xref: /linux/net/core/flow_dissector.c (revision 4a714feefd99c25c7304b43ac58c9d5c0304e7cb)
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/dsa.h>
8 #include <net/dst_metadata.h>
9 #include <net/ip.h>
10 #include <net/ipv6.h>
11 #include <net/gre.h>
12 #include <net/pptp.h>
13 #include <net/tipc.h>
14 #include <linux/igmp.h>
15 #include <linux/icmp.h>
16 #include <linux/sctp.h>
17 #include <linux/dccp.h>
18 #include <linux/if_tunnel.h>
19 #include <linux/if_pppox.h>
20 #include <linux/ppp_defs.h>
21 #include <linux/stddef.h>
22 #include <linux/if_ether.h>
23 #include <linux/mpls.h>
24 #include <linux/tcp.h>
25 #include <net/flow_dissector.h>
26 #include <scsi/fc/fc_fcoe.h>
27 #include <uapi/linux/batadv_packet.h>
28 #include <linux/bpf.h>
29 
30 static DEFINE_MUTEX(flow_dissector_mutex);
31 
32 static void dissector_set_key(struct flow_dissector *flow_dissector,
33 			      enum flow_dissector_key_id key_id)
34 {
35 	flow_dissector->used_keys |= (1 << key_id);
36 }
37 
38 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
39 			     const struct flow_dissector_key *key,
40 			     unsigned int key_count)
41 {
42 	unsigned int i;
43 
44 	memset(flow_dissector, 0, sizeof(*flow_dissector));
45 
46 	for (i = 0; i < key_count; i++, key++) {
47 		/* User should make sure that every key target offset is withing
48 		 * boundaries of unsigned short.
49 		 */
50 		BUG_ON(key->offset > USHRT_MAX);
51 		BUG_ON(dissector_uses_key(flow_dissector,
52 					  key->key_id));
53 
54 		dissector_set_key(flow_dissector, key->key_id);
55 		flow_dissector->offset[key->key_id] = key->offset;
56 	}
57 
58 	/* Ensure that the dissector always includes control and basic key.
59 	 * That way we are able to avoid handling lack of these in fast path.
60 	 */
61 	BUG_ON(!dissector_uses_key(flow_dissector,
62 				   FLOW_DISSECTOR_KEY_CONTROL));
63 	BUG_ON(!dissector_uses_key(flow_dissector,
64 				   FLOW_DISSECTOR_KEY_BASIC));
65 }
66 EXPORT_SYMBOL(skb_flow_dissector_init);
67 
68 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
69 				  union bpf_attr __user *uattr)
70 {
71 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
72 	u32 prog_id, prog_cnt = 0, flags = 0;
73 	struct bpf_prog *attached;
74 	struct net *net;
75 
76 	if (attr->query.query_flags)
77 		return -EINVAL;
78 
79 	net = get_net_ns_by_fd(attr->query.target_fd);
80 	if (IS_ERR(net))
81 		return PTR_ERR(net);
82 
83 	rcu_read_lock();
84 	attached = rcu_dereference(net->flow_dissector_prog);
85 	if (attached) {
86 		prog_cnt = 1;
87 		prog_id = attached->aux->id;
88 	}
89 	rcu_read_unlock();
90 
91 	put_net(net);
92 
93 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
94 		return -EFAULT;
95 	if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt)))
96 		return -EFAULT;
97 
98 	if (!attr->query.prog_cnt || !prog_ids || !prog_cnt)
99 		return 0;
100 
101 	if (copy_to_user(prog_ids, &prog_id, sizeof(u32)))
102 		return -EFAULT;
103 
104 	return 0;
105 }
106 
107 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
108 				       struct bpf_prog *prog)
109 {
110 	struct bpf_prog *attached;
111 	struct net *net;
112 
113 	net = current->nsproxy->net_ns;
114 	mutex_lock(&flow_dissector_mutex);
115 	attached = rcu_dereference_protected(net->flow_dissector_prog,
116 					     lockdep_is_held(&flow_dissector_mutex));
117 	if (attached) {
118 		/* Only one BPF program can be attached at a time */
119 		mutex_unlock(&flow_dissector_mutex);
120 		return -EEXIST;
121 	}
122 	rcu_assign_pointer(net->flow_dissector_prog, prog);
123 	mutex_unlock(&flow_dissector_mutex);
124 	return 0;
125 }
126 
127 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
128 {
129 	struct bpf_prog *attached;
130 	struct net *net;
131 
132 	net = current->nsproxy->net_ns;
133 	mutex_lock(&flow_dissector_mutex);
134 	attached = rcu_dereference_protected(net->flow_dissector_prog,
135 					     lockdep_is_held(&flow_dissector_mutex));
136 	if (!attached) {
137 		mutex_unlock(&flow_dissector_mutex);
138 		return -ENOENT;
139 	}
140 	bpf_prog_put(attached);
141 	RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
142 	mutex_unlock(&flow_dissector_mutex);
143 	return 0;
144 }
145 /**
146  * skb_flow_get_be16 - extract be16 entity
147  * @skb: sk_buff to extract from
148  * @poff: offset to extract at
149  * @data: raw buffer pointer to the packet
150  * @hlen: packet header length
151  *
152  * The function will try to retrieve a be32 entity at
153  * offset poff
154  */
155 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
156 				void *data, int hlen)
157 {
158 	__be16 *u, _u;
159 
160 	u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
161 	if (u)
162 		return *u;
163 
164 	return 0;
165 }
166 
167 /**
168  * __skb_flow_get_ports - extract the upper layer ports and return them
169  * @skb: sk_buff to extract the ports from
170  * @thoff: transport header offset
171  * @ip_proto: protocol for which to get port offset
172  * @data: raw buffer pointer to the packet, if NULL use skb->data
173  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
174  *
175  * The function will try to retrieve the ports at offset thoff + poff where poff
176  * is the protocol port offset returned from proto_ports_offset
177  */
178 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
179 			    void *data, int hlen)
180 {
181 	int poff = proto_ports_offset(ip_proto);
182 
183 	if (!data) {
184 		data = skb->data;
185 		hlen = skb_headlen(skb);
186 	}
187 
188 	if (poff >= 0) {
189 		__be32 *ports, _ports;
190 
191 		ports = __skb_header_pointer(skb, thoff + poff,
192 					     sizeof(_ports), data, hlen, &_ports);
193 		if (ports)
194 			return *ports;
195 	}
196 
197 	return 0;
198 }
199 EXPORT_SYMBOL(__skb_flow_get_ports);
200 
201 static void
202 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
203 				   struct flow_dissector *flow_dissector,
204 				   void *target_container)
205 {
206 	struct flow_dissector_key_control *ctrl;
207 
208 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
209 		return;
210 
211 	ctrl = skb_flow_dissector_target(flow_dissector,
212 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
213 					 target_container);
214 	ctrl->addr_type = type;
215 }
216 
217 void
218 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
219 			     struct flow_dissector *flow_dissector,
220 			     void *target_container)
221 {
222 	struct ip_tunnel_info *info;
223 	struct ip_tunnel_key *key;
224 
225 	/* A quick check to see if there might be something to do. */
226 	if (!dissector_uses_key(flow_dissector,
227 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
228 	    !dissector_uses_key(flow_dissector,
229 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
230 	    !dissector_uses_key(flow_dissector,
231 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
232 	    !dissector_uses_key(flow_dissector,
233 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
234 	    !dissector_uses_key(flow_dissector,
235 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
236 	    !dissector_uses_key(flow_dissector,
237 				FLOW_DISSECTOR_KEY_ENC_IP) &&
238 	    !dissector_uses_key(flow_dissector,
239 				FLOW_DISSECTOR_KEY_ENC_OPTS))
240 		return;
241 
242 	info = skb_tunnel_info(skb);
243 	if (!info)
244 		return;
245 
246 	key = &info->key;
247 
248 	switch (ip_tunnel_info_af(info)) {
249 	case AF_INET:
250 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
251 						   flow_dissector,
252 						   target_container);
253 		if (dissector_uses_key(flow_dissector,
254 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
255 			struct flow_dissector_key_ipv4_addrs *ipv4;
256 
257 			ipv4 = skb_flow_dissector_target(flow_dissector,
258 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
259 							 target_container);
260 			ipv4->src = key->u.ipv4.src;
261 			ipv4->dst = key->u.ipv4.dst;
262 		}
263 		break;
264 	case AF_INET6:
265 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
266 						   flow_dissector,
267 						   target_container);
268 		if (dissector_uses_key(flow_dissector,
269 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
270 			struct flow_dissector_key_ipv6_addrs *ipv6;
271 
272 			ipv6 = skb_flow_dissector_target(flow_dissector,
273 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
274 							 target_container);
275 			ipv6->src = key->u.ipv6.src;
276 			ipv6->dst = key->u.ipv6.dst;
277 		}
278 		break;
279 	}
280 
281 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
282 		struct flow_dissector_key_keyid *keyid;
283 
284 		keyid = skb_flow_dissector_target(flow_dissector,
285 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
286 						  target_container);
287 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
288 	}
289 
290 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
291 		struct flow_dissector_key_ports *tp;
292 
293 		tp = skb_flow_dissector_target(flow_dissector,
294 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
295 					       target_container);
296 		tp->src = key->tp_src;
297 		tp->dst = key->tp_dst;
298 	}
299 
300 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
301 		struct flow_dissector_key_ip *ip;
302 
303 		ip = skb_flow_dissector_target(flow_dissector,
304 					       FLOW_DISSECTOR_KEY_ENC_IP,
305 					       target_container);
306 		ip->tos = key->tos;
307 		ip->ttl = key->ttl;
308 	}
309 
310 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
311 		struct flow_dissector_key_enc_opts *enc_opt;
312 
313 		enc_opt = skb_flow_dissector_target(flow_dissector,
314 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
315 						    target_container);
316 
317 		if (info->options_len) {
318 			enc_opt->len = info->options_len;
319 			ip_tunnel_info_opts_get(enc_opt->data, info);
320 			enc_opt->dst_opt_type = info->key.tun_flags &
321 						TUNNEL_OPTIONS_PRESENT;
322 		}
323 	}
324 }
325 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
326 
327 static enum flow_dissect_ret
328 __skb_flow_dissect_mpls(const struct sk_buff *skb,
329 			struct flow_dissector *flow_dissector,
330 			void *target_container, void *data, int nhoff, int hlen)
331 {
332 	struct flow_dissector_key_keyid *key_keyid;
333 	struct mpls_label *hdr, _hdr[2];
334 	u32 entry, label;
335 
336 	if (!dissector_uses_key(flow_dissector,
337 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
338 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
339 		return FLOW_DISSECT_RET_OUT_GOOD;
340 
341 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
342 				   hlen, &_hdr);
343 	if (!hdr)
344 		return FLOW_DISSECT_RET_OUT_BAD;
345 
346 	entry = ntohl(hdr[0].entry);
347 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
348 
349 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
350 		struct flow_dissector_key_mpls *key_mpls;
351 
352 		key_mpls = skb_flow_dissector_target(flow_dissector,
353 						     FLOW_DISSECTOR_KEY_MPLS,
354 						     target_container);
355 		key_mpls->mpls_label = label;
356 		key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
357 					>> MPLS_LS_TTL_SHIFT;
358 		key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
359 					>> MPLS_LS_TC_SHIFT;
360 		key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
361 					>> MPLS_LS_S_SHIFT;
362 	}
363 
364 	if (label == MPLS_LABEL_ENTROPY) {
365 		key_keyid = skb_flow_dissector_target(flow_dissector,
366 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
367 						      target_container);
368 		key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
369 	}
370 	return FLOW_DISSECT_RET_OUT_GOOD;
371 }
372 
373 static enum flow_dissect_ret
374 __skb_flow_dissect_arp(const struct sk_buff *skb,
375 		       struct flow_dissector *flow_dissector,
376 		       void *target_container, void *data, int nhoff, int hlen)
377 {
378 	struct flow_dissector_key_arp *key_arp;
379 	struct {
380 		unsigned char ar_sha[ETH_ALEN];
381 		unsigned char ar_sip[4];
382 		unsigned char ar_tha[ETH_ALEN];
383 		unsigned char ar_tip[4];
384 	} *arp_eth, _arp_eth;
385 	const struct arphdr *arp;
386 	struct arphdr _arp;
387 
388 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
389 		return FLOW_DISSECT_RET_OUT_GOOD;
390 
391 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
392 				   hlen, &_arp);
393 	if (!arp)
394 		return FLOW_DISSECT_RET_OUT_BAD;
395 
396 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
397 	    arp->ar_pro != htons(ETH_P_IP) ||
398 	    arp->ar_hln != ETH_ALEN ||
399 	    arp->ar_pln != 4 ||
400 	    (arp->ar_op != htons(ARPOP_REPLY) &&
401 	     arp->ar_op != htons(ARPOP_REQUEST)))
402 		return FLOW_DISSECT_RET_OUT_BAD;
403 
404 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
405 				       sizeof(_arp_eth), data,
406 				       hlen, &_arp_eth);
407 	if (!arp_eth)
408 		return FLOW_DISSECT_RET_OUT_BAD;
409 
410 	key_arp = skb_flow_dissector_target(flow_dissector,
411 					    FLOW_DISSECTOR_KEY_ARP,
412 					    target_container);
413 
414 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
415 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
416 
417 	/* Only store the lower byte of the opcode;
418 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
419 	 */
420 	key_arp->op = ntohs(arp->ar_op) & 0xff;
421 
422 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
423 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
424 
425 	return FLOW_DISSECT_RET_OUT_GOOD;
426 }
427 
428 static enum flow_dissect_ret
429 __skb_flow_dissect_gre(const struct sk_buff *skb,
430 		       struct flow_dissector_key_control *key_control,
431 		       struct flow_dissector *flow_dissector,
432 		       void *target_container, void *data,
433 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
434 		       unsigned int flags)
435 {
436 	struct flow_dissector_key_keyid *key_keyid;
437 	struct gre_base_hdr *hdr, _hdr;
438 	int offset = 0;
439 	u16 gre_ver;
440 
441 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
442 				   data, *p_hlen, &_hdr);
443 	if (!hdr)
444 		return FLOW_DISSECT_RET_OUT_BAD;
445 
446 	/* Only look inside GRE without routing */
447 	if (hdr->flags & GRE_ROUTING)
448 		return FLOW_DISSECT_RET_OUT_GOOD;
449 
450 	/* Only look inside GRE for version 0 and 1 */
451 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
452 	if (gre_ver > 1)
453 		return FLOW_DISSECT_RET_OUT_GOOD;
454 
455 	*p_proto = hdr->protocol;
456 	if (gre_ver) {
457 		/* Version1 must be PPTP, and check the flags */
458 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
459 			return FLOW_DISSECT_RET_OUT_GOOD;
460 	}
461 
462 	offset += sizeof(struct gre_base_hdr);
463 
464 	if (hdr->flags & GRE_CSUM)
465 		offset += FIELD_SIZEOF(struct gre_full_hdr, csum) +
466 			  FIELD_SIZEOF(struct gre_full_hdr, reserved1);
467 
468 	if (hdr->flags & GRE_KEY) {
469 		const __be32 *keyid;
470 		__be32 _keyid;
471 
472 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
473 					     sizeof(_keyid),
474 					     data, *p_hlen, &_keyid);
475 		if (!keyid)
476 			return FLOW_DISSECT_RET_OUT_BAD;
477 
478 		if (dissector_uses_key(flow_dissector,
479 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
480 			key_keyid = skb_flow_dissector_target(flow_dissector,
481 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
482 							      target_container);
483 			if (gre_ver == 0)
484 				key_keyid->keyid = *keyid;
485 			else
486 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
487 		}
488 		offset += FIELD_SIZEOF(struct gre_full_hdr, key);
489 	}
490 
491 	if (hdr->flags & GRE_SEQ)
492 		offset += FIELD_SIZEOF(struct pptp_gre_header, seq);
493 
494 	if (gre_ver == 0) {
495 		if (*p_proto == htons(ETH_P_TEB)) {
496 			const struct ethhdr *eth;
497 			struct ethhdr _eth;
498 
499 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
500 						   sizeof(_eth),
501 						   data, *p_hlen, &_eth);
502 			if (!eth)
503 				return FLOW_DISSECT_RET_OUT_BAD;
504 			*p_proto = eth->h_proto;
505 			offset += sizeof(*eth);
506 
507 			/* Cap headers that we access via pointers at the
508 			 * end of the Ethernet header as our maximum alignment
509 			 * at that point is only 2 bytes.
510 			 */
511 			if (NET_IP_ALIGN)
512 				*p_hlen = *p_nhoff + offset;
513 		}
514 	} else { /* version 1, must be PPTP */
515 		u8 _ppp_hdr[PPP_HDRLEN];
516 		u8 *ppp_hdr;
517 
518 		if (hdr->flags & GRE_ACK)
519 			offset += FIELD_SIZEOF(struct pptp_gre_header, ack);
520 
521 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
522 					       sizeof(_ppp_hdr),
523 					       data, *p_hlen, _ppp_hdr);
524 		if (!ppp_hdr)
525 			return FLOW_DISSECT_RET_OUT_BAD;
526 
527 		switch (PPP_PROTOCOL(ppp_hdr)) {
528 		case PPP_IP:
529 			*p_proto = htons(ETH_P_IP);
530 			break;
531 		case PPP_IPV6:
532 			*p_proto = htons(ETH_P_IPV6);
533 			break;
534 		default:
535 			/* Could probably catch some more like MPLS */
536 			break;
537 		}
538 
539 		offset += PPP_HDRLEN;
540 	}
541 
542 	*p_nhoff += offset;
543 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
544 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
545 		return FLOW_DISSECT_RET_OUT_GOOD;
546 
547 	return FLOW_DISSECT_RET_PROTO_AGAIN;
548 }
549 
550 /**
551  * __skb_flow_dissect_batadv() - dissect batman-adv header
552  * @skb: sk_buff to with the batman-adv header
553  * @key_control: flow dissectors control key
554  * @data: raw buffer pointer to the packet, if NULL use skb->data
555  * @p_proto: pointer used to update the protocol to process next
556  * @p_nhoff: pointer used to update inner network header offset
557  * @hlen: packet header length
558  * @flags: any combination of FLOW_DISSECTOR_F_*
559  *
560  * ETH_P_BATMAN packets are tried to be dissected. Only
561  * &struct batadv_unicast packets are actually processed because they contain an
562  * inner ethernet header and are usually followed by actual network header. This
563  * allows the flow dissector to continue processing the packet.
564  *
565  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
566  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
567  *  otherwise FLOW_DISSECT_RET_OUT_BAD
568  */
569 static enum flow_dissect_ret
570 __skb_flow_dissect_batadv(const struct sk_buff *skb,
571 			  struct flow_dissector_key_control *key_control,
572 			  void *data, __be16 *p_proto, int *p_nhoff, int hlen,
573 			  unsigned int flags)
574 {
575 	struct {
576 		struct batadv_unicast_packet batadv_unicast;
577 		struct ethhdr eth;
578 	} *hdr, _hdr;
579 
580 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
581 				   &_hdr);
582 	if (!hdr)
583 		return FLOW_DISSECT_RET_OUT_BAD;
584 
585 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
586 		return FLOW_DISSECT_RET_OUT_BAD;
587 
588 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
589 		return FLOW_DISSECT_RET_OUT_BAD;
590 
591 	*p_proto = hdr->eth.h_proto;
592 	*p_nhoff += sizeof(*hdr);
593 
594 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
595 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
596 		return FLOW_DISSECT_RET_OUT_GOOD;
597 
598 	return FLOW_DISSECT_RET_PROTO_AGAIN;
599 }
600 
601 static void
602 __skb_flow_dissect_tcp(const struct sk_buff *skb,
603 		       struct flow_dissector *flow_dissector,
604 		       void *target_container, void *data, int thoff, int hlen)
605 {
606 	struct flow_dissector_key_tcp *key_tcp;
607 	struct tcphdr *th, _th;
608 
609 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
610 		return;
611 
612 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
613 	if (!th)
614 		return;
615 
616 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
617 		return;
618 
619 	key_tcp = skb_flow_dissector_target(flow_dissector,
620 					    FLOW_DISSECTOR_KEY_TCP,
621 					    target_container);
622 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
623 }
624 
625 static void
626 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
627 			struct flow_dissector *flow_dissector,
628 			void *target_container, void *data, const struct iphdr *iph)
629 {
630 	struct flow_dissector_key_ip *key_ip;
631 
632 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
633 		return;
634 
635 	key_ip = skb_flow_dissector_target(flow_dissector,
636 					   FLOW_DISSECTOR_KEY_IP,
637 					   target_container);
638 	key_ip->tos = iph->tos;
639 	key_ip->ttl = iph->ttl;
640 }
641 
642 static void
643 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
644 			struct flow_dissector *flow_dissector,
645 			void *target_container, void *data, const struct ipv6hdr *iph)
646 {
647 	struct flow_dissector_key_ip *key_ip;
648 
649 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
650 		return;
651 
652 	key_ip = skb_flow_dissector_target(flow_dissector,
653 					   FLOW_DISSECTOR_KEY_IP,
654 					   target_container);
655 	key_ip->tos = ipv6_get_dsfield(iph);
656 	key_ip->ttl = iph->hop_limit;
657 }
658 
659 /* Maximum number of protocol headers that can be parsed in
660  * __skb_flow_dissect
661  */
662 #define MAX_FLOW_DISSECT_HDRS	15
663 
664 static bool skb_flow_dissect_allowed(int *num_hdrs)
665 {
666 	++*num_hdrs;
667 
668 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
669 }
670 
671 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
672 				     struct flow_dissector *flow_dissector,
673 				     void *target_container)
674 {
675 	struct flow_dissector_key_control *key_control;
676 	struct flow_dissector_key_basic *key_basic;
677 	struct flow_dissector_key_addrs *key_addrs;
678 	struct flow_dissector_key_ports *key_ports;
679 
680 	key_control = skb_flow_dissector_target(flow_dissector,
681 						FLOW_DISSECTOR_KEY_CONTROL,
682 						target_container);
683 	key_control->thoff = flow_keys->thoff;
684 	if (flow_keys->is_frag)
685 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
686 	if (flow_keys->is_first_frag)
687 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
688 	if (flow_keys->is_encap)
689 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
690 
691 	key_basic = skb_flow_dissector_target(flow_dissector,
692 					      FLOW_DISSECTOR_KEY_BASIC,
693 					      target_container);
694 	key_basic->n_proto = flow_keys->n_proto;
695 	key_basic->ip_proto = flow_keys->ip_proto;
696 
697 	if (flow_keys->addr_proto == ETH_P_IP &&
698 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
699 		key_addrs = skb_flow_dissector_target(flow_dissector,
700 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
701 						      target_container);
702 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
703 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
704 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
705 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
706 		   dissector_uses_key(flow_dissector,
707 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
708 		key_addrs = skb_flow_dissector_target(flow_dissector,
709 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
710 						      target_container);
711 		memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
712 		       sizeof(key_addrs->v6addrs));
713 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
714 	}
715 
716 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) {
717 		key_ports = skb_flow_dissector_target(flow_dissector,
718 						      FLOW_DISSECTOR_KEY_PORTS,
719 						      target_container);
720 		key_ports->src = flow_keys->sport;
721 		key_ports->dst = flow_keys->dport;
722 	}
723 }
724 
725 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
726 		      __be16 proto, int nhoff, int hlen)
727 {
728 	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
729 	u32 result;
730 
731 	/* Pass parameters to the BPF program */
732 	memset(flow_keys, 0, sizeof(*flow_keys));
733 	flow_keys->n_proto = proto;
734 	flow_keys->nhoff = nhoff;
735 	flow_keys->thoff = flow_keys->nhoff;
736 
737 	result = BPF_PROG_RUN(prog, ctx);
738 
739 	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
740 	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
741 				   flow_keys->nhoff, hlen);
742 
743 	return result == BPF_OK;
744 }
745 
746 /**
747  * __skb_flow_dissect - extract the flow_keys struct and return it
748  * @net: associated network namespace, derived from @skb if NULL
749  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
750  * @flow_dissector: list of keys to dissect
751  * @target_container: target structure to put dissected values into
752  * @data: raw buffer pointer to the packet, if NULL use skb->data
753  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
754  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
755  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
756  * @flags: flags that control the dissection process, e.g.
757  *         FLOW_DISSECTOR_F_STOP_AT_L3.
758  *
759  * The function will try to retrieve individual keys into target specified
760  * by flow_dissector from either the skbuff or a raw buffer specified by the
761  * rest parameters.
762  *
763  * Caller must take care of zeroing target container memory.
764  */
765 bool __skb_flow_dissect(const struct net *net,
766 			const struct sk_buff *skb,
767 			struct flow_dissector *flow_dissector,
768 			void *target_container,
769 			void *data, __be16 proto, int nhoff, int hlen,
770 			unsigned int flags)
771 {
772 	struct flow_dissector_key_control *key_control;
773 	struct flow_dissector_key_basic *key_basic;
774 	struct flow_dissector_key_addrs *key_addrs;
775 	struct flow_dissector_key_ports *key_ports;
776 	struct flow_dissector_key_icmp *key_icmp;
777 	struct flow_dissector_key_tags *key_tags;
778 	struct flow_dissector_key_vlan *key_vlan;
779 	struct bpf_prog *attached = NULL;
780 	enum flow_dissect_ret fdret;
781 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
782 	int num_hdrs = 0;
783 	u8 ip_proto = 0;
784 	bool ret;
785 
786 	if (!data) {
787 		data = skb->data;
788 		proto = skb_vlan_tag_present(skb) ?
789 			 skb->vlan_proto : skb->protocol;
790 		nhoff = skb_network_offset(skb);
791 		hlen = skb_headlen(skb);
792 #if IS_ENABLED(CONFIG_NET_DSA)
793 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
794 			const struct dsa_device_ops *ops;
795 			int offset;
796 
797 			ops = skb->dev->dsa_ptr->tag_ops;
798 			if (ops->flow_dissect &&
799 			    !ops->flow_dissect(skb, &proto, &offset)) {
800 				hlen -= offset;
801 				nhoff += offset;
802 			}
803 		}
804 #endif
805 	}
806 
807 	/* It is ensured by skb_flow_dissector_init() that control key will
808 	 * be always present.
809 	 */
810 	key_control = skb_flow_dissector_target(flow_dissector,
811 						FLOW_DISSECTOR_KEY_CONTROL,
812 						target_container);
813 
814 	/* It is ensured by skb_flow_dissector_init() that basic key will
815 	 * be always present.
816 	 */
817 	key_basic = skb_flow_dissector_target(flow_dissector,
818 					      FLOW_DISSECTOR_KEY_BASIC,
819 					      target_container);
820 
821 	if (skb) {
822 		if (!net) {
823 			if (skb->dev)
824 				net = dev_net(skb->dev);
825 			else if (skb->sk)
826 				net = sock_net(skb->sk);
827 		}
828 	}
829 
830 	WARN_ON_ONCE(!net);
831 	if (net) {
832 		rcu_read_lock();
833 		attached = rcu_dereference(net->flow_dissector_prog);
834 
835 		if (attached) {
836 			struct bpf_flow_keys flow_keys;
837 			struct bpf_flow_dissector ctx = {
838 				.flow_keys = &flow_keys,
839 				.data = data,
840 				.data_end = data + hlen,
841 			};
842 			__be16 n_proto = proto;
843 
844 			if (skb) {
845 				ctx.skb = skb;
846 				/* we can't use 'proto' in the skb case
847 				 * because it might be set to skb->vlan_proto
848 				 * which has been pulled from the data
849 				 */
850 				n_proto = skb->protocol;
851 			}
852 
853 			ret = bpf_flow_dissect(attached, &ctx, n_proto, nhoff,
854 					       hlen);
855 			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
856 						 target_container);
857 			rcu_read_unlock();
858 			return ret;
859 		}
860 		rcu_read_unlock();
861 	}
862 
863 	if (dissector_uses_key(flow_dissector,
864 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
865 		struct ethhdr *eth = eth_hdr(skb);
866 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
867 
868 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
869 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
870 							  target_container);
871 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
872 	}
873 
874 proto_again:
875 	fdret = FLOW_DISSECT_RET_CONTINUE;
876 
877 	switch (proto) {
878 	case htons(ETH_P_IP): {
879 		const struct iphdr *iph;
880 		struct iphdr _iph;
881 
882 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
883 		if (!iph || iph->ihl < 5) {
884 			fdret = FLOW_DISSECT_RET_OUT_BAD;
885 			break;
886 		}
887 
888 		nhoff += iph->ihl * 4;
889 
890 		ip_proto = iph->protocol;
891 
892 		if (dissector_uses_key(flow_dissector,
893 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
894 			key_addrs = skb_flow_dissector_target(flow_dissector,
895 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
896 							      target_container);
897 
898 			memcpy(&key_addrs->v4addrs, &iph->saddr,
899 			       sizeof(key_addrs->v4addrs));
900 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
901 		}
902 
903 		if (ip_is_fragment(iph)) {
904 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
905 
906 			if (iph->frag_off & htons(IP_OFFSET)) {
907 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
908 				break;
909 			} else {
910 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
911 				if (!(flags &
912 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
913 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
914 					break;
915 				}
916 			}
917 		}
918 
919 		__skb_flow_dissect_ipv4(skb, flow_dissector,
920 					target_container, data, iph);
921 
922 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
923 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
924 			break;
925 		}
926 
927 		break;
928 	}
929 	case htons(ETH_P_IPV6): {
930 		const struct ipv6hdr *iph;
931 		struct ipv6hdr _iph;
932 
933 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
934 		if (!iph) {
935 			fdret = FLOW_DISSECT_RET_OUT_BAD;
936 			break;
937 		}
938 
939 		ip_proto = iph->nexthdr;
940 		nhoff += sizeof(struct ipv6hdr);
941 
942 		if (dissector_uses_key(flow_dissector,
943 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
944 			key_addrs = skb_flow_dissector_target(flow_dissector,
945 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
946 							      target_container);
947 
948 			memcpy(&key_addrs->v6addrs, &iph->saddr,
949 			       sizeof(key_addrs->v6addrs));
950 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
951 		}
952 
953 		if ((dissector_uses_key(flow_dissector,
954 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
955 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
956 		    ip6_flowlabel(iph)) {
957 			__be32 flow_label = ip6_flowlabel(iph);
958 
959 			if (dissector_uses_key(flow_dissector,
960 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
961 				key_tags = skb_flow_dissector_target(flow_dissector,
962 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
963 								     target_container);
964 				key_tags->flow_label = ntohl(flow_label);
965 			}
966 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
967 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
968 				break;
969 			}
970 		}
971 
972 		__skb_flow_dissect_ipv6(skb, flow_dissector,
973 					target_container, data, iph);
974 
975 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
976 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
977 
978 		break;
979 	}
980 	case htons(ETH_P_8021AD):
981 	case htons(ETH_P_8021Q): {
982 		const struct vlan_hdr *vlan = NULL;
983 		struct vlan_hdr _vlan;
984 		__be16 saved_vlan_tpid = proto;
985 
986 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
987 		    skb && skb_vlan_tag_present(skb)) {
988 			proto = skb->protocol;
989 		} else {
990 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
991 						    data, hlen, &_vlan);
992 			if (!vlan) {
993 				fdret = FLOW_DISSECT_RET_OUT_BAD;
994 				break;
995 			}
996 
997 			proto = vlan->h_vlan_encapsulated_proto;
998 			nhoff += sizeof(*vlan);
999 		}
1000 
1001 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1002 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1003 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1004 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1005 		} else {
1006 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1007 			break;
1008 		}
1009 
1010 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1011 			key_vlan = skb_flow_dissector_target(flow_dissector,
1012 							     dissector_vlan,
1013 							     target_container);
1014 
1015 			if (!vlan) {
1016 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1017 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1018 			} else {
1019 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1020 					VLAN_VID_MASK;
1021 				key_vlan->vlan_priority =
1022 					(ntohs(vlan->h_vlan_TCI) &
1023 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1024 			}
1025 			key_vlan->vlan_tpid = saved_vlan_tpid;
1026 		}
1027 
1028 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1029 		break;
1030 	}
1031 	case htons(ETH_P_PPP_SES): {
1032 		struct {
1033 			struct pppoe_hdr hdr;
1034 			__be16 proto;
1035 		} *hdr, _hdr;
1036 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1037 		if (!hdr) {
1038 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1039 			break;
1040 		}
1041 
1042 		proto = hdr->proto;
1043 		nhoff += PPPOE_SES_HLEN;
1044 		switch (proto) {
1045 		case htons(PPP_IP):
1046 			proto = htons(ETH_P_IP);
1047 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1048 			break;
1049 		case htons(PPP_IPV6):
1050 			proto = htons(ETH_P_IPV6);
1051 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1052 			break;
1053 		default:
1054 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1055 			break;
1056 		}
1057 		break;
1058 	}
1059 	case htons(ETH_P_TIPC): {
1060 		struct tipc_basic_hdr *hdr, _hdr;
1061 
1062 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1063 					   data, hlen, &_hdr);
1064 		if (!hdr) {
1065 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1066 			break;
1067 		}
1068 
1069 		if (dissector_uses_key(flow_dissector,
1070 				       FLOW_DISSECTOR_KEY_TIPC)) {
1071 			key_addrs = skb_flow_dissector_target(flow_dissector,
1072 							      FLOW_DISSECTOR_KEY_TIPC,
1073 							      target_container);
1074 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1075 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1076 		}
1077 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1078 		break;
1079 	}
1080 
1081 	case htons(ETH_P_MPLS_UC):
1082 	case htons(ETH_P_MPLS_MC):
1083 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1084 						target_container, data,
1085 						nhoff, hlen);
1086 		break;
1087 	case htons(ETH_P_FCOE):
1088 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1089 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1090 			break;
1091 		}
1092 
1093 		nhoff += FCOE_HEADER_LEN;
1094 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1095 		break;
1096 
1097 	case htons(ETH_P_ARP):
1098 	case htons(ETH_P_RARP):
1099 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1100 					       target_container, data,
1101 					       nhoff, hlen);
1102 		break;
1103 
1104 	case htons(ETH_P_BATMAN):
1105 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1106 						  &proto, &nhoff, hlen, flags);
1107 		break;
1108 
1109 	default:
1110 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1111 		break;
1112 	}
1113 
1114 	/* Process result of proto processing */
1115 	switch (fdret) {
1116 	case FLOW_DISSECT_RET_OUT_GOOD:
1117 		goto out_good;
1118 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1119 		if (skb_flow_dissect_allowed(&num_hdrs))
1120 			goto proto_again;
1121 		goto out_good;
1122 	case FLOW_DISSECT_RET_CONTINUE:
1123 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1124 		break;
1125 	case FLOW_DISSECT_RET_OUT_BAD:
1126 	default:
1127 		goto out_bad;
1128 	}
1129 
1130 ip_proto_again:
1131 	fdret = FLOW_DISSECT_RET_CONTINUE;
1132 
1133 	switch (ip_proto) {
1134 	case IPPROTO_GRE:
1135 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1136 					       target_container, data,
1137 					       &proto, &nhoff, &hlen, flags);
1138 		break;
1139 
1140 	case NEXTHDR_HOP:
1141 	case NEXTHDR_ROUTING:
1142 	case NEXTHDR_DEST: {
1143 		u8 _opthdr[2], *opthdr;
1144 
1145 		if (proto != htons(ETH_P_IPV6))
1146 			break;
1147 
1148 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1149 					      data, hlen, &_opthdr);
1150 		if (!opthdr) {
1151 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1152 			break;
1153 		}
1154 
1155 		ip_proto = opthdr[0];
1156 		nhoff += (opthdr[1] + 1) << 3;
1157 
1158 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1159 		break;
1160 	}
1161 	case NEXTHDR_FRAGMENT: {
1162 		struct frag_hdr _fh, *fh;
1163 
1164 		if (proto != htons(ETH_P_IPV6))
1165 			break;
1166 
1167 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1168 					  data, hlen, &_fh);
1169 
1170 		if (!fh) {
1171 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1172 			break;
1173 		}
1174 
1175 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1176 
1177 		nhoff += sizeof(_fh);
1178 		ip_proto = fh->nexthdr;
1179 
1180 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1181 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1182 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1183 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1184 				break;
1185 			}
1186 		}
1187 
1188 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1189 		break;
1190 	}
1191 	case IPPROTO_IPIP:
1192 		proto = htons(ETH_P_IP);
1193 
1194 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1195 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1196 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1197 			break;
1198 		}
1199 
1200 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1201 		break;
1202 
1203 	case IPPROTO_IPV6:
1204 		proto = htons(ETH_P_IPV6);
1205 
1206 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1207 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1208 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1209 			break;
1210 		}
1211 
1212 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1213 		break;
1214 
1215 
1216 	case IPPROTO_MPLS:
1217 		proto = htons(ETH_P_MPLS_UC);
1218 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1219 		break;
1220 
1221 	case IPPROTO_TCP:
1222 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1223 				       data, nhoff, hlen);
1224 		break;
1225 
1226 	default:
1227 		break;
1228 	}
1229 
1230 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
1231 	    !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
1232 		key_ports = skb_flow_dissector_target(flow_dissector,
1233 						      FLOW_DISSECTOR_KEY_PORTS,
1234 						      target_container);
1235 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
1236 							data, hlen);
1237 	}
1238 
1239 	if (dissector_uses_key(flow_dissector,
1240 			       FLOW_DISSECTOR_KEY_ICMP)) {
1241 		key_icmp = skb_flow_dissector_target(flow_dissector,
1242 						     FLOW_DISSECTOR_KEY_ICMP,
1243 						     target_container);
1244 		key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
1245 	}
1246 
1247 	/* Process result of IP proto processing */
1248 	switch (fdret) {
1249 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1250 		if (skb_flow_dissect_allowed(&num_hdrs))
1251 			goto proto_again;
1252 		break;
1253 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1254 		if (skb_flow_dissect_allowed(&num_hdrs))
1255 			goto ip_proto_again;
1256 		break;
1257 	case FLOW_DISSECT_RET_OUT_GOOD:
1258 	case FLOW_DISSECT_RET_CONTINUE:
1259 		break;
1260 	case FLOW_DISSECT_RET_OUT_BAD:
1261 	default:
1262 		goto out_bad;
1263 	}
1264 
1265 out_good:
1266 	ret = true;
1267 
1268 out:
1269 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1270 	key_basic->n_proto = proto;
1271 	key_basic->ip_proto = ip_proto;
1272 
1273 	return ret;
1274 
1275 out_bad:
1276 	ret = false;
1277 	goto out;
1278 }
1279 EXPORT_SYMBOL(__skb_flow_dissect);
1280 
1281 static u32 hashrnd __read_mostly;
1282 static __always_inline void __flow_hash_secret_init(void)
1283 {
1284 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1285 }
1286 
1287 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
1288 					     u32 keyval)
1289 {
1290 	return jhash2(words, length, keyval);
1291 }
1292 
1293 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
1294 {
1295 	const void *p = flow;
1296 
1297 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
1298 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
1299 }
1300 
1301 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1302 {
1303 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1304 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1305 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
1306 		     sizeof(*flow) - sizeof(flow->addrs));
1307 
1308 	switch (flow->control.addr_type) {
1309 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1310 		diff -= sizeof(flow->addrs.v4addrs);
1311 		break;
1312 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1313 		diff -= sizeof(flow->addrs.v6addrs);
1314 		break;
1315 	case FLOW_DISSECTOR_KEY_TIPC:
1316 		diff -= sizeof(flow->addrs.tipckey);
1317 		break;
1318 	}
1319 	return (sizeof(*flow) - diff) / sizeof(u32);
1320 }
1321 
1322 __be32 flow_get_u32_src(const struct flow_keys *flow)
1323 {
1324 	switch (flow->control.addr_type) {
1325 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1326 		return flow->addrs.v4addrs.src;
1327 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1328 		return (__force __be32)ipv6_addr_hash(
1329 			&flow->addrs.v6addrs.src);
1330 	case FLOW_DISSECTOR_KEY_TIPC:
1331 		return flow->addrs.tipckey.key;
1332 	default:
1333 		return 0;
1334 	}
1335 }
1336 EXPORT_SYMBOL(flow_get_u32_src);
1337 
1338 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1339 {
1340 	switch (flow->control.addr_type) {
1341 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1342 		return flow->addrs.v4addrs.dst;
1343 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1344 		return (__force __be32)ipv6_addr_hash(
1345 			&flow->addrs.v6addrs.dst);
1346 	default:
1347 		return 0;
1348 	}
1349 }
1350 EXPORT_SYMBOL(flow_get_u32_dst);
1351 
1352 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1353 {
1354 	int addr_diff, i;
1355 
1356 	switch (keys->control.addr_type) {
1357 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1358 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1359 			    (__force u32)keys->addrs.v4addrs.src;
1360 		if ((addr_diff < 0) ||
1361 		    (addr_diff == 0 &&
1362 		     ((__force u16)keys->ports.dst <
1363 		      (__force u16)keys->ports.src))) {
1364 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1365 			swap(keys->ports.src, keys->ports.dst);
1366 		}
1367 		break;
1368 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1369 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1370 				   &keys->addrs.v6addrs.src,
1371 				   sizeof(keys->addrs.v6addrs.dst));
1372 		if ((addr_diff < 0) ||
1373 		    (addr_diff == 0 &&
1374 		     ((__force u16)keys->ports.dst <
1375 		      (__force u16)keys->ports.src))) {
1376 			for (i = 0; i < 4; i++)
1377 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1378 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1379 			swap(keys->ports.src, keys->ports.dst);
1380 		}
1381 		break;
1382 	}
1383 }
1384 
1385 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
1386 {
1387 	u32 hash;
1388 
1389 	__flow_hash_consistentify(keys);
1390 
1391 	hash = __flow_hash_words(flow_keys_hash_start(keys),
1392 				 flow_keys_hash_length(keys), keyval);
1393 	if (!hash)
1394 		hash = 1;
1395 
1396 	return hash;
1397 }
1398 
1399 u32 flow_hash_from_keys(struct flow_keys *keys)
1400 {
1401 	__flow_hash_secret_init();
1402 	return __flow_hash_from_keys(keys, hashrnd);
1403 }
1404 EXPORT_SYMBOL(flow_hash_from_keys);
1405 
1406 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1407 				  struct flow_keys *keys, u32 keyval)
1408 {
1409 	skb_flow_dissect_flow_keys(skb, keys,
1410 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1411 
1412 	return __flow_hash_from_keys(keys, keyval);
1413 }
1414 
1415 struct _flow_keys_digest_data {
1416 	__be16	n_proto;
1417 	u8	ip_proto;
1418 	u8	padding;
1419 	__be32	ports;
1420 	__be32	src;
1421 	__be32	dst;
1422 };
1423 
1424 void make_flow_keys_digest(struct flow_keys_digest *digest,
1425 			   const struct flow_keys *flow)
1426 {
1427 	struct _flow_keys_digest_data *data =
1428 	    (struct _flow_keys_digest_data *)digest;
1429 
1430 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1431 
1432 	memset(digest, 0, sizeof(*digest));
1433 
1434 	data->n_proto = flow->basic.n_proto;
1435 	data->ip_proto = flow->basic.ip_proto;
1436 	data->ports = flow->ports.ports;
1437 	data->src = flow->addrs.v4addrs.src;
1438 	data->dst = flow->addrs.v4addrs.dst;
1439 }
1440 EXPORT_SYMBOL(make_flow_keys_digest);
1441 
1442 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1443 
1444 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1445 {
1446 	struct flow_keys keys;
1447 
1448 	__flow_hash_secret_init();
1449 
1450 	memset(&keys, 0, sizeof(keys));
1451 	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1452 			   &keys, NULL, 0, 0, 0,
1453 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1454 
1455 	return __flow_hash_from_keys(&keys, hashrnd);
1456 }
1457 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1458 
1459 /**
1460  * __skb_get_hash: calculate a flow hash
1461  * @skb: sk_buff to calculate flow hash from
1462  *
1463  * This function calculates a flow hash based on src/dst addresses
1464  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1465  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1466  * if hash is a canonical 4-tuple hash over transport ports.
1467  */
1468 void __skb_get_hash(struct sk_buff *skb)
1469 {
1470 	struct flow_keys keys;
1471 	u32 hash;
1472 
1473 	__flow_hash_secret_init();
1474 
1475 	hash = ___skb_get_hash(skb, &keys, hashrnd);
1476 
1477 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1478 }
1479 EXPORT_SYMBOL(__skb_get_hash);
1480 
1481 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
1482 {
1483 	struct flow_keys keys;
1484 
1485 	return ___skb_get_hash(skb, &keys, perturb);
1486 }
1487 EXPORT_SYMBOL(skb_get_hash_perturb);
1488 
1489 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1490 		   const struct flow_keys_basic *keys, int hlen)
1491 {
1492 	u32 poff = keys->control.thoff;
1493 
1494 	/* skip L4 headers for fragments after the first */
1495 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1496 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1497 		return poff;
1498 
1499 	switch (keys->basic.ip_proto) {
1500 	case IPPROTO_TCP: {
1501 		/* access doff as u8 to avoid unaligned access */
1502 		const u8 *doff;
1503 		u8 _doff;
1504 
1505 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1506 					    data, hlen, &_doff);
1507 		if (!doff)
1508 			return poff;
1509 
1510 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1511 		break;
1512 	}
1513 	case IPPROTO_UDP:
1514 	case IPPROTO_UDPLITE:
1515 		poff += sizeof(struct udphdr);
1516 		break;
1517 	/* For the rest, we do not really care about header
1518 	 * extensions at this point for now.
1519 	 */
1520 	case IPPROTO_ICMP:
1521 		poff += sizeof(struct icmphdr);
1522 		break;
1523 	case IPPROTO_ICMPV6:
1524 		poff += sizeof(struct icmp6hdr);
1525 		break;
1526 	case IPPROTO_IGMP:
1527 		poff += sizeof(struct igmphdr);
1528 		break;
1529 	case IPPROTO_DCCP:
1530 		poff += sizeof(struct dccp_hdr);
1531 		break;
1532 	case IPPROTO_SCTP:
1533 		poff += sizeof(struct sctphdr);
1534 		break;
1535 	}
1536 
1537 	return poff;
1538 }
1539 
1540 /**
1541  * skb_get_poff - get the offset to the payload
1542  * @skb: sk_buff to get the payload offset from
1543  *
1544  * The function will get the offset to the payload as far as it could
1545  * be dissected.  The main user is currently BPF, so that we can dynamically
1546  * truncate packets without needing to push actual payload to the user
1547  * space and can analyze headers only, instead.
1548  */
1549 u32 skb_get_poff(const struct sk_buff *skb)
1550 {
1551 	struct flow_keys_basic keys;
1552 
1553 	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1554 					      NULL, 0, 0, 0, 0))
1555 		return 0;
1556 
1557 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1558 }
1559 
1560 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1561 {
1562 	memset(keys, 0, sizeof(*keys));
1563 
1564 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1565 	    sizeof(keys->addrs.v6addrs.src));
1566 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1567 	    sizeof(keys->addrs.v6addrs.dst));
1568 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1569 	keys->ports.src = fl6->fl6_sport;
1570 	keys->ports.dst = fl6->fl6_dport;
1571 	keys->keyid.keyid = fl6->fl6_gre_key;
1572 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1573 	keys->basic.ip_proto = fl6->flowi6_proto;
1574 
1575 	return flow_hash_from_keys(keys);
1576 }
1577 EXPORT_SYMBOL(__get_hash_from_flowi6);
1578 
1579 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1580 	{
1581 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1582 		.offset = offsetof(struct flow_keys, control),
1583 	},
1584 	{
1585 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1586 		.offset = offsetof(struct flow_keys, basic),
1587 	},
1588 	{
1589 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1590 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1591 	},
1592 	{
1593 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1594 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1595 	},
1596 	{
1597 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1598 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1599 	},
1600 	{
1601 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1602 		.offset = offsetof(struct flow_keys, ports),
1603 	},
1604 	{
1605 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1606 		.offset = offsetof(struct flow_keys, vlan),
1607 	},
1608 	{
1609 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1610 		.offset = offsetof(struct flow_keys, tags),
1611 	},
1612 	{
1613 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1614 		.offset = offsetof(struct flow_keys, keyid),
1615 	},
1616 };
1617 
1618 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1619 	{
1620 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1621 		.offset = offsetof(struct flow_keys, control),
1622 	},
1623 	{
1624 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1625 		.offset = offsetof(struct flow_keys, basic),
1626 	},
1627 	{
1628 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1629 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1630 	},
1631 	{
1632 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1633 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1634 	},
1635 	{
1636 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1637 		.offset = offsetof(struct flow_keys, ports),
1638 	},
1639 };
1640 
1641 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1642 	{
1643 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1644 		.offset = offsetof(struct flow_keys, control),
1645 	},
1646 	{
1647 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1648 		.offset = offsetof(struct flow_keys, basic),
1649 	},
1650 };
1651 
1652 struct flow_dissector flow_keys_dissector __read_mostly;
1653 EXPORT_SYMBOL(flow_keys_dissector);
1654 
1655 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1656 EXPORT_SYMBOL(flow_keys_basic_dissector);
1657 
1658 static int __init init_default_flow_dissectors(void)
1659 {
1660 	skb_flow_dissector_init(&flow_keys_dissector,
1661 				flow_keys_dissector_keys,
1662 				ARRAY_SIZE(flow_keys_dissector_keys));
1663 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1664 				flow_keys_dissector_symmetric_keys,
1665 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1666 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1667 				flow_keys_basic_dissector_keys,
1668 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1669 	return 0;
1670 }
1671 
1672 core_initcall(init_default_flow_dissectors);
1673