xref: /linux/net/core/flow_dissector.c (revision 7c66e12136c2fa421ae75497e02728f252108a1b)
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <net/gre.h>
10 #include <net/pptp.h>
11 #include <linux/igmp.h>
12 #include <linux/icmp.h>
13 #include <linux/sctp.h>
14 #include <linux/dccp.h>
15 #include <linux/if_tunnel.h>
16 #include <linux/if_pppox.h>
17 #include <linux/ppp_defs.h>
18 #include <linux/stddef.h>
19 #include <linux/if_ether.h>
20 #include <linux/mpls.h>
21 #include <net/flow_dissector.h>
22 #include <scsi/fc/fc_fcoe.h>
23 
24 static void dissector_set_key(struct flow_dissector *flow_dissector,
25 			      enum flow_dissector_key_id key_id)
26 {
27 	flow_dissector->used_keys |= (1 << key_id);
28 }
29 
30 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
31 			     const struct flow_dissector_key *key,
32 			     unsigned int key_count)
33 {
34 	unsigned int i;
35 
36 	memset(flow_dissector, 0, sizeof(*flow_dissector));
37 
38 	for (i = 0; i < key_count; i++, key++) {
39 		/* User should make sure that every key target offset is withing
40 		 * boundaries of unsigned short.
41 		 */
42 		BUG_ON(key->offset > USHRT_MAX);
43 		BUG_ON(dissector_uses_key(flow_dissector,
44 					  key->key_id));
45 
46 		dissector_set_key(flow_dissector, key->key_id);
47 		flow_dissector->offset[key->key_id] = key->offset;
48 	}
49 
50 	/* Ensure that the dissector always includes control and basic key.
51 	 * That way we are able to avoid handling lack of these in fast path.
52 	 */
53 	BUG_ON(!dissector_uses_key(flow_dissector,
54 				   FLOW_DISSECTOR_KEY_CONTROL));
55 	BUG_ON(!dissector_uses_key(flow_dissector,
56 				   FLOW_DISSECTOR_KEY_BASIC));
57 }
58 EXPORT_SYMBOL(skb_flow_dissector_init);
59 
60 /**
61  * __skb_flow_get_ports - extract the upper layer ports and return them
62  * @skb: sk_buff to extract the ports from
63  * @thoff: transport header offset
64  * @ip_proto: protocol for which to get port offset
65  * @data: raw buffer pointer to the packet, if NULL use skb->data
66  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
67  *
68  * The function will try to retrieve the ports at offset thoff + poff where poff
69  * is the protocol port offset returned from proto_ports_offset
70  */
71 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
72 			    void *data, int hlen)
73 {
74 	int poff = proto_ports_offset(ip_proto);
75 
76 	if (!data) {
77 		data = skb->data;
78 		hlen = skb_headlen(skb);
79 	}
80 
81 	if (poff >= 0) {
82 		__be32 *ports, _ports;
83 
84 		ports = __skb_header_pointer(skb, thoff + poff,
85 					     sizeof(_ports), data, hlen, &_ports);
86 		if (ports)
87 			return *ports;
88 	}
89 
90 	return 0;
91 }
92 EXPORT_SYMBOL(__skb_flow_get_ports);
93 
94 /**
95  * __skb_flow_dissect - extract the flow_keys struct and return it
96  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
97  * @flow_dissector: list of keys to dissect
98  * @target_container: target structure to put dissected values into
99  * @data: raw buffer pointer to the packet, if NULL use skb->data
100  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
101  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
102  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
103  *
104  * The function will try to retrieve individual keys into target specified
105  * by flow_dissector from either the skbuff or a raw buffer specified by the
106  * rest parameters.
107  *
108  * Caller must take care of zeroing target container memory.
109  */
110 bool __skb_flow_dissect(const struct sk_buff *skb,
111 			struct flow_dissector *flow_dissector,
112 			void *target_container,
113 			void *data, __be16 proto, int nhoff, int hlen,
114 			unsigned int flags)
115 {
116 	struct flow_dissector_key_control *key_control;
117 	struct flow_dissector_key_basic *key_basic;
118 	struct flow_dissector_key_addrs *key_addrs;
119 	struct flow_dissector_key_ports *key_ports;
120 	struct flow_dissector_key_tags *key_tags;
121 	struct flow_dissector_key_vlan *key_vlan;
122 	struct flow_dissector_key_keyid *key_keyid;
123 	bool skip_vlan = false;
124 	u8 ip_proto = 0;
125 	bool ret = false;
126 
127 	if (!data) {
128 		data = skb->data;
129 		proto = skb_vlan_tag_present(skb) ?
130 			 skb->vlan_proto : skb->protocol;
131 		nhoff = skb_network_offset(skb);
132 		hlen = skb_headlen(skb);
133 	}
134 
135 	/* It is ensured by skb_flow_dissector_init() that control key will
136 	 * be always present.
137 	 */
138 	key_control = skb_flow_dissector_target(flow_dissector,
139 						FLOW_DISSECTOR_KEY_CONTROL,
140 						target_container);
141 
142 	/* It is ensured by skb_flow_dissector_init() that basic key will
143 	 * be always present.
144 	 */
145 	key_basic = skb_flow_dissector_target(flow_dissector,
146 					      FLOW_DISSECTOR_KEY_BASIC,
147 					      target_container);
148 
149 	if (dissector_uses_key(flow_dissector,
150 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
151 		struct ethhdr *eth = eth_hdr(skb);
152 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
153 
154 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
155 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
156 							  target_container);
157 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
158 	}
159 
160 again:
161 	switch (proto) {
162 	case htons(ETH_P_IP): {
163 		const struct iphdr *iph;
164 		struct iphdr _iph;
165 ip:
166 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
167 		if (!iph || iph->ihl < 5)
168 			goto out_bad;
169 		nhoff += iph->ihl * 4;
170 
171 		ip_proto = iph->protocol;
172 
173 		if (dissector_uses_key(flow_dissector,
174 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
175 			key_addrs = skb_flow_dissector_target(flow_dissector,
176 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
177 							      target_container);
178 
179 			memcpy(&key_addrs->v4addrs, &iph->saddr,
180 			       sizeof(key_addrs->v4addrs));
181 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
182 		}
183 
184 		if (ip_is_fragment(iph)) {
185 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
186 
187 			if (iph->frag_off & htons(IP_OFFSET)) {
188 				goto out_good;
189 			} else {
190 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
191 				if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
192 					goto out_good;
193 			}
194 		}
195 
196 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
197 			goto out_good;
198 
199 		break;
200 	}
201 	case htons(ETH_P_IPV6): {
202 		const struct ipv6hdr *iph;
203 		struct ipv6hdr _iph;
204 
205 ipv6:
206 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
207 		if (!iph)
208 			goto out_bad;
209 
210 		ip_proto = iph->nexthdr;
211 		nhoff += sizeof(struct ipv6hdr);
212 
213 		if (dissector_uses_key(flow_dissector,
214 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
215 			key_addrs = skb_flow_dissector_target(flow_dissector,
216 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
217 							      target_container);
218 
219 			memcpy(&key_addrs->v6addrs, &iph->saddr,
220 			       sizeof(key_addrs->v6addrs));
221 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
222 		}
223 
224 		if ((dissector_uses_key(flow_dissector,
225 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
226 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
227 		    ip6_flowlabel(iph)) {
228 			__be32 flow_label = ip6_flowlabel(iph);
229 
230 			if (dissector_uses_key(flow_dissector,
231 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
232 				key_tags = skb_flow_dissector_target(flow_dissector,
233 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
234 								     target_container);
235 				key_tags->flow_label = ntohl(flow_label);
236 			}
237 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
238 				goto out_good;
239 		}
240 
241 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
242 			goto out_good;
243 
244 		break;
245 	}
246 	case htons(ETH_P_8021AD):
247 	case htons(ETH_P_8021Q): {
248 		const struct vlan_hdr *vlan;
249 		struct vlan_hdr _vlan;
250 		bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
251 
252 		if (vlan_tag_present)
253 			proto = skb->protocol;
254 
255 		if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
256 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
257 						    data, hlen, &_vlan);
258 			if (!vlan)
259 				goto out_bad;
260 			proto = vlan->h_vlan_encapsulated_proto;
261 			nhoff += sizeof(*vlan);
262 			if (skip_vlan)
263 				goto again;
264 		}
265 
266 		skip_vlan = true;
267 		if (dissector_uses_key(flow_dissector,
268 				       FLOW_DISSECTOR_KEY_VLAN)) {
269 			key_vlan = skb_flow_dissector_target(flow_dissector,
270 							     FLOW_DISSECTOR_KEY_VLAN,
271 							     target_container);
272 
273 			if (vlan_tag_present) {
274 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
275 				key_vlan->vlan_priority =
276 					(skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
277 			} else {
278 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
279 					VLAN_VID_MASK;
280 				key_vlan->vlan_priority =
281 					(ntohs(vlan->h_vlan_TCI) &
282 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
283 			}
284 		}
285 
286 		goto again;
287 	}
288 	case htons(ETH_P_PPP_SES): {
289 		struct {
290 			struct pppoe_hdr hdr;
291 			__be16 proto;
292 		} *hdr, _hdr;
293 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
294 		if (!hdr)
295 			goto out_bad;
296 		proto = hdr->proto;
297 		nhoff += PPPOE_SES_HLEN;
298 		switch (proto) {
299 		case htons(PPP_IP):
300 			goto ip;
301 		case htons(PPP_IPV6):
302 			goto ipv6;
303 		default:
304 			goto out_bad;
305 		}
306 	}
307 	case htons(ETH_P_TIPC): {
308 		struct {
309 			__be32 pre[3];
310 			__be32 srcnode;
311 		} *hdr, _hdr;
312 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
313 		if (!hdr)
314 			goto out_bad;
315 
316 		if (dissector_uses_key(flow_dissector,
317 				       FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
318 			key_addrs = skb_flow_dissector_target(flow_dissector,
319 							      FLOW_DISSECTOR_KEY_TIPC_ADDRS,
320 							      target_container);
321 			key_addrs->tipcaddrs.srcnode = hdr->srcnode;
322 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
323 		}
324 		goto out_good;
325 	}
326 
327 	case htons(ETH_P_MPLS_UC):
328 	case htons(ETH_P_MPLS_MC): {
329 		struct mpls_label *hdr, _hdr[2];
330 mpls:
331 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
332 					   hlen, &_hdr);
333 		if (!hdr)
334 			goto out_bad;
335 
336 		if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
337 		     MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
338 			if (dissector_uses_key(flow_dissector,
339 					       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
340 				key_keyid = skb_flow_dissector_target(flow_dissector,
341 								      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
342 								      target_container);
343 				key_keyid->keyid = hdr[1].entry &
344 					htonl(MPLS_LS_LABEL_MASK);
345 			}
346 
347 			goto out_good;
348 		}
349 
350 		goto out_good;
351 	}
352 
353 	case htons(ETH_P_FCOE):
354 		if ((hlen - nhoff) < FCOE_HEADER_LEN)
355 			goto out_bad;
356 
357 		nhoff += FCOE_HEADER_LEN;
358 		goto out_good;
359 	default:
360 		goto out_bad;
361 	}
362 
363 ip_proto_again:
364 	switch (ip_proto) {
365 	case IPPROTO_GRE: {
366 		struct gre_base_hdr *hdr, _hdr;
367 		u16 gre_ver;
368 		int offset = 0;
369 
370 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
371 		if (!hdr)
372 			goto out_bad;
373 
374 		/* Only look inside GRE without routing */
375 		if (hdr->flags & GRE_ROUTING)
376 			break;
377 
378 		/* Only look inside GRE for version 0 and 1 */
379 		gre_ver = ntohs(hdr->flags & GRE_VERSION);
380 		if (gre_ver > 1)
381 			break;
382 
383 		proto = hdr->protocol;
384 		if (gre_ver) {
385 			/* Version1 must be PPTP, and check the flags */
386 			if (!(proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
387 				break;
388 		}
389 
390 		offset += sizeof(struct gre_base_hdr);
391 
392 		if (hdr->flags & GRE_CSUM)
393 			offset += sizeof(((struct gre_full_hdr *)0)->csum) +
394 				  sizeof(((struct gre_full_hdr *)0)->reserved1);
395 
396 		if (hdr->flags & GRE_KEY) {
397 			const __be32 *keyid;
398 			__be32 _keyid;
399 
400 			keyid = __skb_header_pointer(skb, nhoff + offset, sizeof(_keyid),
401 						     data, hlen, &_keyid);
402 			if (!keyid)
403 				goto out_bad;
404 
405 			if (dissector_uses_key(flow_dissector,
406 					       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
407 				key_keyid = skb_flow_dissector_target(flow_dissector,
408 								      FLOW_DISSECTOR_KEY_GRE_KEYID,
409 								      target_container);
410 				if (gre_ver == 0)
411 					key_keyid->keyid = *keyid;
412 				else
413 					key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
414 			}
415 			offset += sizeof(((struct gre_full_hdr *)0)->key);
416 		}
417 
418 		if (hdr->flags & GRE_SEQ)
419 			offset += sizeof(((struct pptp_gre_header *)0)->seq);
420 
421 		if (gre_ver == 0) {
422 			if (proto == htons(ETH_P_TEB)) {
423 				const struct ethhdr *eth;
424 				struct ethhdr _eth;
425 
426 				eth = __skb_header_pointer(skb, nhoff + offset,
427 							   sizeof(_eth),
428 							   data, hlen, &_eth);
429 				if (!eth)
430 					goto out_bad;
431 				proto = eth->h_proto;
432 				offset += sizeof(*eth);
433 
434 				/* Cap headers that we access via pointers at the
435 				 * end of the Ethernet header as our maximum alignment
436 				 * at that point is only 2 bytes.
437 				 */
438 				if (NET_IP_ALIGN)
439 					hlen = (nhoff + offset);
440 			}
441 		} else { /* version 1, must be PPTP */
442 			u8 _ppp_hdr[PPP_HDRLEN];
443 			u8 *ppp_hdr;
444 
445 			if (hdr->flags & GRE_ACK)
446 				offset += sizeof(((struct pptp_gre_header *)0)->ack);
447 
448 			ppp_hdr = skb_header_pointer(skb, nhoff + offset,
449 						     sizeof(_ppp_hdr), _ppp_hdr);
450 			if (!ppp_hdr)
451 				goto out_bad;
452 
453 			switch (PPP_PROTOCOL(ppp_hdr)) {
454 			case PPP_IP:
455 				proto = htons(ETH_P_IP);
456 				break;
457 			case PPP_IPV6:
458 				proto = htons(ETH_P_IPV6);
459 				break;
460 			default:
461 				/* Could probably catch some more like MPLS */
462 				break;
463 			}
464 
465 			offset += PPP_HDRLEN;
466 		}
467 
468 		nhoff += offset;
469 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
470 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
471 			goto out_good;
472 
473 		goto again;
474 	}
475 	case NEXTHDR_HOP:
476 	case NEXTHDR_ROUTING:
477 	case NEXTHDR_DEST: {
478 		u8 _opthdr[2], *opthdr;
479 
480 		if (proto != htons(ETH_P_IPV6))
481 			break;
482 
483 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
484 					      data, hlen, &_opthdr);
485 		if (!opthdr)
486 			goto out_bad;
487 
488 		ip_proto = opthdr[0];
489 		nhoff += (opthdr[1] + 1) << 3;
490 
491 		goto ip_proto_again;
492 	}
493 	case NEXTHDR_FRAGMENT: {
494 		struct frag_hdr _fh, *fh;
495 
496 		if (proto != htons(ETH_P_IPV6))
497 			break;
498 
499 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
500 					  data, hlen, &_fh);
501 
502 		if (!fh)
503 			goto out_bad;
504 
505 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
506 
507 		nhoff += sizeof(_fh);
508 		ip_proto = fh->nexthdr;
509 
510 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
511 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
512 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
513 				goto ip_proto_again;
514 		}
515 		goto out_good;
516 	}
517 	case IPPROTO_IPIP:
518 		proto = htons(ETH_P_IP);
519 
520 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
521 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
522 			goto out_good;
523 
524 		goto ip;
525 	case IPPROTO_IPV6:
526 		proto = htons(ETH_P_IPV6);
527 
528 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
529 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
530 			goto out_good;
531 
532 		goto ipv6;
533 	case IPPROTO_MPLS:
534 		proto = htons(ETH_P_MPLS_UC);
535 		goto mpls;
536 	default:
537 		break;
538 	}
539 
540 	if (dissector_uses_key(flow_dissector,
541 			       FLOW_DISSECTOR_KEY_PORTS)) {
542 		key_ports = skb_flow_dissector_target(flow_dissector,
543 						      FLOW_DISSECTOR_KEY_PORTS,
544 						      target_container);
545 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
546 							data, hlen);
547 	}
548 
549 out_good:
550 	ret = true;
551 
552 out_bad:
553 	key_basic->n_proto = proto;
554 	key_basic->ip_proto = ip_proto;
555 	key_control->thoff = (u16)nhoff;
556 
557 	return ret;
558 }
559 EXPORT_SYMBOL(__skb_flow_dissect);
560 
561 static u32 hashrnd __read_mostly;
562 static __always_inline void __flow_hash_secret_init(void)
563 {
564 	net_get_random_once(&hashrnd, sizeof(hashrnd));
565 }
566 
567 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
568 					     u32 keyval)
569 {
570 	return jhash2(words, length, keyval);
571 }
572 
573 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
574 {
575 	const void *p = flow;
576 
577 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
578 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
579 }
580 
581 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
582 {
583 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
584 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
585 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
586 		     sizeof(*flow) - sizeof(flow->addrs));
587 
588 	switch (flow->control.addr_type) {
589 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
590 		diff -= sizeof(flow->addrs.v4addrs);
591 		break;
592 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
593 		diff -= sizeof(flow->addrs.v6addrs);
594 		break;
595 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
596 		diff -= sizeof(flow->addrs.tipcaddrs);
597 		break;
598 	}
599 	return (sizeof(*flow) - diff) / sizeof(u32);
600 }
601 
602 __be32 flow_get_u32_src(const struct flow_keys *flow)
603 {
604 	switch (flow->control.addr_type) {
605 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
606 		return flow->addrs.v4addrs.src;
607 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
608 		return (__force __be32)ipv6_addr_hash(
609 			&flow->addrs.v6addrs.src);
610 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
611 		return flow->addrs.tipcaddrs.srcnode;
612 	default:
613 		return 0;
614 	}
615 }
616 EXPORT_SYMBOL(flow_get_u32_src);
617 
618 __be32 flow_get_u32_dst(const struct flow_keys *flow)
619 {
620 	switch (flow->control.addr_type) {
621 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
622 		return flow->addrs.v4addrs.dst;
623 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
624 		return (__force __be32)ipv6_addr_hash(
625 			&flow->addrs.v6addrs.dst);
626 	default:
627 		return 0;
628 	}
629 }
630 EXPORT_SYMBOL(flow_get_u32_dst);
631 
632 static inline void __flow_hash_consistentify(struct flow_keys *keys)
633 {
634 	int addr_diff, i;
635 
636 	switch (keys->control.addr_type) {
637 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
638 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
639 			    (__force u32)keys->addrs.v4addrs.src;
640 		if ((addr_diff < 0) ||
641 		    (addr_diff == 0 &&
642 		     ((__force u16)keys->ports.dst <
643 		      (__force u16)keys->ports.src))) {
644 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
645 			swap(keys->ports.src, keys->ports.dst);
646 		}
647 		break;
648 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
649 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
650 				   &keys->addrs.v6addrs.src,
651 				   sizeof(keys->addrs.v6addrs.dst));
652 		if ((addr_diff < 0) ||
653 		    (addr_diff == 0 &&
654 		     ((__force u16)keys->ports.dst <
655 		      (__force u16)keys->ports.src))) {
656 			for (i = 0; i < 4; i++)
657 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
658 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
659 			swap(keys->ports.src, keys->ports.dst);
660 		}
661 		break;
662 	}
663 }
664 
665 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
666 {
667 	u32 hash;
668 
669 	__flow_hash_consistentify(keys);
670 
671 	hash = __flow_hash_words(flow_keys_hash_start(keys),
672 				 flow_keys_hash_length(keys), keyval);
673 	if (!hash)
674 		hash = 1;
675 
676 	return hash;
677 }
678 
679 u32 flow_hash_from_keys(struct flow_keys *keys)
680 {
681 	__flow_hash_secret_init();
682 	return __flow_hash_from_keys(keys, hashrnd);
683 }
684 EXPORT_SYMBOL(flow_hash_from_keys);
685 
686 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
687 				  struct flow_keys *keys, u32 keyval)
688 {
689 	skb_flow_dissect_flow_keys(skb, keys,
690 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
691 
692 	return __flow_hash_from_keys(keys, keyval);
693 }
694 
695 struct _flow_keys_digest_data {
696 	__be16	n_proto;
697 	u8	ip_proto;
698 	u8	padding;
699 	__be32	ports;
700 	__be32	src;
701 	__be32	dst;
702 };
703 
704 void make_flow_keys_digest(struct flow_keys_digest *digest,
705 			   const struct flow_keys *flow)
706 {
707 	struct _flow_keys_digest_data *data =
708 	    (struct _flow_keys_digest_data *)digest;
709 
710 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
711 
712 	memset(digest, 0, sizeof(*digest));
713 
714 	data->n_proto = flow->basic.n_proto;
715 	data->ip_proto = flow->basic.ip_proto;
716 	data->ports = flow->ports.ports;
717 	data->src = flow->addrs.v4addrs.src;
718 	data->dst = flow->addrs.v4addrs.dst;
719 }
720 EXPORT_SYMBOL(make_flow_keys_digest);
721 
722 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
723 
724 u32 __skb_get_hash_symmetric(struct sk_buff *skb)
725 {
726 	struct flow_keys keys;
727 
728 	__flow_hash_secret_init();
729 
730 	memset(&keys, 0, sizeof(keys));
731 	__skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
732 			   NULL, 0, 0, 0,
733 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
734 
735 	return __flow_hash_from_keys(&keys, hashrnd);
736 }
737 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
738 
739 /**
740  * __skb_get_hash: calculate a flow hash
741  * @skb: sk_buff to calculate flow hash from
742  *
743  * This function calculates a flow hash based on src/dst addresses
744  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
745  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
746  * if hash is a canonical 4-tuple hash over transport ports.
747  */
748 void __skb_get_hash(struct sk_buff *skb)
749 {
750 	struct flow_keys keys;
751 	u32 hash;
752 
753 	__flow_hash_secret_init();
754 
755 	hash = ___skb_get_hash(skb, &keys, hashrnd);
756 
757 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
758 }
759 EXPORT_SYMBOL(__skb_get_hash);
760 
761 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
762 {
763 	struct flow_keys keys;
764 
765 	return ___skb_get_hash(skb, &keys, perturb);
766 }
767 EXPORT_SYMBOL(skb_get_hash_perturb);
768 
769 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
770 {
771 	struct flow_keys keys;
772 
773 	memset(&keys, 0, sizeof(keys));
774 
775 	memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
776 	       sizeof(keys.addrs.v6addrs.src));
777 	memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
778 	       sizeof(keys.addrs.v6addrs.dst));
779 	keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
780 	keys.ports.src = fl6->fl6_sport;
781 	keys.ports.dst = fl6->fl6_dport;
782 	keys.keyid.keyid = fl6->fl6_gre_key;
783 	keys.tags.flow_label = (__force u32)fl6->flowlabel;
784 	keys.basic.ip_proto = fl6->flowi6_proto;
785 
786 	__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
787 			  flow_keys_have_l4(&keys));
788 
789 	return skb->hash;
790 }
791 EXPORT_SYMBOL(__skb_get_hash_flowi6);
792 
793 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
794 {
795 	struct flow_keys keys;
796 
797 	memset(&keys, 0, sizeof(keys));
798 
799 	keys.addrs.v4addrs.src = fl4->saddr;
800 	keys.addrs.v4addrs.dst = fl4->daddr;
801 	keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
802 	keys.ports.src = fl4->fl4_sport;
803 	keys.ports.dst = fl4->fl4_dport;
804 	keys.keyid.keyid = fl4->fl4_gre_key;
805 	keys.basic.ip_proto = fl4->flowi4_proto;
806 
807 	__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
808 			  flow_keys_have_l4(&keys));
809 
810 	return skb->hash;
811 }
812 EXPORT_SYMBOL(__skb_get_hash_flowi4);
813 
814 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
815 		   const struct flow_keys *keys, int hlen)
816 {
817 	u32 poff = keys->control.thoff;
818 
819 	/* skip L4 headers for fragments after the first */
820 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
821 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
822 		return poff;
823 
824 	switch (keys->basic.ip_proto) {
825 	case IPPROTO_TCP: {
826 		/* access doff as u8 to avoid unaligned access */
827 		const u8 *doff;
828 		u8 _doff;
829 
830 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
831 					    data, hlen, &_doff);
832 		if (!doff)
833 			return poff;
834 
835 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
836 		break;
837 	}
838 	case IPPROTO_UDP:
839 	case IPPROTO_UDPLITE:
840 		poff += sizeof(struct udphdr);
841 		break;
842 	/* For the rest, we do not really care about header
843 	 * extensions at this point for now.
844 	 */
845 	case IPPROTO_ICMP:
846 		poff += sizeof(struct icmphdr);
847 		break;
848 	case IPPROTO_ICMPV6:
849 		poff += sizeof(struct icmp6hdr);
850 		break;
851 	case IPPROTO_IGMP:
852 		poff += sizeof(struct igmphdr);
853 		break;
854 	case IPPROTO_DCCP:
855 		poff += sizeof(struct dccp_hdr);
856 		break;
857 	case IPPROTO_SCTP:
858 		poff += sizeof(struct sctphdr);
859 		break;
860 	}
861 
862 	return poff;
863 }
864 
865 /**
866  * skb_get_poff - get the offset to the payload
867  * @skb: sk_buff to get the payload offset from
868  *
869  * The function will get the offset to the payload as far as it could
870  * be dissected.  The main user is currently BPF, so that we can dynamically
871  * truncate packets without needing to push actual payload to the user
872  * space and can analyze headers only, instead.
873  */
874 u32 skb_get_poff(const struct sk_buff *skb)
875 {
876 	struct flow_keys keys;
877 
878 	if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
879 		return 0;
880 
881 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
882 }
883 
884 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
885 {
886 	memset(keys, 0, sizeof(*keys));
887 
888 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
889 	    sizeof(keys->addrs.v6addrs.src));
890 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
891 	    sizeof(keys->addrs.v6addrs.dst));
892 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
893 	keys->ports.src = fl6->fl6_sport;
894 	keys->ports.dst = fl6->fl6_dport;
895 	keys->keyid.keyid = fl6->fl6_gre_key;
896 	keys->tags.flow_label = (__force u32)fl6->flowlabel;
897 	keys->basic.ip_proto = fl6->flowi6_proto;
898 
899 	return flow_hash_from_keys(keys);
900 }
901 EXPORT_SYMBOL(__get_hash_from_flowi6);
902 
903 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
904 {
905 	memset(keys, 0, sizeof(*keys));
906 
907 	keys->addrs.v4addrs.src = fl4->saddr;
908 	keys->addrs.v4addrs.dst = fl4->daddr;
909 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
910 	keys->ports.src = fl4->fl4_sport;
911 	keys->ports.dst = fl4->fl4_dport;
912 	keys->keyid.keyid = fl4->fl4_gre_key;
913 	keys->basic.ip_proto = fl4->flowi4_proto;
914 
915 	return flow_hash_from_keys(keys);
916 }
917 EXPORT_SYMBOL(__get_hash_from_flowi4);
918 
919 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
920 	{
921 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
922 		.offset = offsetof(struct flow_keys, control),
923 	},
924 	{
925 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
926 		.offset = offsetof(struct flow_keys, basic),
927 	},
928 	{
929 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
930 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
931 	},
932 	{
933 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
934 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
935 	},
936 	{
937 		.key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
938 		.offset = offsetof(struct flow_keys, addrs.tipcaddrs),
939 	},
940 	{
941 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
942 		.offset = offsetof(struct flow_keys, ports),
943 	},
944 	{
945 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
946 		.offset = offsetof(struct flow_keys, vlan),
947 	},
948 	{
949 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
950 		.offset = offsetof(struct flow_keys, tags),
951 	},
952 	{
953 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
954 		.offset = offsetof(struct flow_keys, keyid),
955 	},
956 };
957 
958 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
959 	{
960 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
961 		.offset = offsetof(struct flow_keys, control),
962 	},
963 	{
964 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
965 		.offset = offsetof(struct flow_keys, basic),
966 	},
967 	{
968 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
969 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
970 	},
971 	{
972 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
973 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
974 	},
975 	{
976 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
977 		.offset = offsetof(struct flow_keys, ports),
978 	},
979 };
980 
981 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
982 	{
983 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
984 		.offset = offsetof(struct flow_keys, control),
985 	},
986 	{
987 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
988 		.offset = offsetof(struct flow_keys, basic),
989 	},
990 };
991 
992 struct flow_dissector flow_keys_dissector __read_mostly;
993 EXPORT_SYMBOL(flow_keys_dissector);
994 
995 struct flow_dissector flow_keys_buf_dissector __read_mostly;
996 
997 static int __init init_default_flow_dissectors(void)
998 {
999 	skb_flow_dissector_init(&flow_keys_dissector,
1000 				flow_keys_dissector_keys,
1001 				ARRAY_SIZE(flow_keys_dissector_keys));
1002 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1003 				flow_keys_dissector_symmetric_keys,
1004 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1005 	skb_flow_dissector_init(&flow_keys_buf_dissector,
1006 				flow_keys_buf_dissector_keys,
1007 				ARRAY_SIZE(flow_keys_buf_dissector_keys));
1008 	return 0;
1009 }
1010 
1011 late_initcall_sync(init_default_flow_dissectors);
1012