1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/skbuff.h> 4 #include <linux/export.h> 5 #include <linux/ip.h> 6 #include <linux/ipv6.h> 7 #include <linux/if_vlan.h> 8 #include <linux/filter.h> 9 #include <net/dsa.h> 10 #include <net/dst_metadata.h> 11 #include <net/ip.h> 12 #include <net/ipv6.h> 13 #include <net/gre.h> 14 #include <net/pptp.h> 15 #include <net/tipc.h> 16 #include <linux/igmp.h> 17 #include <linux/icmp.h> 18 #include <linux/sctp.h> 19 #include <linux/dccp.h> 20 #include <linux/if_tunnel.h> 21 #include <linux/if_pppox.h> 22 #include <linux/ppp_defs.h> 23 #include <linux/stddef.h> 24 #include <linux/if_ether.h> 25 #include <linux/if_hsr.h> 26 #include <linux/mpls.h> 27 #include <linux/tcp.h> 28 #include <linux/ptp_classify.h> 29 #include <net/flow_dissector.h> 30 #include <scsi/fc/fc_fcoe.h> 31 #include <uapi/linux/batadv_packet.h> 32 #include <linux/bpf.h> 33 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 34 #include <net/netfilter/nf_conntrack_core.h> 35 #include <net/netfilter/nf_conntrack_labels.h> 36 #endif 37 #include <linux/bpf-netns.h> 38 39 static void dissector_set_key(struct flow_dissector *flow_dissector, 40 enum flow_dissector_key_id key_id) 41 { 42 flow_dissector->used_keys |= (1 << key_id); 43 } 44 45 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 46 const struct flow_dissector_key *key, 47 unsigned int key_count) 48 { 49 unsigned int i; 50 51 memset(flow_dissector, 0, sizeof(*flow_dissector)); 52 53 for (i = 0; i < key_count; i++, key++) { 54 /* User should make sure that every key target offset is within 55 * boundaries of unsigned short. 56 */ 57 BUG_ON(key->offset > USHRT_MAX); 58 BUG_ON(dissector_uses_key(flow_dissector, 59 key->key_id)); 60 61 dissector_set_key(flow_dissector, key->key_id); 62 flow_dissector->offset[key->key_id] = key->offset; 63 } 64 65 /* Ensure that the dissector always includes control and basic key. 66 * That way we are able to avoid handling lack of these in fast path. 67 */ 68 BUG_ON(!dissector_uses_key(flow_dissector, 69 FLOW_DISSECTOR_KEY_CONTROL)); 70 BUG_ON(!dissector_uses_key(flow_dissector, 71 FLOW_DISSECTOR_KEY_BASIC)); 72 } 73 EXPORT_SYMBOL(skb_flow_dissector_init); 74 75 #ifdef CONFIG_BPF_SYSCALL 76 int flow_dissector_bpf_prog_attach_check(struct net *net, 77 struct bpf_prog *prog) 78 { 79 enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR; 80 81 if (net == &init_net) { 82 /* BPF flow dissector in the root namespace overrides 83 * any per-net-namespace one. When attaching to root, 84 * make sure we don't have any BPF program attached 85 * to the non-root namespaces. 86 */ 87 struct net *ns; 88 89 for_each_net(ns) { 90 if (ns == &init_net) 91 continue; 92 if (rcu_access_pointer(ns->bpf.run_array[type])) 93 return -EEXIST; 94 } 95 } else { 96 /* Make sure root flow dissector is not attached 97 * when attaching to the non-root namespace. 98 */ 99 if (rcu_access_pointer(init_net.bpf.run_array[type])) 100 return -EEXIST; 101 } 102 103 return 0; 104 } 105 #endif /* CONFIG_BPF_SYSCALL */ 106 107 /** 108 * __skb_flow_get_ports - extract the upper layer ports and return them 109 * @skb: sk_buff to extract the ports from 110 * @thoff: transport header offset 111 * @ip_proto: protocol for which to get port offset 112 * @data: raw buffer pointer to the packet, if NULL use skb->data 113 * @hlen: packet header length, if @data is NULL use skb_headlen(skb) 114 * 115 * The function will try to retrieve the ports at offset thoff + poff where poff 116 * is the protocol port offset returned from proto_ports_offset 117 */ 118 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 119 const void *data, int hlen) 120 { 121 int poff = proto_ports_offset(ip_proto); 122 123 if (!data) { 124 data = skb->data; 125 hlen = skb_headlen(skb); 126 } 127 128 if (poff >= 0) { 129 __be32 *ports, _ports; 130 131 ports = __skb_header_pointer(skb, thoff + poff, 132 sizeof(_ports), data, hlen, &_ports); 133 if (ports) 134 return *ports; 135 } 136 137 return 0; 138 } 139 EXPORT_SYMBOL(__skb_flow_get_ports); 140 141 static bool icmp_has_id(u8 type) 142 { 143 switch (type) { 144 case ICMP_ECHO: 145 case ICMP_ECHOREPLY: 146 case ICMP_TIMESTAMP: 147 case ICMP_TIMESTAMPREPLY: 148 case ICMPV6_ECHO_REQUEST: 149 case ICMPV6_ECHO_REPLY: 150 return true; 151 } 152 153 return false; 154 } 155 156 /** 157 * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields 158 * @skb: sk_buff to extract from 159 * @key_icmp: struct flow_dissector_key_icmp to fill 160 * @data: raw buffer pointer to the packet 161 * @thoff: offset to extract at 162 * @hlen: packet header length 163 */ 164 void skb_flow_get_icmp_tci(const struct sk_buff *skb, 165 struct flow_dissector_key_icmp *key_icmp, 166 const void *data, int thoff, int hlen) 167 { 168 struct icmphdr *ih, _ih; 169 170 ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih); 171 if (!ih) 172 return; 173 174 key_icmp->type = ih->type; 175 key_icmp->code = ih->code; 176 177 /* As we use 0 to signal that the Id field is not present, 178 * avoid confusion with packets without such field 179 */ 180 if (icmp_has_id(ih->type)) 181 key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1; 182 else 183 key_icmp->id = 0; 184 } 185 EXPORT_SYMBOL(skb_flow_get_icmp_tci); 186 187 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet 188 * using skb_flow_get_icmp_tci(). 189 */ 190 static void __skb_flow_dissect_icmp(const struct sk_buff *skb, 191 struct flow_dissector *flow_dissector, 192 void *target_container, const void *data, 193 int thoff, int hlen) 194 { 195 struct flow_dissector_key_icmp *key_icmp; 196 197 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP)) 198 return; 199 200 key_icmp = skb_flow_dissector_target(flow_dissector, 201 FLOW_DISSECTOR_KEY_ICMP, 202 target_container); 203 204 skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen); 205 } 206 207 void skb_flow_dissect_meta(const struct sk_buff *skb, 208 struct flow_dissector *flow_dissector, 209 void *target_container) 210 { 211 struct flow_dissector_key_meta *meta; 212 213 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META)) 214 return; 215 216 meta = skb_flow_dissector_target(flow_dissector, 217 FLOW_DISSECTOR_KEY_META, 218 target_container); 219 meta->ingress_ifindex = skb->skb_iif; 220 } 221 EXPORT_SYMBOL(skb_flow_dissect_meta); 222 223 static void 224 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type, 225 struct flow_dissector *flow_dissector, 226 void *target_container) 227 { 228 struct flow_dissector_key_control *ctrl; 229 230 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL)) 231 return; 232 233 ctrl = skb_flow_dissector_target(flow_dissector, 234 FLOW_DISSECTOR_KEY_ENC_CONTROL, 235 target_container); 236 ctrl->addr_type = type; 237 } 238 239 void 240 skb_flow_dissect_ct(const struct sk_buff *skb, 241 struct flow_dissector *flow_dissector, 242 void *target_container, u16 *ctinfo_map, 243 size_t mapsize, bool post_ct, u16 zone) 244 { 245 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 246 struct flow_dissector_key_ct *key; 247 enum ip_conntrack_info ctinfo; 248 struct nf_conn_labels *cl; 249 struct nf_conn *ct; 250 251 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT)) 252 return; 253 254 ct = nf_ct_get(skb, &ctinfo); 255 if (!ct && !post_ct) 256 return; 257 258 key = skb_flow_dissector_target(flow_dissector, 259 FLOW_DISSECTOR_KEY_CT, 260 target_container); 261 262 if (!ct) { 263 key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED | 264 TCA_FLOWER_KEY_CT_FLAGS_INVALID; 265 key->ct_zone = zone; 266 return; 267 } 268 269 if (ctinfo < mapsize) 270 key->ct_state = ctinfo_map[ctinfo]; 271 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) 272 key->ct_zone = ct->zone.id; 273 #endif 274 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 275 key->ct_mark = ct->mark; 276 #endif 277 278 cl = nf_ct_labels_find(ct); 279 if (cl) 280 memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels)); 281 #endif /* CONFIG_NF_CONNTRACK */ 282 } 283 EXPORT_SYMBOL(skb_flow_dissect_ct); 284 285 void 286 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 287 struct flow_dissector *flow_dissector, 288 void *target_container) 289 { 290 struct ip_tunnel_info *info; 291 struct ip_tunnel_key *key; 292 293 /* A quick check to see if there might be something to do. */ 294 if (!dissector_uses_key(flow_dissector, 295 FLOW_DISSECTOR_KEY_ENC_KEYID) && 296 !dissector_uses_key(flow_dissector, 297 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) && 298 !dissector_uses_key(flow_dissector, 299 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) && 300 !dissector_uses_key(flow_dissector, 301 FLOW_DISSECTOR_KEY_ENC_CONTROL) && 302 !dissector_uses_key(flow_dissector, 303 FLOW_DISSECTOR_KEY_ENC_PORTS) && 304 !dissector_uses_key(flow_dissector, 305 FLOW_DISSECTOR_KEY_ENC_IP) && 306 !dissector_uses_key(flow_dissector, 307 FLOW_DISSECTOR_KEY_ENC_OPTS)) 308 return; 309 310 info = skb_tunnel_info(skb); 311 if (!info) 312 return; 313 314 key = &info->key; 315 316 switch (ip_tunnel_info_af(info)) { 317 case AF_INET: 318 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS, 319 flow_dissector, 320 target_container); 321 if (dissector_uses_key(flow_dissector, 322 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) { 323 struct flow_dissector_key_ipv4_addrs *ipv4; 324 325 ipv4 = skb_flow_dissector_target(flow_dissector, 326 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, 327 target_container); 328 ipv4->src = key->u.ipv4.src; 329 ipv4->dst = key->u.ipv4.dst; 330 } 331 break; 332 case AF_INET6: 333 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS, 334 flow_dissector, 335 target_container); 336 if (dissector_uses_key(flow_dissector, 337 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) { 338 struct flow_dissector_key_ipv6_addrs *ipv6; 339 340 ipv6 = skb_flow_dissector_target(flow_dissector, 341 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, 342 target_container); 343 ipv6->src = key->u.ipv6.src; 344 ipv6->dst = key->u.ipv6.dst; 345 } 346 break; 347 } 348 349 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 350 struct flow_dissector_key_keyid *keyid; 351 352 keyid = skb_flow_dissector_target(flow_dissector, 353 FLOW_DISSECTOR_KEY_ENC_KEYID, 354 target_container); 355 keyid->keyid = tunnel_id_to_key32(key->tun_id); 356 } 357 358 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) { 359 struct flow_dissector_key_ports *tp; 360 361 tp = skb_flow_dissector_target(flow_dissector, 362 FLOW_DISSECTOR_KEY_ENC_PORTS, 363 target_container); 364 tp->src = key->tp_src; 365 tp->dst = key->tp_dst; 366 } 367 368 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) { 369 struct flow_dissector_key_ip *ip; 370 371 ip = skb_flow_dissector_target(flow_dissector, 372 FLOW_DISSECTOR_KEY_ENC_IP, 373 target_container); 374 ip->tos = key->tos; 375 ip->ttl = key->ttl; 376 } 377 378 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) { 379 struct flow_dissector_key_enc_opts *enc_opt; 380 381 enc_opt = skb_flow_dissector_target(flow_dissector, 382 FLOW_DISSECTOR_KEY_ENC_OPTS, 383 target_container); 384 385 if (info->options_len) { 386 enc_opt->len = info->options_len; 387 ip_tunnel_info_opts_get(enc_opt->data, info); 388 enc_opt->dst_opt_type = info->key.tun_flags & 389 TUNNEL_OPTIONS_PRESENT; 390 } 391 } 392 } 393 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info); 394 395 void skb_flow_dissect_hash(const struct sk_buff *skb, 396 struct flow_dissector *flow_dissector, 397 void *target_container) 398 { 399 struct flow_dissector_key_hash *key; 400 401 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH)) 402 return; 403 404 key = skb_flow_dissector_target(flow_dissector, 405 FLOW_DISSECTOR_KEY_HASH, 406 target_container); 407 408 key->hash = skb_get_hash_raw(skb); 409 } 410 EXPORT_SYMBOL(skb_flow_dissect_hash); 411 412 static enum flow_dissect_ret 413 __skb_flow_dissect_mpls(const struct sk_buff *skb, 414 struct flow_dissector *flow_dissector, 415 void *target_container, const void *data, int nhoff, 416 int hlen, int lse_index, bool *entropy_label) 417 { 418 struct mpls_label *hdr, _hdr; 419 u32 entry, label, bos; 420 421 if (!dissector_uses_key(flow_dissector, 422 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) && 423 !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) 424 return FLOW_DISSECT_RET_OUT_GOOD; 425 426 if (lse_index >= FLOW_DIS_MPLS_MAX) 427 return FLOW_DISSECT_RET_OUT_GOOD; 428 429 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, 430 hlen, &_hdr); 431 if (!hdr) 432 return FLOW_DISSECT_RET_OUT_BAD; 433 434 entry = ntohl(hdr->entry); 435 label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT; 436 bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT; 437 438 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) { 439 struct flow_dissector_key_mpls *key_mpls; 440 struct flow_dissector_mpls_lse *lse; 441 442 key_mpls = skb_flow_dissector_target(flow_dissector, 443 FLOW_DISSECTOR_KEY_MPLS, 444 target_container); 445 lse = &key_mpls->ls[lse_index]; 446 447 lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 448 lse->mpls_bos = bos; 449 lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT; 450 lse->mpls_label = label; 451 dissector_set_mpls_lse(key_mpls, lse_index); 452 } 453 454 if (*entropy_label && 455 dissector_uses_key(flow_dissector, 456 FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) { 457 struct flow_dissector_key_keyid *key_keyid; 458 459 key_keyid = skb_flow_dissector_target(flow_dissector, 460 FLOW_DISSECTOR_KEY_MPLS_ENTROPY, 461 target_container); 462 key_keyid->keyid = cpu_to_be32(label); 463 } 464 465 *entropy_label = label == MPLS_LABEL_ENTROPY; 466 467 return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN; 468 } 469 470 static enum flow_dissect_ret 471 __skb_flow_dissect_arp(const struct sk_buff *skb, 472 struct flow_dissector *flow_dissector, 473 void *target_container, const void *data, 474 int nhoff, int hlen) 475 { 476 struct flow_dissector_key_arp *key_arp; 477 struct { 478 unsigned char ar_sha[ETH_ALEN]; 479 unsigned char ar_sip[4]; 480 unsigned char ar_tha[ETH_ALEN]; 481 unsigned char ar_tip[4]; 482 } *arp_eth, _arp_eth; 483 const struct arphdr *arp; 484 struct arphdr _arp; 485 486 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP)) 487 return FLOW_DISSECT_RET_OUT_GOOD; 488 489 arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data, 490 hlen, &_arp); 491 if (!arp) 492 return FLOW_DISSECT_RET_OUT_BAD; 493 494 if (arp->ar_hrd != htons(ARPHRD_ETHER) || 495 arp->ar_pro != htons(ETH_P_IP) || 496 arp->ar_hln != ETH_ALEN || 497 arp->ar_pln != 4 || 498 (arp->ar_op != htons(ARPOP_REPLY) && 499 arp->ar_op != htons(ARPOP_REQUEST))) 500 return FLOW_DISSECT_RET_OUT_BAD; 501 502 arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp), 503 sizeof(_arp_eth), data, 504 hlen, &_arp_eth); 505 if (!arp_eth) 506 return FLOW_DISSECT_RET_OUT_BAD; 507 508 key_arp = skb_flow_dissector_target(flow_dissector, 509 FLOW_DISSECTOR_KEY_ARP, 510 target_container); 511 512 memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip)); 513 memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip)); 514 515 /* Only store the lower byte of the opcode; 516 * this covers ARPOP_REPLY and ARPOP_REQUEST. 517 */ 518 key_arp->op = ntohs(arp->ar_op) & 0xff; 519 520 ether_addr_copy(key_arp->sha, arp_eth->ar_sha); 521 ether_addr_copy(key_arp->tha, arp_eth->ar_tha); 522 523 return FLOW_DISSECT_RET_OUT_GOOD; 524 } 525 526 static enum flow_dissect_ret 527 __skb_flow_dissect_gre(const struct sk_buff *skb, 528 struct flow_dissector_key_control *key_control, 529 struct flow_dissector *flow_dissector, 530 void *target_container, const void *data, 531 __be16 *p_proto, int *p_nhoff, int *p_hlen, 532 unsigned int flags) 533 { 534 struct flow_dissector_key_keyid *key_keyid; 535 struct gre_base_hdr *hdr, _hdr; 536 int offset = 0; 537 u16 gre_ver; 538 539 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), 540 data, *p_hlen, &_hdr); 541 if (!hdr) 542 return FLOW_DISSECT_RET_OUT_BAD; 543 544 /* Only look inside GRE without routing */ 545 if (hdr->flags & GRE_ROUTING) 546 return FLOW_DISSECT_RET_OUT_GOOD; 547 548 /* Only look inside GRE for version 0 and 1 */ 549 gre_ver = ntohs(hdr->flags & GRE_VERSION); 550 if (gre_ver > 1) 551 return FLOW_DISSECT_RET_OUT_GOOD; 552 553 *p_proto = hdr->protocol; 554 if (gre_ver) { 555 /* Version1 must be PPTP, and check the flags */ 556 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY))) 557 return FLOW_DISSECT_RET_OUT_GOOD; 558 } 559 560 offset += sizeof(struct gre_base_hdr); 561 562 if (hdr->flags & GRE_CSUM) 563 offset += sizeof_field(struct gre_full_hdr, csum) + 564 sizeof_field(struct gre_full_hdr, reserved1); 565 566 if (hdr->flags & GRE_KEY) { 567 const __be32 *keyid; 568 __be32 _keyid; 569 570 keyid = __skb_header_pointer(skb, *p_nhoff + offset, 571 sizeof(_keyid), 572 data, *p_hlen, &_keyid); 573 if (!keyid) 574 return FLOW_DISSECT_RET_OUT_BAD; 575 576 if (dissector_uses_key(flow_dissector, 577 FLOW_DISSECTOR_KEY_GRE_KEYID)) { 578 key_keyid = skb_flow_dissector_target(flow_dissector, 579 FLOW_DISSECTOR_KEY_GRE_KEYID, 580 target_container); 581 if (gre_ver == 0) 582 key_keyid->keyid = *keyid; 583 else 584 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK; 585 } 586 offset += sizeof_field(struct gre_full_hdr, key); 587 } 588 589 if (hdr->flags & GRE_SEQ) 590 offset += sizeof_field(struct pptp_gre_header, seq); 591 592 if (gre_ver == 0) { 593 if (*p_proto == htons(ETH_P_TEB)) { 594 const struct ethhdr *eth; 595 struct ethhdr _eth; 596 597 eth = __skb_header_pointer(skb, *p_nhoff + offset, 598 sizeof(_eth), 599 data, *p_hlen, &_eth); 600 if (!eth) 601 return FLOW_DISSECT_RET_OUT_BAD; 602 *p_proto = eth->h_proto; 603 offset += sizeof(*eth); 604 605 /* Cap headers that we access via pointers at the 606 * end of the Ethernet header as our maximum alignment 607 * at that point is only 2 bytes. 608 */ 609 if (NET_IP_ALIGN) 610 *p_hlen = *p_nhoff + offset; 611 } 612 } else { /* version 1, must be PPTP */ 613 u8 _ppp_hdr[PPP_HDRLEN]; 614 u8 *ppp_hdr; 615 616 if (hdr->flags & GRE_ACK) 617 offset += sizeof_field(struct pptp_gre_header, ack); 618 619 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset, 620 sizeof(_ppp_hdr), 621 data, *p_hlen, _ppp_hdr); 622 if (!ppp_hdr) 623 return FLOW_DISSECT_RET_OUT_BAD; 624 625 switch (PPP_PROTOCOL(ppp_hdr)) { 626 case PPP_IP: 627 *p_proto = htons(ETH_P_IP); 628 break; 629 case PPP_IPV6: 630 *p_proto = htons(ETH_P_IPV6); 631 break; 632 default: 633 /* Could probably catch some more like MPLS */ 634 break; 635 } 636 637 offset += PPP_HDRLEN; 638 } 639 640 *p_nhoff += offset; 641 key_control->flags |= FLOW_DIS_ENCAPSULATION; 642 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) 643 return FLOW_DISSECT_RET_OUT_GOOD; 644 645 return FLOW_DISSECT_RET_PROTO_AGAIN; 646 } 647 648 /** 649 * __skb_flow_dissect_batadv() - dissect batman-adv header 650 * @skb: sk_buff to with the batman-adv header 651 * @key_control: flow dissectors control key 652 * @data: raw buffer pointer to the packet, if NULL use skb->data 653 * @p_proto: pointer used to update the protocol to process next 654 * @p_nhoff: pointer used to update inner network header offset 655 * @hlen: packet header length 656 * @flags: any combination of FLOW_DISSECTOR_F_* 657 * 658 * ETH_P_BATMAN packets are tried to be dissected. Only 659 * &struct batadv_unicast packets are actually processed because they contain an 660 * inner ethernet header and are usually followed by actual network header. This 661 * allows the flow dissector to continue processing the packet. 662 * 663 * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found, 664 * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation, 665 * otherwise FLOW_DISSECT_RET_OUT_BAD 666 */ 667 static enum flow_dissect_ret 668 __skb_flow_dissect_batadv(const struct sk_buff *skb, 669 struct flow_dissector_key_control *key_control, 670 const void *data, __be16 *p_proto, int *p_nhoff, 671 int hlen, unsigned int flags) 672 { 673 struct { 674 struct batadv_unicast_packet batadv_unicast; 675 struct ethhdr eth; 676 } *hdr, _hdr; 677 678 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen, 679 &_hdr); 680 if (!hdr) 681 return FLOW_DISSECT_RET_OUT_BAD; 682 683 if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION) 684 return FLOW_DISSECT_RET_OUT_BAD; 685 686 if (hdr->batadv_unicast.packet_type != BATADV_UNICAST) 687 return FLOW_DISSECT_RET_OUT_BAD; 688 689 *p_proto = hdr->eth.h_proto; 690 *p_nhoff += sizeof(*hdr); 691 692 key_control->flags |= FLOW_DIS_ENCAPSULATION; 693 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) 694 return FLOW_DISSECT_RET_OUT_GOOD; 695 696 return FLOW_DISSECT_RET_PROTO_AGAIN; 697 } 698 699 static void 700 __skb_flow_dissect_tcp(const struct sk_buff *skb, 701 struct flow_dissector *flow_dissector, 702 void *target_container, const void *data, 703 int thoff, int hlen) 704 { 705 struct flow_dissector_key_tcp *key_tcp; 706 struct tcphdr *th, _th; 707 708 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP)) 709 return; 710 711 th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th); 712 if (!th) 713 return; 714 715 if (unlikely(__tcp_hdrlen(th) < sizeof(_th))) 716 return; 717 718 key_tcp = skb_flow_dissector_target(flow_dissector, 719 FLOW_DISSECTOR_KEY_TCP, 720 target_container); 721 key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF)); 722 } 723 724 static void 725 __skb_flow_dissect_ports(const struct sk_buff *skb, 726 struct flow_dissector *flow_dissector, 727 void *target_container, const void *data, 728 int nhoff, u8 ip_proto, int hlen) 729 { 730 enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX; 731 struct flow_dissector_key_ports *key_ports; 732 733 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) 734 dissector_ports = FLOW_DISSECTOR_KEY_PORTS; 735 else if (dissector_uses_key(flow_dissector, 736 FLOW_DISSECTOR_KEY_PORTS_RANGE)) 737 dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE; 738 739 if (dissector_ports == FLOW_DISSECTOR_KEY_MAX) 740 return; 741 742 key_ports = skb_flow_dissector_target(flow_dissector, 743 dissector_ports, 744 target_container); 745 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto, 746 data, hlen); 747 } 748 749 static void 750 __skb_flow_dissect_ipv4(const struct sk_buff *skb, 751 struct flow_dissector *flow_dissector, 752 void *target_container, const void *data, 753 const struct iphdr *iph) 754 { 755 struct flow_dissector_key_ip *key_ip; 756 757 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) 758 return; 759 760 key_ip = skb_flow_dissector_target(flow_dissector, 761 FLOW_DISSECTOR_KEY_IP, 762 target_container); 763 key_ip->tos = iph->tos; 764 key_ip->ttl = iph->ttl; 765 } 766 767 static void 768 __skb_flow_dissect_ipv6(const struct sk_buff *skb, 769 struct flow_dissector *flow_dissector, 770 void *target_container, const void *data, 771 const struct ipv6hdr *iph) 772 { 773 struct flow_dissector_key_ip *key_ip; 774 775 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) 776 return; 777 778 key_ip = skb_flow_dissector_target(flow_dissector, 779 FLOW_DISSECTOR_KEY_IP, 780 target_container); 781 key_ip->tos = ipv6_get_dsfield(iph); 782 key_ip->ttl = iph->hop_limit; 783 } 784 785 /* Maximum number of protocol headers that can be parsed in 786 * __skb_flow_dissect 787 */ 788 #define MAX_FLOW_DISSECT_HDRS 15 789 790 static bool skb_flow_dissect_allowed(int *num_hdrs) 791 { 792 ++*num_hdrs; 793 794 return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS); 795 } 796 797 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys, 798 struct flow_dissector *flow_dissector, 799 void *target_container) 800 { 801 struct flow_dissector_key_ports *key_ports = NULL; 802 struct flow_dissector_key_control *key_control; 803 struct flow_dissector_key_basic *key_basic; 804 struct flow_dissector_key_addrs *key_addrs; 805 struct flow_dissector_key_tags *key_tags; 806 807 key_control = skb_flow_dissector_target(flow_dissector, 808 FLOW_DISSECTOR_KEY_CONTROL, 809 target_container); 810 key_control->thoff = flow_keys->thoff; 811 if (flow_keys->is_frag) 812 key_control->flags |= FLOW_DIS_IS_FRAGMENT; 813 if (flow_keys->is_first_frag) 814 key_control->flags |= FLOW_DIS_FIRST_FRAG; 815 if (flow_keys->is_encap) 816 key_control->flags |= FLOW_DIS_ENCAPSULATION; 817 818 key_basic = skb_flow_dissector_target(flow_dissector, 819 FLOW_DISSECTOR_KEY_BASIC, 820 target_container); 821 key_basic->n_proto = flow_keys->n_proto; 822 key_basic->ip_proto = flow_keys->ip_proto; 823 824 if (flow_keys->addr_proto == ETH_P_IP && 825 dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { 826 key_addrs = skb_flow_dissector_target(flow_dissector, 827 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 828 target_container); 829 key_addrs->v4addrs.src = flow_keys->ipv4_src; 830 key_addrs->v4addrs.dst = flow_keys->ipv4_dst; 831 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 832 } else if (flow_keys->addr_proto == ETH_P_IPV6 && 833 dissector_uses_key(flow_dissector, 834 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { 835 key_addrs = skb_flow_dissector_target(flow_dissector, 836 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 837 target_container); 838 memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src, 839 sizeof(key_addrs->v6addrs.src)); 840 memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst, 841 sizeof(key_addrs->v6addrs.dst)); 842 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 843 } 844 845 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) 846 key_ports = skb_flow_dissector_target(flow_dissector, 847 FLOW_DISSECTOR_KEY_PORTS, 848 target_container); 849 else if (dissector_uses_key(flow_dissector, 850 FLOW_DISSECTOR_KEY_PORTS_RANGE)) 851 key_ports = skb_flow_dissector_target(flow_dissector, 852 FLOW_DISSECTOR_KEY_PORTS_RANGE, 853 target_container); 854 855 if (key_ports) { 856 key_ports->src = flow_keys->sport; 857 key_ports->dst = flow_keys->dport; 858 } 859 860 if (dissector_uses_key(flow_dissector, 861 FLOW_DISSECTOR_KEY_FLOW_LABEL)) { 862 key_tags = skb_flow_dissector_target(flow_dissector, 863 FLOW_DISSECTOR_KEY_FLOW_LABEL, 864 target_container); 865 key_tags->flow_label = ntohl(flow_keys->flow_label); 866 } 867 } 868 869 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 870 __be16 proto, int nhoff, int hlen, unsigned int flags) 871 { 872 struct bpf_flow_keys *flow_keys = ctx->flow_keys; 873 u32 result; 874 875 /* Pass parameters to the BPF program */ 876 memset(flow_keys, 0, sizeof(*flow_keys)); 877 flow_keys->n_proto = proto; 878 flow_keys->nhoff = nhoff; 879 flow_keys->thoff = flow_keys->nhoff; 880 881 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG != 882 (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG); 883 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL != 884 (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 885 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP != 886 (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP); 887 flow_keys->flags = flags; 888 889 result = bpf_prog_run_pin_on_cpu(prog, ctx); 890 891 flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen); 892 flow_keys->thoff = clamp_t(u16, flow_keys->thoff, 893 flow_keys->nhoff, hlen); 894 895 return result; 896 } 897 898 static bool is_pppoe_ses_hdr_valid(const struct pppoe_hdr *hdr) 899 { 900 return hdr->ver == 1 && hdr->type == 1 && hdr->code == 0; 901 } 902 903 /** 904 * __skb_flow_dissect - extract the flow_keys struct and return it 905 * @net: associated network namespace, derived from @skb if NULL 906 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified 907 * @flow_dissector: list of keys to dissect 908 * @target_container: target structure to put dissected values into 909 * @data: raw buffer pointer to the packet, if NULL use skb->data 910 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol 911 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb) 912 * @hlen: packet header length, if @data is NULL use skb_headlen(skb) 913 * @flags: flags that control the dissection process, e.g. 914 * FLOW_DISSECTOR_F_STOP_AT_ENCAP. 915 * 916 * The function will try to retrieve individual keys into target specified 917 * by flow_dissector from either the skbuff or a raw buffer specified by the 918 * rest parameters. 919 * 920 * Caller must take care of zeroing target container memory. 921 */ 922 bool __skb_flow_dissect(const struct net *net, 923 const struct sk_buff *skb, 924 struct flow_dissector *flow_dissector, 925 void *target_container, const void *data, 926 __be16 proto, int nhoff, int hlen, unsigned int flags) 927 { 928 struct flow_dissector_key_control *key_control; 929 struct flow_dissector_key_basic *key_basic; 930 struct flow_dissector_key_addrs *key_addrs; 931 struct flow_dissector_key_tags *key_tags; 932 struct flow_dissector_key_vlan *key_vlan; 933 enum flow_dissect_ret fdret; 934 enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX; 935 bool mpls_el = false; 936 int mpls_lse = 0; 937 int num_hdrs = 0; 938 u8 ip_proto = 0; 939 bool ret; 940 941 if (!data) { 942 data = skb->data; 943 proto = skb_vlan_tag_present(skb) ? 944 skb->vlan_proto : skb->protocol; 945 nhoff = skb_network_offset(skb); 946 hlen = skb_headlen(skb); 947 #if IS_ENABLED(CONFIG_NET_DSA) 948 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) && 949 proto == htons(ETH_P_XDSA))) { 950 const struct dsa_device_ops *ops; 951 int offset = 0; 952 953 ops = skb->dev->dsa_ptr->tag_ops; 954 /* Only DSA header taggers break flow dissection */ 955 if (ops->needed_headroom) { 956 if (ops->flow_dissect) 957 ops->flow_dissect(skb, &proto, &offset); 958 else 959 dsa_tag_generic_flow_dissect(skb, 960 &proto, 961 &offset); 962 hlen -= offset; 963 nhoff += offset; 964 } 965 } 966 #endif 967 } 968 969 /* It is ensured by skb_flow_dissector_init() that control key will 970 * be always present. 971 */ 972 key_control = skb_flow_dissector_target(flow_dissector, 973 FLOW_DISSECTOR_KEY_CONTROL, 974 target_container); 975 976 /* It is ensured by skb_flow_dissector_init() that basic key will 977 * be always present. 978 */ 979 key_basic = skb_flow_dissector_target(flow_dissector, 980 FLOW_DISSECTOR_KEY_BASIC, 981 target_container); 982 983 if (skb) { 984 if (!net) { 985 if (skb->dev) 986 net = dev_net(skb->dev); 987 else if (skb->sk) 988 net = sock_net(skb->sk); 989 } 990 } 991 992 WARN_ON_ONCE(!net); 993 if (net) { 994 enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR; 995 struct bpf_prog_array *run_array; 996 997 rcu_read_lock(); 998 run_array = rcu_dereference(init_net.bpf.run_array[type]); 999 if (!run_array) 1000 run_array = rcu_dereference(net->bpf.run_array[type]); 1001 1002 if (run_array) { 1003 struct bpf_flow_keys flow_keys; 1004 struct bpf_flow_dissector ctx = { 1005 .flow_keys = &flow_keys, 1006 .data = data, 1007 .data_end = data + hlen, 1008 }; 1009 __be16 n_proto = proto; 1010 struct bpf_prog *prog; 1011 u32 result; 1012 1013 if (skb) { 1014 ctx.skb = skb; 1015 /* we can't use 'proto' in the skb case 1016 * because it might be set to skb->vlan_proto 1017 * which has been pulled from the data 1018 */ 1019 n_proto = skb->protocol; 1020 } 1021 1022 prog = READ_ONCE(run_array->items[0].prog); 1023 result = bpf_flow_dissect(prog, &ctx, n_proto, nhoff, 1024 hlen, flags); 1025 if (result == BPF_FLOW_DISSECTOR_CONTINUE) 1026 goto dissect_continue; 1027 __skb_flow_bpf_to_target(&flow_keys, flow_dissector, 1028 target_container); 1029 rcu_read_unlock(); 1030 return result == BPF_OK; 1031 } 1032 dissect_continue: 1033 rcu_read_unlock(); 1034 } 1035 1036 if (dissector_uses_key(flow_dissector, 1037 FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 1038 struct ethhdr *eth = eth_hdr(skb); 1039 struct flow_dissector_key_eth_addrs *key_eth_addrs; 1040 1041 key_eth_addrs = skb_flow_dissector_target(flow_dissector, 1042 FLOW_DISSECTOR_KEY_ETH_ADDRS, 1043 target_container); 1044 memcpy(key_eth_addrs, eth, sizeof(*key_eth_addrs)); 1045 } 1046 1047 if (dissector_uses_key(flow_dissector, 1048 FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) { 1049 struct flow_dissector_key_num_of_vlans *key_num_of_vlans; 1050 1051 key_num_of_vlans = skb_flow_dissector_target(flow_dissector, 1052 FLOW_DISSECTOR_KEY_NUM_OF_VLANS, 1053 target_container); 1054 key_num_of_vlans->num_of_vlans = 0; 1055 } 1056 1057 proto_again: 1058 fdret = FLOW_DISSECT_RET_CONTINUE; 1059 1060 switch (proto) { 1061 case htons(ETH_P_IP): { 1062 const struct iphdr *iph; 1063 struct iphdr _iph; 1064 1065 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); 1066 if (!iph || iph->ihl < 5) { 1067 fdret = FLOW_DISSECT_RET_OUT_BAD; 1068 break; 1069 } 1070 1071 nhoff += iph->ihl * 4; 1072 1073 ip_proto = iph->protocol; 1074 1075 if (dissector_uses_key(flow_dissector, 1076 FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { 1077 key_addrs = skb_flow_dissector_target(flow_dissector, 1078 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 1079 target_container); 1080 1081 memcpy(&key_addrs->v4addrs.src, &iph->saddr, 1082 sizeof(key_addrs->v4addrs.src)); 1083 memcpy(&key_addrs->v4addrs.dst, &iph->daddr, 1084 sizeof(key_addrs->v4addrs.dst)); 1085 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 1086 } 1087 1088 __skb_flow_dissect_ipv4(skb, flow_dissector, 1089 target_container, data, iph); 1090 1091 if (ip_is_fragment(iph)) { 1092 key_control->flags |= FLOW_DIS_IS_FRAGMENT; 1093 1094 if (iph->frag_off & htons(IP_OFFSET)) { 1095 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1096 break; 1097 } else { 1098 key_control->flags |= FLOW_DIS_FIRST_FRAG; 1099 if (!(flags & 1100 FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) { 1101 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1102 break; 1103 } 1104 } 1105 } 1106 1107 break; 1108 } 1109 case htons(ETH_P_IPV6): { 1110 const struct ipv6hdr *iph; 1111 struct ipv6hdr _iph; 1112 1113 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); 1114 if (!iph) { 1115 fdret = FLOW_DISSECT_RET_OUT_BAD; 1116 break; 1117 } 1118 1119 ip_proto = iph->nexthdr; 1120 nhoff += sizeof(struct ipv6hdr); 1121 1122 if (dissector_uses_key(flow_dissector, 1123 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { 1124 key_addrs = skb_flow_dissector_target(flow_dissector, 1125 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 1126 target_container); 1127 1128 memcpy(&key_addrs->v6addrs.src, &iph->saddr, 1129 sizeof(key_addrs->v6addrs.src)); 1130 memcpy(&key_addrs->v6addrs.dst, &iph->daddr, 1131 sizeof(key_addrs->v6addrs.dst)); 1132 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 1133 } 1134 1135 if ((dissector_uses_key(flow_dissector, 1136 FLOW_DISSECTOR_KEY_FLOW_LABEL) || 1137 (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) && 1138 ip6_flowlabel(iph)) { 1139 __be32 flow_label = ip6_flowlabel(iph); 1140 1141 if (dissector_uses_key(flow_dissector, 1142 FLOW_DISSECTOR_KEY_FLOW_LABEL)) { 1143 key_tags = skb_flow_dissector_target(flow_dissector, 1144 FLOW_DISSECTOR_KEY_FLOW_LABEL, 1145 target_container); 1146 key_tags->flow_label = ntohl(flow_label); 1147 } 1148 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) { 1149 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1150 break; 1151 } 1152 } 1153 1154 __skb_flow_dissect_ipv6(skb, flow_dissector, 1155 target_container, data, iph); 1156 1157 break; 1158 } 1159 case htons(ETH_P_8021AD): 1160 case htons(ETH_P_8021Q): { 1161 const struct vlan_hdr *vlan = NULL; 1162 struct vlan_hdr _vlan; 1163 __be16 saved_vlan_tpid = proto; 1164 1165 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX && 1166 skb && skb_vlan_tag_present(skb)) { 1167 proto = skb->protocol; 1168 } else { 1169 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), 1170 data, hlen, &_vlan); 1171 if (!vlan) { 1172 fdret = FLOW_DISSECT_RET_OUT_BAD; 1173 break; 1174 } 1175 1176 proto = vlan->h_vlan_encapsulated_proto; 1177 nhoff += sizeof(*vlan); 1178 } 1179 1180 if (dissector_uses_key(flow_dissector, 1181 FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) { 1182 struct flow_dissector_key_num_of_vlans *key_nvs; 1183 1184 key_nvs = skb_flow_dissector_target(flow_dissector, 1185 FLOW_DISSECTOR_KEY_NUM_OF_VLANS, 1186 target_container); 1187 key_nvs->num_of_vlans++; 1188 } 1189 1190 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) { 1191 dissector_vlan = FLOW_DISSECTOR_KEY_VLAN; 1192 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) { 1193 dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN; 1194 } else { 1195 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1196 break; 1197 } 1198 1199 if (dissector_uses_key(flow_dissector, dissector_vlan)) { 1200 key_vlan = skb_flow_dissector_target(flow_dissector, 1201 dissector_vlan, 1202 target_container); 1203 1204 if (!vlan) { 1205 key_vlan->vlan_id = skb_vlan_tag_get_id(skb); 1206 key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb); 1207 } else { 1208 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) & 1209 VLAN_VID_MASK; 1210 key_vlan->vlan_priority = 1211 (ntohs(vlan->h_vlan_TCI) & 1212 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1213 } 1214 key_vlan->vlan_tpid = saved_vlan_tpid; 1215 key_vlan->vlan_eth_type = proto; 1216 } 1217 1218 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1219 break; 1220 } 1221 case htons(ETH_P_PPP_SES): { 1222 struct { 1223 struct pppoe_hdr hdr; 1224 __be16 proto; 1225 } *hdr, _hdr; 1226 u16 ppp_proto; 1227 1228 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); 1229 if (!hdr) { 1230 fdret = FLOW_DISSECT_RET_OUT_BAD; 1231 break; 1232 } 1233 1234 if (!is_pppoe_ses_hdr_valid(&hdr->hdr)) { 1235 fdret = FLOW_DISSECT_RET_OUT_BAD; 1236 break; 1237 } 1238 1239 /* least significant bit of the most significant octet 1240 * indicates if protocol field was compressed 1241 */ 1242 ppp_proto = ntohs(hdr->proto); 1243 if (ppp_proto & 0x0100) { 1244 ppp_proto = ppp_proto >> 8; 1245 nhoff += PPPOE_SES_HLEN - 1; 1246 } else { 1247 nhoff += PPPOE_SES_HLEN; 1248 } 1249 1250 if (ppp_proto == PPP_IP) { 1251 proto = htons(ETH_P_IP); 1252 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1253 } else if (ppp_proto == PPP_IPV6) { 1254 proto = htons(ETH_P_IPV6); 1255 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1256 } else if (ppp_proto == PPP_MPLS_UC) { 1257 proto = htons(ETH_P_MPLS_UC); 1258 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1259 } else if (ppp_proto == PPP_MPLS_MC) { 1260 proto = htons(ETH_P_MPLS_MC); 1261 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1262 } else if (ppp_proto_is_valid(ppp_proto)) { 1263 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1264 } else { 1265 fdret = FLOW_DISSECT_RET_OUT_BAD; 1266 break; 1267 } 1268 1269 if (dissector_uses_key(flow_dissector, 1270 FLOW_DISSECTOR_KEY_PPPOE)) { 1271 struct flow_dissector_key_pppoe *key_pppoe; 1272 1273 key_pppoe = skb_flow_dissector_target(flow_dissector, 1274 FLOW_DISSECTOR_KEY_PPPOE, 1275 target_container); 1276 key_pppoe->session_id = hdr->hdr.sid; 1277 key_pppoe->ppp_proto = htons(ppp_proto); 1278 key_pppoe->type = htons(ETH_P_PPP_SES); 1279 } 1280 break; 1281 } 1282 case htons(ETH_P_TIPC): { 1283 struct tipc_basic_hdr *hdr, _hdr; 1284 1285 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), 1286 data, hlen, &_hdr); 1287 if (!hdr) { 1288 fdret = FLOW_DISSECT_RET_OUT_BAD; 1289 break; 1290 } 1291 1292 if (dissector_uses_key(flow_dissector, 1293 FLOW_DISSECTOR_KEY_TIPC)) { 1294 key_addrs = skb_flow_dissector_target(flow_dissector, 1295 FLOW_DISSECTOR_KEY_TIPC, 1296 target_container); 1297 key_addrs->tipckey.key = tipc_hdr_rps_key(hdr); 1298 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC; 1299 } 1300 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1301 break; 1302 } 1303 1304 case htons(ETH_P_MPLS_UC): 1305 case htons(ETH_P_MPLS_MC): 1306 fdret = __skb_flow_dissect_mpls(skb, flow_dissector, 1307 target_container, data, 1308 nhoff, hlen, mpls_lse, 1309 &mpls_el); 1310 nhoff += sizeof(struct mpls_label); 1311 mpls_lse++; 1312 break; 1313 case htons(ETH_P_FCOE): 1314 if ((hlen - nhoff) < FCOE_HEADER_LEN) { 1315 fdret = FLOW_DISSECT_RET_OUT_BAD; 1316 break; 1317 } 1318 1319 nhoff += FCOE_HEADER_LEN; 1320 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1321 break; 1322 1323 case htons(ETH_P_ARP): 1324 case htons(ETH_P_RARP): 1325 fdret = __skb_flow_dissect_arp(skb, flow_dissector, 1326 target_container, data, 1327 nhoff, hlen); 1328 break; 1329 1330 case htons(ETH_P_BATMAN): 1331 fdret = __skb_flow_dissect_batadv(skb, key_control, data, 1332 &proto, &nhoff, hlen, flags); 1333 break; 1334 1335 case htons(ETH_P_1588): { 1336 struct ptp_header *hdr, _hdr; 1337 1338 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, 1339 hlen, &_hdr); 1340 if (!hdr) { 1341 fdret = FLOW_DISSECT_RET_OUT_BAD; 1342 break; 1343 } 1344 1345 nhoff += ntohs(hdr->message_length); 1346 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1347 break; 1348 } 1349 1350 case htons(ETH_P_PRP): 1351 case htons(ETH_P_HSR): { 1352 struct hsr_tag *hdr, _hdr; 1353 1354 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, 1355 &_hdr); 1356 if (!hdr) { 1357 fdret = FLOW_DISSECT_RET_OUT_BAD; 1358 break; 1359 } 1360 1361 proto = hdr->encap_proto; 1362 nhoff += HSR_HLEN; 1363 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1364 break; 1365 } 1366 1367 default: 1368 fdret = FLOW_DISSECT_RET_OUT_BAD; 1369 break; 1370 } 1371 1372 /* Process result of proto processing */ 1373 switch (fdret) { 1374 case FLOW_DISSECT_RET_OUT_GOOD: 1375 goto out_good; 1376 case FLOW_DISSECT_RET_PROTO_AGAIN: 1377 if (skb_flow_dissect_allowed(&num_hdrs)) 1378 goto proto_again; 1379 goto out_good; 1380 case FLOW_DISSECT_RET_CONTINUE: 1381 case FLOW_DISSECT_RET_IPPROTO_AGAIN: 1382 break; 1383 case FLOW_DISSECT_RET_OUT_BAD: 1384 default: 1385 goto out_bad; 1386 } 1387 1388 ip_proto_again: 1389 fdret = FLOW_DISSECT_RET_CONTINUE; 1390 1391 switch (ip_proto) { 1392 case IPPROTO_GRE: 1393 if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { 1394 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1395 break; 1396 } 1397 1398 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector, 1399 target_container, data, 1400 &proto, &nhoff, &hlen, flags); 1401 break; 1402 1403 case NEXTHDR_HOP: 1404 case NEXTHDR_ROUTING: 1405 case NEXTHDR_DEST: { 1406 u8 _opthdr[2], *opthdr; 1407 1408 if (proto != htons(ETH_P_IPV6)) 1409 break; 1410 1411 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr), 1412 data, hlen, &_opthdr); 1413 if (!opthdr) { 1414 fdret = FLOW_DISSECT_RET_OUT_BAD; 1415 break; 1416 } 1417 1418 ip_proto = opthdr[0]; 1419 nhoff += (opthdr[1] + 1) << 3; 1420 1421 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; 1422 break; 1423 } 1424 case NEXTHDR_FRAGMENT: { 1425 struct frag_hdr _fh, *fh; 1426 1427 if (proto != htons(ETH_P_IPV6)) 1428 break; 1429 1430 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh), 1431 data, hlen, &_fh); 1432 1433 if (!fh) { 1434 fdret = FLOW_DISSECT_RET_OUT_BAD; 1435 break; 1436 } 1437 1438 key_control->flags |= FLOW_DIS_IS_FRAGMENT; 1439 1440 nhoff += sizeof(_fh); 1441 ip_proto = fh->nexthdr; 1442 1443 if (!(fh->frag_off & htons(IP6_OFFSET))) { 1444 key_control->flags |= FLOW_DIS_FIRST_FRAG; 1445 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) { 1446 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; 1447 break; 1448 } 1449 } 1450 1451 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1452 break; 1453 } 1454 case IPPROTO_IPIP: 1455 if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { 1456 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1457 break; 1458 } 1459 1460 proto = htons(ETH_P_IP); 1461 1462 key_control->flags |= FLOW_DIS_ENCAPSULATION; 1463 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { 1464 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1465 break; 1466 } 1467 1468 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1469 break; 1470 1471 case IPPROTO_IPV6: 1472 if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { 1473 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1474 break; 1475 } 1476 1477 proto = htons(ETH_P_IPV6); 1478 1479 key_control->flags |= FLOW_DIS_ENCAPSULATION; 1480 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { 1481 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1482 break; 1483 } 1484 1485 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1486 break; 1487 1488 1489 case IPPROTO_MPLS: 1490 proto = htons(ETH_P_MPLS_UC); 1491 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1492 break; 1493 1494 case IPPROTO_TCP: 1495 __skb_flow_dissect_tcp(skb, flow_dissector, target_container, 1496 data, nhoff, hlen); 1497 break; 1498 1499 case IPPROTO_ICMP: 1500 case IPPROTO_ICMPV6: 1501 __skb_flow_dissect_icmp(skb, flow_dissector, target_container, 1502 data, nhoff, hlen); 1503 break; 1504 1505 default: 1506 break; 1507 } 1508 1509 if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT)) 1510 __skb_flow_dissect_ports(skb, flow_dissector, target_container, 1511 data, nhoff, ip_proto, hlen); 1512 1513 /* Process result of IP proto processing */ 1514 switch (fdret) { 1515 case FLOW_DISSECT_RET_PROTO_AGAIN: 1516 if (skb_flow_dissect_allowed(&num_hdrs)) 1517 goto proto_again; 1518 break; 1519 case FLOW_DISSECT_RET_IPPROTO_AGAIN: 1520 if (skb_flow_dissect_allowed(&num_hdrs)) 1521 goto ip_proto_again; 1522 break; 1523 case FLOW_DISSECT_RET_OUT_GOOD: 1524 case FLOW_DISSECT_RET_CONTINUE: 1525 break; 1526 case FLOW_DISSECT_RET_OUT_BAD: 1527 default: 1528 goto out_bad; 1529 } 1530 1531 out_good: 1532 ret = true; 1533 1534 out: 1535 key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen); 1536 key_basic->n_proto = proto; 1537 key_basic->ip_proto = ip_proto; 1538 1539 return ret; 1540 1541 out_bad: 1542 ret = false; 1543 goto out; 1544 } 1545 EXPORT_SYMBOL(__skb_flow_dissect); 1546 1547 static siphash_aligned_key_t hashrnd; 1548 static __always_inline void __flow_hash_secret_init(void) 1549 { 1550 net_get_random_once(&hashrnd, sizeof(hashrnd)); 1551 } 1552 1553 static const void *flow_keys_hash_start(const struct flow_keys *flow) 1554 { 1555 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT); 1556 return &flow->FLOW_KEYS_HASH_START_FIELD; 1557 } 1558 1559 static inline size_t flow_keys_hash_length(const struct flow_keys *flow) 1560 { 1561 size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs); 1562 1563 BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32)); 1564 1565 switch (flow->control.addr_type) { 1566 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1567 diff -= sizeof(flow->addrs.v4addrs); 1568 break; 1569 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1570 diff -= sizeof(flow->addrs.v6addrs); 1571 break; 1572 case FLOW_DISSECTOR_KEY_TIPC: 1573 diff -= sizeof(flow->addrs.tipckey); 1574 break; 1575 } 1576 return sizeof(*flow) - diff; 1577 } 1578 1579 __be32 flow_get_u32_src(const struct flow_keys *flow) 1580 { 1581 switch (flow->control.addr_type) { 1582 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1583 return flow->addrs.v4addrs.src; 1584 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1585 return (__force __be32)ipv6_addr_hash( 1586 &flow->addrs.v6addrs.src); 1587 case FLOW_DISSECTOR_KEY_TIPC: 1588 return flow->addrs.tipckey.key; 1589 default: 1590 return 0; 1591 } 1592 } 1593 EXPORT_SYMBOL(flow_get_u32_src); 1594 1595 __be32 flow_get_u32_dst(const struct flow_keys *flow) 1596 { 1597 switch (flow->control.addr_type) { 1598 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1599 return flow->addrs.v4addrs.dst; 1600 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1601 return (__force __be32)ipv6_addr_hash( 1602 &flow->addrs.v6addrs.dst); 1603 default: 1604 return 0; 1605 } 1606 } 1607 EXPORT_SYMBOL(flow_get_u32_dst); 1608 1609 /* Sort the source and destination IP and the ports, 1610 * to have consistent hash within the two directions 1611 */ 1612 static inline void __flow_hash_consistentify(struct flow_keys *keys) 1613 { 1614 int addr_diff, i; 1615 1616 switch (keys->control.addr_type) { 1617 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1618 addr_diff = (__force u32)keys->addrs.v4addrs.dst - 1619 (__force u32)keys->addrs.v4addrs.src; 1620 if (addr_diff < 0) 1621 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst); 1622 1623 if ((__force u16)keys->ports.dst < 1624 (__force u16)keys->ports.src) { 1625 swap(keys->ports.src, keys->ports.dst); 1626 } 1627 break; 1628 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1629 addr_diff = memcmp(&keys->addrs.v6addrs.dst, 1630 &keys->addrs.v6addrs.src, 1631 sizeof(keys->addrs.v6addrs.dst)); 1632 if (addr_diff < 0) { 1633 for (i = 0; i < 4; i++) 1634 swap(keys->addrs.v6addrs.src.s6_addr32[i], 1635 keys->addrs.v6addrs.dst.s6_addr32[i]); 1636 } 1637 if ((__force u16)keys->ports.dst < 1638 (__force u16)keys->ports.src) { 1639 swap(keys->ports.src, keys->ports.dst); 1640 } 1641 break; 1642 } 1643 } 1644 1645 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, 1646 const siphash_key_t *keyval) 1647 { 1648 u32 hash; 1649 1650 __flow_hash_consistentify(keys); 1651 1652 hash = siphash(flow_keys_hash_start(keys), 1653 flow_keys_hash_length(keys), keyval); 1654 if (!hash) 1655 hash = 1; 1656 1657 return hash; 1658 } 1659 1660 u32 flow_hash_from_keys(struct flow_keys *keys) 1661 { 1662 __flow_hash_secret_init(); 1663 return __flow_hash_from_keys(keys, &hashrnd); 1664 } 1665 EXPORT_SYMBOL(flow_hash_from_keys); 1666 1667 static inline u32 ___skb_get_hash(const struct sk_buff *skb, 1668 struct flow_keys *keys, 1669 const siphash_key_t *keyval) 1670 { 1671 skb_flow_dissect_flow_keys(skb, keys, 1672 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 1673 1674 return __flow_hash_from_keys(keys, keyval); 1675 } 1676 1677 struct _flow_keys_digest_data { 1678 __be16 n_proto; 1679 u8 ip_proto; 1680 u8 padding; 1681 __be32 ports; 1682 __be32 src; 1683 __be32 dst; 1684 }; 1685 1686 void make_flow_keys_digest(struct flow_keys_digest *digest, 1687 const struct flow_keys *flow) 1688 { 1689 struct _flow_keys_digest_data *data = 1690 (struct _flow_keys_digest_data *)digest; 1691 1692 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest)); 1693 1694 memset(digest, 0, sizeof(*digest)); 1695 1696 data->n_proto = flow->basic.n_proto; 1697 data->ip_proto = flow->basic.ip_proto; 1698 data->ports = flow->ports.ports; 1699 data->src = flow->addrs.v4addrs.src; 1700 data->dst = flow->addrs.v4addrs.dst; 1701 } 1702 EXPORT_SYMBOL(make_flow_keys_digest); 1703 1704 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly; 1705 1706 u32 __skb_get_hash_symmetric(const struct sk_buff *skb) 1707 { 1708 struct flow_keys keys; 1709 1710 __flow_hash_secret_init(); 1711 1712 memset(&keys, 0, sizeof(keys)); 1713 __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric, 1714 &keys, NULL, 0, 0, 0, 1715 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 1716 1717 return __flow_hash_from_keys(&keys, &hashrnd); 1718 } 1719 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric); 1720 1721 /** 1722 * __skb_get_hash: calculate a flow hash 1723 * @skb: sk_buff to calculate flow hash from 1724 * 1725 * This function calculates a flow hash based on src/dst addresses 1726 * and src/dst port numbers. Sets hash in skb to non-zero hash value 1727 * on success, zero indicates no valid hash. Also, sets l4_hash in skb 1728 * if hash is a canonical 4-tuple hash over transport ports. 1729 */ 1730 void __skb_get_hash(struct sk_buff *skb) 1731 { 1732 struct flow_keys keys; 1733 u32 hash; 1734 1735 __flow_hash_secret_init(); 1736 1737 hash = ___skb_get_hash(skb, &keys, &hashrnd); 1738 1739 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1740 } 1741 EXPORT_SYMBOL(__skb_get_hash); 1742 1743 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1744 const siphash_key_t *perturb) 1745 { 1746 struct flow_keys keys; 1747 1748 return ___skb_get_hash(skb, &keys, perturb); 1749 } 1750 EXPORT_SYMBOL(skb_get_hash_perturb); 1751 1752 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1753 const struct flow_keys_basic *keys, int hlen) 1754 { 1755 u32 poff = keys->control.thoff; 1756 1757 /* skip L4 headers for fragments after the first */ 1758 if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) && 1759 !(keys->control.flags & FLOW_DIS_FIRST_FRAG)) 1760 return poff; 1761 1762 switch (keys->basic.ip_proto) { 1763 case IPPROTO_TCP: { 1764 /* access doff as u8 to avoid unaligned access */ 1765 const u8 *doff; 1766 u8 _doff; 1767 1768 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff), 1769 data, hlen, &_doff); 1770 if (!doff) 1771 return poff; 1772 1773 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2); 1774 break; 1775 } 1776 case IPPROTO_UDP: 1777 case IPPROTO_UDPLITE: 1778 poff += sizeof(struct udphdr); 1779 break; 1780 /* For the rest, we do not really care about header 1781 * extensions at this point for now. 1782 */ 1783 case IPPROTO_ICMP: 1784 poff += sizeof(struct icmphdr); 1785 break; 1786 case IPPROTO_ICMPV6: 1787 poff += sizeof(struct icmp6hdr); 1788 break; 1789 case IPPROTO_IGMP: 1790 poff += sizeof(struct igmphdr); 1791 break; 1792 case IPPROTO_DCCP: 1793 poff += sizeof(struct dccp_hdr); 1794 break; 1795 case IPPROTO_SCTP: 1796 poff += sizeof(struct sctphdr); 1797 break; 1798 } 1799 1800 return poff; 1801 } 1802 1803 /** 1804 * skb_get_poff - get the offset to the payload 1805 * @skb: sk_buff to get the payload offset from 1806 * 1807 * The function will get the offset to the payload as far as it could 1808 * be dissected. The main user is currently BPF, so that we can dynamically 1809 * truncate packets without needing to push actual payload to the user 1810 * space and can analyze headers only, instead. 1811 */ 1812 u32 skb_get_poff(const struct sk_buff *skb) 1813 { 1814 struct flow_keys_basic keys; 1815 1816 if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 1817 NULL, 0, 0, 0, 0)) 1818 return 0; 1819 1820 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb)); 1821 } 1822 1823 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys) 1824 { 1825 memset(keys, 0, sizeof(*keys)); 1826 1827 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr, 1828 sizeof(keys->addrs.v6addrs.src)); 1829 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr, 1830 sizeof(keys->addrs.v6addrs.dst)); 1831 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 1832 keys->ports.src = fl6->fl6_sport; 1833 keys->ports.dst = fl6->fl6_dport; 1834 keys->keyid.keyid = fl6->fl6_gre_key; 1835 keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 1836 keys->basic.ip_proto = fl6->flowi6_proto; 1837 1838 return flow_hash_from_keys(keys); 1839 } 1840 EXPORT_SYMBOL(__get_hash_from_flowi6); 1841 1842 static const struct flow_dissector_key flow_keys_dissector_keys[] = { 1843 { 1844 .key_id = FLOW_DISSECTOR_KEY_CONTROL, 1845 .offset = offsetof(struct flow_keys, control), 1846 }, 1847 { 1848 .key_id = FLOW_DISSECTOR_KEY_BASIC, 1849 .offset = offsetof(struct flow_keys, basic), 1850 }, 1851 { 1852 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, 1853 .offset = offsetof(struct flow_keys, addrs.v4addrs), 1854 }, 1855 { 1856 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, 1857 .offset = offsetof(struct flow_keys, addrs.v6addrs), 1858 }, 1859 { 1860 .key_id = FLOW_DISSECTOR_KEY_TIPC, 1861 .offset = offsetof(struct flow_keys, addrs.tipckey), 1862 }, 1863 { 1864 .key_id = FLOW_DISSECTOR_KEY_PORTS, 1865 .offset = offsetof(struct flow_keys, ports), 1866 }, 1867 { 1868 .key_id = FLOW_DISSECTOR_KEY_VLAN, 1869 .offset = offsetof(struct flow_keys, vlan), 1870 }, 1871 { 1872 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL, 1873 .offset = offsetof(struct flow_keys, tags), 1874 }, 1875 { 1876 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID, 1877 .offset = offsetof(struct flow_keys, keyid), 1878 }, 1879 }; 1880 1881 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = { 1882 { 1883 .key_id = FLOW_DISSECTOR_KEY_CONTROL, 1884 .offset = offsetof(struct flow_keys, control), 1885 }, 1886 { 1887 .key_id = FLOW_DISSECTOR_KEY_BASIC, 1888 .offset = offsetof(struct flow_keys, basic), 1889 }, 1890 { 1891 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, 1892 .offset = offsetof(struct flow_keys, addrs.v4addrs), 1893 }, 1894 { 1895 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, 1896 .offset = offsetof(struct flow_keys, addrs.v6addrs), 1897 }, 1898 { 1899 .key_id = FLOW_DISSECTOR_KEY_PORTS, 1900 .offset = offsetof(struct flow_keys, ports), 1901 }, 1902 }; 1903 1904 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = { 1905 { 1906 .key_id = FLOW_DISSECTOR_KEY_CONTROL, 1907 .offset = offsetof(struct flow_keys, control), 1908 }, 1909 { 1910 .key_id = FLOW_DISSECTOR_KEY_BASIC, 1911 .offset = offsetof(struct flow_keys, basic), 1912 }, 1913 }; 1914 1915 struct flow_dissector flow_keys_dissector __read_mostly; 1916 EXPORT_SYMBOL(flow_keys_dissector); 1917 1918 struct flow_dissector flow_keys_basic_dissector __read_mostly; 1919 EXPORT_SYMBOL(flow_keys_basic_dissector); 1920 1921 static int __init init_default_flow_dissectors(void) 1922 { 1923 skb_flow_dissector_init(&flow_keys_dissector, 1924 flow_keys_dissector_keys, 1925 ARRAY_SIZE(flow_keys_dissector_keys)); 1926 skb_flow_dissector_init(&flow_keys_dissector_symmetric, 1927 flow_keys_dissector_symmetric_keys, 1928 ARRAY_SIZE(flow_keys_dissector_symmetric_keys)); 1929 skb_flow_dissector_init(&flow_keys_basic_dissector, 1930 flow_keys_basic_dissector_keys, 1931 ARRAY_SIZE(flow_keys_basic_dissector_keys)); 1932 return 0; 1933 } 1934 core_initcall(init_default_flow_dissectors); 1935