xref: /linux/net/core/flow_dissector.c (revision 39f75da7bcc829ddc4d40bb60d0e95520de7898b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <linux/ptp_classify.h>
27 #include <net/flow_dissector.h>
28 #include <scsi/fc/fc_fcoe.h>
29 #include <uapi/linux/batadv_packet.h>
30 #include <linux/bpf.h>
31 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
32 #include <net/netfilter/nf_conntrack_core.h>
33 #include <net/netfilter/nf_conntrack_labels.h>
34 #endif
35 #include <linux/bpf-netns.h>
36 
37 static void dissector_set_key(struct flow_dissector *flow_dissector,
38 			      enum flow_dissector_key_id key_id)
39 {
40 	flow_dissector->used_keys |= (1 << key_id);
41 }
42 
43 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
44 			     const struct flow_dissector_key *key,
45 			     unsigned int key_count)
46 {
47 	unsigned int i;
48 
49 	memset(flow_dissector, 0, sizeof(*flow_dissector));
50 
51 	for (i = 0; i < key_count; i++, key++) {
52 		/* User should make sure that every key target offset is within
53 		 * boundaries of unsigned short.
54 		 */
55 		BUG_ON(key->offset > USHRT_MAX);
56 		BUG_ON(dissector_uses_key(flow_dissector,
57 					  key->key_id));
58 
59 		dissector_set_key(flow_dissector, key->key_id);
60 		flow_dissector->offset[key->key_id] = key->offset;
61 	}
62 
63 	/* Ensure that the dissector always includes control and basic key.
64 	 * That way we are able to avoid handling lack of these in fast path.
65 	 */
66 	BUG_ON(!dissector_uses_key(flow_dissector,
67 				   FLOW_DISSECTOR_KEY_CONTROL));
68 	BUG_ON(!dissector_uses_key(flow_dissector,
69 				   FLOW_DISSECTOR_KEY_BASIC));
70 }
71 EXPORT_SYMBOL(skb_flow_dissector_init);
72 
73 #ifdef CONFIG_BPF_SYSCALL
74 int flow_dissector_bpf_prog_attach_check(struct net *net,
75 					 struct bpf_prog *prog)
76 {
77 	enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
78 
79 	if (net == &init_net) {
80 		/* BPF flow dissector in the root namespace overrides
81 		 * any per-net-namespace one. When attaching to root,
82 		 * make sure we don't have any BPF program attached
83 		 * to the non-root namespaces.
84 		 */
85 		struct net *ns;
86 
87 		for_each_net(ns) {
88 			if (ns == &init_net)
89 				continue;
90 			if (rcu_access_pointer(ns->bpf.run_array[type]))
91 				return -EEXIST;
92 		}
93 	} else {
94 		/* Make sure root flow dissector is not attached
95 		 * when attaching to the non-root namespace.
96 		 */
97 		if (rcu_access_pointer(init_net.bpf.run_array[type]))
98 			return -EEXIST;
99 	}
100 
101 	return 0;
102 }
103 #endif /* CONFIG_BPF_SYSCALL */
104 
105 /**
106  * __skb_flow_get_ports - extract the upper layer ports and return them
107  * @skb: sk_buff to extract the ports from
108  * @thoff: transport header offset
109  * @ip_proto: protocol for which to get port offset
110  * @data: raw buffer pointer to the packet, if NULL use skb->data
111  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
112  *
113  * The function will try to retrieve the ports at offset thoff + poff where poff
114  * is the protocol port offset returned from proto_ports_offset
115  */
116 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
117 			    const void *data, int hlen)
118 {
119 	int poff = proto_ports_offset(ip_proto);
120 
121 	if (!data) {
122 		data = skb->data;
123 		hlen = skb_headlen(skb);
124 	}
125 
126 	if (poff >= 0) {
127 		__be32 *ports, _ports;
128 
129 		ports = __skb_header_pointer(skb, thoff + poff,
130 					     sizeof(_ports), data, hlen, &_ports);
131 		if (ports)
132 			return *ports;
133 	}
134 
135 	return 0;
136 }
137 EXPORT_SYMBOL(__skb_flow_get_ports);
138 
139 static bool icmp_has_id(u8 type)
140 {
141 	switch (type) {
142 	case ICMP_ECHO:
143 	case ICMP_ECHOREPLY:
144 	case ICMP_TIMESTAMP:
145 	case ICMP_TIMESTAMPREPLY:
146 	case ICMPV6_ECHO_REQUEST:
147 	case ICMPV6_ECHO_REPLY:
148 		return true;
149 	}
150 
151 	return false;
152 }
153 
154 /**
155  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
156  * @skb: sk_buff to extract from
157  * @key_icmp: struct flow_dissector_key_icmp to fill
158  * @data: raw buffer pointer to the packet
159  * @thoff: offset to extract at
160  * @hlen: packet header length
161  */
162 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
163 			   struct flow_dissector_key_icmp *key_icmp,
164 			   const void *data, int thoff, int hlen)
165 {
166 	struct icmphdr *ih, _ih;
167 
168 	ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
169 	if (!ih)
170 		return;
171 
172 	key_icmp->type = ih->type;
173 	key_icmp->code = ih->code;
174 
175 	/* As we use 0 to signal that the Id field is not present,
176 	 * avoid confusion with packets without such field
177 	 */
178 	if (icmp_has_id(ih->type))
179 		key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1;
180 	else
181 		key_icmp->id = 0;
182 }
183 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
184 
185 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
186  * using skb_flow_get_icmp_tci().
187  */
188 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
189 				    struct flow_dissector *flow_dissector,
190 				    void *target_container, const void *data,
191 				    int thoff, int hlen)
192 {
193 	struct flow_dissector_key_icmp *key_icmp;
194 
195 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
196 		return;
197 
198 	key_icmp = skb_flow_dissector_target(flow_dissector,
199 					     FLOW_DISSECTOR_KEY_ICMP,
200 					     target_container);
201 
202 	skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
203 }
204 
205 void skb_flow_dissect_meta(const struct sk_buff *skb,
206 			   struct flow_dissector *flow_dissector,
207 			   void *target_container)
208 {
209 	struct flow_dissector_key_meta *meta;
210 
211 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
212 		return;
213 
214 	meta = skb_flow_dissector_target(flow_dissector,
215 					 FLOW_DISSECTOR_KEY_META,
216 					 target_container);
217 	meta->ingress_ifindex = skb->skb_iif;
218 }
219 EXPORT_SYMBOL(skb_flow_dissect_meta);
220 
221 static void
222 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
223 				   struct flow_dissector *flow_dissector,
224 				   void *target_container)
225 {
226 	struct flow_dissector_key_control *ctrl;
227 
228 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
229 		return;
230 
231 	ctrl = skb_flow_dissector_target(flow_dissector,
232 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
233 					 target_container);
234 	ctrl->addr_type = type;
235 }
236 
237 void
238 skb_flow_dissect_ct(const struct sk_buff *skb,
239 		    struct flow_dissector *flow_dissector,
240 		    void *target_container, u16 *ctinfo_map,
241 		    size_t mapsize, bool post_ct)
242 {
243 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
244 	struct flow_dissector_key_ct *key;
245 	enum ip_conntrack_info ctinfo;
246 	struct nf_conn_labels *cl;
247 	struct nf_conn *ct;
248 
249 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
250 		return;
251 
252 	ct = nf_ct_get(skb, &ctinfo);
253 	if (!ct && !post_ct)
254 		return;
255 
256 	key = skb_flow_dissector_target(flow_dissector,
257 					FLOW_DISSECTOR_KEY_CT,
258 					target_container);
259 
260 	if (!ct) {
261 		key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
262 				TCA_FLOWER_KEY_CT_FLAGS_INVALID;
263 		return;
264 	}
265 
266 	if (ctinfo < mapsize)
267 		key->ct_state = ctinfo_map[ctinfo];
268 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
269 	key->ct_zone = ct->zone.id;
270 #endif
271 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
272 	key->ct_mark = ct->mark;
273 #endif
274 
275 	cl = nf_ct_labels_find(ct);
276 	if (cl)
277 		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
278 #endif /* CONFIG_NF_CONNTRACK */
279 }
280 EXPORT_SYMBOL(skb_flow_dissect_ct);
281 
282 void
283 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
284 			     struct flow_dissector *flow_dissector,
285 			     void *target_container)
286 {
287 	struct ip_tunnel_info *info;
288 	struct ip_tunnel_key *key;
289 
290 	/* A quick check to see if there might be something to do. */
291 	if (!dissector_uses_key(flow_dissector,
292 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
293 	    !dissector_uses_key(flow_dissector,
294 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
295 	    !dissector_uses_key(flow_dissector,
296 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
297 	    !dissector_uses_key(flow_dissector,
298 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
299 	    !dissector_uses_key(flow_dissector,
300 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
301 	    !dissector_uses_key(flow_dissector,
302 				FLOW_DISSECTOR_KEY_ENC_IP) &&
303 	    !dissector_uses_key(flow_dissector,
304 				FLOW_DISSECTOR_KEY_ENC_OPTS))
305 		return;
306 
307 	info = skb_tunnel_info(skb);
308 	if (!info)
309 		return;
310 
311 	key = &info->key;
312 
313 	switch (ip_tunnel_info_af(info)) {
314 	case AF_INET:
315 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
316 						   flow_dissector,
317 						   target_container);
318 		if (dissector_uses_key(flow_dissector,
319 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
320 			struct flow_dissector_key_ipv4_addrs *ipv4;
321 
322 			ipv4 = skb_flow_dissector_target(flow_dissector,
323 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
324 							 target_container);
325 			ipv4->src = key->u.ipv4.src;
326 			ipv4->dst = key->u.ipv4.dst;
327 		}
328 		break;
329 	case AF_INET6:
330 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
331 						   flow_dissector,
332 						   target_container);
333 		if (dissector_uses_key(flow_dissector,
334 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
335 			struct flow_dissector_key_ipv6_addrs *ipv6;
336 
337 			ipv6 = skb_flow_dissector_target(flow_dissector,
338 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
339 							 target_container);
340 			ipv6->src = key->u.ipv6.src;
341 			ipv6->dst = key->u.ipv6.dst;
342 		}
343 		break;
344 	}
345 
346 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
347 		struct flow_dissector_key_keyid *keyid;
348 
349 		keyid = skb_flow_dissector_target(flow_dissector,
350 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
351 						  target_container);
352 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
353 	}
354 
355 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
356 		struct flow_dissector_key_ports *tp;
357 
358 		tp = skb_flow_dissector_target(flow_dissector,
359 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
360 					       target_container);
361 		tp->src = key->tp_src;
362 		tp->dst = key->tp_dst;
363 	}
364 
365 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
366 		struct flow_dissector_key_ip *ip;
367 
368 		ip = skb_flow_dissector_target(flow_dissector,
369 					       FLOW_DISSECTOR_KEY_ENC_IP,
370 					       target_container);
371 		ip->tos = key->tos;
372 		ip->ttl = key->ttl;
373 	}
374 
375 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
376 		struct flow_dissector_key_enc_opts *enc_opt;
377 
378 		enc_opt = skb_flow_dissector_target(flow_dissector,
379 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
380 						    target_container);
381 
382 		if (info->options_len) {
383 			enc_opt->len = info->options_len;
384 			ip_tunnel_info_opts_get(enc_opt->data, info);
385 			enc_opt->dst_opt_type = info->key.tun_flags &
386 						TUNNEL_OPTIONS_PRESENT;
387 		}
388 	}
389 }
390 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
391 
392 void skb_flow_dissect_hash(const struct sk_buff *skb,
393 			   struct flow_dissector *flow_dissector,
394 			   void *target_container)
395 {
396 	struct flow_dissector_key_hash *key;
397 
398 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
399 		return;
400 
401 	key = skb_flow_dissector_target(flow_dissector,
402 					FLOW_DISSECTOR_KEY_HASH,
403 					target_container);
404 
405 	key->hash = skb_get_hash_raw(skb);
406 }
407 EXPORT_SYMBOL(skb_flow_dissect_hash);
408 
409 static enum flow_dissect_ret
410 __skb_flow_dissect_mpls(const struct sk_buff *skb,
411 			struct flow_dissector *flow_dissector,
412 			void *target_container, const void *data, int nhoff,
413 			int hlen, int lse_index, bool *entropy_label)
414 {
415 	struct mpls_label *hdr, _hdr;
416 	u32 entry, label, bos;
417 
418 	if (!dissector_uses_key(flow_dissector,
419 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
420 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
421 		return FLOW_DISSECT_RET_OUT_GOOD;
422 
423 	if (lse_index >= FLOW_DIS_MPLS_MAX)
424 		return FLOW_DISSECT_RET_OUT_GOOD;
425 
426 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
427 				   hlen, &_hdr);
428 	if (!hdr)
429 		return FLOW_DISSECT_RET_OUT_BAD;
430 
431 	entry = ntohl(hdr->entry);
432 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
433 	bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
434 
435 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
436 		struct flow_dissector_key_mpls *key_mpls;
437 		struct flow_dissector_mpls_lse *lse;
438 
439 		key_mpls = skb_flow_dissector_target(flow_dissector,
440 						     FLOW_DISSECTOR_KEY_MPLS,
441 						     target_container);
442 		lse = &key_mpls->ls[lse_index];
443 
444 		lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
445 		lse->mpls_bos = bos;
446 		lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
447 		lse->mpls_label = label;
448 		dissector_set_mpls_lse(key_mpls, lse_index);
449 	}
450 
451 	if (*entropy_label &&
452 	    dissector_uses_key(flow_dissector,
453 			       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
454 		struct flow_dissector_key_keyid *key_keyid;
455 
456 		key_keyid = skb_flow_dissector_target(flow_dissector,
457 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
458 						      target_container);
459 		key_keyid->keyid = cpu_to_be32(label);
460 	}
461 
462 	*entropy_label = label == MPLS_LABEL_ENTROPY;
463 
464 	return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
465 }
466 
467 static enum flow_dissect_ret
468 __skb_flow_dissect_arp(const struct sk_buff *skb,
469 		       struct flow_dissector *flow_dissector,
470 		       void *target_container, const void *data,
471 		       int nhoff, int hlen)
472 {
473 	struct flow_dissector_key_arp *key_arp;
474 	struct {
475 		unsigned char ar_sha[ETH_ALEN];
476 		unsigned char ar_sip[4];
477 		unsigned char ar_tha[ETH_ALEN];
478 		unsigned char ar_tip[4];
479 	} *arp_eth, _arp_eth;
480 	const struct arphdr *arp;
481 	struct arphdr _arp;
482 
483 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
484 		return FLOW_DISSECT_RET_OUT_GOOD;
485 
486 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
487 				   hlen, &_arp);
488 	if (!arp)
489 		return FLOW_DISSECT_RET_OUT_BAD;
490 
491 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
492 	    arp->ar_pro != htons(ETH_P_IP) ||
493 	    arp->ar_hln != ETH_ALEN ||
494 	    arp->ar_pln != 4 ||
495 	    (arp->ar_op != htons(ARPOP_REPLY) &&
496 	     arp->ar_op != htons(ARPOP_REQUEST)))
497 		return FLOW_DISSECT_RET_OUT_BAD;
498 
499 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
500 				       sizeof(_arp_eth), data,
501 				       hlen, &_arp_eth);
502 	if (!arp_eth)
503 		return FLOW_DISSECT_RET_OUT_BAD;
504 
505 	key_arp = skb_flow_dissector_target(flow_dissector,
506 					    FLOW_DISSECTOR_KEY_ARP,
507 					    target_container);
508 
509 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
510 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
511 
512 	/* Only store the lower byte of the opcode;
513 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
514 	 */
515 	key_arp->op = ntohs(arp->ar_op) & 0xff;
516 
517 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
518 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
519 
520 	return FLOW_DISSECT_RET_OUT_GOOD;
521 }
522 
523 static enum flow_dissect_ret
524 __skb_flow_dissect_gre(const struct sk_buff *skb,
525 		       struct flow_dissector_key_control *key_control,
526 		       struct flow_dissector *flow_dissector,
527 		       void *target_container, const void *data,
528 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
529 		       unsigned int flags)
530 {
531 	struct flow_dissector_key_keyid *key_keyid;
532 	struct gre_base_hdr *hdr, _hdr;
533 	int offset = 0;
534 	u16 gre_ver;
535 
536 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
537 				   data, *p_hlen, &_hdr);
538 	if (!hdr)
539 		return FLOW_DISSECT_RET_OUT_BAD;
540 
541 	/* Only look inside GRE without routing */
542 	if (hdr->flags & GRE_ROUTING)
543 		return FLOW_DISSECT_RET_OUT_GOOD;
544 
545 	/* Only look inside GRE for version 0 and 1 */
546 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
547 	if (gre_ver > 1)
548 		return FLOW_DISSECT_RET_OUT_GOOD;
549 
550 	*p_proto = hdr->protocol;
551 	if (gre_ver) {
552 		/* Version1 must be PPTP, and check the flags */
553 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
554 			return FLOW_DISSECT_RET_OUT_GOOD;
555 	}
556 
557 	offset += sizeof(struct gre_base_hdr);
558 
559 	if (hdr->flags & GRE_CSUM)
560 		offset += sizeof_field(struct gre_full_hdr, csum) +
561 			  sizeof_field(struct gre_full_hdr, reserved1);
562 
563 	if (hdr->flags & GRE_KEY) {
564 		const __be32 *keyid;
565 		__be32 _keyid;
566 
567 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
568 					     sizeof(_keyid),
569 					     data, *p_hlen, &_keyid);
570 		if (!keyid)
571 			return FLOW_DISSECT_RET_OUT_BAD;
572 
573 		if (dissector_uses_key(flow_dissector,
574 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
575 			key_keyid = skb_flow_dissector_target(flow_dissector,
576 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
577 							      target_container);
578 			if (gre_ver == 0)
579 				key_keyid->keyid = *keyid;
580 			else
581 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
582 		}
583 		offset += sizeof_field(struct gre_full_hdr, key);
584 	}
585 
586 	if (hdr->flags & GRE_SEQ)
587 		offset += sizeof_field(struct pptp_gre_header, seq);
588 
589 	if (gre_ver == 0) {
590 		if (*p_proto == htons(ETH_P_TEB)) {
591 			const struct ethhdr *eth;
592 			struct ethhdr _eth;
593 
594 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
595 						   sizeof(_eth),
596 						   data, *p_hlen, &_eth);
597 			if (!eth)
598 				return FLOW_DISSECT_RET_OUT_BAD;
599 			*p_proto = eth->h_proto;
600 			offset += sizeof(*eth);
601 
602 			/* Cap headers that we access via pointers at the
603 			 * end of the Ethernet header as our maximum alignment
604 			 * at that point is only 2 bytes.
605 			 */
606 			if (NET_IP_ALIGN)
607 				*p_hlen = *p_nhoff + offset;
608 		}
609 	} else { /* version 1, must be PPTP */
610 		u8 _ppp_hdr[PPP_HDRLEN];
611 		u8 *ppp_hdr;
612 
613 		if (hdr->flags & GRE_ACK)
614 			offset += sizeof_field(struct pptp_gre_header, ack);
615 
616 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
617 					       sizeof(_ppp_hdr),
618 					       data, *p_hlen, _ppp_hdr);
619 		if (!ppp_hdr)
620 			return FLOW_DISSECT_RET_OUT_BAD;
621 
622 		switch (PPP_PROTOCOL(ppp_hdr)) {
623 		case PPP_IP:
624 			*p_proto = htons(ETH_P_IP);
625 			break;
626 		case PPP_IPV6:
627 			*p_proto = htons(ETH_P_IPV6);
628 			break;
629 		default:
630 			/* Could probably catch some more like MPLS */
631 			break;
632 		}
633 
634 		offset += PPP_HDRLEN;
635 	}
636 
637 	*p_nhoff += offset;
638 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
639 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
640 		return FLOW_DISSECT_RET_OUT_GOOD;
641 
642 	return FLOW_DISSECT_RET_PROTO_AGAIN;
643 }
644 
645 /**
646  * __skb_flow_dissect_batadv() - dissect batman-adv header
647  * @skb: sk_buff to with the batman-adv header
648  * @key_control: flow dissectors control key
649  * @data: raw buffer pointer to the packet, if NULL use skb->data
650  * @p_proto: pointer used to update the protocol to process next
651  * @p_nhoff: pointer used to update inner network header offset
652  * @hlen: packet header length
653  * @flags: any combination of FLOW_DISSECTOR_F_*
654  *
655  * ETH_P_BATMAN packets are tried to be dissected. Only
656  * &struct batadv_unicast packets are actually processed because they contain an
657  * inner ethernet header and are usually followed by actual network header. This
658  * allows the flow dissector to continue processing the packet.
659  *
660  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
661  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
662  *  otherwise FLOW_DISSECT_RET_OUT_BAD
663  */
664 static enum flow_dissect_ret
665 __skb_flow_dissect_batadv(const struct sk_buff *skb,
666 			  struct flow_dissector_key_control *key_control,
667 			  const void *data, __be16 *p_proto, int *p_nhoff,
668 			  int hlen, unsigned int flags)
669 {
670 	struct {
671 		struct batadv_unicast_packet batadv_unicast;
672 		struct ethhdr eth;
673 	} *hdr, _hdr;
674 
675 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
676 				   &_hdr);
677 	if (!hdr)
678 		return FLOW_DISSECT_RET_OUT_BAD;
679 
680 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
681 		return FLOW_DISSECT_RET_OUT_BAD;
682 
683 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
684 		return FLOW_DISSECT_RET_OUT_BAD;
685 
686 	*p_proto = hdr->eth.h_proto;
687 	*p_nhoff += sizeof(*hdr);
688 
689 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
690 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
691 		return FLOW_DISSECT_RET_OUT_GOOD;
692 
693 	return FLOW_DISSECT_RET_PROTO_AGAIN;
694 }
695 
696 static void
697 __skb_flow_dissect_tcp(const struct sk_buff *skb,
698 		       struct flow_dissector *flow_dissector,
699 		       void *target_container, const void *data,
700 		       int thoff, int hlen)
701 {
702 	struct flow_dissector_key_tcp *key_tcp;
703 	struct tcphdr *th, _th;
704 
705 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
706 		return;
707 
708 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
709 	if (!th)
710 		return;
711 
712 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
713 		return;
714 
715 	key_tcp = skb_flow_dissector_target(flow_dissector,
716 					    FLOW_DISSECTOR_KEY_TCP,
717 					    target_container);
718 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
719 }
720 
721 static void
722 __skb_flow_dissect_ports(const struct sk_buff *skb,
723 			 struct flow_dissector *flow_dissector,
724 			 void *target_container, const void *data,
725 			 int nhoff, u8 ip_proto, int hlen)
726 {
727 	enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
728 	struct flow_dissector_key_ports *key_ports;
729 
730 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
731 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
732 	else if (dissector_uses_key(flow_dissector,
733 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
734 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
735 
736 	if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
737 		return;
738 
739 	key_ports = skb_flow_dissector_target(flow_dissector,
740 					      dissector_ports,
741 					      target_container);
742 	key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
743 						data, hlen);
744 }
745 
746 static void
747 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
748 			struct flow_dissector *flow_dissector,
749 			void *target_container, const void *data,
750 			const struct iphdr *iph)
751 {
752 	struct flow_dissector_key_ip *key_ip;
753 
754 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
755 		return;
756 
757 	key_ip = skb_flow_dissector_target(flow_dissector,
758 					   FLOW_DISSECTOR_KEY_IP,
759 					   target_container);
760 	key_ip->tos = iph->tos;
761 	key_ip->ttl = iph->ttl;
762 }
763 
764 static void
765 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
766 			struct flow_dissector *flow_dissector,
767 			void *target_container, const void *data,
768 			const struct ipv6hdr *iph)
769 {
770 	struct flow_dissector_key_ip *key_ip;
771 
772 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
773 		return;
774 
775 	key_ip = skb_flow_dissector_target(flow_dissector,
776 					   FLOW_DISSECTOR_KEY_IP,
777 					   target_container);
778 	key_ip->tos = ipv6_get_dsfield(iph);
779 	key_ip->ttl = iph->hop_limit;
780 }
781 
782 /* Maximum number of protocol headers that can be parsed in
783  * __skb_flow_dissect
784  */
785 #define MAX_FLOW_DISSECT_HDRS	15
786 
787 static bool skb_flow_dissect_allowed(int *num_hdrs)
788 {
789 	++*num_hdrs;
790 
791 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
792 }
793 
794 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
795 				     struct flow_dissector *flow_dissector,
796 				     void *target_container)
797 {
798 	struct flow_dissector_key_ports *key_ports = NULL;
799 	struct flow_dissector_key_control *key_control;
800 	struct flow_dissector_key_basic *key_basic;
801 	struct flow_dissector_key_addrs *key_addrs;
802 	struct flow_dissector_key_tags *key_tags;
803 
804 	key_control = skb_flow_dissector_target(flow_dissector,
805 						FLOW_DISSECTOR_KEY_CONTROL,
806 						target_container);
807 	key_control->thoff = flow_keys->thoff;
808 	if (flow_keys->is_frag)
809 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
810 	if (flow_keys->is_first_frag)
811 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
812 	if (flow_keys->is_encap)
813 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
814 
815 	key_basic = skb_flow_dissector_target(flow_dissector,
816 					      FLOW_DISSECTOR_KEY_BASIC,
817 					      target_container);
818 	key_basic->n_proto = flow_keys->n_proto;
819 	key_basic->ip_proto = flow_keys->ip_proto;
820 
821 	if (flow_keys->addr_proto == ETH_P_IP &&
822 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
823 		key_addrs = skb_flow_dissector_target(flow_dissector,
824 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
825 						      target_container);
826 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
827 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
828 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
829 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
830 		   dissector_uses_key(flow_dissector,
831 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
832 		key_addrs = skb_flow_dissector_target(flow_dissector,
833 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
834 						      target_container);
835 		memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src,
836 		       sizeof(key_addrs->v6addrs.src));
837 		memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst,
838 		       sizeof(key_addrs->v6addrs.dst));
839 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
840 	}
841 
842 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
843 		key_ports = skb_flow_dissector_target(flow_dissector,
844 						      FLOW_DISSECTOR_KEY_PORTS,
845 						      target_container);
846 	else if (dissector_uses_key(flow_dissector,
847 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
848 		key_ports = skb_flow_dissector_target(flow_dissector,
849 						      FLOW_DISSECTOR_KEY_PORTS_RANGE,
850 						      target_container);
851 
852 	if (key_ports) {
853 		key_ports->src = flow_keys->sport;
854 		key_ports->dst = flow_keys->dport;
855 	}
856 
857 	if (dissector_uses_key(flow_dissector,
858 			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
859 		key_tags = skb_flow_dissector_target(flow_dissector,
860 						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
861 						     target_container);
862 		key_tags->flow_label = ntohl(flow_keys->flow_label);
863 	}
864 }
865 
866 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
867 		      __be16 proto, int nhoff, int hlen, unsigned int flags)
868 {
869 	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
870 	u32 result;
871 
872 	/* Pass parameters to the BPF program */
873 	memset(flow_keys, 0, sizeof(*flow_keys));
874 	flow_keys->n_proto = proto;
875 	flow_keys->nhoff = nhoff;
876 	flow_keys->thoff = flow_keys->nhoff;
877 
878 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
879 		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
880 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
881 		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
882 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
883 		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
884 	flow_keys->flags = flags;
885 
886 	result = bpf_prog_run_pin_on_cpu(prog, ctx);
887 
888 	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
889 	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
890 				   flow_keys->nhoff, hlen);
891 
892 	return result == BPF_OK;
893 }
894 
895 /**
896  * __skb_flow_dissect - extract the flow_keys struct and return it
897  * @net: associated network namespace, derived from @skb if NULL
898  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
899  * @flow_dissector: list of keys to dissect
900  * @target_container: target structure to put dissected values into
901  * @data: raw buffer pointer to the packet, if NULL use skb->data
902  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
903  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
904  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
905  * @flags: flags that control the dissection process, e.g.
906  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
907  *
908  * The function will try to retrieve individual keys into target specified
909  * by flow_dissector from either the skbuff or a raw buffer specified by the
910  * rest parameters.
911  *
912  * Caller must take care of zeroing target container memory.
913  */
914 bool __skb_flow_dissect(const struct net *net,
915 			const struct sk_buff *skb,
916 			struct flow_dissector *flow_dissector,
917 			void *target_container, const void *data,
918 			__be16 proto, int nhoff, int hlen, unsigned int flags)
919 {
920 	struct flow_dissector_key_control *key_control;
921 	struct flow_dissector_key_basic *key_basic;
922 	struct flow_dissector_key_addrs *key_addrs;
923 	struct flow_dissector_key_tags *key_tags;
924 	struct flow_dissector_key_vlan *key_vlan;
925 	enum flow_dissect_ret fdret;
926 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
927 	bool mpls_el = false;
928 	int mpls_lse = 0;
929 	int num_hdrs = 0;
930 	u8 ip_proto = 0;
931 	bool ret;
932 
933 	if (!data) {
934 		data = skb->data;
935 		proto = skb_vlan_tag_present(skb) ?
936 			 skb->vlan_proto : skb->protocol;
937 		nhoff = skb_network_offset(skb);
938 		hlen = skb_headlen(skb);
939 #if IS_ENABLED(CONFIG_NET_DSA)
940 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
941 			     proto == htons(ETH_P_XDSA))) {
942 			const struct dsa_device_ops *ops;
943 			int offset = 0;
944 
945 			ops = skb->dev->dsa_ptr->tag_ops;
946 			/* Only DSA header taggers break flow dissection */
947 			if (ops->needed_headroom) {
948 				if (ops->flow_dissect)
949 					ops->flow_dissect(skb, &proto, &offset);
950 				else
951 					dsa_tag_generic_flow_dissect(skb,
952 								     &proto,
953 								     &offset);
954 				hlen -= offset;
955 				nhoff += offset;
956 			}
957 		}
958 #endif
959 	}
960 
961 	/* It is ensured by skb_flow_dissector_init() that control key will
962 	 * be always present.
963 	 */
964 	key_control = skb_flow_dissector_target(flow_dissector,
965 						FLOW_DISSECTOR_KEY_CONTROL,
966 						target_container);
967 
968 	/* It is ensured by skb_flow_dissector_init() that basic key will
969 	 * be always present.
970 	 */
971 	key_basic = skb_flow_dissector_target(flow_dissector,
972 					      FLOW_DISSECTOR_KEY_BASIC,
973 					      target_container);
974 
975 	if (skb) {
976 		if (!net) {
977 			if (skb->dev)
978 				net = dev_net(skb->dev);
979 			else if (skb->sk)
980 				net = sock_net(skb->sk);
981 		}
982 	}
983 
984 	WARN_ON_ONCE(!net);
985 	if (net) {
986 		enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
987 		struct bpf_prog_array *run_array;
988 
989 		rcu_read_lock();
990 		run_array = rcu_dereference(init_net.bpf.run_array[type]);
991 		if (!run_array)
992 			run_array = rcu_dereference(net->bpf.run_array[type]);
993 
994 		if (run_array) {
995 			struct bpf_flow_keys flow_keys;
996 			struct bpf_flow_dissector ctx = {
997 				.flow_keys = &flow_keys,
998 				.data = data,
999 				.data_end = data + hlen,
1000 			};
1001 			__be16 n_proto = proto;
1002 			struct bpf_prog *prog;
1003 
1004 			if (skb) {
1005 				ctx.skb = skb;
1006 				/* we can't use 'proto' in the skb case
1007 				 * because it might be set to skb->vlan_proto
1008 				 * which has been pulled from the data
1009 				 */
1010 				n_proto = skb->protocol;
1011 			}
1012 
1013 			prog = READ_ONCE(run_array->items[0].prog);
1014 			ret = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
1015 					       hlen, flags);
1016 			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1017 						 target_container);
1018 			rcu_read_unlock();
1019 			return ret;
1020 		}
1021 		rcu_read_unlock();
1022 	}
1023 
1024 	if (dissector_uses_key(flow_dissector,
1025 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1026 		struct ethhdr *eth = eth_hdr(skb);
1027 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
1028 
1029 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1030 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
1031 							  target_container);
1032 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
1033 	}
1034 
1035 proto_again:
1036 	fdret = FLOW_DISSECT_RET_CONTINUE;
1037 
1038 	switch (proto) {
1039 	case htons(ETH_P_IP): {
1040 		const struct iphdr *iph;
1041 		struct iphdr _iph;
1042 
1043 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1044 		if (!iph || iph->ihl < 5) {
1045 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1046 			break;
1047 		}
1048 
1049 		nhoff += iph->ihl * 4;
1050 
1051 		ip_proto = iph->protocol;
1052 
1053 		if (dissector_uses_key(flow_dissector,
1054 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1055 			key_addrs = skb_flow_dissector_target(flow_dissector,
1056 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1057 							      target_container);
1058 
1059 			memcpy(&key_addrs->v4addrs, &iph->saddr,
1060 			       sizeof(key_addrs->v4addrs));
1061 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1062 		}
1063 
1064 		__skb_flow_dissect_ipv4(skb, flow_dissector,
1065 					target_container, data, iph);
1066 
1067 		if (ip_is_fragment(iph)) {
1068 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1069 
1070 			if (iph->frag_off & htons(IP_OFFSET)) {
1071 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1072 				break;
1073 			} else {
1074 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
1075 				if (!(flags &
1076 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1077 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
1078 					break;
1079 				}
1080 			}
1081 		}
1082 
1083 		break;
1084 	}
1085 	case htons(ETH_P_IPV6): {
1086 		const struct ipv6hdr *iph;
1087 		struct ipv6hdr _iph;
1088 
1089 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1090 		if (!iph) {
1091 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1092 			break;
1093 		}
1094 
1095 		ip_proto = iph->nexthdr;
1096 		nhoff += sizeof(struct ipv6hdr);
1097 
1098 		if (dissector_uses_key(flow_dissector,
1099 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1100 			key_addrs = skb_flow_dissector_target(flow_dissector,
1101 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1102 							      target_container);
1103 
1104 			memcpy(&key_addrs->v6addrs, &iph->saddr,
1105 			       sizeof(key_addrs->v6addrs));
1106 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1107 		}
1108 
1109 		if ((dissector_uses_key(flow_dissector,
1110 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1111 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1112 		    ip6_flowlabel(iph)) {
1113 			__be32 flow_label = ip6_flowlabel(iph);
1114 
1115 			if (dissector_uses_key(flow_dissector,
1116 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1117 				key_tags = skb_flow_dissector_target(flow_dissector,
1118 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
1119 								     target_container);
1120 				key_tags->flow_label = ntohl(flow_label);
1121 			}
1122 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1123 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1124 				break;
1125 			}
1126 		}
1127 
1128 		__skb_flow_dissect_ipv6(skb, flow_dissector,
1129 					target_container, data, iph);
1130 
1131 		break;
1132 	}
1133 	case htons(ETH_P_8021AD):
1134 	case htons(ETH_P_8021Q): {
1135 		const struct vlan_hdr *vlan = NULL;
1136 		struct vlan_hdr _vlan;
1137 		__be16 saved_vlan_tpid = proto;
1138 
1139 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1140 		    skb && skb_vlan_tag_present(skb)) {
1141 			proto = skb->protocol;
1142 		} else {
1143 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1144 						    data, hlen, &_vlan);
1145 			if (!vlan) {
1146 				fdret = FLOW_DISSECT_RET_OUT_BAD;
1147 				break;
1148 			}
1149 
1150 			proto = vlan->h_vlan_encapsulated_proto;
1151 			nhoff += sizeof(*vlan);
1152 		}
1153 
1154 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1155 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1156 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1157 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1158 		} else {
1159 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1160 			break;
1161 		}
1162 
1163 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1164 			key_vlan = skb_flow_dissector_target(flow_dissector,
1165 							     dissector_vlan,
1166 							     target_container);
1167 
1168 			if (!vlan) {
1169 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1170 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1171 			} else {
1172 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1173 					VLAN_VID_MASK;
1174 				key_vlan->vlan_priority =
1175 					(ntohs(vlan->h_vlan_TCI) &
1176 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1177 			}
1178 			key_vlan->vlan_tpid = saved_vlan_tpid;
1179 		}
1180 
1181 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1182 		break;
1183 	}
1184 	case htons(ETH_P_PPP_SES): {
1185 		struct {
1186 			struct pppoe_hdr hdr;
1187 			__be16 proto;
1188 		} *hdr, _hdr;
1189 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1190 		if (!hdr) {
1191 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1192 			break;
1193 		}
1194 
1195 		proto = hdr->proto;
1196 		nhoff += PPPOE_SES_HLEN;
1197 		switch (proto) {
1198 		case htons(PPP_IP):
1199 			proto = htons(ETH_P_IP);
1200 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1201 			break;
1202 		case htons(PPP_IPV6):
1203 			proto = htons(ETH_P_IPV6);
1204 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1205 			break;
1206 		default:
1207 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1208 			break;
1209 		}
1210 		break;
1211 	}
1212 	case htons(ETH_P_TIPC): {
1213 		struct tipc_basic_hdr *hdr, _hdr;
1214 
1215 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1216 					   data, hlen, &_hdr);
1217 		if (!hdr) {
1218 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1219 			break;
1220 		}
1221 
1222 		if (dissector_uses_key(flow_dissector,
1223 				       FLOW_DISSECTOR_KEY_TIPC)) {
1224 			key_addrs = skb_flow_dissector_target(flow_dissector,
1225 							      FLOW_DISSECTOR_KEY_TIPC,
1226 							      target_container);
1227 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1228 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1229 		}
1230 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1231 		break;
1232 	}
1233 
1234 	case htons(ETH_P_MPLS_UC):
1235 	case htons(ETH_P_MPLS_MC):
1236 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1237 						target_container, data,
1238 						nhoff, hlen, mpls_lse,
1239 						&mpls_el);
1240 		nhoff += sizeof(struct mpls_label);
1241 		mpls_lse++;
1242 		break;
1243 	case htons(ETH_P_FCOE):
1244 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1245 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1246 			break;
1247 		}
1248 
1249 		nhoff += FCOE_HEADER_LEN;
1250 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1251 		break;
1252 
1253 	case htons(ETH_P_ARP):
1254 	case htons(ETH_P_RARP):
1255 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1256 					       target_container, data,
1257 					       nhoff, hlen);
1258 		break;
1259 
1260 	case htons(ETH_P_BATMAN):
1261 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1262 						  &proto, &nhoff, hlen, flags);
1263 		break;
1264 
1265 	case htons(ETH_P_1588): {
1266 		struct ptp_header *hdr, _hdr;
1267 
1268 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
1269 					   hlen, &_hdr);
1270 		if (!hdr) {
1271 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1272 			break;
1273 		}
1274 
1275 		nhoff += ntohs(hdr->message_length);
1276 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1277 		break;
1278 	}
1279 
1280 	default:
1281 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1282 		break;
1283 	}
1284 
1285 	/* Process result of proto processing */
1286 	switch (fdret) {
1287 	case FLOW_DISSECT_RET_OUT_GOOD:
1288 		goto out_good;
1289 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1290 		if (skb_flow_dissect_allowed(&num_hdrs))
1291 			goto proto_again;
1292 		goto out_good;
1293 	case FLOW_DISSECT_RET_CONTINUE:
1294 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1295 		break;
1296 	case FLOW_DISSECT_RET_OUT_BAD:
1297 	default:
1298 		goto out_bad;
1299 	}
1300 
1301 ip_proto_again:
1302 	fdret = FLOW_DISSECT_RET_CONTINUE;
1303 
1304 	switch (ip_proto) {
1305 	case IPPROTO_GRE:
1306 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1307 					       target_container, data,
1308 					       &proto, &nhoff, &hlen, flags);
1309 		break;
1310 
1311 	case NEXTHDR_HOP:
1312 	case NEXTHDR_ROUTING:
1313 	case NEXTHDR_DEST: {
1314 		u8 _opthdr[2], *opthdr;
1315 
1316 		if (proto != htons(ETH_P_IPV6))
1317 			break;
1318 
1319 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1320 					      data, hlen, &_opthdr);
1321 		if (!opthdr) {
1322 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1323 			break;
1324 		}
1325 
1326 		ip_proto = opthdr[0];
1327 		nhoff += (opthdr[1] + 1) << 3;
1328 
1329 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1330 		break;
1331 	}
1332 	case NEXTHDR_FRAGMENT: {
1333 		struct frag_hdr _fh, *fh;
1334 
1335 		if (proto != htons(ETH_P_IPV6))
1336 			break;
1337 
1338 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1339 					  data, hlen, &_fh);
1340 
1341 		if (!fh) {
1342 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1343 			break;
1344 		}
1345 
1346 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1347 
1348 		nhoff += sizeof(_fh);
1349 		ip_proto = fh->nexthdr;
1350 
1351 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1352 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1353 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1354 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1355 				break;
1356 			}
1357 		}
1358 
1359 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1360 		break;
1361 	}
1362 	case IPPROTO_IPIP:
1363 		proto = htons(ETH_P_IP);
1364 
1365 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1366 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1367 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1368 			break;
1369 		}
1370 
1371 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1372 		break;
1373 
1374 	case IPPROTO_IPV6:
1375 		proto = htons(ETH_P_IPV6);
1376 
1377 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1378 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1379 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1380 			break;
1381 		}
1382 
1383 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1384 		break;
1385 
1386 
1387 	case IPPROTO_MPLS:
1388 		proto = htons(ETH_P_MPLS_UC);
1389 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1390 		break;
1391 
1392 	case IPPROTO_TCP:
1393 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1394 				       data, nhoff, hlen);
1395 		break;
1396 
1397 	case IPPROTO_ICMP:
1398 	case IPPROTO_ICMPV6:
1399 		__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1400 					data, nhoff, hlen);
1401 		break;
1402 
1403 	default:
1404 		break;
1405 	}
1406 
1407 	if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1408 		__skb_flow_dissect_ports(skb, flow_dissector, target_container,
1409 					 data, nhoff, ip_proto, hlen);
1410 
1411 	/* Process result of IP proto processing */
1412 	switch (fdret) {
1413 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1414 		if (skb_flow_dissect_allowed(&num_hdrs))
1415 			goto proto_again;
1416 		break;
1417 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1418 		if (skb_flow_dissect_allowed(&num_hdrs))
1419 			goto ip_proto_again;
1420 		break;
1421 	case FLOW_DISSECT_RET_OUT_GOOD:
1422 	case FLOW_DISSECT_RET_CONTINUE:
1423 		break;
1424 	case FLOW_DISSECT_RET_OUT_BAD:
1425 	default:
1426 		goto out_bad;
1427 	}
1428 
1429 out_good:
1430 	ret = true;
1431 
1432 out:
1433 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1434 	key_basic->n_proto = proto;
1435 	key_basic->ip_proto = ip_proto;
1436 
1437 	return ret;
1438 
1439 out_bad:
1440 	ret = false;
1441 	goto out;
1442 }
1443 EXPORT_SYMBOL(__skb_flow_dissect);
1444 
1445 static siphash_key_t hashrnd __read_mostly;
1446 static __always_inline void __flow_hash_secret_init(void)
1447 {
1448 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1449 }
1450 
1451 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1452 {
1453 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1454 	return &flow->FLOW_KEYS_HASH_START_FIELD;
1455 }
1456 
1457 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1458 {
1459 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1460 
1461 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1462 
1463 	switch (flow->control.addr_type) {
1464 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1465 		diff -= sizeof(flow->addrs.v4addrs);
1466 		break;
1467 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1468 		diff -= sizeof(flow->addrs.v6addrs);
1469 		break;
1470 	case FLOW_DISSECTOR_KEY_TIPC:
1471 		diff -= sizeof(flow->addrs.tipckey);
1472 		break;
1473 	}
1474 	return sizeof(*flow) - diff;
1475 }
1476 
1477 __be32 flow_get_u32_src(const struct flow_keys *flow)
1478 {
1479 	switch (flow->control.addr_type) {
1480 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1481 		return flow->addrs.v4addrs.src;
1482 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1483 		return (__force __be32)ipv6_addr_hash(
1484 			&flow->addrs.v6addrs.src);
1485 	case FLOW_DISSECTOR_KEY_TIPC:
1486 		return flow->addrs.tipckey.key;
1487 	default:
1488 		return 0;
1489 	}
1490 }
1491 EXPORT_SYMBOL(flow_get_u32_src);
1492 
1493 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1494 {
1495 	switch (flow->control.addr_type) {
1496 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1497 		return flow->addrs.v4addrs.dst;
1498 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1499 		return (__force __be32)ipv6_addr_hash(
1500 			&flow->addrs.v6addrs.dst);
1501 	default:
1502 		return 0;
1503 	}
1504 }
1505 EXPORT_SYMBOL(flow_get_u32_dst);
1506 
1507 /* Sort the source and destination IP and the ports,
1508  * to have consistent hash within the two directions
1509  */
1510 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1511 {
1512 	int addr_diff, i;
1513 
1514 	switch (keys->control.addr_type) {
1515 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1516 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1517 			    (__force u32)keys->addrs.v4addrs.src;
1518 		if (addr_diff < 0)
1519 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1520 
1521 		if ((__force u16)keys->ports.dst <
1522 		    (__force u16)keys->ports.src) {
1523 			swap(keys->ports.src, keys->ports.dst);
1524 		}
1525 		break;
1526 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1527 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1528 				   &keys->addrs.v6addrs.src,
1529 				   sizeof(keys->addrs.v6addrs.dst));
1530 		if (addr_diff < 0) {
1531 			for (i = 0; i < 4; i++)
1532 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1533 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1534 		}
1535 		if ((__force u16)keys->ports.dst <
1536 		    (__force u16)keys->ports.src) {
1537 			swap(keys->ports.src, keys->ports.dst);
1538 		}
1539 		break;
1540 	}
1541 }
1542 
1543 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1544 					const siphash_key_t *keyval)
1545 {
1546 	u32 hash;
1547 
1548 	__flow_hash_consistentify(keys);
1549 
1550 	hash = siphash(flow_keys_hash_start(keys),
1551 		       flow_keys_hash_length(keys), keyval);
1552 	if (!hash)
1553 		hash = 1;
1554 
1555 	return hash;
1556 }
1557 
1558 u32 flow_hash_from_keys(struct flow_keys *keys)
1559 {
1560 	__flow_hash_secret_init();
1561 	return __flow_hash_from_keys(keys, &hashrnd);
1562 }
1563 EXPORT_SYMBOL(flow_hash_from_keys);
1564 
1565 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1566 				  struct flow_keys *keys,
1567 				  const siphash_key_t *keyval)
1568 {
1569 	skb_flow_dissect_flow_keys(skb, keys,
1570 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1571 
1572 	return __flow_hash_from_keys(keys, keyval);
1573 }
1574 
1575 struct _flow_keys_digest_data {
1576 	__be16	n_proto;
1577 	u8	ip_proto;
1578 	u8	padding;
1579 	__be32	ports;
1580 	__be32	src;
1581 	__be32	dst;
1582 };
1583 
1584 void make_flow_keys_digest(struct flow_keys_digest *digest,
1585 			   const struct flow_keys *flow)
1586 {
1587 	struct _flow_keys_digest_data *data =
1588 	    (struct _flow_keys_digest_data *)digest;
1589 
1590 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1591 
1592 	memset(digest, 0, sizeof(*digest));
1593 
1594 	data->n_proto = flow->basic.n_proto;
1595 	data->ip_proto = flow->basic.ip_proto;
1596 	data->ports = flow->ports.ports;
1597 	data->src = flow->addrs.v4addrs.src;
1598 	data->dst = flow->addrs.v4addrs.dst;
1599 }
1600 EXPORT_SYMBOL(make_flow_keys_digest);
1601 
1602 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1603 
1604 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1605 {
1606 	struct flow_keys keys;
1607 
1608 	__flow_hash_secret_init();
1609 
1610 	memset(&keys, 0, sizeof(keys));
1611 	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1612 			   &keys, NULL, 0, 0, 0,
1613 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1614 
1615 	return __flow_hash_from_keys(&keys, &hashrnd);
1616 }
1617 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1618 
1619 /**
1620  * __skb_get_hash: calculate a flow hash
1621  * @skb: sk_buff to calculate flow hash from
1622  *
1623  * This function calculates a flow hash based on src/dst addresses
1624  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1625  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1626  * if hash is a canonical 4-tuple hash over transport ports.
1627  */
1628 void __skb_get_hash(struct sk_buff *skb)
1629 {
1630 	struct flow_keys keys;
1631 	u32 hash;
1632 
1633 	__flow_hash_secret_init();
1634 
1635 	hash = ___skb_get_hash(skb, &keys, &hashrnd);
1636 
1637 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1638 }
1639 EXPORT_SYMBOL(__skb_get_hash);
1640 
1641 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1642 			   const siphash_key_t *perturb)
1643 {
1644 	struct flow_keys keys;
1645 
1646 	return ___skb_get_hash(skb, &keys, perturb);
1647 }
1648 EXPORT_SYMBOL(skb_get_hash_perturb);
1649 
1650 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1651 		   const struct flow_keys_basic *keys, int hlen)
1652 {
1653 	u32 poff = keys->control.thoff;
1654 
1655 	/* skip L4 headers for fragments after the first */
1656 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1657 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1658 		return poff;
1659 
1660 	switch (keys->basic.ip_proto) {
1661 	case IPPROTO_TCP: {
1662 		/* access doff as u8 to avoid unaligned access */
1663 		const u8 *doff;
1664 		u8 _doff;
1665 
1666 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1667 					    data, hlen, &_doff);
1668 		if (!doff)
1669 			return poff;
1670 
1671 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1672 		break;
1673 	}
1674 	case IPPROTO_UDP:
1675 	case IPPROTO_UDPLITE:
1676 		poff += sizeof(struct udphdr);
1677 		break;
1678 	/* For the rest, we do not really care about header
1679 	 * extensions at this point for now.
1680 	 */
1681 	case IPPROTO_ICMP:
1682 		poff += sizeof(struct icmphdr);
1683 		break;
1684 	case IPPROTO_ICMPV6:
1685 		poff += sizeof(struct icmp6hdr);
1686 		break;
1687 	case IPPROTO_IGMP:
1688 		poff += sizeof(struct igmphdr);
1689 		break;
1690 	case IPPROTO_DCCP:
1691 		poff += sizeof(struct dccp_hdr);
1692 		break;
1693 	case IPPROTO_SCTP:
1694 		poff += sizeof(struct sctphdr);
1695 		break;
1696 	}
1697 
1698 	return poff;
1699 }
1700 
1701 /**
1702  * skb_get_poff - get the offset to the payload
1703  * @skb: sk_buff to get the payload offset from
1704  *
1705  * The function will get the offset to the payload as far as it could
1706  * be dissected.  The main user is currently BPF, so that we can dynamically
1707  * truncate packets without needing to push actual payload to the user
1708  * space and can analyze headers only, instead.
1709  */
1710 u32 skb_get_poff(const struct sk_buff *skb)
1711 {
1712 	struct flow_keys_basic keys;
1713 
1714 	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1715 					      NULL, 0, 0, 0, 0))
1716 		return 0;
1717 
1718 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1719 }
1720 
1721 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1722 {
1723 	memset(keys, 0, sizeof(*keys));
1724 
1725 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1726 	    sizeof(keys->addrs.v6addrs.src));
1727 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1728 	    sizeof(keys->addrs.v6addrs.dst));
1729 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1730 	keys->ports.src = fl6->fl6_sport;
1731 	keys->ports.dst = fl6->fl6_dport;
1732 	keys->keyid.keyid = fl6->fl6_gre_key;
1733 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1734 	keys->basic.ip_proto = fl6->flowi6_proto;
1735 
1736 	return flow_hash_from_keys(keys);
1737 }
1738 EXPORT_SYMBOL(__get_hash_from_flowi6);
1739 
1740 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1741 	{
1742 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1743 		.offset = offsetof(struct flow_keys, control),
1744 	},
1745 	{
1746 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1747 		.offset = offsetof(struct flow_keys, basic),
1748 	},
1749 	{
1750 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1751 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1752 	},
1753 	{
1754 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1755 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1756 	},
1757 	{
1758 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1759 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1760 	},
1761 	{
1762 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1763 		.offset = offsetof(struct flow_keys, ports),
1764 	},
1765 	{
1766 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1767 		.offset = offsetof(struct flow_keys, vlan),
1768 	},
1769 	{
1770 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1771 		.offset = offsetof(struct flow_keys, tags),
1772 	},
1773 	{
1774 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1775 		.offset = offsetof(struct flow_keys, keyid),
1776 	},
1777 };
1778 
1779 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1780 	{
1781 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1782 		.offset = offsetof(struct flow_keys, control),
1783 	},
1784 	{
1785 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1786 		.offset = offsetof(struct flow_keys, basic),
1787 	},
1788 	{
1789 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1790 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1791 	},
1792 	{
1793 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1794 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1795 	},
1796 	{
1797 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1798 		.offset = offsetof(struct flow_keys, ports),
1799 	},
1800 };
1801 
1802 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1803 	{
1804 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1805 		.offset = offsetof(struct flow_keys, control),
1806 	},
1807 	{
1808 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1809 		.offset = offsetof(struct flow_keys, basic),
1810 	},
1811 };
1812 
1813 struct flow_dissector flow_keys_dissector __read_mostly;
1814 EXPORT_SYMBOL(flow_keys_dissector);
1815 
1816 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1817 EXPORT_SYMBOL(flow_keys_basic_dissector);
1818 
1819 static int __init init_default_flow_dissectors(void)
1820 {
1821 	skb_flow_dissector_init(&flow_keys_dissector,
1822 				flow_keys_dissector_keys,
1823 				ARRAY_SIZE(flow_keys_dissector_keys));
1824 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1825 				flow_keys_dissector_symmetric_keys,
1826 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1827 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1828 				flow_keys_basic_dissector_keys,
1829 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1830 	return 0;
1831 }
1832 core_initcall(init_default_flow_dissectors);
1833