xref: /linux/net/core/flow_dissector.c (revision 98838d95075a5295f3478ceba18bcccf472e30f4)
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <net/gre.h>
10 #include <net/pptp.h>
11 #include <linux/igmp.h>
12 #include <linux/icmp.h>
13 #include <linux/sctp.h>
14 #include <linux/dccp.h>
15 #include <linux/if_tunnel.h>
16 #include <linux/if_pppox.h>
17 #include <linux/ppp_defs.h>
18 #include <linux/stddef.h>
19 #include <linux/if_ether.h>
20 #include <linux/mpls.h>
21 #include <net/flow_dissector.h>
22 #include <scsi/fc/fc_fcoe.h>
23 
24 static void dissector_set_key(struct flow_dissector *flow_dissector,
25 			      enum flow_dissector_key_id key_id)
26 {
27 	flow_dissector->used_keys |= (1 << key_id);
28 }
29 
30 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
31 			     const struct flow_dissector_key *key,
32 			     unsigned int key_count)
33 {
34 	unsigned int i;
35 
36 	memset(flow_dissector, 0, sizeof(*flow_dissector));
37 
38 	for (i = 0; i < key_count; i++, key++) {
39 		/* User should make sure that every key target offset is withing
40 		 * boundaries of unsigned short.
41 		 */
42 		BUG_ON(key->offset > USHRT_MAX);
43 		BUG_ON(dissector_uses_key(flow_dissector,
44 					  key->key_id));
45 
46 		dissector_set_key(flow_dissector, key->key_id);
47 		flow_dissector->offset[key->key_id] = key->offset;
48 	}
49 
50 	/* Ensure that the dissector always includes control and basic key.
51 	 * That way we are able to avoid handling lack of these in fast path.
52 	 */
53 	BUG_ON(!dissector_uses_key(flow_dissector,
54 				   FLOW_DISSECTOR_KEY_CONTROL));
55 	BUG_ON(!dissector_uses_key(flow_dissector,
56 				   FLOW_DISSECTOR_KEY_BASIC));
57 }
58 EXPORT_SYMBOL(skb_flow_dissector_init);
59 
60 /**
61  * __skb_flow_get_ports - extract the upper layer ports and return them
62  * @skb: sk_buff to extract the ports from
63  * @thoff: transport header offset
64  * @ip_proto: protocol for which to get port offset
65  * @data: raw buffer pointer to the packet, if NULL use skb->data
66  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
67  *
68  * The function will try to retrieve the ports at offset thoff + poff where poff
69  * is the protocol port offset returned from proto_ports_offset
70  */
71 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
72 			    void *data, int hlen)
73 {
74 	int poff = proto_ports_offset(ip_proto);
75 
76 	if (!data) {
77 		data = skb->data;
78 		hlen = skb_headlen(skb);
79 	}
80 
81 	if (poff >= 0) {
82 		__be32 *ports, _ports;
83 
84 		ports = __skb_header_pointer(skb, thoff + poff,
85 					     sizeof(_ports), data, hlen, &_ports);
86 		if (ports)
87 			return *ports;
88 	}
89 
90 	return 0;
91 }
92 EXPORT_SYMBOL(__skb_flow_get_ports);
93 
94 /**
95  * __skb_flow_dissect - extract the flow_keys struct and return it
96  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
97  * @flow_dissector: list of keys to dissect
98  * @target_container: target structure to put dissected values into
99  * @data: raw buffer pointer to the packet, if NULL use skb->data
100  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
101  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
102  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
103  *
104  * The function will try to retrieve individual keys into target specified
105  * by flow_dissector from either the skbuff or a raw buffer specified by the
106  * rest parameters.
107  *
108  * Caller must take care of zeroing target container memory.
109  */
110 bool __skb_flow_dissect(const struct sk_buff *skb,
111 			struct flow_dissector *flow_dissector,
112 			void *target_container,
113 			void *data, __be16 proto, int nhoff, int hlen,
114 			unsigned int flags)
115 {
116 	struct flow_dissector_key_control *key_control;
117 	struct flow_dissector_key_basic *key_basic;
118 	struct flow_dissector_key_addrs *key_addrs;
119 	struct flow_dissector_key_ports *key_ports;
120 	struct flow_dissector_key_tags *key_tags;
121 	struct flow_dissector_key_vlan *key_vlan;
122 	struct flow_dissector_key_keyid *key_keyid;
123 	bool skip_vlan = false;
124 	u8 ip_proto = 0;
125 	bool ret = false;
126 
127 	if (!data) {
128 		data = skb->data;
129 		proto = skb_vlan_tag_present(skb) ?
130 			 skb->vlan_proto : skb->protocol;
131 		nhoff = skb_network_offset(skb);
132 		hlen = skb_headlen(skb);
133 	}
134 
135 	/* It is ensured by skb_flow_dissector_init() that control key will
136 	 * be always present.
137 	 */
138 	key_control = skb_flow_dissector_target(flow_dissector,
139 						FLOW_DISSECTOR_KEY_CONTROL,
140 						target_container);
141 
142 	/* It is ensured by skb_flow_dissector_init() that basic key will
143 	 * be always present.
144 	 */
145 	key_basic = skb_flow_dissector_target(flow_dissector,
146 					      FLOW_DISSECTOR_KEY_BASIC,
147 					      target_container);
148 
149 	if (dissector_uses_key(flow_dissector,
150 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
151 		struct ethhdr *eth = eth_hdr(skb);
152 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
153 
154 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
155 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
156 							  target_container);
157 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
158 	}
159 
160 again:
161 	switch (proto) {
162 	case htons(ETH_P_IP): {
163 		const struct iphdr *iph;
164 		struct iphdr _iph;
165 ip:
166 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
167 		if (!iph || iph->ihl < 5)
168 			goto out_bad;
169 		nhoff += iph->ihl * 4;
170 
171 		ip_proto = iph->protocol;
172 
173 		if (dissector_uses_key(flow_dissector,
174 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
175 			key_addrs = skb_flow_dissector_target(flow_dissector,
176 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
177 							      target_container);
178 
179 			memcpy(&key_addrs->v4addrs, &iph->saddr,
180 			       sizeof(key_addrs->v4addrs));
181 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
182 		}
183 
184 		if (ip_is_fragment(iph)) {
185 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
186 
187 			if (iph->frag_off & htons(IP_OFFSET)) {
188 				goto out_good;
189 			} else {
190 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
191 				if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
192 					goto out_good;
193 			}
194 		}
195 
196 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
197 			goto out_good;
198 
199 		break;
200 	}
201 	case htons(ETH_P_IPV6): {
202 		const struct ipv6hdr *iph;
203 		struct ipv6hdr _iph;
204 
205 ipv6:
206 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
207 		if (!iph)
208 			goto out_bad;
209 
210 		ip_proto = iph->nexthdr;
211 		nhoff += sizeof(struct ipv6hdr);
212 
213 		if (dissector_uses_key(flow_dissector,
214 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
215 			key_addrs = skb_flow_dissector_target(flow_dissector,
216 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
217 							      target_container);
218 
219 			memcpy(&key_addrs->v6addrs, &iph->saddr,
220 			       sizeof(key_addrs->v6addrs));
221 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
222 		}
223 
224 		if ((dissector_uses_key(flow_dissector,
225 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
226 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
227 		    ip6_flowlabel(iph)) {
228 			__be32 flow_label = ip6_flowlabel(iph);
229 
230 			if (dissector_uses_key(flow_dissector,
231 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
232 				key_tags = skb_flow_dissector_target(flow_dissector,
233 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
234 								     target_container);
235 				key_tags->flow_label = ntohl(flow_label);
236 			}
237 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
238 				goto out_good;
239 		}
240 
241 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
242 			goto out_good;
243 
244 		break;
245 	}
246 	case htons(ETH_P_8021AD):
247 	case htons(ETH_P_8021Q): {
248 		const struct vlan_hdr *vlan;
249 
250 		if (skb_vlan_tag_present(skb))
251 			proto = skb->protocol;
252 
253 		if (!skb_vlan_tag_present(skb) ||
254 		    proto == cpu_to_be16(ETH_P_8021Q) ||
255 		    proto == cpu_to_be16(ETH_P_8021AD)) {
256 			struct vlan_hdr _vlan;
257 
258 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
259 						    data, hlen, &_vlan);
260 			if (!vlan)
261 				goto out_bad;
262 			proto = vlan->h_vlan_encapsulated_proto;
263 			nhoff += sizeof(*vlan);
264 			if (skip_vlan)
265 				goto again;
266 		}
267 
268 		skip_vlan = true;
269 		if (dissector_uses_key(flow_dissector,
270 				       FLOW_DISSECTOR_KEY_VLAN)) {
271 			key_vlan = skb_flow_dissector_target(flow_dissector,
272 							     FLOW_DISSECTOR_KEY_VLAN,
273 							     target_container);
274 
275 			if (skb_vlan_tag_present(skb)) {
276 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
277 				key_vlan->vlan_priority =
278 					(skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
279 			} else {
280 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
281 					VLAN_VID_MASK;
282 				key_vlan->vlan_priority =
283 					(ntohs(vlan->h_vlan_TCI) &
284 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
285 			}
286 		}
287 
288 		goto again;
289 	}
290 	case htons(ETH_P_PPP_SES): {
291 		struct {
292 			struct pppoe_hdr hdr;
293 			__be16 proto;
294 		} *hdr, _hdr;
295 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
296 		if (!hdr)
297 			goto out_bad;
298 		proto = hdr->proto;
299 		nhoff += PPPOE_SES_HLEN;
300 		switch (proto) {
301 		case htons(PPP_IP):
302 			goto ip;
303 		case htons(PPP_IPV6):
304 			goto ipv6;
305 		default:
306 			goto out_bad;
307 		}
308 	}
309 	case htons(ETH_P_TIPC): {
310 		struct {
311 			__be32 pre[3];
312 			__be32 srcnode;
313 		} *hdr, _hdr;
314 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
315 		if (!hdr)
316 			goto out_bad;
317 
318 		if (dissector_uses_key(flow_dissector,
319 				       FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
320 			key_addrs = skb_flow_dissector_target(flow_dissector,
321 							      FLOW_DISSECTOR_KEY_TIPC_ADDRS,
322 							      target_container);
323 			key_addrs->tipcaddrs.srcnode = hdr->srcnode;
324 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
325 		}
326 		goto out_good;
327 	}
328 
329 	case htons(ETH_P_MPLS_UC):
330 	case htons(ETH_P_MPLS_MC): {
331 		struct mpls_label *hdr, _hdr[2];
332 mpls:
333 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
334 					   hlen, &_hdr);
335 		if (!hdr)
336 			goto out_bad;
337 
338 		if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
339 		     MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
340 			if (dissector_uses_key(flow_dissector,
341 					       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
342 				key_keyid = skb_flow_dissector_target(flow_dissector,
343 								      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
344 								      target_container);
345 				key_keyid->keyid = hdr[1].entry &
346 					htonl(MPLS_LS_LABEL_MASK);
347 			}
348 
349 			goto out_good;
350 		}
351 
352 		goto out_good;
353 	}
354 
355 	case htons(ETH_P_FCOE):
356 		if ((hlen - nhoff) < FCOE_HEADER_LEN)
357 			goto out_bad;
358 
359 		nhoff += FCOE_HEADER_LEN;
360 		goto out_good;
361 	default:
362 		goto out_bad;
363 	}
364 
365 ip_proto_again:
366 	switch (ip_proto) {
367 	case IPPROTO_GRE: {
368 		struct gre_base_hdr *hdr, _hdr;
369 		u16 gre_ver;
370 		int offset = 0;
371 
372 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
373 		if (!hdr)
374 			goto out_bad;
375 
376 		/* Only look inside GRE without routing */
377 		if (hdr->flags & GRE_ROUTING)
378 			break;
379 
380 		/* Only look inside GRE for version 0 and 1 */
381 		gre_ver = ntohs(hdr->flags & GRE_VERSION);
382 		if (gre_ver > 1)
383 			break;
384 
385 		proto = hdr->protocol;
386 		if (gre_ver) {
387 			/* Version1 must be PPTP, and check the flags */
388 			if (!(proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
389 				break;
390 		}
391 
392 		offset += sizeof(struct gre_base_hdr);
393 
394 		if (hdr->flags & GRE_CSUM)
395 			offset += sizeof(((struct gre_full_hdr *)0)->csum) +
396 				  sizeof(((struct gre_full_hdr *)0)->reserved1);
397 
398 		if (hdr->flags & GRE_KEY) {
399 			const __be32 *keyid;
400 			__be32 _keyid;
401 
402 			keyid = __skb_header_pointer(skb, nhoff + offset, sizeof(_keyid),
403 						     data, hlen, &_keyid);
404 			if (!keyid)
405 				goto out_bad;
406 
407 			if (dissector_uses_key(flow_dissector,
408 					       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
409 				key_keyid = skb_flow_dissector_target(flow_dissector,
410 								      FLOW_DISSECTOR_KEY_GRE_KEYID,
411 								      target_container);
412 				if (gre_ver == 0)
413 					key_keyid->keyid = *keyid;
414 				else
415 					key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
416 			}
417 			offset += sizeof(((struct gre_full_hdr *)0)->key);
418 		}
419 
420 		if (hdr->flags & GRE_SEQ)
421 			offset += sizeof(((struct pptp_gre_header *)0)->seq);
422 
423 		if (gre_ver == 0) {
424 			if (proto == htons(ETH_P_TEB)) {
425 				const struct ethhdr *eth;
426 				struct ethhdr _eth;
427 
428 				eth = __skb_header_pointer(skb, nhoff + offset,
429 							   sizeof(_eth),
430 							   data, hlen, &_eth);
431 				if (!eth)
432 					goto out_bad;
433 				proto = eth->h_proto;
434 				offset += sizeof(*eth);
435 
436 				/* Cap headers that we access via pointers at the
437 				 * end of the Ethernet header as our maximum alignment
438 				 * at that point is only 2 bytes.
439 				 */
440 				if (NET_IP_ALIGN)
441 					hlen = (nhoff + offset);
442 			}
443 		} else { /* version 1, must be PPTP */
444 			u8 _ppp_hdr[PPP_HDRLEN];
445 			u8 *ppp_hdr;
446 
447 			if (hdr->flags & GRE_ACK)
448 				offset += sizeof(((struct pptp_gre_header *)0)->ack);
449 
450 			ppp_hdr = skb_header_pointer(skb, nhoff + offset,
451 						     sizeof(_ppp_hdr), _ppp_hdr);
452 			if (!ppp_hdr)
453 				goto out_bad;
454 
455 			switch (PPP_PROTOCOL(ppp_hdr)) {
456 			case PPP_IP:
457 				proto = htons(ETH_P_IP);
458 				break;
459 			case PPP_IPV6:
460 				proto = htons(ETH_P_IPV6);
461 				break;
462 			default:
463 				/* Could probably catch some more like MPLS */
464 				break;
465 			}
466 
467 			offset += PPP_HDRLEN;
468 		}
469 
470 		nhoff += offset;
471 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
472 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
473 			goto out_good;
474 
475 		goto again;
476 	}
477 	case NEXTHDR_HOP:
478 	case NEXTHDR_ROUTING:
479 	case NEXTHDR_DEST: {
480 		u8 _opthdr[2], *opthdr;
481 
482 		if (proto != htons(ETH_P_IPV6))
483 			break;
484 
485 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
486 					      data, hlen, &_opthdr);
487 		if (!opthdr)
488 			goto out_bad;
489 
490 		ip_proto = opthdr[0];
491 		nhoff += (opthdr[1] + 1) << 3;
492 
493 		goto ip_proto_again;
494 	}
495 	case NEXTHDR_FRAGMENT: {
496 		struct frag_hdr _fh, *fh;
497 
498 		if (proto != htons(ETH_P_IPV6))
499 			break;
500 
501 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
502 					  data, hlen, &_fh);
503 
504 		if (!fh)
505 			goto out_bad;
506 
507 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
508 
509 		nhoff += sizeof(_fh);
510 		ip_proto = fh->nexthdr;
511 
512 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
513 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
514 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
515 				goto ip_proto_again;
516 		}
517 		goto out_good;
518 	}
519 	case IPPROTO_IPIP:
520 		proto = htons(ETH_P_IP);
521 
522 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
523 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
524 			goto out_good;
525 
526 		goto ip;
527 	case IPPROTO_IPV6:
528 		proto = htons(ETH_P_IPV6);
529 
530 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
531 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
532 			goto out_good;
533 
534 		goto ipv6;
535 	case IPPROTO_MPLS:
536 		proto = htons(ETH_P_MPLS_UC);
537 		goto mpls;
538 	default:
539 		break;
540 	}
541 
542 	if (dissector_uses_key(flow_dissector,
543 			       FLOW_DISSECTOR_KEY_PORTS)) {
544 		key_ports = skb_flow_dissector_target(flow_dissector,
545 						      FLOW_DISSECTOR_KEY_PORTS,
546 						      target_container);
547 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
548 							data, hlen);
549 	}
550 
551 out_good:
552 	ret = true;
553 
554 out_bad:
555 	key_basic->n_proto = proto;
556 	key_basic->ip_proto = ip_proto;
557 	key_control->thoff = (u16)nhoff;
558 
559 	return ret;
560 }
561 EXPORT_SYMBOL(__skb_flow_dissect);
562 
563 static u32 hashrnd __read_mostly;
564 static __always_inline void __flow_hash_secret_init(void)
565 {
566 	net_get_random_once(&hashrnd, sizeof(hashrnd));
567 }
568 
569 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
570 					     u32 keyval)
571 {
572 	return jhash2(words, length, keyval);
573 }
574 
575 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
576 {
577 	const void *p = flow;
578 
579 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
580 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
581 }
582 
583 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
584 {
585 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
586 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
587 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
588 		     sizeof(*flow) - sizeof(flow->addrs));
589 
590 	switch (flow->control.addr_type) {
591 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
592 		diff -= sizeof(flow->addrs.v4addrs);
593 		break;
594 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
595 		diff -= sizeof(flow->addrs.v6addrs);
596 		break;
597 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
598 		diff -= sizeof(flow->addrs.tipcaddrs);
599 		break;
600 	}
601 	return (sizeof(*flow) - diff) / sizeof(u32);
602 }
603 
604 __be32 flow_get_u32_src(const struct flow_keys *flow)
605 {
606 	switch (flow->control.addr_type) {
607 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
608 		return flow->addrs.v4addrs.src;
609 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
610 		return (__force __be32)ipv6_addr_hash(
611 			&flow->addrs.v6addrs.src);
612 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
613 		return flow->addrs.tipcaddrs.srcnode;
614 	default:
615 		return 0;
616 	}
617 }
618 EXPORT_SYMBOL(flow_get_u32_src);
619 
620 __be32 flow_get_u32_dst(const struct flow_keys *flow)
621 {
622 	switch (flow->control.addr_type) {
623 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
624 		return flow->addrs.v4addrs.dst;
625 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
626 		return (__force __be32)ipv6_addr_hash(
627 			&flow->addrs.v6addrs.dst);
628 	default:
629 		return 0;
630 	}
631 }
632 EXPORT_SYMBOL(flow_get_u32_dst);
633 
634 static inline void __flow_hash_consistentify(struct flow_keys *keys)
635 {
636 	int addr_diff, i;
637 
638 	switch (keys->control.addr_type) {
639 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
640 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
641 			    (__force u32)keys->addrs.v4addrs.src;
642 		if ((addr_diff < 0) ||
643 		    (addr_diff == 0 &&
644 		     ((__force u16)keys->ports.dst <
645 		      (__force u16)keys->ports.src))) {
646 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
647 			swap(keys->ports.src, keys->ports.dst);
648 		}
649 		break;
650 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
651 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
652 				   &keys->addrs.v6addrs.src,
653 				   sizeof(keys->addrs.v6addrs.dst));
654 		if ((addr_diff < 0) ||
655 		    (addr_diff == 0 &&
656 		     ((__force u16)keys->ports.dst <
657 		      (__force u16)keys->ports.src))) {
658 			for (i = 0; i < 4; i++)
659 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
660 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
661 			swap(keys->ports.src, keys->ports.dst);
662 		}
663 		break;
664 	}
665 }
666 
667 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
668 {
669 	u32 hash;
670 
671 	__flow_hash_consistentify(keys);
672 
673 	hash = __flow_hash_words(flow_keys_hash_start(keys),
674 				 flow_keys_hash_length(keys), keyval);
675 	if (!hash)
676 		hash = 1;
677 
678 	return hash;
679 }
680 
681 u32 flow_hash_from_keys(struct flow_keys *keys)
682 {
683 	__flow_hash_secret_init();
684 	return __flow_hash_from_keys(keys, hashrnd);
685 }
686 EXPORT_SYMBOL(flow_hash_from_keys);
687 
688 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
689 				  struct flow_keys *keys, u32 keyval)
690 {
691 	skb_flow_dissect_flow_keys(skb, keys,
692 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
693 
694 	return __flow_hash_from_keys(keys, keyval);
695 }
696 
697 struct _flow_keys_digest_data {
698 	__be16	n_proto;
699 	u8	ip_proto;
700 	u8	padding;
701 	__be32	ports;
702 	__be32	src;
703 	__be32	dst;
704 };
705 
706 void make_flow_keys_digest(struct flow_keys_digest *digest,
707 			   const struct flow_keys *flow)
708 {
709 	struct _flow_keys_digest_data *data =
710 	    (struct _flow_keys_digest_data *)digest;
711 
712 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
713 
714 	memset(digest, 0, sizeof(*digest));
715 
716 	data->n_proto = flow->basic.n_proto;
717 	data->ip_proto = flow->basic.ip_proto;
718 	data->ports = flow->ports.ports;
719 	data->src = flow->addrs.v4addrs.src;
720 	data->dst = flow->addrs.v4addrs.dst;
721 }
722 EXPORT_SYMBOL(make_flow_keys_digest);
723 
724 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
725 
726 u32 __skb_get_hash_symmetric(struct sk_buff *skb)
727 {
728 	struct flow_keys keys;
729 
730 	__flow_hash_secret_init();
731 
732 	memset(&keys, 0, sizeof(keys));
733 	__skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
734 			   NULL, 0, 0, 0,
735 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
736 
737 	return __flow_hash_from_keys(&keys, hashrnd);
738 }
739 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
740 
741 /**
742  * __skb_get_hash: calculate a flow hash
743  * @skb: sk_buff to calculate flow hash from
744  *
745  * This function calculates a flow hash based on src/dst addresses
746  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
747  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
748  * if hash is a canonical 4-tuple hash over transport ports.
749  */
750 void __skb_get_hash(struct sk_buff *skb)
751 {
752 	struct flow_keys keys;
753 	u32 hash;
754 
755 	__flow_hash_secret_init();
756 
757 	hash = ___skb_get_hash(skb, &keys, hashrnd);
758 
759 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
760 }
761 EXPORT_SYMBOL(__skb_get_hash);
762 
763 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
764 {
765 	struct flow_keys keys;
766 
767 	return ___skb_get_hash(skb, &keys, perturb);
768 }
769 EXPORT_SYMBOL(skb_get_hash_perturb);
770 
771 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
772 {
773 	struct flow_keys keys;
774 
775 	memset(&keys, 0, sizeof(keys));
776 
777 	memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
778 	       sizeof(keys.addrs.v6addrs.src));
779 	memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
780 	       sizeof(keys.addrs.v6addrs.dst));
781 	keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
782 	keys.ports.src = fl6->fl6_sport;
783 	keys.ports.dst = fl6->fl6_dport;
784 	keys.keyid.keyid = fl6->fl6_gre_key;
785 	keys.tags.flow_label = (__force u32)fl6->flowlabel;
786 	keys.basic.ip_proto = fl6->flowi6_proto;
787 
788 	__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
789 			  flow_keys_have_l4(&keys));
790 
791 	return skb->hash;
792 }
793 EXPORT_SYMBOL(__skb_get_hash_flowi6);
794 
795 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
796 {
797 	struct flow_keys keys;
798 
799 	memset(&keys, 0, sizeof(keys));
800 
801 	keys.addrs.v4addrs.src = fl4->saddr;
802 	keys.addrs.v4addrs.dst = fl4->daddr;
803 	keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
804 	keys.ports.src = fl4->fl4_sport;
805 	keys.ports.dst = fl4->fl4_dport;
806 	keys.keyid.keyid = fl4->fl4_gre_key;
807 	keys.basic.ip_proto = fl4->flowi4_proto;
808 
809 	__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
810 			  flow_keys_have_l4(&keys));
811 
812 	return skb->hash;
813 }
814 EXPORT_SYMBOL(__skb_get_hash_flowi4);
815 
816 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
817 		   const struct flow_keys *keys, int hlen)
818 {
819 	u32 poff = keys->control.thoff;
820 
821 	/* skip L4 headers for fragments after the first */
822 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
823 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
824 		return poff;
825 
826 	switch (keys->basic.ip_proto) {
827 	case IPPROTO_TCP: {
828 		/* access doff as u8 to avoid unaligned access */
829 		const u8 *doff;
830 		u8 _doff;
831 
832 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
833 					    data, hlen, &_doff);
834 		if (!doff)
835 			return poff;
836 
837 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
838 		break;
839 	}
840 	case IPPROTO_UDP:
841 	case IPPROTO_UDPLITE:
842 		poff += sizeof(struct udphdr);
843 		break;
844 	/* For the rest, we do not really care about header
845 	 * extensions at this point for now.
846 	 */
847 	case IPPROTO_ICMP:
848 		poff += sizeof(struct icmphdr);
849 		break;
850 	case IPPROTO_ICMPV6:
851 		poff += sizeof(struct icmp6hdr);
852 		break;
853 	case IPPROTO_IGMP:
854 		poff += sizeof(struct igmphdr);
855 		break;
856 	case IPPROTO_DCCP:
857 		poff += sizeof(struct dccp_hdr);
858 		break;
859 	case IPPROTO_SCTP:
860 		poff += sizeof(struct sctphdr);
861 		break;
862 	}
863 
864 	return poff;
865 }
866 
867 /**
868  * skb_get_poff - get the offset to the payload
869  * @skb: sk_buff to get the payload offset from
870  *
871  * The function will get the offset to the payload as far as it could
872  * be dissected.  The main user is currently BPF, so that we can dynamically
873  * truncate packets without needing to push actual payload to the user
874  * space and can analyze headers only, instead.
875  */
876 u32 skb_get_poff(const struct sk_buff *skb)
877 {
878 	struct flow_keys keys;
879 
880 	if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
881 		return 0;
882 
883 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
884 }
885 
886 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
887 {
888 	memset(keys, 0, sizeof(*keys));
889 
890 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
891 	    sizeof(keys->addrs.v6addrs.src));
892 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
893 	    sizeof(keys->addrs.v6addrs.dst));
894 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
895 	keys->ports.src = fl6->fl6_sport;
896 	keys->ports.dst = fl6->fl6_dport;
897 	keys->keyid.keyid = fl6->fl6_gre_key;
898 	keys->tags.flow_label = (__force u32)fl6->flowlabel;
899 	keys->basic.ip_proto = fl6->flowi6_proto;
900 
901 	return flow_hash_from_keys(keys);
902 }
903 EXPORT_SYMBOL(__get_hash_from_flowi6);
904 
905 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
906 {
907 	memset(keys, 0, sizeof(*keys));
908 
909 	keys->addrs.v4addrs.src = fl4->saddr;
910 	keys->addrs.v4addrs.dst = fl4->daddr;
911 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
912 	keys->ports.src = fl4->fl4_sport;
913 	keys->ports.dst = fl4->fl4_dport;
914 	keys->keyid.keyid = fl4->fl4_gre_key;
915 	keys->basic.ip_proto = fl4->flowi4_proto;
916 
917 	return flow_hash_from_keys(keys);
918 }
919 EXPORT_SYMBOL(__get_hash_from_flowi4);
920 
921 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
922 	{
923 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
924 		.offset = offsetof(struct flow_keys, control),
925 	},
926 	{
927 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
928 		.offset = offsetof(struct flow_keys, basic),
929 	},
930 	{
931 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
932 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
933 	},
934 	{
935 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
936 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
937 	},
938 	{
939 		.key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
940 		.offset = offsetof(struct flow_keys, addrs.tipcaddrs),
941 	},
942 	{
943 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
944 		.offset = offsetof(struct flow_keys, ports),
945 	},
946 	{
947 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
948 		.offset = offsetof(struct flow_keys, vlan),
949 	},
950 	{
951 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
952 		.offset = offsetof(struct flow_keys, tags),
953 	},
954 	{
955 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
956 		.offset = offsetof(struct flow_keys, keyid),
957 	},
958 };
959 
960 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
961 	{
962 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
963 		.offset = offsetof(struct flow_keys, control),
964 	},
965 	{
966 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
967 		.offset = offsetof(struct flow_keys, basic),
968 	},
969 	{
970 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
971 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
972 	},
973 	{
974 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
975 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
976 	},
977 	{
978 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
979 		.offset = offsetof(struct flow_keys, ports),
980 	},
981 };
982 
983 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
984 	{
985 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
986 		.offset = offsetof(struct flow_keys, control),
987 	},
988 	{
989 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
990 		.offset = offsetof(struct flow_keys, basic),
991 	},
992 };
993 
994 struct flow_dissector flow_keys_dissector __read_mostly;
995 EXPORT_SYMBOL(flow_keys_dissector);
996 
997 struct flow_dissector flow_keys_buf_dissector __read_mostly;
998 
999 static int __init init_default_flow_dissectors(void)
1000 {
1001 	skb_flow_dissector_init(&flow_keys_dissector,
1002 				flow_keys_dissector_keys,
1003 				ARRAY_SIZE(flow_keys_dissector_keys));
1004 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1005 				flow_keys_dissector_symmetric_keys,
1006 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1007 	skb_flow_dissector_init(&flow_keys_buf_dissector,
1008 				flow_keys_buf_dissector_keys,
1009 				ARRAY_SIZE(flow_keys_buf_dissector_keys));
1010 	return 0;
1011 }
1012 
1013 late_initcall_sync(init_default_flow_dissectors);
1014