xref: /linux/net/core/bpf_sk_storage.c (revision 63307d015b91e626c97bb82e88054af3d0b74643)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 Facebook  */
3 #include <linux/rculist.h>
4 #include <linux/list.h>
5 #include <linux/hash.h>
6 #include <linux/types.h>
7 #include <linux/spinlock.h>
8 #include <linux/bpf.h>
9 #include <net/bpf_sk_storage.h>
10 #include <net/sock.h>
11 #include <uapi/linux/btf.h>
12 
13 static atomic_t cache_idx;
14 
15 struct bucket {
16 	struct hlist_head list;
17 	raw_spinlock_t lock;
18 };
19 
20 /* Thp map is not the primary owner of a bpf_sk_storage_elem.
21  * Instead, the sk->sk_bpf_storage is.
22  *
23  * The map (bpf_sk_storage_map) is for two purposes
24  * 1. Define the size of the "sk local storage".  It is
25  *    the map's value_size.
26  *
27  * 2. Maintain a list to keep track of all elems such
28  *    that they can be cleaned up during the map destruction.
29  *
30  * When a bpf local storage is being looked up for a
31  * particular sk,  the "bpf_map" pointer is actually used
32  * as the "key" to search in the list of elem in
33  * sk->sk_bpf_storage.
34  *
35  * Hence, consider sk->sk_bpf_storage is the mini-map
36  * with the "bpf_map" pointer as the searching key.
37  */
38 struct bpf_sk_storage_map {
39 	struct bpf_map map;
40 	/* Lookup elem does not require accessing the map.
41 	 *
42 	 * Updating/Deleting requires a bucket lock to
43 	 * link/unlink the elem from the map.  Having
44 	 * multiple buckets to improve contention.
45 	 */
46 	struct bucket *buckets;
47 	u32 bucket_log;
48 	u16 elem_size;
49 	u16 cache_idx;
50 };
51 
52 struct bpf_sk_storage_data {
53 	/* smap is used as the searching key when looking up
54 	 * from sk->sk_bpf_storage.
55 	 *
56 	 * Put it in the same cacheline as the data to minimize
57 	 * the number of cachelines access during the cache hit case.
58 	 */
59 	struct bpf_sk_storage_map __rcu *smap;
60 	u8 data[0] __aligned(8);
61 };
62 
63 /* Linked to bpf_sk_storage and bpf_sk_storage_map */
64 struct bpf_sk_storage_elem {
65 	struct hlist_node map_node;	/* Linked to bpf_sk_storage_map */
66 	struct hlist_node snode;	/* Linked to bpf_sk_storage */
67 	struct bpf_sk_storage __rcu *sk_storage;
68 	struct rcu_head rcu;
69 	/* 8 bytes hole */
70 	/* The data is stored in aother cacheline to minimize
71 	 * the number of cachelines access during a cache hit.
72 	 */
73 	struct bpf_sk_storage_data sdata ____cacheline_aligned;
74 };
75 
76 #define SELEM(_SDATA) container_of((_SDATA), struct bpf_sk_storage_elem, sdata)
77 #define SDATA(_SELEM) (&(_SELEM)->sdata)
78 #define BPF_SK_STORAGE_CACHE_SIZE	16
79 
80 struct bpf_sk_storage {
81 	struct bpf_sk_storage_data __rcu *cache[BPF_SK_STORAGE_CACHE_SIZE];
82 	struct hlist_head list;	/* List of bpf_sk_storage_elem */
83 	struct sock *sk;	/* The sk that owns the the above "list" of
84 				 * bpf_sk_storage_elem.
85 				 */
86 	struct rcu_head rcu;
87 	raw_spinlock_t lock;	/* Protect adding/removing from the "list" */
88 };
89 
90 static struct bucket *select_bucket(struct bpf_sk_storage_map *smap,
91 				    struct bpf_sk_storage_elem *selem)
92 {
93 	return &smap->buckets[hash_ptr(selem, smap->bucket_log)];
94 }
95 
96 static int omem_charge(struct sock *sk, unsigned int size)
97 {
98 	/* same check as in sock_kmalloc() */
99 	if (size <= sysctl_optmem_max &&
100 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
101 		atomic_add(size, &sk->sk_omem_alloc);
102 		return 0;
103 	}
104 
105 	return -ENOMEM;
106 }
107 
108 static bool selem_linked_to_sk(const struct bpf_sk_storage_elem *selem)
109 {
110 	return !hlist_unhashed(&selem->snode);
111 }
112 
113 static bool selem_linked_to_map(const struct bpf_sk_storage_elem *selem)
114 {
115 	return !hlist_unhashed(&selem->map_node);
116 }
117 
118 static struct bpf_sk_storage_elem *selem_alloc(struct bpf_sk_storage_map *smap,
119 					       struct sock *sk, void *value,
120 					       bool charge_omem)
121 {
122 	struct bpf_sk_storage_elem *selem;
123 
124 	if (charge_omem && omem_charge(sk, smap->elem_size))
125 		return NULL;
126 
127 	selem = kzalloc(smap->elem_size, GFP_ATOMIC | __GFP_NOWARN);
128 	if (selem) {
129 		if (value)
130 			memcpy(SDATA(selem)->data, value, smap->map.value_size);
131 		return selem;
132 	}
133 
134 	if (charge_omem)
135 		atomic_sub(smap->elem_size, &sk->sk_omem_alloc);
136 
137 	return NULL;
138 }
139 
140 /* sk_storage->lock must be held and selem->sk_storage == sk_storage.
141  * The caller must ensure selem->smap is still valid to be
142  * dereferenced for its smap->elem_size and smap->cache_idx.
143  */
144 static bool __selem_unlink_sk(struct bpf_sk_storage *sk_storage,
145 			      struct bpf_sk_storage_elem *selem,
146 			      bool uncharge_omem)
147 {
148 	struct bpf_sk_storage_map *smap;
149 	bool free_sk_storage;
150 	struct sock *sk;
151 
152 	smap = rcu_dereference(SDATA(selem)->smap);
153 	sk = sk_storage->sk;
154 
155 	/* All uncharging on sk->sk_omem_alloc must be done first.
156 	 * sk may be freed once the last selem is unlinked from sk_storage.
157 	 */
158 	if (uncharge_omem)
159 		atomic_sub(smap->elem_size, &sk->sk_omem_alloc);
160 
161 	free_sk_storage = hlist_is_singular_node(&selem->snode,
162 						 &sk_storage->list);
163 	if (free_sk_storage) {
164 		atomic_sub(sizeof(struct bpf_sk_storage), &sk->sk_omem_alloc);
165 		sk_storage->sk = NULL;
166 		/* After this RCU_INIT, sk may be freed and cannot be used */
167 		RCU_INIT_POINTER(sk->sk_bpf_storage, NULL);
168 
169 		/* sk_storage is not freed now.  sk_storage->lock is
170 		 * still held and raw_spin_unlock_bh(&sk_storage->lock)
171 		 * will be done by the caller.
172 		 *
173 		 * Although the unlock will be done under
174 		 * rcu_read_lock(),  it is more intutivie to
175 		 * read if kfree_rcu(sk_storage, rcu) is done
176 		 * after the raw_spin_unlock_bh(&sk_storage->lock).
177 		 *
178 		 * Hence, a "bool free_sk_storage" is returned
179 		 * to the caller which then calls the kfree_rcu()
180 		 * after unlock.
181 		 */
182 	}
183 	hlist_del_init_rcu(&selem->snode);
184 	if (rcu_access_pointer(sk_storage->cache[smap->cache_idx]) ==
185 	    SDATA(selem))
186 		RCU_INIT_POINTER(sk_storage->cache[smap->cache_idx], NULL);
187 
188 	kfree_rcu(selem, rcu);
189 
190 	return free_sk_storage;
191 }
192 
193 static void selem_unlink_sk(struct bpf_sk_storage_elem *selem)
194 {
195 	struct bpf_sk_storage *sk_storage;
196 	bool free_sk_storage = false;
197 
198 	if (unlikely(!selem_linked_to_sk(selem)))
199 		/* selem has already been unlinked from sk */
200 		return;
201 
202 	sk_storage = rcu_dereference(selem->sk_storage);
203 	raw_spin_lock_bh(&sk_storage->lock);
204 	if (likely(selem_linked_to_sk(selem)))
205 		free_sk_storage = __selem_unlink_sk(sk_storage, selem, true);
206 	raw_spin_unlock_bh(&sk_storage->lock);
207 
208 	if (free_sk_storage)
209 		kfree_rcu(sk_storage, rcu);
210 }
211 
212 /* sk_storage->lock must be held and sk_storage->list cannot be empty */
213 static void __selem_link_sk(struct bpf_sk_storage *sk_storage,
214 			    struct bpf_sk_storage_elem *selem)
215 {
216 	RCU_INIT_POINTER(selem->sk_storage, sk_storage);
217 	hlist_add_head(&selem->snode, &sk_storage->list);
218 }
219 
220 static void selem_unlink_map(struct bpf_sk_storage_elem *selem)
221 {
222 	struct bpf_sk_storage_map *smap;
223 	struct bucket *b;
224 
225 	if (unlikely(!selem_linked_to_map(selem)))
226 		/* selem has already be unlinked from smap */
227 		return;
228 
229 	smap = rcu_dereference(SDATA(selem)->smap);
230 	b = select_bucket(smap, selem);
231 	raw_spin_lock_bh(&b->lock);
232 	if (likely(selem_linked_to_map(selem)))
233 		hlist_del_init_rcu(&selem->map_node);
234 	raw_spin_unlock_bh(&b->lock);
235 }
236 
237 static void selem_link_map(struct bpf_sk_storage_map *smap,
238 			   struct bpf_sk_storage_elem *selem)
239 {
240 	struct bucket *b = select_bucket(smap, selem);
241 
242 	raw_spin_lock_bh(&b->lock);
243 	RCU_INIT_POINTER(SDATA(selem)->smap, smap);
244 	hlist_add_head_rcu(&selem->map_node, &b->list);
245 	raw_spin_unlock_bh(&b->lock);
246 }
247 
248 static void selem_unlink(struct bpf_sk_storage_elem *selem)
249 {
250 	/* Always unlink from map before unlinking from sk_storage
251 	 * because selem will be freed after successfully unlinked from
252 	 * the sk_storage.
253 	 */
254 	selem_unlink_map(selem);
255 	selem_unlink_sk(selem);
256 }
257 
258 static struct bpf_sk_storage_data *
259 __sk_storage_lookup(struct bpf_sk_storage *sk_storage,
260 		    struct bpf_sk_storage_map *smap,
261 		    bool cacheit_lockit)
262 {
263 	struct bpf_sk_storage_data *sdata;
264 	struct bpf_sk_storage_elem *selem;
265 
266 	/* Fast path (cache hit) */
267 	sdata = rcu_dereference(sk_storage->cache[smap->cache_idx]);
268 	if (sdata && rcu_access_pointer(sdata->smap) == smap)
269 		return sdata;
270 
271 	/* Slow path (cache miss) */
272 	hlist_for_each_entry_rcu(selem, &sk_storage->list, snode)
273 		if (rcu_access_pointer(SDATA(selem)->smap) == smap)
274 			break;
275 
276 	if (!selem)
277 		return NULL;
278 
279 	sdata = SDATA(selem);
280 	if (cacheit_lockit) {
281 		/* spinlock is needed to avoid racing with the
282 		 * parallel delete.  Otherwise, publishing an already
283 		 * deleted sdata to the cache will become a use-after-free
284 		 * problem in the next __sk_storage_lookup().
285 		 */
286 		raw_spin_lock_bh(&sk_storage->lock);
287 		if (selem_linked_to_sk(selem))
288 			rcu_assign_pointer(sk_storage->cache[smap->cache_idx],
289 					   sdata);
290 		raw_spin_unlock_bh(&sk_storage->lock);
291 	}
292 
293 	return sdata;
294 }
295 
296 static struct bpf_sk_storage_data *
297 sk_storage_lookup(struct sock *sk, struct bpf_map *map, bool cacheit_lockit)
298 {
299 	struct bpf_sk_storage *sk_storage;
300 	struct bpf_sk_storage_map *smap;
301 
302 	sk_storage = rcu_dereference(sk->sk_bpf_storage);
303 	if (!sk_storage)
304 		return NULL;
305 
306 	smap = (struct bpf_sk_storage_map *)map;
307 	return __sk_storage_lookup(sk_storage, smap, cacheit_lockit);
308 }
309 
310 static int check_flags(const struct bpf_sk_storage_data *old_sdata,
311 		       u64 map_flags)
312 {
313 	if (old_sdata && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
314 		/* elem already exists */
315 		return -EEXIST;
316 
317 	if (!old_sdata && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
318 		/* elem doesn't exist, cannot update it */
319 		return -ENOENT;
320 
321 	return 0;
322 }
323 
324 static int sk_storage_alloc(struct sock *sk,
325 			    struct bpf_sk_storage_map *smap,
326 			    struct bpf_sk_storage_elem *first_selem)
327 {
328 	struct bpf_sk_storage *prev_sk_storage, *sk_storage;
329 	int err;
330 
331 	err = omem_charge(sk, sizeof(*sk_storage));
332 	if (err)
333 		return err;
334 
335 	sk_storage = kzalloc(sizeof(*sk_storage), GFP_ATOMIC | __GFP_NOWARN);
336 	if (!sk_storage) {
337 		err = -ENOMEM;
338 		goto uncharge;
339 	}
340 	INIT_HLIST_HEAD(&sk_storage->list);
341 	raw_spin_lock_init(&sk_storage->lock);
342 	sk_storage->sk = sk;
343 
344 	__selem_link_sk(sk_storage, first_selem);
345 	selem_link_map(smap, first_selem);
346 	/* Publish sk_storage to sk.  sk->sk_lock cannot be acquired.
347 	 * Hence, atomic ops is used to set sk->sk_bpf_storage
348 	 * from NULL to the newly allocated sk_storage ptr.
349 	 *
350 	 * From now on, the sk->sk_bpf_storage pointer is protected
351 	 * by the sk_storage->lock.  Hence,  when freeing
352 	 * the sk->sk_bpf_storage, the sk_storage->lock must
353 	 * be held before setting sk->sk_bpf_storage to NULL.
354 	 */
355 	prev_sk_storage = cmpxchg((struct bpf_sk_storage **)&sk->sk_bpf_storage,
356 				  NULL, sk_storage);
357 	if (unlikely(prev_sk_storage)) {
358 		selem_unlink_map(first_selem);
359 		err = -EAGAIN;
360 		goto uncharge;
361 
362 		/* Note that even first_selem was linked to smap's
363 		 * bucket->list, first_selem can be freed immediately
364 		 * (instead of kfree_rcu) because
365 		 * bpf_sk_storage_map_free() does a
366 		 * synchronize_rcu() before walking the bucket->list.
367 		 * Hence, no one is accessing selem from the
368 		 * bucket->list under rcu_read_lock().
369 		 */
370 	}
371 
372 	return 0;
373 
374 uncharge:
375 	kfree(sk_storage);
376 	atomic_sub(sizeof(*sk_storage), &sk->sk_omem_alloc);
377 	return err;
378 }
379 
380 /* sk cannot be going away because it is linking new elem
381  * to sk->sk_bpf_storage. (i.e. sk->sk_refcnt cannot be 0).
382  * Otherwise, it will become a leak (and other memory issues
383  * during map destruction).
384  */
385 static struct bpf_sk_storage_data *sk_storage_update(struct sock *sk,
386 						     struct bpf_map *map,
387 						     void *value,
388 						     u64 map_flags)
389 {
390 	struct bpf_sk_storage_data *old_sdata = NULL;
391 	struct bpf_sk_storage_elem *selem;
392 	struct bpf_sk_storage *sk_storage;
393 	struct bpf_sk_storage_map *smap;
394 	int err;
395 
396 	/* BPF_EXIST and BPF_NOEXIST cannot be both set */
397 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST) ||
398 	    /* BPF_F_LOCK can only be used in a value with spin_lock */
399 	    unlikely((map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
400 		return ERR_PTR(-EINVAL);
401 
402 	smap = (struct bpf_sk_storage_map *)map;
403 	sk_storage = rcu_dereference(sk->sk_bpf_storage);
404 	if (!sk_storage || hlist_empty(&sk_storage->list)) {
405 		/* Very first elem for this sk */
406 		err = check_flags(NULL, map_flags);
407 		if (err)
408 			return ERR_PTR(err);
409 
410 		selem = selem_alloc(smap, sk, value, true);
411 		if (!selem)
412 			return ERR_PTR(-ENOMEM);
413 
414 		err = sk_storage_alloc(sk, smap, selem);
415 		if (err) {
416 			kfree(selem);
417 			atomic_sub(smap->elem_size, &sk->sk_omem_alloc);
418 			return ERR_PTR(err);
419 		}
420 
421 		return SDATA(selem);
422 	}
423 
424 	if ((map_flags & BPF_F_LOCK) && !(map_flags & BPF_NOEXIST)) {
425 		/* Hoping to find an old_sdata to do inline update
426 		 * such that it can avoid taking the sk_storage->lock
427 		 * and changing the lists.
428 		 */
429 		old_sdata = __sk_storage_lookup(sk_storage, smap, false);
430 		err = check_flags(old_sdata, map_flags);
431 		if (err)
432 			return ERR_PTR(err);
433 		if (old_sdata && selem_linked_to_sk(SELEM(old_sdata))) {
434 			copy_map_value_locked(map, old_sdata->data,
435 					      value, false);
436 			return old_sdata;
437 		}
438 	}
439 
440 	raw_spin_lock_bh(&sk_storage->lock);
441 
442 	/* Recheck sk_storage->list under sk_storage->lock */
443 	if (unlikely(hlist_empty(&sk_storage->list))) {
444 		/* A parallel del is happening and sk_storage is going
445 		 * away.  It has just been checked before, so very
446 		 * unlikely.  Return instead of retry to keep things
447 		 * simple.
448 		 */
449 		err = -EAGAIN;
450 		goto unlock_err;
451 	}
452 
453 	old_sdata = __sk_storage_lookup(sk_storage, smap, false);
454 	err = check_flags(old_sdata, map_flags);
455 	if (err)
456 		goto unlock_err;
457 
458 	if (old_sdata && (map_flags & BPF_F_LOCK)) {
459 		copy_map_value_locked(map, old_sdata->data, value, false);
460 		selem = SELEM(old_sdata);
461 		goto unlock;
462 	}
463 
464 	/* sk_storage->lock is held.  Hence, we are sure
465 	 * we can unlink and uncharge the old_sdata successfully
466 	 * later.  Hence, instead of charging the new selem now
467 	 * and then uncharge the old selem later (which may cause
468 	 * a potential but unnecessary charge failure),  avoid taking
469 	 * a charge at all here (the "!old_sdata" check) and the
470 	 * old_sdata will not be uncharged later during __selem_unlink_sk().
471 	 */
472 	selem = selem_alloc(smap, sk, value, !old_sdata);
473 	if (!selem) {
474 		err = -ENOMEM;
475 		goto unlock_err;
476 	}
477 
478 	/* First, link the new selem to the map */
479 	selem_link_map(smap, selem);
480 
481 	/* Second, link (and publish) the new selem to sk_storage */
482 	__selem_link_sk(sk_storage, selem);
483 
484 	/* Third, remove old selem, SELEM(old_sdata) */
485 	if (old_sdata) {
486 		selem_unlink_map(SELEM(old_sdata));
487 		__selem_unlink_sk(sk_storage, SELEM(old_sdata), false);
488 	}
489 
490 unlock:
491 	raw_spin_unlock_bh(&sk_storage->lock);
492 	return SDATA(selem);
493 
494 unlock_err:
495 	raw_spin_unlock_bh(&sk_storage->lock);
496 	return ERR_PTR(err);
497 }
498 
499 static int sk_storage_delete(struct sock *sk, struct bpf_map *map)
500 {
501 	struct bpf_sk_storage_data *sdata;
502 
503 	sdata = sk_storage_lookup(sk, map, false);
504 	if (!sdata)
505 		return -ENOENT;
506 
507 	selem_unlink(SELEM(sdata));
508 
509 	return 0;
510 }
511 
512 /* Called by __sk_destruct() */
513 void bpf_sk_storage_free(struct sock *sk)
514 {
515 	struct bpf_sk_storage_elem *selem;
516 	struct bpf_sk_storage *sk_storage;
517 	bool free_sk_storage = false;
518 	struct hlist_node *n;
519 
520 	rcu_read_lock();
521 	sk_storage = rcu_dereference(sk->sk_bpf_storage);
522 	if (!sk_storage) {
523 		rcu_read_unlock();
524 		return;
525 	}
526 
527 	/* Netiher the bpf_prog nor the bpf-map's syscall
528 	 * could be modifying the sk_storage->list now.
529 	 * Thus, no elem can be added-to or deleted-from the
530 	 * sk_storage->list by the bpf_prog or by the bpf-map's syscall.
531 	 *
532 	 * It is racing with bpf_sk_storage_map_free() alone
533 	 * when unlinking elem from the sk_storage->list and
534 	 * the map's bucket->list.
535 	 */
536 	raw_spin_lock_bh(&sk_storage->lock);
537 	hlist_for_each_entry_safe(selem, n, &sk_storage->list, snode) {
538 		/* Always unlink from map before unlinking from
539 		 * sk_storage.
540 		 */
541 		selem_unlink_map(selem);
542 		free_sk_storage = __selem_unlink_sk(sk_storage, selem, true);
543 	}
544 	raw_spin_unlock_bh(&sk_storage->lock);
545 	rcu_read_unlock();
546 
547 	if (free_sk_storage)
548 		kfree_rcu(sk_storage, rcu);
549 }
550 
551 static void bpf_sk_storage_map_free(struct bpf_map *map)
552 {
553 	struct bpf_sk_storage_elem *selem;
554 	struct bpf_sk_storage_map *smap;
555 	struct bucket *b;
556 	unsigned int i;
557 
558 	smap = (struct bpf_sk_storage_map *)map;
559 
560 	synchronize_rcu();
561 
562 	/* bpf prog and the userspace can no longer access this map
563 	 * now.  No new selem (of this map) can be added
564 	 * to the sk->sk_bpf_storage or to the map bucket's list.
565 	 *
566 	 * The elem of this map can be cleaned up here
567 	 * or
568 	 * by bpf_sk_storage_free() during __sk_destruct().
569 	 */
570 	for (i = 0; i < (1U << smap->bucket_log); i++) {
571 		b = &smap->buckets[i];
572 
573 		rcu_read_lock();
574 		/* No one is adding to b->list now */
575 		while ((selem = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(&b->list)),
576 						 struct bpf_sk_storage_elem,
577 						 map_node))) {
578 			selem_unlink(selem);
579 			cond_resched_rcu();
580 		}
581 		rcu_read_unlock();
582 	}
583 
584 	/* bpf_sk_storage_free() may still need to access the map.
585 	 * e.g. bpf_sk_storage_free() has unlinked selem from the map
586 	 * which then made the above while((selem = ...)) loop
587 	 * exited immediately.
588 	 *
589 	 * However, the bpf_sk_storage_free() still needs to access
590 	 * the smap->elem_size to do the uncharging in
591 	 * __selem_unlink_sk().
592 	 *
593 	 * Hence, wait another rcu grace period for the
594 	 * bpf_sk_storage_free() to finish.
595 	 */
596 	synchronize_rcu();
597 
598 	kvfree(smap->buckets);
599 	kfree(map);
600 }
601 
602 static int bpf_sk_storage_map_alloc_check(union bpf_attr *attr)
603 {
604 	if (attr->map_flags != BPF_F_NO_PREALLOC || attr->max_entries ||
605 	    attr->key_size != sizeof(int) || !attr->value_size ||
606 	    /* Enforce BTF for userspace sk dumping */
607 	    !attr->btf_key_type_id || !attr->btf_value_type_id)
608 		return -EINVAL;
609 
610 	if (!capable(CAP_SYS_ADMIN))
611 		return -EPERM;
612 
613 	if (attr->value_size >= KMALLOC_MAX_SIZE -
614 	    MAX_BPF_STACK - sizeof(struct bpf_sk_storage_elem) ||
615 	    /* U16_MAX is much more than enough for sk local storage
616 	     * considering a tcp_sock is ~2k.
617 	     */
618 	    attr->value_size > U16_MAX - sizeof(struct bpf_sk_storage_elem))
619 		return -E2BIG;
620 
621 	return 0;
622 }
623 
624 static struct bpf_map *bpf_sk_storage_map_alloc(union bpf_attr *attr)
625 {
626 	struct bpf_sk_storage_map *smap;
627 	unsigned int i;
628 	u32 nbuckets;
629 	u64 cost;
630 
631 	smap = kzalloc(sizeof(*smap), GFP_USER | __GFP_NOWARN);
632 	if (!smap)
633 		return ERR_PTR(-ENOMEM);
634 	bpf_map_init_from_attr(&smap->map, attr);
635 
636 	smap->bucket_log = ilog2(roundup_pow_of_two(num_possible_cpus()));
637 	nbuckets = 1U << smap->bucket_log;
638 	smap->buckets = kvcalloc(sizeof(*smap->buckets), nbuckets,
639 				 GFP_USER | __GFP_NOWARN);
640 	if (!smap->buckets) {
641 		kfree(smap);
642 		return ERR_PTR(-ENOMEM);
643 	}
644 	cost = sizeof(*smap->buckets) * nbuckets + sizeof(*smap);
645 
646 	for (i = 0; i < nbuckets; i++) {
647 		INIT_HLIST_HEAD(&smap->buckets[i].list);
648 		raw_spin_lock_init(&smap->buckets[i].lock);
649 	}
650 
651 	smap->elem_size = sizeof(struct bpf_sk_storage_elem) + attr->value_size;
652 	smap->cache_idx = (unsigned int)atomic_inc_return(&cache_idx) %
653 		BPF_SK_STORAGE_CACHE_SIZE;
654 	smap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
655 
656 	return &smap->map;
657 }
658 
659 static int notsupp_get_next_key(struct bpf_map *map, void *key,
660 				void *next_key)
661 {
662 	return -ENOTSUPP;
663 }
664 
665 static int bpf_sk_storage_map_check_btf(const struct bpf_map *map,
666 					const struct btf *btf,
667 					const struct btf_type *key_type,
668 					const struct btf_type *value_type)
669 {
670 	u32 int_data;
671 
672 	if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT)
673 		return -EINVAL;
674 
675 	int_data = *(u32 *)(key_type + 1);
676 	if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data))
677 		return -EINVAL;
678 
679 	return 0;
680 }
681 
682 static void *bpf_fd_sk_storage_lookup_elem(struct bpf_map *map, void *key)
683 {
684 	struct bpf_sk_storage_data *sdata;
685 	struct socket *sock;
686 	int fd, err;
687 
688 	fd = *(int *)key;
689 	sock = sockfd_lookup(fd, &err);
690 	if (sock) {
691 		sdata = sk_storage_lookup(sock->sk, map, true);
692 		sockfd_put(sock);
693 		return sdata ? sdata->data : NULL;
694 	}
695 
696 	return ERR_PTR(err);
697 }
698 
699 static int bpf_fd_sk_storage_update_elem(struct bpf_map *map, void *key,
700 					 void *value, u64 map_flags)
701 {
702 	struct bpf_sk_storage_data *sdata;
703 	struct socket *sock;
704 	int fd, err;
705 
706 	fd = *(int *)key;
707 	sock = sockfd_lookup(fd, &err);
708 	if (sock) {
709 		sdata = sk_storage_update(sock->sk, map, value, map_flags);
710 		sockfd_put(sock);
711 		return PTR_ERR_OR_ZERO(sdata);
712 	}
713 
714 	return err;
715 }
716 
717 static int bpf_fd_sk_storage_delete_elem(struct bpf_map *map, void *key)
718 {
719 	struct socket *sock;
720 	int fd, err;
721 
722 	fd = *(int *)key;
723 	sock = sockfd_lookup(fd, &err);
724 	if (sock) {
725 		err = sk_storage_delete(sock->sk, map);
726 		sockfd_put(sock);
727 		return err;
728 	}
729 
730 	return err;
731 }
732 
733 BPF_CALL_4(bpf_sk_storage_get, struct bpf_map *, map, struct sock *, sk,
734 	   void *, value, u64, flags)
735 {
736 	struct bpf_sk_storage_data *sdata;
737 
738 	if (flags > BPF_SK_STORAGE_GET_F_CREATE)
739 		return (unsigned long)NULL;
740 
741 	sdata = sk_storage_lookup(sk, map, true);
742 	if (sdata)
743 		return (unsigned long)sdata->data;
744 
745 	if (flags == BPF_SK_STORAGE_GET_F_CREATE &&
746 	    /* Cannot add new elem to a going away sk.
747 	     * Otherwise, the new elem may become a leak
748 	     * (and also other memory issues during map
749 	     *  destruction).
750 	     */
751 	    refcount_inc_not_zero(&sk->sk_refcnt)) {
752 		sdata = sk_storage_update(sk, map, value, BPF_NOEXIST);
753 		/* sk must be a fullsock (guaranteed by verifier),
754 		 * so sock_gen_put() is unnecessary.
755 		 */
756 		sock_put(sk);
757 		return IS_ERR(sdata) ?
758 			(unsigned long)NULL : (unsigned long)sdata->data;
759 	}
760 
761 	return (unsigned long)NULL;
762 }
763 
764 BPF_CALL_2(bpf_sk_storage_delete, struct bpf_map *, map, struct sock *, sk)
765 {
766 	if (refcount_inc_not_zero(&sk->sk_refcnt)) {
767 		int err;
768 
769 		err = sk_storage_delete(sk, map);
770 		sock_put(sk);
771 		return err;
772 	}
773 
774 	return -ENOENT;
775 }
776 
777 const struct bpf_map_ops sk_storage_map_ops = {
778 	.map_alloc_check = bpf_sk_storage_map_alloc_check,
779 	.map_alloc = bpf_sk_storage_map_alloc,
780 	.map_free = bpf_sk_storage_map_free,
781 	.map_get_next_key = notsupp_get_next_key,
782 	.map_lookup_elem = bpf_fd_sk_storage_lookup_elem,
783 	.map_update_elem = bpf_fd_sk_storage_update_elem,
784 	.map_delete_elem = bpf_fd_sk_storage_delete_elem,
785 	.map_check_btf = bpf_sk_storage_map_check_btf,
786 };
787 
788 const struct bpf_func_proto bpf_sk_storage_get_proto = {
789 	.func		= bpf_sk_storage_get,
790 	.gpl_only	= false,
791 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
792 	.arg1_type	= ARG_CONST_MAP_PTR,
793 	.arg2_type	= ARG_PTR_TO_SOCKET,
794 	.arg3_type	= ARG_PTR_TO_MAP_VALUE_OR_NULL,
795 	.arg4_type	= ARG_ANYTHING,
796 };
797 
798 const struct bpf_func_proto bpf_sk_storage_delete_proto = {
799 	.func		= bpf_sk_storage_delete,
800 	.gpl_only	= false,
801 	.ret_type	= RET_INTEGER,
802 	.arg1_type	= ARG_CONST_MAP_PTR,
803 	.arg2_type	= ARG_PTR_TO_SOCKET,
804 };
805