xref: /linux/net/core/flow_dissector.c (revision 19d17ab7c68b62180e0537f92400a6f798019775)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <linux/filter.h>
9 #include <net/dsa.h>
10 #include <net/dst_metadata.h>
11 #include <net/ip.h>
12 #include <net/ipv6.h>
13 #include <net/gre.h>
14 #include <net/pptp.h>
15 #include <net/tipc.h>
16 #include <linux/igmp.h>
17 #include <linux/icmp.h>
18 #include <linux/sctp.h>
19 #include <linux/dccp.h>
20 #include <linux/if_tunnel.h>
21 #include <linux/if_pppox.h>
22 #include <linux/ppp_defs.h>
23 #include <linux/stddef.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_hsr.h>
26 #include <linux/mpls.h>
27 #include <linux/tcp.h>
28 #include <linux/ptp_classify.h>
29 #include <net/flow_dissector.h>
30 #include <scsi/fc/fc_fcoe.h>
31 #include <uapi/linux/batadv_packet.h>
32 #include <linux/bpf.h>
33 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
34 #include <net/netfilter/nf_conntrack_core.h>
35 #include <net/netfilter/nf_conntrack_labels.h>
36 #endif
37 #include <linux/bpf-netns.h>
38 
39 static void dissector_set_key(struct flow_dissector *flow_dissector,
40 			      enum flow_dissector_key_id key_id)
41 {
42 	flow_dissector->used_keys |= (1 << key_id);
43 }
44 
45 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
46 			     const struct flow_dissector_key *key,
47 			     unsigned int key_count)
48 {
49 	unsigned int i;
50 
51 	memset(flow_dissector, 0, sizeof(*flow_dissector));
52 
53 	for (i = 0; i < key_count; i++, key++) {
54 		/* User should make sure that every key target offset is within
55 		 * boundaries of unsigned short.
56 		 */
57 		BUG_ON(key->offset > USHRT_MAX);
58 		BUG_ON(dissector_uses_key(flow_dissector,
59 					  key->key_id));
60 
61 		dissector_set_key(flow_dissector, key->key_id);
62 		flow_dissector->offset[key->key_id] = key->offset;
63 	}
64 
65 	/* Ensure that the dissector always includes control and basic key.
66 	 * That way we are able to avoid handling lack of these in fast path.
67 	 */
68 	BUG_ON(!dissector_uses_key(flow_dissector,
69 				   FLOW_DISSECTOR_KEY_CONTROL));
70 	BUG_ON(!dissector_uses_key(flow_dissector,
71 				   FLOW_DISSECTOR_KEY_BASIC));
72 }
73 EXPORT_SYMBOL(skb_flow_dissector_init);
74 
75 #ifdef CONFIG_BPF_SYSCALL
76 int flow_dissector_bpf_prog_attach_check(struct net *net,
77 					 struct bpf_prog *prog)
78 {
79 	enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
80 
81 	if (net == &init_net) {
82 		/* BPF flow dissector in the root namespace overrides
83 		 * any per-net-namespace one. When attaching to root,
84 		 * make sure we don't have any BPF program attached
85 		 * to the non-root namespaces.
86 		 */
87 		struct net *ns;
88 
89 		for_each_net(ns) {
90 			if (ns == &init_net)
91 				continue;
92 			if (rcu_access_pointer(ns->bpf.run_array[type]))
93 				return -EEXIST;
94 		}
95 	} else {
96 		/* Make sure root flow dissector is not attached
97 		 * when attaching to the non-root namespace.
98 		 */
99 		if (rcu_access_pointer(init_net.bpf.run_array[type]))
100 			return -EEXIST;
101 	}
102 
103 	return 0;
104 }
105 #endif /* CONFIG_BPF_SYSCALL */
106 
107 /**
108  * __skb_flow_get_ports - extract the upper layer ports and return them
109  * @skb: sk_buff to extract the ports from
110  * @thoff: transport header offset
111  * @ip_proto: protocol for which to get port offset
112  * @data: raw buffer pointer to the packet, if NULL use skb->data
113  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
114  *
115  * The function will try to retrieve the ports at offset thoff + poff where poff
116  * is the protocol port offset returned from proto_ports_offset
117  */
118 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
119 			    const void *data, int hlen)
120 {
121 	int poff = proto_ports_offset(ip_proto);
122 
123 	if (!data) {
124 		data = skb->data;
125 		hlen = skb_headlen(skb);
126 	}
127 
128 	if (poff >= 0) {
129 		__be32 *ports, _ports;
130 
131 		ports = __skb_header_pointer(skb, thoff + poff,
132 					     sizeof(_ports), data, hlen, &_ports);
133 		if (ports)
134 			return *ports;
135 	}
136 
137 	return 0;
138 }
139 EXPORT_SYMBOL(__skb_flow_get_ports);
140 
141 static bool icmp_has_id(u8 type)
142 {
143 	switch (type) {
144 	case ICMP_ECHO:
145 	case ICMP_ECHOREPLY:
146 	case ICMP_TIMESTAMP:
147 	case ICMP_TIMESTAMPREPLY:
148 	case ICMPV6_ECHO_REQUEST:
149 	case ICMPV6_ECHO_REPLY:
150 		return true;
151 	}
152 
153 	return false;
154 }
155 
156 /**
157  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
158  * @skb: sk_buff to extract from
159  * @key_icmp: struct flow_dissector_key_icmp to fill
160  * @data: raw buffer pointer to the packet
161  * @thoff: offset to extract at
162  * @hlen: packet header length
163  */
164 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
165 			   struct flow_dissector_key_icmp *key_icmp,
166 			   const void *data, int thoff, int hlen)
167 {
168 	struct icmphdr *ih, _ih;
169 
170 	ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
171 	if (!ih)
172 		return;
173 
174 	key_icmp->type = ih->type;
175 	key_icmp->code = ih->code;
176 
177 	/* As we use 0 to signal that the Id field is not present,
178 	 * avoid confusion with packets without such field
179 	 */
180 	if (icmp_has_id(ih->type))
181 		key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1;
182 	else
183 		key_icmp->id = 0;
184 }
185 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
186 
187 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
188  * using skb_flow_get_icmp_tci().
189  */
190 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
191 				    struct flow_dissector *flow_dissector,
192 				    void *target_container, const void *data,
193 				    int thoff, int hlen)
194 {
195 	struct flow_dissector_key_icmp *key_icmp;
196 
197 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
198 		return;
199 
200 	key_icmp = skb_flow_dissector_target(flow_dissector,
201 					     FLOW_DISSECTOR_KEY_ICMP,
202 					     target_container);
203 
204 	skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
205 }
206 
207 static void __skb_flow_dissect_l2tpv3(const struct sk_buff *skb,
208 				      struct flow_dissector *flow_dissector,
209 				      void *target_container, const void *data,
210 				      int nhoff, int hlen)
211 {
212 	struct flow_dissector_key_l2tpv3 *key_l2tpv3;
213 	struct {
214 		__be32 session_id;
215 	} *hdr, _hdr;
216 
217 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_L2TPV3))
218 		return;
219 
220 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
221 	if (!hdr)
222 		return;
223 
224 	key_l2tpv3 = skb_flow_dissector_target(flow_dissector,
225 					       FLOW_DISSECTOR_KEY_L2TPV3,
226 					       target_container);
227 
228 	key_l2tpv3->session_id = hdr->session_id;
229 }
230 
231 void skb_flow_dissect_meta(const struct sk_buff *skb,
232 			   struct flow_dissector *flow_dissector,
233 			   void *target_container)
234 {
235 	struct flow_dissector_key_meta *meta;
236 
237 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
238 		return;
239 
240 	meta = skb_flow_dissector_target(flow_dissector,
241 					 FLOW_DISSECTOR_KEY_META,
242 					 target_container);
243 	meta->ingress_ifindex = skb->skb_iif;
244 }
245 EXPORT_SYMBOL(skb_flow_dissect_meta);
246 
247 static void
248 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
249 				   struct flow_dissector *flow_dissector,
250 				   void *target_container)
251 {
252 	struct flow_dissector_key_control *ctrl;
253 
254 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
255 		return;
256 
257 	ctrl = skb_flow_dissector_target(flow_dissector,
258 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
259 					 target_container);
260 	ctrl->addr_type = type;
261 }
262 
263 void
264 skb_flow_dissect_ct(const struct sk_buff *skb,
265 		    struct flow_dissector *flow_dissector,
266 		    void *target_container, u16 *ctinfo_map,
267 		    size_t mapsize, bool post_ct, u16 zone)
268 {
269 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
270 	struct flow_dissector_key_ct *key;
271 	enum ip_conntrack_info ctinfo;
272 	struct nf_conn_labels *cl;
273 	struct nf_conn *ct;
274 
275 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
276 		return;
277 
278 	ct = nf_ct_get(skb, &ctinfo);
279 	if (!ct && !post_ct)
280 		return;
281 
282 	key = skb_flow_dissector_target(flow_dissector,
283 					FLOW_DISSECTOR_KEY_CT,
284 					target_container);
285 
286 	if (!ct) {
287 		key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
288 				TCA_FLOWER_KEY_CT_FLAGS_INVALID;
289 		key->ct_zone = zone;
290 		return;
291 	}
292 
293 	if (ctinfo < mapsize)
294 		key->ct_state = ctinfo_map[ctinfo];
295 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
296 	key->ct_zone = ct->zone.id;
297 #endif
298 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
299 	key->ct_mark = ct->mark;
300 #endif
301 
302 	cl = nf_ct_labels_find(ct);
303 	if (cl)
304 		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
305 #endif /* CONFIG_NF_CONNTRACK */
306 }
307 EXPORT_SYMBOL(skb_flow_dissect_ct);
308 
309 void
310 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
311 			     struct flow_dissector *flow_dissector,
312 			     void *target_container)
313 {
314 	struct ip_tunnel_info *info;
315 	struct ip_tunnel_key *key;
316 
317 	/* A quick check to see if there might be something to do. */
318 	if (!dissector_uses_key(flow_dissector,
319 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
320 	    !dissector_uses_key(flow_dissector,
321 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
322 	    !dissector_uses_key(flow_dissector,
323 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
324 	    !dissector_uses_key(flow_dissector,
325 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
326 	    !dissector_uses_key(flow_dissector,
327 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
328 	    !dissector_uses_key(flow_dissector,
329 				FLOW_DISSECTOR_KEY_ENC_IP) &&
330 	    !dissector_uses_key(flow_dissector,
331 				FLOW_DISSECTOR_KEY_ENC_OPTS))
332 		return;
333 
334 	info = skb_tunnel_info(skb);
335 	if (!info)
336 		return;
337 
338 	key = &info->key;
339 
340 	switch (ip_tunnel_info_af(info)) {
341 	case AF_INET:
342 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
343 						   flow_dissector,
344 						   target_container);
345 		if (dissector_uses_key(flow_dissector,
346 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
347 			struct flow_dissector_key_ipv4_addrs *ipv4;
348 
349 			ipv4 = skb_flow_dissector_target(flow_dissector,
350 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
351 							 target_container);
352 			ipv4->src = key->u.ipv4.src;
353 			ipv4->dst = key->u.ipv4.dst;
354 		}
355 		break;
356 	case AF_INET6:
357 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
358 						   flow_dissector,
359 						   target_container);
360 		if (dissector_uses_key(flow_dissector,
361 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
362 			struct flow_dissector_key_ipv6_addrs *ipv6;
363 
364 			ipv6 = skb_flow_dissector_target(flow_dissector,
365 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
366 							 target_container);
367 			ipv6->src = key->u.ipv6.src;
368 			ipv6->dst = key->u.ipv6.dst;
369 		}
370 		break;
371 	}
372 
373 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
374 		struct flow_dissector_key_keyid *keyid;
375 
376 		keyid = skb_flow_dissector_target(flow_dissector,
377 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
378 						  target_container);
379 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
380 	}
381 
382 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
383 		struct flow_dissector_key_ports *tp;
384 
385 		tp = skb_flow_dissector_target(flow_dissector,
386 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
387 					       target_container);
388 		tp->src = key->tp_src;
389 		tp->dst = key->tp_dst;
390 	}
391 
392 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
393 		struct flow_dissector_key_ip *ip;
394 
395 		ip = skb_flow_dissector_target(flow_dissector,
396 					       FLOW_DISSECTOR_KEY_ENC_IP,
397 					       target_container);
398 		ip->tos = key->tos;
399 		ip->ttl = key->ttl;
400 	}
401 
402 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
403 		struct flow_dissector_key_enc_opts *enc_opt;
404 
405 		enc_opt = skb_flow_dissector_target(flow_dissector,
406 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
407 						    target_container);
408 
409 		if (info->options_len) {
410 			enc_opt->len = info->options_len;
411 			ip_tunnel_info_opts_get(enc_opt->data, info);
412 			enc_opt->dst_opt_type = info->key.tun_flags &
413 						TUNNEL_OPTIONS_PRESENT;
414 		}
415 	}
416 }
417 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
418 
419 void skb_flow_dissect_hash(const struct sk_buff *skb,
420 			   struct flow_dissector *flow_dissector,
421 			   void *target_container)
422 {
423 	struct flow_dissector_key_hash *key;
424 
425 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
426 		return;
427 
428 	key = skb_flow_dissector_target(flow_dissector,
429 					FLOW_DISSECTOR_KEY_HASH,
430 					target_container);
431 
432 	key->hash = skb_get_hash_raw(skb);
433 }
434 EXPORT_SYMBOL(skb_flow_dissect_hash);
435 
436 static enum flow_dissect_ret
437 __skb_flow_dissect_mpls(const struct sk_buff *skb,
438 			struct flow_dissector *flow_dissector,
439 			void *target_container, const void *data, int nhoff,
440 			int hlen, int lse_index, bool *entropy_label)
441 {
442 	struct mpls_label *hdr, _hdr;
443 	u32 entry, label, bos;
444 
445 	if (!dissector_uses_key(flow_dissector,
446 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
447 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
448 		return FLOW_DISSECT_RET_OUT_GOOD;
449 
450 	if (lse_index >= FLOW_DIS_MPLS_MAX)
451 		return FLOW_DISSECT_RET_OUT_GOOD;
452 
453 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
454 				   hlen, &_hdr);
455 	if (!hdr)
456 		return FLOW_DISSECT_RET_OUT_BAD;
457 
458 	entry = ntohl(hdr->entry);
459 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
460 	bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
461 
462 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
463 		struct flow_dissector_key_mpls *key_mpls;
464 		struct flow_dissector_mpls_lse *lse;
465 
466 		key_mpls = skb_flow_dissector_target(flow_dissector,
467 						     FLOW_DISSECTOR_KEY_MPLS,
468 						     target_container);
469 		lse = &key_mpls->ls[lse_index];
470 
471 		lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
472 		lse->mpls_bos = bos;
473 		lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
474 		lse->mpls_label = label;
475 		dissector_set_mpls_lse(key_mpls, lse_index);
476 	}
477 
478 	if (*entropy_label &&
479 	    dissector_uses_key(flow_dissector,
480 			       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
481 		struct flow_dissector_key_keyid *key_keyid;
482 
483 		key_keyid = skb_flow_dissector_target(flow_dissector,
484 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
485 						      target_container);
486 		key_keyid->keyid = cpu_to_be32(label);
487 	}
488 
489 	*entropy_label = label == MPLS_LABEL_ENTROPY;
490 
491 	return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
492 }
493 
494 static enum flow_dissect_ret
495 __skb_flow_dissect_arp(const struct sk_buff *skb,
496 		       struct flow_dissector *flow_dissector,
497 		       void *target_container, const void *data,
498 		       int nhoff, int hlen)
499 {
500 	struct flow_dissector_key_arp *key_arp;
501 	struct {
502 		unsigned char ar_sha[ETH_ALEN];
503 		unsigned char ar_sip[4];
504 		unsigned char ar_tha[ETH_ALEN];
505 		unsigned char ar_tip[4];
506 	} *arp_eth, _arp_eth;
507 	const struct arphdr *arp;
508 	struct arphdr _arp;
509 
510 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
511 		return FLOW_DISSECT_RET_OUT_GOOD;
512 
513 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
514 				   hlen, &_arp);
515 	if (!arp)
516 		return FLOW_DISSECT_RET_OUT_BAD;
517 
518 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
519 	    arp->ar_pro != htons(ETH_P_IP) ||
520 	    arp->ar_hln != ETH_ALEN ||
521 	    arp->ar_pln != 4 ||
522 	    (arp->ar_op != htons(ARPOP_REPLY) &&
523 	     arp->ar_op != htons(ARPOP_REQUEST)))
524 		return FLOW_DISSECT_RET_OUT_BAD;
525 
526 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
527 				       sizeof(_arp_eth), data,
528 				       hlen, &_arp_eth);
529 	if (!arp_eth)
530 		return FLOW_DISSECT_RET_OUT_BAD;
531 
532 	key_arp = skb_flow_dissector_target(flow_dissector,
533 					    FLOW_DISSECTOR_KEY_ARP,
534 					    target_container);
535 
536 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
537 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
538 
539 	/* Only store the lower byte of the opcode;
540 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
541 	 */
542 	key_arp->op = ntohs(arp->ar_op) & 0xff;
543 
544 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
545 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
546 
547 	return FLOW_DISSECT_RET_OUT_GOOD;
548 }
549 
550 static enum flow_dissect_ret
551 __skb_flow_dissect_gre(const struct sk_buff *skb,
552 		       struct flow_dissector_key_control *key_control,
553 		       struct flow_dissector *flow_dissector,
554 		       void *target_container, const void *data,
555 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
556 		       unsigned int flags)
557 {
558 	struct flow_dissector_key_keyid *key_keyid;
559 	struct gre_base_hdr *hdr, _hdr;
560 	int offset = 0;
561 	u16 gre_ver;
562 
563 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
564 				   data, *p_hlen, &_hdr);
565 	if (!hdr)
566 		return FLOW_DISSECT_RET_OUT_BAD;
567 
568 	/* Only look inside GRE without routing */
569 	if (hdr->flags & GRE_ROUTING)
570 		return FLOW_DISSECT_RET_OUT_GOOD;
571 
572 	/* Only look inside GRE for version 0 and 1 */
573 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
574 	if (gre_ver > 1)
575 		return FLOW_DISSECT_RET_OUT_GOOD;
576 
577 	*p_proto = hdr->protocol;
578 	if (gre_ver) {
579 		/* Version1 must be PPTP, and check the flags */
580 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
581 			return FLOW_DISSECT_RET_OUT_GOOD;
582 	}
583 
584 	offset += sizeof(struct gre_base_hdr);
585 
586 	if (hdr->flags & GRE_CSUM)
587 		offset += sizeof_field(struct gre_full_hdr, csum) +
588 			  sizeof_field(struct gre_full_hdr, reserved1);
589 
590 	if (hdr->flags & GRE_KEY) {
591 		const __be32 *keyid;
592 		__be32 _keyid;
593 
594 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
595 					     sizeof(_keyid),
596 					     data, *p_hlen, &_keyid);
597 		if (!keyid)
598 			return FLOW_DISSECT_RET_OUT_BAD;
599 
600 		if (dissector_uses_key(flow_dissector,
601 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
602 			key_keyid = skb_flow_dissector_target(flow_dissector,
603 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
604 							      target_container);
605 			if (gre_ver == 0)
606 				key_keyid->keyid = *keyid;
607 			else
608 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
609 		}
610 		offset += sizeof_field(struct gre_full_hdr, key);
611 	}
612 
613 	if (hdr->flags & GRE_SEQ)
614 		offset += sizeof_field(struct pptp_gre_header, seq);
615 
616 	if (gre_ver == 0) {
617 		if (*p_proto == htons(ETH_P_TEB)) {
618 			const struct ethhdr *eth;
619 			struct ethhdr _eth;
620 
621 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
622 						   sizeof(_eth),
623 						   data, *p_hlen, &_eth);
624 			if (!eth)
625 				return FLOW_DISSECT_RET_OUT_BAD;
626 			*p_proto = eth->h_proto;
627 			offset += sizeof(*eth);
628 
629 			/* Cap headers that we access via pointers at the
630 			 * end of the Ethernet header as our maximum alignment
631 			 * at that point is only 2 bytes.
632 			 */
633 			if (NET_IP_ALIGN)
634 				*p_hlen = *p_nhoff + offset;
635 		}
636 	} else { /* version 1, must be PPTP */
637 		u8 _ppp_hdr[PPP_HDRLEN];
638 		u8 *ppp_hdr;
639 
640 		if (hdr->flags & GRE_ACK)
641 			offset += sizeof_field(struct pptp_gre_header, ack);
642 
643 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
644 					       sizeof(_ppp_hdr),
645 					       data, *p_hlen, _ppp_hdr);
646 		if (!ppp_hdr)
647 			return FLOW_DISSECT_RET_OUT_BAD;
648 
649 		switch (PPP_PROTOCOL(ppp_hdr)) {
650 		case PPP_IP:
651 			*p_proto = htons(ETH_P_IP);
652 			break;
653 		case PPP_IPV6:
654 			*p_proto = htons(ETH_P_IPV6);
655 			break;
656 		default:
657 			/* Could probably catch some more like MPLS */
658 			break;
659 		}
660 
661 		offset += PPP_HDRLEN;
662 	}
663 
664 	*p_nhoff += offset;
665 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
666 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
667 		return FLOW_DISSECT_RET_OUT_GOOD;
668 
669 	return FLOW_DISSECT_RET_PROTO_AGAIN;
670 }
671 
672 /**
673  * __skb_flow_dissect_batadv() - dissect batman-adv header
674  * @skb: sk_buff to with the batman-adv header
675  * @key_control: flow dissectors control key
676  * @data: raw buffer pointer to the packet, if NULL use skb->data
677  * @p_proto: pointer used to update the protocol to process next
678  * @p_nhoff: pointer used to update inner network header offset
679  * @hlen: packet header length
680  * @flags: any combination of FLOW_DISSECTOR_F_*
681  *
682  * ETH_P_BATMAN packets are tried to be dissected. Only
683  * &struct batadv_unicast packets are actually processed because they contain an
684  * inner ethernet header and are usually followed by actual network header. This
685  * allows the flow dissector to continue processing the packet.
686  *
687  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
688  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
689  *  otherwise FLOW_DISSECT_RET_OUT_BAD
690  */
691 static enum flow_dissect_ret
692 __skb_flow_dissect_batadv(const struct sk_buff *skb,
693 			  struct flow_dissector_key_control *key_control,
694 			  const void *data, __be16 *p_proto, int *p_nhoff,
695 			  int hlen, unsigned int flags)
696 {
697 	struct {
698 		struct batadv_unicast_packet batadv_unicast;
699 		struct ethhdr eth;
700 	} *hdr, _hdr;
701 
702 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
703 				   &_hdr);
704 	if (!hdr)
705 		return FLOW_DISSECT_RET_OUT_BAD;
706 
707 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
708 		return FLOW_DISSECT_RET_OUT_BAD;
709 
710 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
711 		return FLOW_DISSECT_RET_OUT_BAD;
712 
713 	*p_proto = hdr->eth.h_proto;
714 	*p_nhoff += sizeof(*hdr);
715 
716 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
717 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
718 		return FLOW_DISSECT_RET_OUT_GOOD;
719 
720 	return FLOW_DISSECT_RET_PROTO_AGAIN;
721 }
722 
723 static void
724 __skb_flow_dissect_tcp(const struct sk_buff *skb,
725 		       struct flow_dissector *flow_dissector,
726 		       void *target_container, const void *data,
727 		       int thoff, int hlen)
728 {
729 	struct flow_dissector_key_tcp *key_tcp;
730 	struct tcphdr *th, _th;
731 
732 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
733 		return;
734 
735 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
736 	if (!th)
737 		return;
738 
739 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
740 		return;
741 
742 	key_tcp = skb_flow_dissector_target(flow_dissector,
743 					    FLOW_DISSECTOR_KEY_TCP,
744 					    target_container);
745 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
746 }
747 
748 static void
749 __skb_flow_dissect_ports(const struct sk_buff *skb,
750 			 struct flow_dissector *flow_dissector,
751 			 void *target_container, const void *data,
752 			 int nhoff, u8 ip_proto, int hlen)
753 {
754 	enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
755 	struct flow_dissector_key_ports *key_ports;
756 
757 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
758 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
759 	else if (dissector_uses_key(flow_dissector,
760 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
761 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
762 
763 	if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
764 		return;
765 
766 	key_ports = skb_flow_dissector_target(flow_dissector,
767 					      dissector_ports,
768 					      target_container);
769 	key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
770 						data, hlen);
771 }
772 
773 static void
774 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
775 			struct flow_dissector *flow_dissector,
776 			void *target_container, const void *data,
777 			const struct iphdr *iph)
778 {
779 	struct flow_dissector_key_ip *key_ip;
780 
781 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
782 		return;
783 
784 	key_ip = skb_flow_dissector_target(flow_dissector,
785 					   FLOW_DISSECTOR_KEY_IP,
786 					   target_container);
787 	key_ip->tos = iph->tos;
788 	key_ip->ttl = iph->ttl;
789 }
790 
791 static void
792 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
793 			struct flow_dissector *flow_dissector,
794 			void *target_container, const void *data,
795 			const struct ipv6hdr *iph)
796 {
797 	struct flow_dissector_key_ip *key_ip;
798 
799 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
800 		return;
801 
802 	key_ip = skb_flow_dissector_target(flow_dissector,
803 					   FLOW_DISSECTOR_KEY_IP,
804 					   target_container);
805 	key_ip->tos = ipv6_get_dsfield(iph);
806 	key_ip->ttl = iph->hop_limit;
807 }
808 
809 /* Maximum number of protocol headers that can be parsed in
810  * __skb_flow_dissect
811  */
812 #define MAX_FLOW_DISSECT_HDRS	15
813 
814 static bool skb_flow_dissect_allowed(int *num_hdrs)
815 {
816 	++*num_hdrs;
817 
818 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
819 }
820 
821 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
822 				     struct flow_dissector *flow_dissector,
823 				     void *target_container)
824 {
825 	struct flow_dissector_key_ports *key_ports = NULL;
826 	struct flow_dissector_key_control *key_control;
827 	struct flow_dissector_key_basic *key_basic;
828 	struct flow_dissector_key_addrs *key_addrs;
829 	struct flow_dissector_key_tags *key_tags;
830 
831 	key_control = skb_flow_dissector_target(flow_dissector,
832 						FLOW_DISSECTOR_KEY_CONTROL,
833 						target_container);
834 	key_control->thoff = flow_keys->thoff;
835 	if (flow_keys->is_frag)
836 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
837 	if (flow_keys->is_first_frag)
838 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
839 	if (flow_keys->is_encap)
840 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
841 
842 	key_basic = skb_flow_dissector_target(flow_dissector,
843 					      FLOW_DISSECTOR_KEY_BASIC,
844 					      target_container);
845 	key_basic->n_proto = flow_keys->n_proto;
846 	key_basic->ip_proto = flow_keys->ip_proto;
847 
848 	if (flow_keys->addr_proto == ETH_P_IP &&
849 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
850 		key_addrs = skb_flow_dissector_target(flow_dissector,
851 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
852 						      target_container);
853 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
854 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
855 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
856 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
857 		   dissector_uses_key(flow_dissector,
858 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
859 		key_addrs = skb_flow_dissector_target(flow_dissector,
860 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
861 						      target_container);
862 		memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src,
863 		       sizeof(key_addrs->v6addrs.src));
864 		memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst,
865 		       sizeof(key_addrs->v6addrs.dst));
866 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
867 	}
868 
869 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
870 		key_ports = skb_flow_dissector_target(flow_dissector,
871 						      FLOW_DISSECTOR_KEY_PORTS,
872 						      target_container);
873 	else if (dissector_uses_key(flow_dissector,
874 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
875 		key_ports = skb_flow_dissector_target(flow_dissector,
876 						      FLOW_DISSECTOR_KEY_PORTS_RANGE,
877 						      target_container);
878 
879 	if (key_ports) {
880 		key_ports->src = flow_keys->sport;
881 		key_ports->dst = flow_keys->dport;
882 	}
883 
884 	if (dissector_uses_key(flow_dissector,
885 			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
886 		key_tags = skb_flow_dissector_target(flow_dissector,
887 						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
888 						     target_container);
889 		key_tags->flow_label = ntohl(flow_keys->flow_label);
890 	}
891 }
892 
893 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
894 		     __be16 proto, int nhoff, int hlen, unsigned int flags)
895 {
896 	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
897 	u32 result;
898 
899 	/* Pass parameters to the BPF program */
900 	memset(flow_keys, 0, sizeof(*flow_keys));
901 	flow_keys->n_proto = proto;
902 	flow_keys->nhoff = nhoff;
903 	flow_keys->thoff = flow_keys->nhoff;
904 
905 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
906 		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
907 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
908 		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
909 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
910 		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
911 	flow_keys->flags = flags;
912 
913 	result = bpf_prog_run_pin_on_cpu(prog, ctx);
914 
915 	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
916 	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
917 				   flow_keys->nhoff, hlen);
918 
919 	return result;
920 }
921 
922 static bool is_pppoe_ses_hdr_valid(const struct pppoe_hdr *hdr)
923 {
924 	return hdr->ver == 1 && hdr->type == 1 && hdr->code == 0;
925 }
926 
927 /**
928  * __skb_flow_dissect - extract the flow_keys struct and return it
929  * @net: associated network namespace, derived from @skb if NULL
930  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
931  * @flow_dissector: list of keys to dissect
932  * @target_container: target structure to put dissected values into
933  * @data: raw buffer pointer to the packet, if NULL use skb->data
934  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
935  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
936  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
937  * @flags: flags that control the dissection process, e.g.
938  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
939  *
940  * The function will try to retrieve individual keys into target specified
941  * by flow_dissector from either the skbuff or a raw buffer specified by the
942  * rest parameters.
943  *
944  * Caller must take care of zeroing target container memory.
945  */
946 bool __skb_flow_dissect(const struct net *net,
947 			const struct sk_buff *skb,
948 			struct flow_dissector *flow_dissector,
949 			void *target_container, const void *data,
950 			__be16 proto, int nhoff, int hlen, unsigned int flags)
951 {
952 	struct flow_dissector_key_control *key_control;
953 	struct flow_dissector_key_basic *key_basic;
954 	struct flow_dissector_key_addrs *key_addrs;
955 	struct flow_dissector_key_tags *key_tags;
956 	struct flow_dissector_key_vlan *key_vlan;
957 	enum flow_dissect_ret fdret;
958 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
959 	bool mpls_el = false;
960 	int mpls_lse = 0;
961 	int num_hdrs = 0;
962 	u8 ip_proto = 0;
963 	bool ret;
964 
965 	if (!data) {
966 		data = skb->data;
967 		proto = skb_vlan_tag_present(skb) ?
968 			 skb->vlan_proto : skb->protocol;
969 		nhoff = skb_network_offset(skb);
970 		hlen = skb_headlen(skb);
971 #if IS_ENABLED(CONFIG_NET_DSA)
972 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
973 			     proto == htons(ETH_P_XDSA))) {
974 			const struct dsa_device_ops *ops;
975 			int offset = 0;
976 
977 			ops = skb->dev->dsa_ptr->tag_ops;
978 			/* Only DSA header taggers break flow dissection */
979 			if (ops->needed_headroom) {
980 				if (ops->flow_dissect)
981 					ops->flow_dissect(skb, &proto, &offset);
982 				else
983 					dsa_tag_generic_flow_dissect(skb,
984 								     &proto,
985 								     &offset);
986 				hlen -= offset;
987 				nhoff += offset;
988 			}
989 		}
990 #endif
991 	}
992 
993 	/* It is ensured by skb_flow_dissector_init() that control key will
994 	 * be always present.
995 	 */
996 	key_control = skb_flow_dissector_target(flow_dissector,
997 						FLOW_DISSECTOR_KEY_CONTROL,
998 						target_container);
999 
1000 	/* It is ensured by skb_flow_dissector_init() that basic key will
1001 	 * be always present.
1002 	 */
1003 	key_basic = skb_flow_dissector_target(flow_dissector,
1004 					      FLOW_DISSECTOR_KEY_BASIC,
1005 					      target_container);
1006 
1007 	if (skb) {
1008 		if (!net) {
1009 			if (skb->dev)
1010 				net = dev_net(skb->dev);
1011 			else if (skb->sk)
1012 				net = sock_net(skb->sk);
1013 		}
1014 	}
1015 
1016 	WARN_ON_ONCE(!net);
1017 	if (net) {
1018 		enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
1019 		struct bpf_prog_array *run_array;
1020 
1021 		rcu_read_lock();
1022 		run_array = rcu_dereference(init_net.bpf.run_array[type]);
1023 		if (!run_array)
1024 			run_array = rcu_dereference(net->bpf.run_array[type]);
1025 
1026 		if (run_array) {
1027 			struct bpf_flow_keys flow_keys;
1028 			struct bpf_flow_dissector ctx = {
1029 				.flow_keys = &flow_keys,
1030 				.data = data,
1031 				.data_end = data + hlen,
1032 			};
1033 			__be16 n_proto = proto;
1034 			struct bpf_prog *prog;
1035 			u32 result;
1036 
1037 			if (skb) {
1038 				ctx.skb = skb;
1039 				/* we can't use 'proto' in the skb case
1040 				 * because it might be set to skb->vlan_proto
1041 				 * which has been pulled from the data
1042 				 */
1043 				n_proto = skb->protocol;
1044 			}
1045 
1046 			prog = READ_ONCE(run_array->items[0].prog);
1047 			result = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
1048 						  hlen, flags);
1049 			if (result == BPF_FLOW_DISSECTOR_CONTINUE)
1050 				goto dissect_continue;
1051 			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1052 						 target_container);
1053 			rcu_read_unlock();
1054 			return result == BPF_OK;
1055 		}
1056 dissect_continue:
1057 		rcu_read_unlock();
1058 	}
1059 
1060 	if (dissector_uses_key(flow_dissector,
1061 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1062 		struct ethhdr *eth = eth_hdr(skb);
1063 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
1064 
1065 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1066 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
1067 							  target_container);
1068 		memcpy(key_eth_addrs, eth, sizeof(*key_eth_addrs));
1069 	}
1070 
1071 	if (dissector_uses_key(flow_dissector,
1072 			       FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) {
1073 		struct flow_dissector_key_num_of_vlans *key_num_of_vlans;
1074 
1075 		key_num_of_vlans = skb_flow_dissector_target(flow_dissector,
1076 							     FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
1077 							     target_container);
1078 		key_num_of_vlans->num_of_vlans = 0;
1079 	}
1080 
1081 proto_again:
1082 	fdret = FLOW_DISSECT_RET_CONTINUE;
1083 
1084 	switch (proto) {
1085 	case htons(ETH_P_IP): {
1086 		const struct iphdr *iph;
1087 		struct iphdr _iph;
1088 
1089 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1090 		if (!iph || iph->ihl < 5) {
1091 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1092 			break;
1093 		}
1094 
1095 		nhoff += iph->ihl * 4;
1096 
1097 		ip_proto = iph->protocol;
1098 
1099 		if (dissector_uses_key(flow_dissector,
1100 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1101 			key_addrs = skb_flow_dissector_target(flow_dissector,
1102 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1103 							      target_container);
1104 
1105 			memcpy(&key_addrs->v4addrs.src, &iph->saddr,
1106 			       sizeof(key_addrs->v4addrs.src));
1107 			memcpy(&key_addrs->v4addrs.dst, &iph->daddr,
1108 			       sizeof(key_addrs->v4addrs.dst));
1109 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1110 		}
1111 
1112 		__skb_flow_dissect_ipv4(skb, flow_dissector,
1113 					target_container, data, iph);
1114 
1115 		if (ip_is_fragment(iph)) {
1116 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1117 
1118 			if (iph->frag_off & htons(IP_OFFSET)) {
1119 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1120 				break;
1121 			} else {
1122 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
1123 				if (!(flags &
1124 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1125 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
1126 					break;
1127 				}
1128 			}
1129 		}
1130 
1131 		break;
1132 	}
1133 	case htons(ETH_P_IPV6): {
1134 		const struct ipv6hdr *iph;
1135 		struct ipv6hdr _iph;
1136 
1137 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1138 		if (!iph) {
1139 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1140 			break;
1141 		}
1142 
1143 		ip_proto = iph->nexthdr;
1144 		nhoff += sizeof(struct ipv6hdr);
1145 
1146 		if (dissector_uses_key(flow_dissector,
1147 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1148 			key_addrs = skb_flow_dissector_target(flow_dissector,
1149 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1150 							      target_container);
1151 
1152 			memcpy(&key_addrs->v6addrs.src, &iph->saddr,
1153 			       sizeof(key_addrs->v6addrs.src));
1154 			memcpy(&key_addrs->v6addrs.dst, &iph->daddr,
1155 			       sizeof(key_addrs->v6addrs.dst));
1156 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1157 		}
1158 
1159 		if ((dissector_uses_key(flow_dissector,
1160 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1161 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1162 		    ip6_flowlabel(iph)) {
1163 			__be32 flow_label = ip6_flowlabel(iph);
1164 
1165 			if (dissector_uses_key(flow_dissector,
1166 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1167 				key_tags = skb_flow_dissector_target(flow_dissector,
1168 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
1169 								     target_container);
1170 				key_tags->flow_label = ntohl(flow_label);
1171 			}
1172 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1173 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1174 				break;
1175 			}
1176 		}
1177 
1178 		__skb_flow_dissect_ipv6(skb, flow_dissector,
1179 					target_container, data, iph);
1180 
1181 		break;
1182 	}
1183 	case htons(ETH_P_8021AD):
1184 	case htons(ETH_P_8021Q): {
1185 		const struct vlan_hdr *vlan = NULL;
1186 		struct vlan_hdr _vlan;
1187 		__be16 saved_vlan_tpid = proto;
1188 
1189 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1190 		    skb && skb_vlan_tag_present(skb)) {
1191 			proto = skb->protocol;
1192 		} else {
1193 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1194 						    data, hlen, &_vlan);
1195 			if (!vlan) {
1196 				fdret = FLOW_DISSECT_RET_OUT_BAD;
1197 				break;
1198 			}
1199 
1200 			proto = vlan->h_vlan_encapsulated_proto;
1201 			nhoff += sizeof(*vlan);
1202 		}
1203 
1204 		if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_NUM_OF_VLANS) &&
1205 		    !(key_control->flags & FLOW_DIS_ENCAPSULATION)) {
1206 			struct flow_dissector_key_num_of_vlans *key_nvs;
1207 
1208 			key_nvs = skb_flow_dissector_target(flow_dissector,
1209 							    FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
1210 							    target_container);
1211 			key_nvs->num_of_vlans++;
1212 		}
1213 
1214 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1215 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1216 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1217 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1218 		} else {
1219 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1220 			break;
1221 		}
1222 
1223 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1224 			key_vlan = skb_flow_dissector_target(flow_dissector,
1225 							     dissector_vlan,
1226 							     target_container);
1227 
1228 			if (!vlan) {
1229 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1230 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1231 			} else {
1232 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1233 					VLAN_VID_MASK;
1234 				key_vlan->vlan_priority =
1235 					(ntohs(vlan->h_vlan_TCI) &
1236 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1237 			}
1238 			key_vlan->vlan_tpid = saved_vlan_tpid;
1239 			key_vlan->vlan_eth_type = proto;
1240 		}
1241 
1242 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1243 		break;
1244 	}
1245 	case htons(ETH_P_PPP_SES): {
1246 		struct {
1247 			struct pppoe_hdr hdr;
1248 			__be16 proto;
1249 		} *hdr, _hdr;
1250 		u16 ppp_proto;
1251 
1252 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1253 		if (!hdr) {
1254 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1255 			break;
1256 		}
1257 
1258 		if (!is_pppoe_ses_hdr_valid(&hdr->hdr)) {
1259 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1260 			break;
1261 		}
1262 
1263 		/* least significant bit of the most significant octet
1264 		 * indicates if protocol field was compressed
1265 		 */
1266 		ppp_proto = ntohs(hdr->proto);
1267 		if (ppp_proto & 0x0100) {
1268 			ppp_proto = ppp_proto >> 8;
1269 			nhoff += PPPOE_SES_HLEN - 1;
1270 		} else {
1271 			nhoff += PPPOE_SES_HLEN;
1272 		}
1273 
1274 		if (ppp_proto == PPP_IP) {
1275 			proto = htons(ETH_P_IP);
1276 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1277 		} else if (ppp_proto == PPP_IPV6) {
1278 			proto = htons(ETH_P_IPV6);
1279 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1280 		} else if (ppp_proto == PPP_MPLS_UC) {
1281 			proto = htons(ETH_P_MPLS_UC);
1282 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1283 		} else if (ppp_proto == PPP_MPLS_MC) {
1284 			proto = htons(ETH_P_MPLS_MC);
1285 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1286 		} else if (ppp_proto_is_valid(ppp_proto)) {
1287 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1288 		} else {
1289 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1290 			break;
1291 		}
1292 
1293 		if (dissector_uses_key(flow_dissector,
1294 				       FLOW_DISSECTOR_KEY_PPPOE)) {
1295 			struct flow_dissector_key_pppoe *key_pppoe;
1296 
1297 			key_pppoe = skb_flow_dissector_target(flow_dissector,
1298 							      FLOW_DISSECTOR_KEY_PPPOE,
1299 							      target_container);
1300 			key_pppoe->session_id = hdr->hdr.sid;
1301 			key_pppoe->ppp_proto = htons(ppp_proto);
1302 			key_pppoe->type = htons(ETH_P_PPP_SES);
1303 		}
1304 		break;
1305 	}
1306 	case htons(ETH_P_TIPC): {
1307 		struct tipc_basic_hdr *hdr, _hdr;
1308 
1309 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1310 					   data, hlen, &_hdr);
1311 		if (!hdr) {
1312 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1313 			break;
1314 		}
1315 
1316 		if (dissector_uses_key(flow_dissector,
1317 				       FLOW_DISSECTOR_KEY_TIPC)) {
1318 			key_addrs = skb_flow_dissector_target(flow_dissector,
1319 							      FLOW_DISSECTOR_KEY_TIPC,
1320 							      target_container);
1321 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1322 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1323 		}
1324 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1325 		break;
1326 	}
1327 
1328 	case htons(ETH_P_MPLS_UC):
1329 	case htons(ETH_P_MPLS_MC):
1330 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1331 						target_container, data,
1332 						nhoff, hlen, mpls_lse,
1333 						&mpls_el);
1334 		nhoff += sizeof(struct mpls_label);
1335 		mpls_lse++;
1336 		break;
1337 	case htons(ETH_P_FCOE):
1338 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1339 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1340 			break;
1341 		}
1342 
1343 		nhoff += FCOE_HEADER_LEN;
1344 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1345 		break;
1346 
1347 	case htons(ETH_P_ARP):
1348 	case htons(ETH_P_RARP):
1349 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1350 					       target_container, data,
1351 					       nhoff, hlen);
1352 		break;
1353 
1354 	case htons(ETH_P_BATMAN):
1355 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1356 						  &proto, &nhoff, hlen, flags);
1357 		break;
1358 
1359 	case htons(ETH_P_1588): {
1360 		struct ptp_header *hdr, _hdr;
1361 
1362 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
1363 					   hlen, &_hdr);
1364 		if (!hdr) {
1365 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1366 			break;
1367 		}
1368 
1369 		nhoff += ntohs(hdr->message_length);
1370 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1371 		break;
1372 	}
1373 
1374 	case htons(ETH_P_PRP):
1375 	case htons(ETH_P_HSR): {
1376 		struct hsr_tag *hdr, _hdr;
1377 
1378 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen,
1379 					   &_hdr);
1380 		if (!hdr) {
1381 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1382 			break;
1383 		}
1384 
1385 		proto = hdr->encap_proto;
1386 		nhoff += HSR_HLEN;
1387 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1388 		break;
1389 	}
1390 
1391 	default:
1392 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1393 		break;
1394 	}
1395 
1396 	/* Process result of proto processing */
1397 	switch (fdret) {
1398 	case FLOW_DISSECT_RET_OUT_GOOD:
1399 		goto out_good;
1400 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1401 		if (skb_flow_dissect_allowed(&num_hdrs))
1402 			goto proto_again;
1403 		goto out_good;
1404 	case FLOW_DISSECT_RET_CONTINUE:
1405 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1406 		break;
1407 	case FLOW_DISSECT_RET_OUT_BAD:
1408 	default:
1409 		goto out_bad;
1410 	}
1411 
1412 ip_proto_again:
1413 	fdret = FLOW_DISSECT_RET_CONTINUE;
1414 
1415 	switch (ip_proto) {
1416 	case IPPROTO_GRE:
1417 		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
1418 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1419 			break;
1420 		}
1421 
1422 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1423 					       target_container, data,
1424 					       &proto, &nhoff, &hlen, flags);
1425 		break;
1426 
1427 	case NEXTHDR_HOP:
1428 	case NEXTHDR_ROUTING:
1429 	case NEXTHDR_DEST: {
1430 		u8 _opthdr[2], *opthdr;
1431 
1432 		if (proto != htons(ETH_P_IPV6))
1433 			break;
1434 
1435 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1436 					      data, hlen, &_opthdr);
1437 		if (!opthdr) {
1438 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1439 			break;
1440 		}
1441 
1442 		ip_proto = opthdr[0];
1443 		nhoff += (opthdr[1] + 1) << 3;
1444 
1445 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1446 		break;
1447 	}
1448 	case NEXTHDR_FRAGMENT: {
1449 		struct frag_hdr _fh, *fh;
1450 
1451 		if (proto != htons(ETH_P_IPV6))
1452 			break;
1453 
1454 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1455 					  data, hlen, &_fh);
1456 
1457 		if (!fh) {
1458 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1459 			break;
1460 		}
1461 
1462 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1463 
1464 		nhoff += sizeof(_fh);
1465 		ip_proto = fh->nexthdr;
1466 
1467 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1468 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1469 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1470 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1471 				break;
1472 			}
1473 		}
1474 
1475 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1476 		break;
1477 	}
1478 	case IPPROTO_IPIP:
1479 		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
1480 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1481 			break;
1482 		}
1483 
1484 		proto = htons(ETH_P_IP);
1485 
1486 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1487 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1488 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1489 			break;
1490 		}
1491 
1492 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1493 		break;
1494 
1495 	case IPPROTO_IPV6:
1496 		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
1497 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1498 			break;
1499 		}
1500 
1501 		proto = htons(ETH_P_IPV6);
1502 
1503 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1504 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1505 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1506 			break;
1507 		}
1508 
1509 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1510 		break;
1511 
1512 
1513 	case IPPROTO_MPLS:
1514 		proto = htons(ETH_P_MPLS_UC);
1515 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1516 		break;
1517 
1518 	case IPPROTO_TCP:
1519 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1520 				       data, nhoff, hlen);
1521 		break;
1522 
1523 	case IPPROTO_ICMP:
1524 	case IPPROTO_ICMPV6:
1525 		__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1526 					data, nhoff, hlen);
1527 		break;
1528 	case IPPROTO_L2TP:
1529 		__skb_flow_dissect_l2tpv3(skb, flow_dissector, target_container,
1530 					  data, nhoff, hlen);
1531 		break;
1532 
1533 	default:
1534 		break;
1535 	}
1536 
1537 	if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1538 		__skb_flow_dissect_ports(skb, flow_dissector, target_container,
1539 					 data, nhoff, ip_proto, hlen);
1540 
1541 	/* Process result of IP proto processing */
1542 	switch (fdret) {
1543 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1544 		if (skb_flow_dissect_allowed(&num_hdrs))
1545 			goto proto_again;
1546 		break;
1547 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1548 		if (skb_flow_dissect_allowed(&num_hdrs))
1549 			goto ip_proto_again;
1550 		break;
1551 	case FLOW_DISSECT_RET_OUT_GOOD:
1552 	case FLOW_DISSECT_RET_CONTINUE:
1553 		break;
1554 	case FLOW_DISSECT_RET_OUT_BAD:
1555 	default:
1556 		goto out_bad;
1557 	}
1558 
1559 out_good:
1560 	ret = true;
1561 
1562 out:
1563 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1564 	key_basic->n_proto = proto;
1565 	key_basic->ip_proto = ip_proto;
1566 
1567 	return ret;
1568 
1569 out_bad:
1570 	ret = false;
1571 	goto out;
1572 }
1573 EXPORT_SYMBOL(__skb_flow_dissect);
1574 
1575 static siphash_aligned_key_t hashrnd;
1576 static __always_inline void __flow_hash_secret_init(void)
1577 {
1578 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1579 }
1580 
1581 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1582 {
1583 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1584 	return &flow->FLOW_KEYS_HASH_START_FIELD;
1585 }
1586 
1587 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1588 {
1589 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1590 
1591 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1592 
1593 	switch (flow->control.addr_type) {
1594 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1595 		diff -= sizeof(flow->addrs.v4addrs);
1596 		break;
1597 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1598 		diff -= sizeof(flow->addrs.v6addrs);
1599 		break;
1600 	case FLOW_DISSECTOR_KEY_TIPC:
1601 		diff -= sizeof(flow->addrs.tipckey);
1602 		break;
1603 	}
1604 	return sizeof(*flow) - diff;
1605 }
1606 
1607 __be32 flow_get_u32_src(const struct flow_keys *flow)
1608 {
1609 	switch (flow->control.addr_type) {
1610 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1611 		return flow->addrs.v4addrs.src;
1612 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1613 		return (__force __be32)ipv6_addr_hash(
1614 			&flow->addrs.v6addrs.src);
1615 	case FLOW_DISSECTOR_KEY_TIPC:
1616 		return flow->addrs.tipckey.key;
1617 	default:
1618 		return 0;
1619 	}
1620 }
1621 EXPORT_SYMBOL(flow_get_u32_src);
1622 
1623 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1624 {
1625 	switch (flow->control.addr_type) {
1626 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1627 		return flow->addrs.v4addrs.dst;
1628 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1629 		return (__force __be32)ipv6_addr_hash(
1630 			&flow->addrs.v6addrs.dst);
1631 	default:
1632 		return 0;
1633 	}
1634 }
1635 EXPORT_SYMBOL(flow_get_u32_dst);
1636 
1637 /* Sort the source and destination IP and the ports,
1638  * to have consistent hash within the two directions
1639  */
1640 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1641 {
1642 	int addr_diff, i;
1643 
1644 	switch (keys->control.addr_type) {
1645 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1646 		if ((__force u32)keys->addrs.v4addrs.dst <
1647 		    (__force u32)keys->addrs.v4addrs.src)
1648 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1649 
1650 		if ((__force u16)keys->ports.dst <
1651 		    (__force u16)keys->ports.src) {
1652 			swap(keys->ports.src, keys->ports.dst);
1653 		}
1654 		break;
1655 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1656 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1657 				   &keys->addrs.v6addrs.src,
1658 				   sizeof(keys->addrs.v6addrs.dst));
1659 		if (addr_diff < 0) {
1660 			for (i = 0; i < 4; i++)
1661 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1662 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1663 		}
1664 		if ((__force u16)keys->ports.dst <
1665 		    (__force u16)keys->ports.src) {
1666 			swap(keys->ports.src, keys->ports.dst);
1667 		}
1668 		break;
1669 	}
1670 }
1671 
1672 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1673 					const siphash_key_t *keyval)
1674 {
1675 	u32 hash;
1676 
1677 	__flow_hash_consistentify(keys);
1678 
1679 	hash = siphash(flow_keys_hash_start(keys),
1680 		       flow_keys_hash_length(keys), keyval);
1681 	if (!hash)
1682 		hash = 1;
1683 
1684 	return hash;
1685 }
1686 
1687 u32 flow_hash_from_keys(struct flow_keys *keys)
1688 {
1689 	__flow_hash_secret_init();
1690 	return __flow_hash_from_keys(keys, &hashrnd);
1691 }
1692 EXPORT_SYMBOL(flow_hash_from_keys);
1693 
1694 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1695 				  struct flow_keys *keys,
1696 				  const siphash_key_t *keyval)
1697 {
1698 	skb_flow_dissect_flow_keys(skb, keys,
1699 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1700 
1701 	return __flow_hash_from_keys(keys, keyval);
1702 }
1703 
1704 struct _flow_keys_digest_data {
1705 	__be16	n_proto;
1706 	u8	ip_proto;
1707 	u8	padding;
1708 	__be32	ports;
1709 	__be32	src;
1710 	__be32	dst;
1711 };
1712 
1713 void make_flow_keys_digest(struct flow_keys_digest *digest,
1714 			   const struct flow_keys *flow)
1715 {
1716 	struct _flow_keys_digest_data *data =
1717 	    (struct _flow_keys_digest_data *)digest;
1718 
1719 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1720 
1721 	memset(digest, 0, sizeof(*digest));
1722 
1723 	data->n_proto = flow->basic.n_proto;
1724 	data->ip_proto = flow->basic.ip_proto;
1725 	data->ports = flow->ports.ports;
1726 	data->src = flow->addrs.v4addrs.src;
1727 	data->dst = flow->addrs.v4addrs.dst;
1728 }
1729 EXPORT_SYMBOL(make_flow_keys_digest);
1730 
1731 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1732 
1733 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1734 {
1735 	struct flow_keys keys;
1736 
1737 	__flow_hash_secret_init();
1738 
1739 	memset(&keys, 0, sizeof(keys));
1740 	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1741 			   &keys, NULL, 0, 0, 0,
1742 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1743 
1744 	return __flow_hash_from_keys(&keys, &hashrnd);
1745 }
1746 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1747 
1748 /**
1749  * __skb_get_hash: calculate a flow hash
1750  * @skb: sk_buff to calculate flow hash from
1751  *
1752  * This function calculates a flow hash based on src/dst addresses
1753  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1754  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1755  * if hash is a canonical 4-tuple hash over transport ports.
1756  */
1757 void __skb_get_hash(struct sk_buff *skb)
1758 {
1759 	struct flow_keys keys;
1760 	u32 hash;
1761 
1762 	__flow_hash_secret_init();
1763 
1764 	hash = ___skb_get_hash(skb, &keys, &hashrnd);
1765 
1766 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1767 }
1768 EXPORT_SYMBOL(__skb_get_hash);
1769 
1770 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1771 			   const siphash_key_t *perturb)
1772 {
1773 	struct flow_keys keys;
1774 
1775 	return ___skb_get_hash(skb, &keys, perturb);
1776 }
1777 EXPORT_SYMBOL(skb_get_hash_perturb);
1778 
1779 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1780 		   const struct flow_keys_basic *keys, int hlen)
1781 {
1782 	u32 poff = keys->control.thoff;
1783 
1784 	/* skip L4 headers for fragments after the first */
1785 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1786 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1787 		return poff;
1788 
1789 	switch (keys->basic.ip_proto) {
1790 	case IPPROTO_TCP: {
1791 		/* access doff as u8 to avoid unaligned access */
1792 		const u8 *doff;
1793 		u8 _doff;
1794 
1795 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1796 					    data, hlen, &_doff);
1797 		if (!doff)
1798 			return poff;
1799 
1800 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1801 		break;
1802 	}
1803 	case IPPROTO_UDP:
1804 	case IPPROTO_UDPLITE:
1805 		poff += sizeof(struct udphdr);
1806 		break;
1807 	/* For the rest, we do not really care about header
1808 	 * extensions at this point for now.
1809 	 */
1810 	case IPPROTO_ICMP:
1811 		poff += sizeof(struct icmphdr);
1812 		break;
1813 	case IPPROTO_ICMPV6:
1814 		poff += sizeof(struct icmp6hdr);
1815 		break;
1816 	case IPPROTO_IGMP:
1817 		poff += sizeof(struct igmphdr);
1818 		break;
1819 	case IPPROTO_DCCP:
1820 		poff += sizeof(struct dccp_hdr);
1821 		break;
1822 	case IPPROTO_SCTP:
1823 		poff += sizeof(struct sctphdr);
1824 		break;
1825 	}
1826 
1827 	return poff;
1828 }
1829 
1830 /**
1831  * skb_get_poff - get the offset to the payload
1832  * @skb: sk_buff to get the payload offset from
1833  *
1834  * The function will get the offset to the payload as far as it could
1835  * be dissected.  The main user is currently BPF, so that we can dynamically
1836  * truncate packets without needing to push actual payload to the user
1837  * space and can analyze headers only, instead.
1838  */
1839 u32 skb_get_poff(const struct sk_buff *skb)
1840 {
1841 	struct flow_keys_basic keys;
1842 
1843 	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1844 					      NULL, 0, 0, 0, 0))
1845 		return 0;
1846 
1847 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1848 }
1849 
1850 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1851 {
1852 	memset(keys, 0, sizeof(*keys));
1853 
1854 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1855 	    sizeof(keys->addrs.v6addrs.src));
1856 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1857 	    sizeof(keys->addrs.v6addrs.dst));
1858 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1859 	keys->ports.src = fl6->fl6_sport;
1860 	keys->ports.dst = fl6->fl6_dport;
1861 	keys->keyid.keyid = fl6->fl6_gre_key;
1862 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1863 	keys->basic.ip_proto = fl6->flowi6_proto;
1864 
1865 	return flow_hash_from_keys(keys);
1866 }
1867 EXPORT_SYMBOL(__get_hash_from_flowi6);
1868 
1869 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1870 	{
1871 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1872 		.offset = offsetof(struct flow_keys, control),
1873 	},
1874 	{
1875 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1876 		.offset = offsetof(struct flow_keys, basic),
1877 	},
1878 	{
1879 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1880 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1881 	},
1882 	{
1883 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1884 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1885 	},
1886 	{
1887 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1888 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1889 	},
1890 	{
1891 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1892 		.offset = offsetof(struct flow_keys, ports),
1893 	},
1894 	{
1895 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1896 		.offset = offsetof(struct flow_keys, vlan),
1897 	},
1898 	{
1899 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1900 		.offset = offsetof(struct flow_keys, tags),
1901 	},
1902 	{
1903 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1904 		.offset = offsetof(struct flow_keys, keyid),
1905 	},
1906 };
1907 
1908 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1909 	{
1910 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1911 		.offset = offsetof(struct flow_keys, control),
1912 	},
1913 	{
1914 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1915 		.offset = offsetof(struct flow_keys, basic),
1916 	},
1917 	{
1918 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1919 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1920 	},
1921 	{
1922 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1923 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1924 	},
1925 	{
1926 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1927 		.offset = offsetof(struct flow_keys, ports),
1928 	},
1929 };
1930 
1931 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1932 	{
1933 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1934 		.offset = offsetof(struct flow_keys, control),
1935 	},
1936 	{
1937 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1938 		.offset = offsetof(struct flow_keys, basic),
1939 	},
1940 };
1941 
1942 struct flow_dissector flow_keys_dissector __read_mostly;
1943 EXPORT_SYMBOL(flow_keys_dissector);
1944 
1945 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1946 EXPORT_SYMBOL(flow_keys_basic_dissector);
1947 
1948 static int __init init_default_flow_dissectors(void)
1949 {
1950 	skb_flow_dissector_init(&flow_keys_dissector,
1951 				flow_keys_dissector_keys,
1952 				ARRAY_SIZE(flow_keys_dissector_keys));
1953 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1954 				flow_keys_dissector_symmetric_keys,
1955 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1956 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1957 				flow_keys_basic_dissector_keys,
1958 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1959 	return 0;
1960 }
1961 core_initcall(init_default_flow_dissectors);
1962