 		if (!opthdr)
428 			goto out_bad;
429 
430 		ip_proto = opthdr[0];
431 		nhoff += (opthdr[1] + 1) << 3;
432 
433 		goto ip_proto_again;
434 	}
435 	case NEXTHDR_FRAGMENT: {
436 		struct frag_hdr _fh, *fh;
437 
438 		if (proto != htons(ETH_P_IPV6))
439 			break;
440 
441 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
442 					  data, hlen, &_fh);
443 
444 		if (!fh)
445 			goto out_bad;
446 
447 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
448 
449 		nhoff += sizeof(_fh);
450 
451 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
452 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
453 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
454 				ip_proto = fh->nexthdr;
455 				goto ip_proto_again;
456 			}
457 		}
458 		goto out_good;
459 	}
460 	case IPPROTO_IPIP:
461 		proto = htons(ETH_P_IP);
462 
463 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
464 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
465 			goto out_good;
466 
467 		goto ip;
468 	case IPPROTO_IPV6:
469 		proto = htons(ETH_P_IPV6);
470 
471 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
472 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
473 			goto out_good;
474 
475 		goto ipv6;
476 	case IPPROTO_MPLS:
477 		proto = htons(ETH_P_MPLS_UC);
478 		goto mpls;
479 	default:
480 		break;
481 	}
482 
483 	if (dissector_uses_key(flow_dissector,
484 			       FLOW_DISSECTOR_KEY_PORTS)) {
485 		key_ports = skb_flow_dissector_target(flow_dissector,
486 						      FLOW_DISSECTOR_KEY_PORTS,
487 						      target_container);
488 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
489 							data, hlen);
490 	}
491 
492 out_good:
493 	ret = true;
494 
495 out_bad:
496 	key_basic->n_proto = proto;
497 	key_basic->ip_proto = ip_proto;
498 	key_control->thoff = (u16)nhoff;
499 
500 	return ret;
501 }
502 EXPORT_SYMBOL(__skb_flow_dissect);
503 
504 static u32 hashrnd __read_mostly;
505 static __always_inline void __flow_hash_secret_init(void)
506 {
507 	net_get_random_once(&hashrnd, sizeof(hashrnd));
508 }
509 
510 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
511 					     u32 keyval)
512 {
513 	return jhash2(words, length, keyval);
514 }
515 
516 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
517 {
518 	const void *p = flow;
519 
520 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
521 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
522 }
523 
524 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
525 {
526 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
527 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
528 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
529 		     sizeof(*flow) - sizeof(flow->addrs));
530 
531 	switch (flow->control.addr_type) {
532 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
533 		diff -= sizeof(flow->addrs.v4addrs);
534 		break;
535 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
536 		diff -= sizeof(flow->addrs.v6addrs);
537 		break;
538 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
539 		diff -= sizeof(flow->addrs.tipcaddrs);
540 		break;
541 	}
542 	return (sizeof(*flow) - diff) / sizeof(u32);
543 }
544 
545 __be32 flow_get_u32_src(const struct flow_keys *flow)
546 {
547 	switch (flow->control.addr_type) {
548 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
549 		return flow->addrs.v4addrs.src;
550 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
551 		return (__force __be32)ipv6_addr_hash(
552 			&flow->addrs.v6addrs.src);
553 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
554 		return flow->addrs.tipcaddrs.srcnode;
555 	default:
556 		return 0;
557 	}
558 }
559 EXPORT_SYMBOL(flow_get_u32_src);
560 
561 __be32 flow_get_u32_dst(const struct flow_keys *flow)
562 {
563 	switch (flow->control.addr_type) {
564 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
565 		return flow->addrs.v4addrs.dst;
566 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
567 		return (__force __be32)ipv6_addr_hash(
568 			&flow->addrs.v6addrs.dst);
569 	default:
570 		return 0;
571 	}
572 }
573 EXPORT_SYMBOL(flow_get_u32_dst);
574 
575 static inline void __flow_hash_consistentify(struct flow_keys *keys)
576 {
577 	int addr_diff, i;
578 
579 	switch (keys->control.addr_type) {
580 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
581 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
582 			    (__force u32)keys->addrs.v4addrs.src;
583 		if ((addr_diff < 0) ||
584 		    (addr_diff == 0 &&
585 		     ((__force u16)keys->ports.dst <
586 		      (__force u16)keys->ports.src))) {
587 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
588 			swap(keys->ports.src, keys->ports.dst);
589 		}
590 		break;
591 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
592 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
593 				   &keys->addrs.v6addrs.src,
594 				   sizeof(keys->addrs.v6addrs.dst));
595 		if ((addr_diff < 0) ||
596 		    (addr_diff == 0 &&
597 		     ((__force u16)keys->ports.dst <
598 		      (__force u16)keys->ports.src))) {
599 			for (i = 0; i < 4; i++)
600 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
601 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
602 			swap(keys->ports.src, keys->ports.dst);
603 		}
604 		break;
605 	}
606 }
607 
608 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
609 {
610 	u32 hash;
611 
612 	__flow_hash_consistentify(keys);
613 
614 	hash = __flow_hash_words(flow_keys_hash_start(keys),
615 				 flow_keys_hash_length(keys), keyval);
616 	if (!hash)
617 		hash = 1;
618 
619 	return hash;
620 }
621 
622 u32 flow_hash_from_keys(struct flow_keys *keys)
623 {
624 	__flow_hash_secret_init();
625 	return __flow_hash_from_keys(keys, hashrnd);
626 }
627 EXPORT_SYMBOL(flow_hash_from_keys);
628 
629 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
630 				  struct flow_keys *keys, u32 keyval)
631 {
632 	skb_flow_dissect_flow_keys(skb, keys,
633 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
634 
635 	return __flow_hash_from_keys(keys, keyval);
636 }
637 
638 struct _flow_keys_digest_data {
639 	__be16	n_proto;
640 	u8	ip_proto;
641 	u8	padding;
642 	__be32	ports;
643 	__be32	src;
644 	__be32	dst;
645 };
646 
647 void make_flow_keys_digest(struct flow_keys_digest *digest,
648 			   const struct flow_keys *flow)
649 {
650 	struct _flow_keys_digest_data *data =
651 	    (struct _flow_keys_digest_data *)digest;
652 
653 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
654 
655 	memset(digest, 0, sizeof(*digest));
656 
657 	data->n_proto = flow->basic.n_proto;
658 	data->ip_proto = flow->basic.ip_proto;
659 	data->ports = flow->ports.ports;
660 	data->src = flow->addrs.v4addrs.src;
661 	data->dst = flow->addrs.v4addrs.dst;
662 }
663 EXPORT_SYMBOL(make_flow_keys_digest);
664 
665 /**
666  * __skb_get_hash: calculate a flow hash
667  * @skb: sk_buff to calculate flow hash from
668  *
669  * This function calculates a flow hash based on src/dst addresses
670  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
671  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
672  * if hash is a canonical 4-tuple hash over transport ports.
673  */
674 void __skb_get_hash(struct sk_buff *skb)
675 {
676 	struct flow_keys keys;
677 
678 	__flow_hash_secret_init();
679 
680 	__skb_set_sw_hash(skb, ___skb_get_hash(skb, &keys, hashrnd),
681 			  flow_keys_have_l4(&keys));
682 }
683 EXPORT_SYMBOL(__skb_get_hash);
684 
685 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
686 {
687 	struct flow_keys keys;
688 
689 	return ___skb_get_hash(skb, &keys, perturb);
690 }
691 EXPORT_SYMBOL(skb_get_hash_perturb);
692 
693 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
694 {
695 	struct flow_keys keys;
696 
697 	memset(&keys, 0, sizeof(keys));
698 
699 	memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
700 	       sizeof(keys.addrs.v6addrs.src));
701 	memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
702 	       sizeof(keys.addrs.v6addrs.dst));
703 	keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
704 	keys.ports.src = fl6->fl6_sport;
705 	keys.ports.dst = fl6->fl6_dport;
706 	keys.keyid.keyid = fl6->fl6_gre_key;
707 	keys.tags.flow_label = (__force u32)fl6->flowlabel;
708 	keys.basic.ip_proto = fl6->flowi6_proto;
709 
710 	__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
711 			  flow_keys_have_l4(&keys));
712 
713 	return skb->hash;
714 }
715 EXPORT_SYMBOL(__skb_get_hash_flowi6);
716 
717 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
718 {
719 	struct flow_keys keys;
720 
721 	memset(&keys, 0, sizeof(keys));
722 
723 	keys.addrs.v4addrs.src = fl4->saddr;
724 	keys.addrs.v4addrs.dst = fl4->daddr;
725 	keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
726 	keys.ports.src = fl4->fl4_sport;
727 	keys.ports.dst = fl4->fl4_dport;
728 	keys.keyid.keyid = fl4->fl4_gre_key;
729 	keys.basic.ip_proto = fl4->flowi4_proto;
730 
731 	__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
732 			  flow_keys_have_l4(&keys));
733 
734 	return skb->hash;
735 }
736 EXPORT_SYMBOL(__skb_get_hash_flowi4);
737 
738 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
739 		   const struct flow_keys *keys, int hlen)
740 {
741 	u32 poff = keys->control.thoff;
742 
743 	switch (keys->basic.ip_proto) {
744 	case IPPROTO_TCP: {
745 		/* access doff as u8 to avoid unaligned access */
746 		const u8 *doff;
747 		u8 _doff;
748 
749 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
750 					    data, hlen, &_doff);
751 		if (!doff)
752 			return poff;
753 
754 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
755 		break;
756 	}
757 	case IPPROTO_UDP:
758 	case IPPROTO_UDPLITE:
759 		poff += sizeof(struct udphdr);
760 		break;
761 	/* For the rest, we do not really care about header
762 	 * extensions at this point for now.
763 	 */
764 	case IPPROTO_ICMP:
765 		poff += sizeof(struct icmphdr);
766 		break;
767 	case IPPROTO_ICMPV6:
768 		poff += sizeof(struct icmp6hdr);
769 		break;
770 	case IPPROTO_IGMP:
771 		poff += sizeof(struct igmphdr);
772 		break;
773 	case IPPROTO_DCCP:
774 		poff += sizeof(struct dccp_hdr);
775 		break;
776 	case IPPROTO_SCTP:
777 		poff += sizeof(struct sctphdr);
778 		break;
779 	}
780 
781 	return poff;
782 }
783 
784 /**
785  * skb_get_poff - get the offset to the payload
786  * @skb: sk_buff to get the payload offset from
787  *
788  * The function will get the offset to the payload as far as it could
789  * be dissected.  The main user is currently BPF, so that we can dynamically
790  * truncate packets without needing to push actual payload to the user
791  * space and can analyze headers only, instead.
792  */
793 u32 skb_get_poff(const struct sk_buff *skb)
794 {
795 	struct flow_keys keys;
796 
797 	if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
798 		return 0;
799 
800 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
801 }
802 
803 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
804 {
805 	memset(keys, 0, sizeof(*keys));
806 
807 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
808 	    sizeof(keys->addrs.v6addrs.src));
809 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
810 	    sizeof(keys->addrs.v6addrs.dst));
811 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
812 	keys->ports.src = fl6->fl6_sport;
813 	keys->ports.dst = fl6->fl6_dport;
814 	keys->keyid.keyid = fl6->fl6_gre_key;
815 	keys->tags.flow_label = (__force u32)fl6->flowlabel;
816 	keys->basic.ip_proto = fl6->flowi6_proto;
817 
818 	return flow_hash_from_keys(keys);
819 }
820 EXPORT_SYMBOL(__get_hash_from_flowi6);
821 
822 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
823 {
824 	memset(keys, 0, sizeof(*keys));
825 
826 	keys->addrs.v4addrs.src = fl4->saddr;
827 	keys->addrs.v4addrs.dst = fl4->daddr;
828 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
829 	keys->ports.src = fl4->fl4_sport;
830 	keys->ports.dst = fl4->fl4_dport;
831 	keys->keyid.keyid = fl4->fl4_gre_key;
832 	keys->basic.ip_proto = fl4->flowi4_proto;
833 
834 	return flow_hash_from_keys(keys);
835 }
836 EXPORT_SYMBOL(__get_hash_from_flowi4);
837 
838 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
839 	{
840 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
841 		.offset = offsetof(struct flow_keys, control),
842 	},
843 	{
844 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
845 		.offset = offsetof(struct flow_keys, basic),
846 	},
847 	{
848 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
849 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
850 	},
851 	{
852 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
853 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
854 	},
855 	{
856 		.key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
857 		.offset = offsetof(struct flow_keys, addrs.tipcaddrs),
858 	},
859 	{
860 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
861 		.offset = offsetof(struct flow_keys, ports),
862 	},
863 	{
864 		.key_id = FLOW_DISSECTOR_KEY_VLANID,
865 		.offset = offsetof(struct flow_keys, tags),
866 	},
867 	{
868 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
869 		.offset = offsetof(struct flow_keys, tags),
870 	},
871 	{
872 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
873 		.offset = offsetof(struct flow_keys, keyid),
874 	},
875 };
876 
877 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
878 	{
879 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
880 		.offset = offsetof(struct flow_keys, control),
881 	},
882 	{
883 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
884 		.offset = offsetof(struct flow_keys, basic),
885 	},
886 };
887 
888 struct flow_dissector flow_keys_dissector __read_mostly;
889 EXPORT_SYMBOL(flow_keys_dissector);
890 
891 struct flow_dissector flow_keys_buf_dissector __read_mostly;
892 
893 static int __init init_default_flow_dissectors(void)
894 {
895 	skb_flow_dissector_init(&flow_keys_dissector,
896 				flow_keys_dissector_keys,
897 				ARRAY_SIZE(flow_keys_dissector_keys));
898 	skb_flow_dissector_init(&flow_keys_buf_dissector,
899 				flow_keys_buf_dissector_keys,
900 				ARRAY_SIZE(flow_keys_buf_dissector_keys));
901 	return 0;
902 }
903 
904 late_initcall_sync(init_default_flow_dissectors);
905