xref: /linux/net/core/flow_dissector.c (revision a97673a1c43d005a3ae215f4ca8b4bbb5691aea1)
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/dsa.h>
8 #include <net/dst_metadata.h>
9 #include <net/ip.h>
10 #include <net/ipv6.h>
11 #include <net/gre.h>
12 #include <net/pptp.h>
13 #include <net/tipc.h>
14 #include <linux/igmp.h>
15 #include <linux/icmp.h>
16 #include <linux/sctp.h>
17 #include <linux/dccp.h>
18 #include <linux/if_tunnel.h>
19 #include <linux/if_pppox.h>
20 #include <linux/ppp_defs.h>
21 #include <linux/stddef.h>
22 #include <linux/if_ether.h>
23 #include <linux/mpls.h>
24 #include <linux/tcp.h>
25 #include <net/flow_dissector.h>
26 #include <scsi/fc/fc_fcoe.h>
27 #include <uapi/linux/batadv_packet.h>
28 #include <linux/bpf.h>
29 
30 static DEFINE_MUTEX(flow_dissector_mutex);
31 
32 static void dissector_set_key(struct flow_dissector *flow_dissector,
33 			      enum flow_dissector_key_id key_id)
34 {
35 	flow_dissector->used_keys |= (1 << key_id);
36 }
37 
38 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
39 			     const struct flow_dissector_key *key,
40 			     unsigned int key_count)
41 {
42 	unsigned int i;
43 
44 	memset(flow_dissector, 0, sizeof(*flow_dissector));
45 
46 	for (i = 0; i < key_count; i++, key++) {
47 		/* User should make sure that every key target offset is withing
48 		 * boundaries of unsigned short.
49 		 */
50 		BUG_ON(key->offset > USHRT_MAX);
51 		BUG_ON(dissector_uses_key(flow_dissector,
52 					  key->key_id));
53 
54 		dissector_set_key(flow_dissector, key->key_id);
55 		flow_dissector->offset[key->key_id] = key->offset;
56 	}
57 
58 	/* Ensure that the dissector always includes control and basic key.
59 	 * That way we are able to avoid handling lack of these in fast path.
60 	 */
61 	BUG_ON(!dissector_uses_key(flow_dissector,
62 				   FLOW_DISSECTOR_KEY_CONTROL));
63 	BUG_ON(!dissector_uses_key(flow_dissector,
64 				   FLOW_DISSECTOR_KEY_BASIC));
65 }
66 EXPORT_SYMBOL(skb_flow_dissector_init);
67 
68 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
69 				       struct bpf_prog *prog)
70 {
71 	struct bpf_prog *attached;
72 	struct net *net;
73 
74 	net = current->nsproxy->net_ns;
75 	mutex_lock(&flow_dissector_mutex);
76 	attached = rcu_dereference_protected(net->flow_dissector_prog,
77 					     lockdep_is_held(&flow_dissector_mutex));
78 	if (attached) {
79 		/* Only one BPF program can be attached at a time */
80 		mutex_unlock(&flow_dissector_mutex);
81 		return -EEXIST;
82 	}
83 	rcu_assign_pointer(net->flow_dissector_prog, prog);
84 	mutex_unlock(&flow_dissector_mutex);
85 	return 0;
86 }
87 
88 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
89 {
90 	struct bpf_prog *attached;
91 	struct net *net;
92 
93 	net = current->nsproxy->net_ns;
94 	mutex_lock(&flow_dissector_mutex);
95 	attached = rcu_dereference_protected(net->flow_dissector_prog,
96 					     lockdep_is_held(&flow_dissector_mutex));
97 	if (!attached) {
98 		mutex_unlock(&flow_dissector_mutex);
99 		return -ENOENT;
100 	}
101 	bpf_prog_put(attached);
102 	RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
103 	mutex_unlock(&flow_dissector_mutex);
104 	return 0;
105 }
106 /**
107  * skb_flow_get_be16 - extract be16 entity
108  * @skb: sk_buff to extract from
109  * @poff: offset to extract at
110  * @data: raw buffer pointer to the packet
111  * @hlen: packet header length
112  *
113  * The function will try to retrieve a be32 entity at
114  * offset poff
115  */
116 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
117 				void *data, int hlen)
118 {
119 	__be16 *u, _u;
120 
121 	u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
122 	if (u)
123 		return *u;
124 
125 	return 0;
126 }
127 
128 /**
129  * __skb_flow_get_ports - extract the upper layer ports and return them
130  * @skb: sk_buff to extract the ports from
131  * @thoff: transport header offset
132  * @ip_proto: protocol for which to get port offset
133  * @data: raw buffer pointer to the packet, if NULL use skb->data
134  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
135  *
136  * The function will try to retrieve the ports at offset thoff + poff where poff
137  * is the protocol port offset returned from proto_ports_offset
138  */
139 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
140 			    void *data, int hlen)
141 {
142 	int poff = proto_ports_offset(ip_proto);
143 
144 	if (!data) {
145 		data = skb->data;
146 		hlen = skb_headlen(skb);
147 	}
148 
149 	if (poff >= 0) {
150 		__be32 *ports, _ports;
151 
152 		ports = __skb_header_pointer(skb, thoff + poff,
153 					     sizeof(_ports), data, hlen, &_ports);
154 		if (ports)
155 			return *ports;
156 	}
157 
158 	return 0;
159 }
160 EXPORT_SYMBOL(__skb_flow_get_ports);
161 
162 static void
163 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
164 				   struct flow_dissector *flow_dissector,
165 				   void *target_container)
166 {
167 	struct flow_dissector_key_control *ctrl;
168 
169 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
170 		return;
171 
172 	ctrl = skb_flow_dissector_target(flow_dissector,
173 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
174 					 target_container);
175 	ctrl->addr_type = type;
176 }
177 
178 void
179 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
180 			     struct flow_dissector *flow_dissector,
181 			     void *target_container)
182 {
183 	struct ip_tunnel_info *info;
184 	struct ip_tunnel_key *key;
185 
186 	/* A quick check to see if there might be something to do. */
187 	if (!dissector_uses_key(flow_dissector,
188 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
189 	    !dissector_uses_key(flow_dissector,
190 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
191 	    !dissector_uses_key(flow_dissector,
192 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
193 	    !dissector_uses_key(flow_dissector,
194 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
195 	    !dissector_uses_key(flow_dissector,
196 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
197 	    !dissector_uses_key(flow_dissector,
198 				FLOW_DISSECTOR_KEY_ENC_IP) &&
199 	    !dissector_uses_key(flow_dissector,
200 				FLOW_DISSECTOR_KEY_ENC_OPTS))
201 		return;
202 
203 	info = skb_tunnel_info(skb);
204 	if (!info)
205 		return;
206 
207 	key = &info->key;
208 
209 	switch (ip_tunnel_info_af(info)) {
210 	case AF_INET:
211 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
212 						   flow_dissector,
213 						   target_container);
214 		if (dissector_uses_key(flow_dissector,
215 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
216 			struct flow_dissector_key_ipv4_addrs *ipv4;
217 
218 			ipv4 = skb_flow_dissector_target(flow_dissector,
219 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
220 							 target_container);
221 			ipv4->src = key->u.ipv4.src;
222 			ipv4->dst = key->u.ipv4.dst;
223 		}
224 		break;
225 	case AF_INET6:
226 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
227 						   flow_dissector,
228 						   target_container);
229 		if (dissector_uses_key(flow_dissector,
230 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
231 			struct flow_dissector_key_ipv6_addrs *ipv6;
232 
233 			ipv6 = skb_flow_dissector_target(flow_dissector,
234 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
235 							 target_container);
236 			ipv6->src = key->u.ipv6.src;
237 			ipv6->dst = key->u.ipv6.dst;
238 		}
239 		break;
240 	}
241 
242 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
243 		struct flow_dissector_key_keyid *keyid;
244 
245 		keyid = skb_flow_dissector_target(flow_dissector,
246 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
247 						  target_container);
248 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
249 	}
250 
251 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
252 		struct flow_dissector_key_ports *tp;
253 
254 		tp = skb_flow_dissector_target(flow_dissector,
255 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
256 					       target_container);
257 		tp->src = key->tp_src;
258 		tp->dst = key->tp_dst;
259 	}
260 
261 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
262 		struct flow_dissector_key_ip *ip;
263 
264 		ip = skb_flow_dissector_target(flow_dissector,
265 					       FLOW_DISSECTOR_KEY_ENC_IP,
266 					       target_container);
267 		ip->tos = key->tos;
268 		ip->ttl = key->ttl;
269 	}
270 
271 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
272 		struct flow_dissector_key_enc_opts *enc_opt;
273 
274 		enc_opt = skb_flow_dissector_target(flow_dissector,
275 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
276 						    target_container);
277 
278 		if (info->options_len) {
279 			enc_opt->len = info->options_len;
280 			ip_tunnel_info_opts_get(enc_opt->data, info);
281 			enc_opt->dst_opt_type = info->key.tun_flags &
282 						TUNNEL_OPTIONS_PRESENT;
283 		}
284 	}
285 }
286 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
287 
288 static enum flow_dissect_ret
289 __skb_flow_dissect_mpls(const struct sk_buff *skb,
290 			struct flow_dissector *flow_dissector,
291 			void *target_container, void *data, int nhoff, int hlen)
292 {
293 	struct flow_dissector_key_keyid *key_keyid;
294 	struct mpls_label *hdr, _hdr[2];
295 	u32 entry, label;
296 
297 	if (!dissector_uses_key(flow_dissector,
298 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
299 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
300 		return FLOW_DISSECT_RET_OUT_GOOD;
301 
302 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
303 				   hlen, &_hdr);
304 	if (!hdr)
305 		return FLOW_DISSECT_RET_OUT_BAD;
306 
307 	entry = ntohl(hdr[0].entry);
308 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
309 
310 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
311 		struct flow_dissector_key_mpls *key_mpls;
312 
313 		key_mpls = skb_flow_dissector_target(flow_dissector,
314 						     FLOW_DISSECTOR_KEY_MPLS,
315 						     target_container);
316 		key_mpls->mpls_label = label;
317 		key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
318 					>> MPLS_LS_TTL_SHIFT;
319 		key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
320 					>> MPLS_LS_TC_SHIFT;
321 		key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
322 					>> MPLS_LS_S_SHIFT;
323 	}
324 
325 	if (label == MPLS_LABEL_ENTROPY) {
326 		key_keyid = skb_flow_dissector_target(flow_dissector,
327 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
328 						      target_container);
329 		key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
330 	}
331 	return FLOW_DISSECT_RET_OUT_GOOD;
332 }
333 
334 static enum flow_dissect_ret
335 __skb_flow_dissect_arp(const struct sk_buff *skb,
336 		       struct flow_dissector *flow_dissector,
337 		       void *target_container, void *data, int nhoff, int hlen)
338 {
339 	struct flow_dissector_key_arp *key_arp;
340 	struct {
341 		unsigned char ar_sha[ETH_ALEN];
342 		unsigned char ar_sip[4];
343 		unsigned char ar_tha[ETH_ALEN];
344 		unsigned char ar_tip[4];
345 	} *arp_eth, _arp_eth;
346 	const struct arphdr *arp;
347 	struct arphdr _arp;
348 
349 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
350 		return FLOW_DISSECT_RET_OUT_GOOD;
351 
352 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
353 				   hlen, &_arp);
354 	if (!arp)
355 		return FLOW_DISSECT_RET_OUT_BAD;
356 
357 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
358 	    arp->ar_pro != htons(ETH_P_IP) ||
359 	    arp->ar_hln != ETH_ALEN ||
360 	    arp->ar_pln != 4 ||
361 	    (arp->ar_op != htons(ARPOP_REPLY) &&
362 	     arp->ar_op != htons(ARPOP_REQUEST)))
363 		return FLOW_DISSECT_RET_OUT_BAD;
364 
365 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
366 				       sizeof(_arp_eth), data,
367 				       hlen, &_arp_eth);
368 	if (!arp_eth)
369 		return FLOW_DISSECT_RET_OUT_BAD;
370 
371 	key_arp = skb_flow_dissector_target(flow_dissector,
372 					    FLOW_DISSECTOR_KEY_ARP,
373 					    target_container);
374 
375 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
376 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
377 
378 	/* Only store the lower byte of the opcode;
379 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
380 	 */
381 	key_arp->op = ntohs(arp->ar_op) & 0xff;
382 
383 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
384 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
385 
386 	return FLOW_DISSECT_RET_OUT_GOOD;
387 }
388 
389 static enum flow_dissect_ret
390 __skb_flow_dissect_gre(const struct sk_buff *skb,
391 		       struct flow_dissector_key_control *key_control,
392 		       struct flow_dissector *flow_dissector,
393 		       void *target_container, void *data,
394 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
395 		       unsigned int flags)
396 {
397 	struct flow_dissector_key_keyid *key_keyid;
398 	struct gre_base_hdr *hdr, _hdr;
399 	int offset = 0;
400 	u16 gre_ver;
401 
402 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
403 				   data, *p_hlen, &_hdr);
404 	if (!hdr)
405 		return FLOW_DISSECT_RET_OUT_BAD;
406 
407 	/* Only look inside GRE without routing */
408 	if (hdr->flags & GRE_ROUTING)
409 		return FLOW_DISSECT_RET_OUT_GOOD;
410 
411 	/* Only look inside GRE for version 0 and 1 */
412 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
413 	if (gre_ver > 1)
414 		return FLOW_DISSECT_RET_OUT_GOOD;
415 
416 	*p_proto = hdr->protocol;
417 	if (gre_ver) {
418 		/* Version1 must be PPTP, and check the flags */
419 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
420 			return FLOW_DISSECT_RET_OUT_GOOD;
421 	}
422 
423 	offset += sizeof(struct gre_base_hdr);
424 
425 	if (hdr->flags & GRE_CSUM)
426 		offset += FIELD_SIZEOF(struct gre_full_hdr, csum) +
427 			  FIELD_SIZEOF(struct gre_full_hdr, reserved1);
428 
429 	if (hdr->flags & GRE_KEY) {
430 		const __be32 *keyid;
431 		__be32 _keyid;
432 
433 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
434 					     sizeof(_keyid),
435 					     data, *p_hlen, &_keyid);
436 		if (!keyid)
437 			return FLOW_DISSECT_RET_OUT_BAD;
438 
439 		if (dissector_uses_key(flow_dissector,
440 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
441 			key_keyid = skb_flow_dissector_target(flow_dissector,
442 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
443 							      target_container);
444 			if (gre_ver == 0)
445 				key_keyid->keyid = *keyid;
446 			else
447 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
448 		}
449 		offset += FIELD_SIZEOF(struct gre_full_hdr, key);
450 	}
451 
452 	if (hdr->flags & GRE_SEQ)
453 		offset += FIELD_SIZEOF(struct pptp_gre_header, seq);
454 
455 	if (gre_ver == 0) {
456 		if (*p_proto == htons(ETH_P_TEB)) {
457 			const struct ethhdr *eth;
458 			struct ethhdr _eth;
459 
460 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
461 						   sizeof(_eth),
462 						   data, *p_hlen, &_eth);
463 			if (!eth)
464 				return FLOW_DISSECT_RET_OUT_BAD;
465 			*p_proto = eth->h_proto;
466 			offset += sizeof(*eth);
467 
468 			/* Cap headers that we access via pointers at the
469 			 * end of the Ethernet header as our maximum alignment
470 			 * at that point is only 2 bytes.
471 			 */
472 			if (NET_IP_ALIGN)
473 				*p_hlen = *p_nhoff + offset;
474 		}
475 	} else { /* version 1, must be PPTP */
476 		u8 _ppp_hdr[PPP_HDRLEN];
477 		u8 *ppp_hdr;
478 
479 		if (hdr->flags & GRE_ACK)
480 			offset += FIELD_SIZEOF(struct pptp_gre_header, ack);
481 
482 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
483 					       sizeof(_ppp_hdr),
484 					       data, *p_hlen, _ppp_hdr);
485 		if (!ppp_hdr)
486 			return FLOW_DISSECT_RET_OUT_BAD;
487 
488 		switch (PPP_PROTOCOL(ppp_hdr)) {
489 		case PPP_IP:
490 			*p_proto = htons(ETH_P_IP);
491 			break;
492 		case PPP_IPV6:
493 			*p_proto = htons(ETH_P_IPV6);
494 			break;
495 		default:
496 			/* Could probably catch some more like MPLS */
497 			break;
498 		}
499 
500 		offset += PPP_HDRLEN;
501 	}
502 
503 	*p_nhoff += offset;
504 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
505 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
506 		return FLOW_DISSECT_RET_OUT_GOOD;
507 
508 	return FLOW_DISSECT_RET_PROTO_AGAIN;
509 }
510 
511 /**
512  * __skb_flow_dissect_batadv() - dissect batman-adv header
513  * @skb: sk_buff to with the batman-adv header
514  * @key_control: flow dissectors control key
515  * @data: raw buffer pointer to the packet, if NULL use skb->data
516  * @p_proto: pointer used to update the protocol to process next
517  * @p_nhoff: pointer used to update inner network header offset
518  * @hlen: packet header length
519  * @flags: any combination of FLOW_DISSECTOR_F_*
520  *
521  * ETH_P_BATMAN packets are tried to be dissected. Only
522  * &struct batadv_unicast packets are actually processed because they contain an
523  * inner ethernet header and are usually followed by actual network header. This
524  * allows the flow dissector to continue processing the packet.
525  *
526  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
527  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
528  *  otherwise FLOW_DISSECT_RET_OUT_BAD
529  */
530 static enum flow_dissect_ret
531 __skb_flow_dissect_batadv(const struct sk_buff *skb,
532 			  struct flow_dissector_key_control *key_control,
533 			  void *data, __be16 *p_proto, int *p_nhoff, int hlen,
534 			  unsigned int flags)
535 {
536 	struct {
537 		struct batadv_unicast_packet batadv_unicast;
538 		struct ethhdr eth;
539 	} *hdr, _hdr;
540 
541 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
542 				   &_hdr);
543 	if (!hdr)
544 		return FLOW_DISSECT_RET_OUT_BAD;
545 
546 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
547 		return FLOW_DISSECT_RET_OUT_BAD;
548 
549 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
550 		return FLOW_DISSECT_RET_OUT_BAD;
551 
552 	*p_proto = hdr->eth.h_proto;
553 	*p_nhoff += sizeof(*hdr);
554 
555 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
556 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
557 		return FLOW_DISSECT_RET_OUT_GOOD;
558 
559 	return FLOW_DISSECT_RET_PROTO_AGAIN;
560 }
561 
562 static void
563 __skb_flow_dissect_tcp(const struct sk_buff *skb,
564 		       struct flow_dissector *flow_dissector,
565 		       void *target_container, void *data, int thoff, int hlen)
566 {
567 	struct flow_dissector_key_tcp *key_tcp;
568 	struct tcphdr *th, _th;
569 
570 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
571 		return;
572 
573 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
574 	if (!th)
575 		return;
576 
577 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
578 		return;
579 
580 	key_tcp = skb_flow_dissector_target(flow_dissector,
581 					    FLOW_DISSECTOR_KEY_TCP,
582 					    target_container);
583 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
584 }
585 
586 static void
587 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
588 			struct flow_dissector *flow_dissector,
589 			void *target_container, void *data, const struct iphdr *iph)
590 {
591 	struct flow_dissector_key_ip *key_ip;
592 
593 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
594 		return;
595 
596 	key_ip = skb_flow_dissector_target(flow_dissector,
597 					   FLOW_DISSECTOR_KEY_IP,
598 					   target_container);
599 	key_ip->tos = iph->tos;
600 	key_ip->ttl = iph->ttl;
601 }
602 
603 static void
604 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
605 			struct flow_dissector *flow_dissector,
606 			void *target_container, void *data, const struct ipv6hdr *iph)
607 {
608 	struct flow_dissector_key_ip *key_ip;
609 
610 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
611 		return;
612 
613 	key_ip = skb_flow_dissector_target(flow_dissector,
614 					   FLOW_DISSECTOR_KEY_IP,
615 					   target_container);
616 	key_ip->tos = ipv6_get_dsfield(iph);
617 	key_ip->ttl = iph->hop_limit;
618 }
619 
620 /* Maximum number of protocol headers that can be parsed in
621  * __skb_flow_dissect
622  */
623 #define MAX_FLOW_DISSECT_HDRS	15
624 
625 static bool skb_flow_dissect_allowed(int *num_hdrs)
626 {
627 	++*num_hdrs;
628 
629 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
630 }
631 
632 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
633 				     struct flow_dissector *flow_dissector,
634 				     void *target_container)
635 {
636 	struct flow_dissector_key_control *key_control;
637 	struct flow_dissector_key_basic *key_basic;
638 	struct flow_dissector_key_addrs *key_addrs;
639 	struct flow_dissector_key_ports *key_ports;
640 
641 	key_control = skb_flow_dissector_target(flow_dissector,
642 						FLOW_DISSECTOR_KEY_CONTROL,
643 						target_container);
644 	key_control->thoff = flow_keys->thoff;
645 	if (flow_keys->is_frag)
646 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
647 	if (flow_keys->is_first_frag)
648 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
649 	if (flow_keys->is_encap)
650 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
651 
652 	key_basic = skb_flow_dissector_target(flow_dissector,
653 					      FLOW_DISSECTOR_KEY_BASIC,
654 					      target_container);
655 	key_basic->n_proto = flow_keys->n_proto;
656 	key_basic->ip_proto = flow_keys->ip_proto;
657 
658 	if (flow_keys->addr_proto == ETH_P_IP &&
659 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
660 		key_addrs = skb_flow_dissector_target(flow_dissector,
661 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
662 						      target_container);
663 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
664 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
665 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
666 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
667 		   dissector_uses_key(flow_dissector,
668 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
669 		key_addrs = skb_flow_dissector_target(flow_dissector,
670 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
671 						      target_container);
672 		memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
673 		       sizeof(key_addrs->v6addrs));
674 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
675 	}
676 
677 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) {
678 		key_ports = skb_flow_dissector_target(flow_dissector,
679 						      FLOW_DISSECTOR_KEY_PORTS,
680 						      target_container);
681 		key_ports->src = flow_keys->sport;
682 		key_ports->dst = flow_keys->dport;
683 	}
684 }
685 
686 /**
687  * __skb_flow_dissect - extract the flow_keys struct and return it
688  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
689  * @flow_dissector: list of keys to dissect
690  * @target_container: target structure to put dissected values into
691  * @data: raw buffer pointer to the packet, if NULL use skb->data
692  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
693  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
694  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
695  *
696  * The function will try to retrieve individual keys into target specified
697  * by flow_dissector from either the skbuff or a raw buffer specified by the
698  * rest parameters.
699  *
700  * Caller must take care of zeroing target container memory.
701  */
702 bool __skb_flow_dissect(const struct sk_buff *skb,
703 			struct flow_dissector *flow_dissector,
704 			void *target_container,
705 			void *data, __be16 proto, int nhoff, int hlen,
706 			unsigned int flags)
707 {
708 	struct flow_dissector_key_control *key_control;
709 	struct flow_dissector_key_basic *key_basic;
710 	struct flow_dissector_key_addrs *key_addrs;
711 	struct flow_dissector_key_ports *key_ports;
712 	struct flow_dissector_key_icmp *key_icmp;
713 	struct flow_dissector_key_tags *key_tags;
714 	struct flow_dissector_key_vlan *key_vlan;
715 	enum flow_dissect_ret fdret;
716 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
717 	struct bpf_prog *attached = NULL;
718 	int num_hdrs = 0;
719 	u8 ip_proto = 0;
720 	bool ret;
721 
722 	if (!data) {
723 		data = skb->data;
724 		proto = skb_vlan_tag_present(skb) ?
725 			 skb->vlan_proto : skb->protocol;
726 		nhoff = skb_network_offset(skb);
727 		hlen = skb_headlen(skb);
728 #if IS_ENABLED(CONFIG_NET_DSA)
729 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
730 			const struct dsa_device_ops *ops;
731 			int offset;
732 
733 			ops = skb->dev->dsa_ptr->tag_ops;
734 			if (ops->flow_dissect &&
735 			    !ops->flow_dissect(skb, &proto, &offset)) {
736 				hlen -= offset;
737 				nhoff += offset;
738 			}
739 		}
740 #endif
741 	}
742 
743 	/* It is ensured by skb_flow_dissector_init() that control key will
744 	 * be always present.
745 	 */
746 	key_control = skb_flow_dissector_target(flow_dissector,
747 						FLOW_DISSECTOR_KEY_CONTROL,
748 						target_container);
749 
750 	/* It is ensured by skb_flow_dissector_init() that basic key will
751 	 * be always present.
752 	 */
753 	key_basic = skb_flow_dissector_target(flow_dissector,
754 					      FLOW_DISSECTOR_KEY_BASIC,
755 					      target_container);
756 
757 	rcu_read_lock();
758 	if (skb) {
759 		if (skb->dev)
760 			attached = rcu_dereference(dev_net(skb->dev)->flow_dissector_prog);
761 		else if (skb->sk)
762 			attached = rcu_dereference(sock_net(skb->sk)->flow_dissector_prog);
763 		else
764 			WARN_ON_ONCE(1);
765 	}
766 	if (attached) {
767 		/* Note that even though the const qualifier is discarded
768 		 * throughout the execution of the BPF program, all changes(the
769 		 * control block) are reverted after the BPF program returns.
770 		 * Therefore, __skb_flow_dissect does not alter the skb.
771 		 */
772 		struct bpf_flow_keys flow_keys = {};
773 		struct bpf_skb_data_end cb_saved;
774 		struct bpf_skb_data_end *cb;
775 		u32 result;
776 
777 		cb = (struct bpf_skb_data_end *)skb->cb;
778 
779 		/* Save Control Block */
780 		memcpy(&cb_saved, cb, sizeof(cb_saved));
781 		memset(cb, 0, sizeof(cb_saved));
782 
783 		/* Pass parameters to the BPF program */
784 		cb->qdisc_cb.flow_keys = &flow_keys;
785 		flow_keys.nhoff = nhoff;
786 
787 		bpf_compute_data_pointers((struct sk_buff *)skb);
788 		result = BPF_PROG_RUN(attached, skb);
789 
790 		/* Restore state */
791 		memcpy(cb, &cb_saved, sizeof(cb_saved));
792 
793 		__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
794 					 target_container);
795 		key_control->thoff = min_t(u16, key_control->thoff, skb->len);
796 		rcu_read_unlock();
797 		return result == BPF_OK;
798 	}
799 	rcu_read_unlock();
800 
801 	if (dissector_uses_key(flow_dissector,
802 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
803 		struct ethhdr *eth = eth_hdr(skb);
804 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
805 
806 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
807 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
808 							  target_container);
809 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
810 	}
811 
812 proto_again:
813 	fdret = FLOW_DISSECT_RET_CONTINUE;
814 
815 	switch (proto) {
816 	case htons(ETH_P_IP): {
817 		const struct iphdr *iph;
818 		struct iphdr _iph;
819 
820 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
821 		if (!iph || iph->ihl < 5) {
822 			fdret = FLOW_DISSECT_RET_OUT_BAD;
823 			break;
824 		}
825 
826 		nhoff += iph->ihl * 4;
827 
828 		ip_proto = iph->protocol;
829 
830 		if (dissector_uses_key(flow_dissector,
831 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
832 			key_addrs = skb_flow_dissector_target(flow_dissector,
833 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
834 							      target_container);
835 
836 			memcpy(&key_addrs->v4addrs, &iph->saddr,
837 			       sizeof(key_addrs->v4addrs));
838 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
839 		}
840 
841 		if (ip_is_fragment(iph)) {
842 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
843 
844 			if (iph->frag_off & htons(IP_OFFSET)) {
845 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
846 				break;
847 			} else {
848 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
849 				if (!(flags &
850 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
851 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
852 					break;
853 				}
854 			}
855 		}
856 
857 		__skb_flow_dissect_ipv4(skb, flow_dissector,
858 					target_container, data, iph);
859 
860 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
861 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
862 			break;
863 		}
864 
865 		break;
866 	}
867 	case htons(ETH_P_IPV6): {
868 		const struct ipv6hdr *iph;
869 		struct ipv6hdr _iph;
870 
871 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
872 		if (!iph) {
873 			fdret = FLOW_DISSECT_RET_OUT_BAD;
874 			break;
875 		}
876 
877 		ip_proto = iph->nexthdr;
878 		nhoff += sizeof(struct ipv6hdr);
879 
880 		if (dissector_uses_key(flow_dissector,
881 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
882 			key_addrs = skb_flow_dissector_target(flow_dissector,
883 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
884 							      target_container);
885 
886 			memcpy(&key_addrs->v6addrs, &iph->saddr,
887 			       sizeof(key_addrs->v6addrs));
888 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
889 		}
890 
891 		if ((dissector_uses_key(flow_dissector,
892 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
893 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
894 		    ip6_flowlabel(iph)) {
895 			__be32 flow_label = ip6_flowlabel(iph);
896 
897 			if (dissector_uses_key(flow_dissector,
898 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
899 				key_tags = skb_flow_dissector_target(flow_dissector,
900 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
901 								     target_container);
902 				key_tags->flow_label = ntohl(flow_label);
903 			}
904 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
905 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
906 				break;
907 			}
908 		}
909 
910 		__skb_flow_dissect_ipv6(skb, flow_dissector,
911 					target_container, data, iph);
912 
913 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
914 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
915 
916 		break;
917 	}
918 	case htons(ETH_P_8021AD):
919 	case htons(ETH_P_8021Q): {
920 		const struct vlan_hdr *vlan = NULL;
921 		struct vlan_hdr _vlan;
922 		__be16 saved_vlan_tpid = proto;
923 
924 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
925 		    skb && skb_vlan_tag_present(skb)) {
926 			proto = skb->protocol;
927 		} else {
928 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
929 						    data, hlen, &_vlan);
930 			if (!vlan) {
931 				fdret = FLOW_DISSECT_RET_OUT_BAD;
932 				break;
933 			}
934 
935 			proto = vlan->h_vlan_encapsulated_proto;
936 			nhoff += sizeof(*vlan);
937 		}
938 
939 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
940 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
941 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
942 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
943 		} else {
944 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
945 			break;
946 		}
947 
948 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
949 			key_vlan = skb_flow_dissector_target(flow_dissector,
950 							     dissector_vlan,
951 							     target_container);
952 
953 			if (!vlan) {
954 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
955 				key_vlan->vlan_priority =
956 					(skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
957 			} else {
958 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
959 					VLAN_VID_MASK;
960 				key_vlan->vlan_priority =
961 					(ntohs(vlan->h_vlan_TCI) &
962 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
963 			}
964 			key_vlan->vlan_tpid = saved_vlan_tpid;
965 		}
966 
967 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
968 		break;
969 	}
970 	case htons(ETH_P_PPP_SES): {
971 		struct {
972 			struct pppoe_hdr hdr;
973 			__be16 proto;
974 		} *hdr, _hdr;
975 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
976 		if (!hdr) {
977 			fdret = FLOW_DISSECT_RET_OUT_BAD;
978 			break;
979 		}
980 
981 		proto = hdr->proto;
982 		nhoff += PPPOE_SES_HLEN;
983 		switch (proto) {
984 		case htons(PPP_IP):
985 			proto = htons(ETH_P_IP);
986 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
987 			break;
988 		case htons(PPP_IPV6):
989 			proto = htons(ETH_P_IPV6);
990 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
991 			break;
992 		default:
993 			fdret = FLOW_DISSECT_RET_OUT_BAD;
994 			break;
995 		}
996 		break;
997 	}
998 	case htons(ETH_P_TIPC): {
999 		struct tipc_basic_hdr *hdr, _hdr;
1000 
1001 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1002 					   data, hlen, &_hdr);
1003 		if (!hdr) {
1004 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1005 			break;
1006 		}
1007 
1008 		if (dissector_uses_key(flow_dissector,
1009 				       FLOW_DISSECTOR_KEY_TIPC)) {
1010 			key_addrs = skb_flow_dissector_target(flow_dissector,
1011 							      FLOW_DISSECTOR_KEY_TIPC,
1012 							      target_container);
1013 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1014 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1015 		}
1016 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1017 		break;
1018 	}
1019 
1020 	case htons(ETH_P_MPLS_UC):
1021 	case htons(ETH_P_MPLS_MC):
1022 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1023 						target_container, data,
1024 						nhoff, hlen);
1025 		break;
1026 	case htons(ETH_P_FCOE):
1027 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1028 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1029 			break;
1030 		}
1031 
1032 		nhoff += FCOE_HEADER_LEN;
1033 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1034 		break;
1035 
1036 	case htons(ETH_P_ARP):
1037 	case htons(ETH_P_RARP):
1038 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1039 					       target_container, data,
1040 					       nhoff, hlen);
1041 		break;
1042 
1043 	case htons(ETH_P_BATMAN):
1044 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1045 						  &proto, &nhoff, hlen, flags);
1046 		break;
1047 
1048 	default:
1049 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1050 		break;
1051 	}
1052 
1053 	/* Process result of proto processing */
1054 	switch (fdret) {
1055 	case FLOW_DISSECT_RET_OUT_GOOD:
1056 		goto out_good;
1057 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1058 		if (skb_flow_dissect_allowed(&num_hdrs))
1059 			goto proto_again;
1060 		goto out_good;
1061 	case FLOW_DISSECT_RET_CONTINUE:
1062 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1063 		break;
1064 	case FLOW_DISSECT_RET_OUT_BAD:
1065 	default:
1066 		goto out_bad;
1067 	}
1068 
1069 ip_proto_again:
1070 	fdret = FLOW_DISSECT_RET_CONTINUE;
1071 
1072 	switch (ip_proto) {
1073 	case IPPROTO_GRE:
1074 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1075 					       target_container, data,
1076 					       &proto, &nhoff, &hlen, flags);
1077 		break;
1078 
1079 	case NEXTHDR_HOP:
1080 	case NEXTHDR_ROUTING:
1081 	case NEXTHDR_DEST: {
1082 		u8 _opthdr[2], *opthdr;
1083 
1084 		if (proto != htons(ETH_P_IPV6))
1085 			break;
1086 
1087 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1088 					      data, hlen, &_opthdr);
1089 		if (!opthdr) {
1090 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1091 			break;
1092 		}
1093 
1094 		ip_proto = opthdr[0];
1095 		nhoff += (opthdr[1] + 1) << 3;
1096 
1097 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1098 		break;
1099 	}
1100 	case NEXTHDR_FRAGMENT: {
1101 		struct frag_hdr _fh, *fh;
1102 
1103 		if (proto != htons(ETH_P_IPV6))
1104 			break;
1105 
1106 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1107 					  data, hlen, &_fh);
1108 
1109 		if (!fh) {
1110 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1111 			break;
1112 		}
1113 
1114 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1115 
1116 		nhoff += sizeof(_fh);
1117 		ip_proto = fh->nexthdr;
1118 
1119 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1120 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1121 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1122 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1123 				break;
1124 			}
1125 		}
1126 
1127 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1128 		break;
1129 	}
1130 	case IPPROTO_IPIP:
1131 		proto = htons(ETH_P_IP);
1132 
1133 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1134 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1135 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1136 			break;
1137 		}
1138 
1139 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1140 		break;
1141 
1142 	case IPPROTO_IPV6:
1143 		proto = htons(ETH_P_IPV6);
1144 
1145 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1146 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1147 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1148 			break;
1149 		}
1150 
1151 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1152 		break;
1153 
1154 
1155 	case IPPROTO_MPLS:
1156 		proto = htons(ETH_P_MPLS_UC);
1157 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1158 		break;
1159 
1160 	case IPPROTO_TCP:
1161 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1162 				       data, nhoff, hlen);
1163 		break;
1164 
1165 	default:
1166 		break;
1167 	}
1168 
1169 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
1170 	    !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
1171 		key_ports = skb_flow_dissector_target(flow_dissector,
1172 						      FLOW_DISSECTOR_KEY_PORTS,
1173 						      target_container);
1174 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
1175 							data, hlen);
1176 	}
1177 
1178 	if (dissector_uses_key(flow_dissector,
1179 			       FLOW_DISSECTOR_KEY_ICMP)) {
1180 		key_icmp = skb_flow_dissector_target(flow_dissector,
1181 						     FLOW_DISSECTOR_KEY_ICMP,
1182 						     target_container);
1183 		key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
1184 	}
1185 
1186 	/* Process result of IP proto processing */
1187 	switch (fdret) {
1188 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1189 		if (skb_flow_dissect_allowed(&num_hdrs))
1190 			goto proto_again;
1191 		break;
1192 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1193 		if (skb_flow_dissect_allowed(&num_hdrs))
1194 			goto ip_proto_again;
1195 		break;
1196 	case FLOW_DISSECT_RET_OUT_GOOD:
1197 	case FLOW_DISSECT_RET_CONTINUE:
1198 		break;
1199 	case FLOW_DISSECT_RET_OUT_BAD:
1200 	default:
1201 		goto out_bad;
1202 	}
1203 
1204 out_good:
1205 	ret = true;
1206 
1207 out:
1208 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1209 	key_basic->n_proto = proto;
1210 	key_basic->ip_proto = ip_proto;
1211 
1212 	return ret;
1213 
1214 out_bad:
1215 	ret = false;
1216 	goto out;
1217 }
1218 EXPORT_SYMBOL(__skb_flow_dissect);
1219 
1220 static u32 hashrnd __read_mostly;
1221 static __always_inline void __flow_hash_secret_init(void)
1222 {
1223 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1224 }
1225 
1226 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
1227 					     u32 keyval)
1228 {
1229 	return jhash2(words, length, keyval);
1230 }
1231 
1232 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
1233 {
1234 	const void *p = flow;
1235 
1236 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
1237 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
1238 }
1239 
1240 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1241 {
1242 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1243 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1244 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
1245 		     sizeof(*flow) - sizeof(flow->addrs));
1246 
1247 	switch (flow->control.addr_type) {
1248 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1249 		diff -= sizeof(flow->addrs.v4addrs);
1250 		break;
1251 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1252 		diff -= sizeof(flow->addrs.v6addrs);
1253 		break;
1254 	case FLOW_DISSECTOR_KEY_TIPC:
1255 		diff -= sizeof(flow->addrs.tipckey);
1256 		break;
1257 	}
1258 	return (sizeof(*flow) - diff) / sizeof(u32);
1259 }
1260 
1261 __be32 flow_get_u32_src(const struct flow_keys *flow)
1262 {
1263 	switch (flow->control.addr_type) {
1264 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1265 		return flow->addrs.v4addrs.src;
1266 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1267 		return (__force __be32)ipv6_addr_hash(
1268 			&flow->addrs.v6addrs.src);
1269 	case FLOW_DISSECTOR_KEY_TIPC:
1270 		return flow->addrs.tipckey.key;
1271 	default:
1272 		return 0;
1273 	}
1274 }
1275 EXPORT_SYMBOL(flow_get_u32_src);
1276 
1277 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1278 {
1279 	switch (flow->control.addr_type) {
1280 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1281 		return flow->addrs.v4addrs.dst;
1282 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1283 		return (__force __be32)ipv6_addr_hash(
1284 			&flow->addrs.v6addrs.dst);
1285 	default:
1286 		return 0;
1287 	}
1288 }
1289 EXPORT_SYMBOL(flow_get_u32_dst);
1290 
1291 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1292 {
1293 	int addr_diff, i;
1294 
1295 	switch (keys->control.addr_type) {
1296 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1297 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1298 			    (__force u32)keys->addrs.v4addrs.src;
1299 		if ((addr_diff < 0) ||
1300 		    (addr_diff == 0 &&
1301 		     ((__force u16)keys->ports.dst <
1302 		      (__force u16)keys->ports.src))) {
1303 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1304 			swap(keys->ports.src, keys->ports.dst);
1305 		}
1306 		break;
1307 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1308 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1309 				   &keys->addrs.v6addrs.src,
1310 				   sizeof(keys->addrs.v6addrs.dst));
1311 		if ((addr_diff < 0) ||
1312 		    (addr_diff == 0 &&
1313 		     ((__force u16)keys->ports.dst <
1314 		      (__force u16)keys->ports.src))) {
1315 			for (i = 0; i < 4; i++)
1316 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1317 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1318 			swap(keys->ports.src, keys->ports.dst);
1319 		}
1320 		break;
1321 	}
1322 }
1323 
1324 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
1325 {
1326 	u32 hash;
1327 
1328 	__flow_hash_consistentify(keys);
1329 
1330 	hash = __flow_hash_words(flow_keys_hash_start(keys),
1331 				 flow_keys_hash_length(keys), keyval);
1332 	if (!hash)
1333 		hash = 1;
1334 
1335 	return hash;
1336 }
1337 
1338 u32 flow_hash_from_keys(struct flow_keys *keys)
1339 {
1340 	__flow_hash_secret_init();
1341 	return __flow_hash_from_keys(keys, hashrnd);
1342 }
1343 EXPORT_SYMBOL(flow_hash_from_keys);
1344 
1345 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1346 				  struct flow_keys *keys, u32 keyval)
1347 {
1348 	skb_flow_dissect_flow_keys(skb, keys,
1349 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1350 
1351 	return __flow_hash_from_keys(keys, keyval);
1352 }
1353 
1354 struct _flow_keys_digest_data {
1355 	__be16	n_proto;
1356 	u8	ip_proto;
1357 	u8	padding;
1358 	__be32	ports;
1359 	__be32	src;
1360 	__be32	dst;
1361 };
1362 
1363 void make_flow_keys_digest(struct flow_keys_digest *digest,
1364 			   const struct flow_keys *flow)
1365 {
1366 	struct _flow_keys_digest_data *data =
1367 	    (struct _flow_keys_digest_data *)digest;
1368 
1369 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1370 
1371 	memset(digest, 0, sizeof(*digest));
1372 
1373 	data->n_proto = flow->basic.n_proto;
1374 	data->ip_proto = flow->basic.ip_proto;
1375 	data->ports = flow->ports.ports;
1376 	data->src = flow->addrs.v4addrs.src;
1377 	data->dst = flow->addrs.v4addrs.dst;
1378 }
1379 EXPORT_SYMBOL(make_flow_keys_digest);
1380 
1381 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1382 
1383 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1384 {
1385 	struct flow_keys keys;
1386 
1387 	__flow_hash_secret_init();
1388 
1389 	memset(&keys, 0, sizeof(keys));
1390 	__skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
1391 			   NULL, 0, 0, 0,
1392 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1393 
1394 	return __flow_hash_from_keys(&keys, hashrnd);
1395 }
1396 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1397 
1398 /**
1399  * __skb_get_hash: calculate a flow hash
1400  * @skb: sk_buff to calculate flow hash from
1401  *
1402  * This function calculates a flow hash based on src/dst addresses
1403  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1404  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1405  * if hash is a canonical 4-tuple hash over transport ports.
1406  */
1407 void __skb_get_hash(struct sk_buff *skb)
1408 {
1409 	struct flow_keys keys;
1410 	u32 hash;
1411 
1412 	__flow_hash_secret_init();
1413 
1414 	hash = ___skb_get_hash(skb, &keys, hashrnd);
1415 
1416 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1417 }
1418 EXPORT_SYMBOL(__skb_get_hash);
1419 
1420 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
1421 {
1422 	struct flow_keys keys;
1423 
1424 	return ___skb_get_hash(skb, &keys, perturb);
1425 }
1426 EXPORT_SYMBOL(skb_get_hash_perturb);
1427 
1428 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1429 		   const struct flow_keys_basic *keys, int hlen)
1430 {
1431 	u32 poff = keys->control.thoff;
1432 
1433 	/* skip L4 headers for fragments after the first */
1434 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1435 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1436 		return poff;
1437 
1438 	switch (keys->basic.ip_proto) {
1439 	case IPPROTO_TCP: {
1440 		/* access doff as u8 to avoid unaligned access */
1441 		const u8 *doff;
1442 		u8 _doff;
1443 
1444 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1445 					    data, hlen, &_doff);
1446 		if (!doff)
1447 			return poff;
1448 
1449 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1450 		break;
1451 	}
1452 	case IPPROTO_UDP:
1453 	case IPPROTO_UDPLITE:
1454 		poff += sizeof(struct udphdr);
1455 		break;
1456 	/* For the rest, we do not really care about header
1457 	 * extensions at this point for now.
1458 	 */
1459 	case IPPROTO_ICMP:
1460 		poff += sizeof(struct icmphdr);
1461 		break;
1462 	case IPPROTO_ICMPV6:
1463 		poff += sizeof(struct icmp6hdr);
1464 		break;
1465 	case IPPROTO_IGMP:
1466 		poff += sizeof(struct igmphdr);
1467 		break;
1468 	case IPPROTO_DCCP:
1469 		poff += sizeof(struct dccp_hdr);
1470 		break;
1471 	case IPPROTO_SCTP:
1472 		poff += sizeof(struct sctphdr);
1473 		break;
1474 	}
1475 
1476 	return poff;
1477 }
1478 
1479 /**
1480  * skb_get_poff - get the offset to the payload
1481  * @skb: sk_buff to get the payload offset from
1482  *
1483  * The function will get the offset to the payload as far as it could
1484  * be dissected.  The main user is currently BPF, so that we can dynamically
1485  * truncate packets without needing to push actual payload to the user
1486  * space and can analyze headers only, instead.
1487  */
1488 u32 skb_get_poff(const struct sk_buff *skb)
1489 {
1490 	struct flow_keys_basic keys;
1491 
1492 	if (!skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
1493 		return 0;
1494 
1495 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1496 }
1497 
1498 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1499 {
1500 	memset(keys, 0, sizeof(*keys));
1501 
1502 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1503 	    sizeof(keys->addrs.v6addrs.src));
1504 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1505 	    sizeof(keys->addrs.v6addrs.dst));
1506 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1507 	keys->ports.src = fl6->fl6_sport;
1508 	keys->ports.dst = fl6->fl6_dport;
1509 	keys->keyid.keyid = fl6->fl6_gre_key;
1510 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1511 	keys->basic.ip_proto = fl6->flowi6_proto;
1512 
1513 	return flow_hash_from_keys(keys);
1514 }
1515 EXPORT_SYMBOL(__get_hash_from_flowi6);
1516 
1517 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1518 	{
1519 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1520 		.offset = offsetof(struct flow_keys, control),
1521 	},
1522 	{
1523 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1524 		.offset = offsetof(struct flow_keys, basic),
1525 	},
1526 	{
1527 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1528 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1529 	},
1530 	{
1531 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1532 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1533 	},
1534 	{
1535 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1536 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1537 	},
1538 	{
1539 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1540 		.offset = offsetof(struct flow_keys, ports),
1541 	},
1542 	{
1543 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1544 		.offset = offsetof(struct flow_keys, vlan),
1545 	},
1546 	{
1547 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1548 		.offset = offsetof(struct flow_keys, tags),
1549 	},
1550 	{
1551 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1552 		.offset = offsetof(struct flow_keys, keyid),
1553 	},
1554 };
1555 
1556 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1557 	{
1558 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1559 		.offset = offsetof(struct flow_keys, control),
1560 	},
1561 	{
1562 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1563 		.offset = offsetof(struct flow_keys, basic),
1564 	},
1565 	{
1566 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1567 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1568 	},
1569 	{
1570 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1571 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1572 	},
1573 	{
1574 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1575 		.offset = offsetof(struct flow_keys, ports),
1576 	},
1577 };
1578 
1579 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1580 	{
1581 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1582 		.offset = offsetof(struct flow_keys, control),
1583 	},
1584 	{
1585 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1586 		.offset = offsetof(struct flow_keys, basic),
1587 	},
1588 };
1589 
1590 struct flow_dissector flow_keys_dissector __read_mostly;
1591 EXPORT_SYMBOL(flow_keys_dissector);
1592 
1593 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1594 EXPORT_SYMBOL(flow_keys_basic_dissector);
1595 
1596 static int __init init_default_flow_dissectors(void)
1597 {
1598 	skb_flow_dissector_init(&flow_keys_dissector,
1599 				flow_keys_dissector_keys,
1600 				ARRAY_SIZE(flow_keys_dissector_keys));
1601 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1602 				flow_keys_dissector_symmetric_keys,
1603 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1604 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1605 				flow_keys_basic_dissector_keys,
1606 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1607 	return 0;
1608 }
1609 
1610 core_initcall(init_default_flow_dissectors);
1611