1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 Facebook */ 3 #include <linux/rculist.h> 4 #include <linux/list.h> 5 #include <linux/hash.h> 6 #include <linux/types.h> 7 #include <linux/spinlock.h> 8 #include <linux/bpf.h> 9 #include <net/bpf_sk_storage.h> 10 #include <net/sock.h> 11 #include <uapi/linux/btf.h> 12 13 static atomic_t cache_idx; 14 15 struct bucket { 16 struct hlist_head list; 17 raw_spinlock_t lock; 18 }; 19 20 /* Thp map is not the primary owner of a bpf_sk_storage_elem. 21 * Instead, the sk->sk_bpf_storage is. 22 * 23 * The map (bpf_sk_storage_map) is for two purposes 24 * 1. Define the size of the "sk local storage". It is 25 * the map's value_size. 26 * 27 * 2. Maintain a list to keep track of all elems such 28 * that they can be cleaned up during the map destruction. 29 * 30 * When a bpf local storage is being looked up for a 31 * particular sk, the "bpf_map" pointer is actually used 32 * as the "key" to search in the list of elem in 33 * sk->sk_bpf_storage. 34 * 35 * Hence, consider sk->sk_bpf_storage is the mini-map 36 * with the "bpf_map" pointer as the searching key. 37 */ 38 struct bpf_sk_storage_map { 39 struct bpf_map map; 40 /* Lookup elem does not require accessing the map. 41 * 42 * Updating/Deleting requires a bucket lock to 43 * link/unlink the elem from the map. Having 44 * multiple buckets to improve contention. 45 */ 46 struct bucket *buckets; 47 u32 bucket_log; 48 u16 elem_size; 49 u16 cache_idx; 50 }; 51 52 struct bpf_sk_storage_data { 53 /* smap is used as the searching key when looking up 54 * from sk->sk_bpf_storage. 55 * 56 * Put it in the same cacheline as the data to minimize 57 * the number of cachelines access during the cache hit case. 58 */ 59 struct bpf_sk_storage_map __rcu *smap; 60 u8 data[0] __aligned(8); 61 }; 62 63 /* Linked to bpf_sk_storage and bpf_sk_storage_map */ 64 struct bpf_sk_storage_elem { 65 struct hlist_node map_node; /* Linked to bpf_sk_storage_map */ 66 struct hlist_node snode; /* Linked to bpf_sk_storage */ 67 struct bpf_sk_storage __rcu *sk_storage; 68 struct rcu_head rcu; 69 /* 8 bytes hole */ 70 /* The data is stored in aother cacheline to minimize 71 * the number of cachelines access during a cache hit. 72 */ 73 struct bpf_sk_storage_data sdata ____cacheline_aligned; 74 }; 75 76 #define SELEM(_SDATA) container_of((_SDATA), struct bpf_sk_storage_elem, sdata) 77 #define SDATA(_SELEM) (&(_SELEM)->sdata) 78 #define BPF_SK_STORAGE_CACHE_SIZE 16 79 80 struct bpf_sk_storage { 81 struct bpf_sk_storage_data __rcu *cache[BPF_SK_STORAGE_CACHE_SIZE]; 82 struct hlist_head list; /* List of bpf_sk_storage_elem */ 83 struct sock *sk; /* The sk that owns the the above "list" of 84 * bpf_sk_storage_elem. 85 */ 86 struct rcu_head rcu; 87 raw_spinlock_t lock; /* Protect adding/removing from the "list" */ 88 }; 89 90 static struct bucket *select_bucket(struct bpf_sk_storage_map *smap, 91 struct bpf_sk_storage_elem *selem) 92 { 93 return &smap->buckets[hash_ptr(selem, smap->bucket_log)]; 94 } 95 96 static int omem_charge(struct sock *sk, unsigned int size) 97 { 98 /* same check as in sock_kmalloc() */ 99 if (size <= sysctl_optmem_max && 100 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 101 atomic_add(size, &sk->sk_omem_alloc); 102 return 0; 103 } 104 105 return -ENOMEM; 106 } 107 108 static bool selem_linked_to_sk(const struct bpf_sk_storage_elem *selem) 109 { 110 return !hlist_unhashed(&selem->snode); 111 } 112 113 static bool selem_linked_to_map(const struct bpf_sk_storage_elem *selem) 114 { 115 return !hlist_unhashed(&selem->map_node); 116 } 117 118 static struct bpf_sk_storage_elem *selem_alloc(struct bpf_sk_storage_map *smap, 119 struct sock *sk, void *value, 120 bool charge_omem) 121 { 122 struct bpf_sk_storage_elem *selem; 123 124 if (charge_omem && omem_charge(sk, smap->elem_size)) 125 return NULL; 126 127 selem = kzalloc(smap->elem_size, GFP_ATOMIC | __GFP_NOWARN); 128 if (selem) { 129 if (value) 130 memcpy(SDATA(selem)->data, value, smap->map.value_size); 131 return selem; 132 } 133 134 if (charge_omem) 135 atomic_sub(smap->elem_size, &sk->sk_omem_alloc); 136 137 return NULL; 138 } 139 140 /* sk_storage->lock must be held and selem->sk_storage == sk_storage. 141 * The caller must ensure selem->smap is still valid to be 142 * dereferenced for its smap->elem_size and smap->cache_idx. 143 */ 144 static bool __selem_unlink_sk(struct bpf_sk_storage *sk_storage, 145 struct bpf_sk_storage_elem *selem, 146 bool uncharge_omem) 147 { 148 struct bpf_sk_storage_map *smap; 149 bool free_sk_storage; 150 struct sock *sk; 151 152 smap = rcu_dereference(SDATA(selem)->smap); 153 sk = sk_storage->sk; 154 155 /* All uncharging on sk->sk_omem_alloc must be done first. 156 * sk may be freed once the last selem is unlinked from sk_storage. 157 */ 158 if (uncharge_omem) 159 atomic_sub(smap->elem_size, &sk->sk_omem_alloc); 160 161 free_sk_storage = hlist_is_singular_node(&selem->snode, 162 &sk_storage->list); 163 if (free_sk_storage) { 164 atomic_sub(sizeof(struct bpf_sk_storage), &sk->sk_omem_alloc); 165 sk_storage->sk = NULL; 166 /* After this RCU_INIT, sk may be freed and cannot be used */ 167 RCU_INIT_POINTER(sk->sk_bpf_storage, NULL); 168 169 /* sk_storage is not freed now. sk_storage->lock is 170 * still held and raw_spin_unlock_bh(&sk_storage->lock) 171 * will be done by the caller. 172 * 173 * Although the unlock will be done under 174 * rcu_read_lock(), it is more intutivie to 175 * read if kfree_rcu(sk_storage, rcu) is done 176 * after the raw_spin_unlock_bh(&sk_storage->lock). 177 * 178 * Hence, a "bool free_sk_storage" is returned 179 * to the caller which then calls the kfree_rcu() 180 * after unlock. 181 */ 182 } 183 hlist_del_init_rcu(&selem->snode); 184 if (rcu_access_pointer(sk_storage->cache[smap->cache_idx]) == 185 SDATA(selem)) 186 RCU_INIT_POINTER(sk_storage->cache[smap->cache_idx], NULL); 187 188 kfree_rcu(selem, rcu); 189 190 return free_sk_storage; 191 } 192 193 static void selem_unlink_sk(struct bpf_sk_storage_elem *selem) 194 { 195 struct bpf_sk_storage *sk_storage; 196 bool free_sk_storage = false; 197 198 if (unlikely(!selem_linked_to_sk(selem))) 199 /* selem has already been unlinked from sk */ 200 return; 201 202 sk_storage = rcu_dereference(selem->sk_storage); 203 raw_spin_lock_bh(&sk_storage->lock); 204 if (likely(selem_linked_to_sk(selem))) 205 free_sk_storage = __selem_unlink_sk(sk_storage, selem, true); 206 raw_spin_unlock_bh(&sk_storage->lock); 207 208 if (free_sk_storage) 209 kfree_rcu(sk_storage, rcu); 210 } 211 212 /* sk_storage->lock must be held and sk_storage->list cannot be empty */ 213 static void __selem_link_sk(struct bpf_sk_storage *sk_storage, 214 struct bpf_sk_storage_elem *selem) 215 { 216 RCU_INIT_POINTER(selem->sk_storage, sk_storage); 217 hlist_add_head(&selem->snode, &sk_storage->list); 218 } 219 220 static void selem_unlink_map(struct bpf_sk_storage_elem *selem) 221 { 222 struct bpf_sk_storage_map *smap; 223 struct bucket *b; 224 225 if (unlikely(!selem_linked_to_map(selem))) 226 /* selem has already be unlinked from smap */ 227 return; 228 229 smap = rcu_dereference(SDATA(selem)->smap); 230 b = select_bucket(smap, selem); 231 raw_spin_lock_bh(&b->lock); 232 if (likely(selem_linked_to_map(selem))) 233 hlist_del_init_rcu(&selem->map_node); 234 raw_spin_unlock_bh(&b->lock); 235 } 236 237 static void selem_link_map(struct bpf_sk_storage_map *smap, 238 struct bpf_sk_storage_elem *selem) 239 { 240 struct bucket *b = select_bucket(smap, selem); 241 242 raw_spin_lock_bh(&b->lock); 243 RCU_INIT_POINTER(SDATA(selem)->smap, smap); 244 hlist_add_head_rcu(&selem->map_node, &b->list); 245 raw_spin_unlock_bh(&b->lock); 246 } 247 248 static void selem_unlink(struct bpf_sk_storage_elem *selem) 249 { 250 /* Always unlink from map before unlinking from sk_storage 251 * because selem will be freed after successfully unlinked from 252 * the sk_storage. 253 */ 254 selem_unlink_map(selem); 255 selem_unlink_sk(selem); 256 } 257 258 static struct bpf_sk_storage_data * 259 __sk_storage_lookup(struct bpf_sk_storage *sk_storage, 260 struct bpf_sk_storage_map *smap, 261 bool cacheit_lockit) 262 { 263 struct bpf_sk_storage_data *sdata; 264 struct bpf_sk_storage_elem *selem; 265 266 /* Fast path (cache hit) */ 267 sdata = rcu_dereference(sk_storage->cache[smap->cache_idx]); 268 if (sdata && rcu_access_pointer(sdata->smap) == smap) 269 return sdata; 270 271 /* Slow path (cache miss) */ 272 hlist_for_each_entry_rcu(selem, &sk_storage->list, snode) 273 if (rcu_access_pointer(SDATA(selem)->smap) == smap) 274 break; 275 276 if (!selem) 277 return NULL; 278 279 sdata = SDATA(selem); 280 if (cacheit_lockit) { 281 /* spinlock is needed to avoid racing with the 282 * parallel delete. Otherwise, publishing an already 283 * deleted sdata to the cache will become a use-after-free 284 * problem in the next __sk_storage_lookup(). 285 */ 286 raw_spin_lock_bh(&sk_storage->lock); 287 if (selem_linked_to_sk(selem)) 288 rcu_assign_pointer(sk_storage->cache[smap->cache_idx], 289 sdata); 290 raw_spin_unlock_bh(&sk_storage->lock); 291 } 292 293 return sdata; 294 } 295 296 static struct bpf_sk_storage_data * 297 sk_storage_lookup(struct sock *sk, struct bpf_map *map, bool cacheit_lockit) 298 { 299 struct bpf_sk_storage *sk_storage; 300 struct bpf_sk_storage_map *smap; 301 302 sk_storage = rcu_dereference(sk->sk_bpf_storage); 303 if (!sk_storage) 304 return NULL; 305 306 smap = (struct bpf_sk_storage_map *)map; 307 return __sk_storage_lookup(sk_storage, smap, cacheit_lockit); 308 } 309 310 static int check_flags(const struct bpf_sk_storage_data *old_sdata, 311 u64 map_flags) 312 { 313 if (old_sdata && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 314 /* elem already exists */ 315 return -EEXIST; 316 317 if (!old_sdata && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 318 /* elem doesn't exist, cannot update it */ 319 return -ENOENT; 320 321 return 0; 322 } 323 324 static int sk_storage_alloc(struct sock *sk, 325 struct bpf_sk_storage_map *smap, 326 struct bpf_sk_storage_elem *first_selem) 327 { 328 struct bpf_sk_storage *prev_sk_storage, *sk_storage; 329 int err; 330 331 err = omem_charge(sk, sizeof(*sk_storage)); 332 if (err) 333 return err; 334 335 sk_storage = kzalloc(sizeof(*sk_storage), GFP_ATOMIC | __GFP_NOWARN); 336 if (!sk_storage) { 337 err = -ENOMEM; 338 goto uncharge; 339 } 340 INIT_HLIST_HEAD(&sk_storage->list); 341 raw_spin_lock_init(&sk_storage->lock); 342 sk_storage->sk = sk; 343 344 __selem_link_sk(sk_storage, first_selem); 345 selem_link_map(smap, first_selem); 346 /* Publish sk_storage to sk. sk->sk_lock cannot be acquired. 347 * Hence, atomic ops is used to set sk->sk_bpf_storage 348 * from NULL to the newly allocated sk_storage ptr. 349 * 350 * From now on, the sk->sk_bpf_storage pointer is protected 351 * by the sk_storage->lock. Hence, when freeing 352 * the sk->sk_bpf_storage, the sk_storage->lock must 353 * be held before setting sk->sk_bpf_storage to NULL. 354 */ 355 prev_sk_storage = cmpxchg((struct bpf_sk_storage **)&sk->sk_bpf_storage, 356 NULL, sk_storage); 357 if (unlikely(prev_sk_storage)) { 358 selem_unlink_map(first_selem); 359 err = -EAGAIN; 360 goto uncharge; 361 362 /* Note that even first_selem was linked to smap's 363 * bucket->list, first_selem can be freed immediately 364 * (instead of kfree_rcu) because 365 * bpf_sk_storage_map_free() does a 366 * synchronize_rcu() before walking the bucket->list. 367 * Hence, no one is accessing selem from the 368 * bucket->list under rcu_read_lock(). 369 */ 370 } 371 372 return 0; 373 374 uncharge: 375 kfree(sk_storage); 376 atomic_sub(sizeof(*sk_storage), &sk->sk_omem_alloc); 377 return err; 378 } 379 380 /* sk cannot be going away because it is linking new elem 381 * to sk->sk_bpf_storage. (i.e. sk->sk_refcnt cannot be 0). 382 * Otherwise, it will become a leak (and other memory issues 383 * during map destruction). 384 */ 385 static struct bpf_sk_storage_data *sk_storage_update(struct sock *sk, 386 struct bpf_map *map, 387 void *value, 388 u64 map_flags) 389 { 390 struct bpf_sk_storage_data *old_sdata = NULL; 391 struct bpf_sk_storage_elem *selem; 392 struct bpf_sk_storage *sk_storage; 393 struct bpf_sk_storage_map *smap; 394 int err; 395 396 /* BPF_EXIST and BPF_NOEXIST cannot be both set */ 397 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST) || 398 /* BPF_F_LOCK can only be used in a value with spin_lock */ 399 unlikely((map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) 400 return ERR_PTR(-EINVAL); 401 402 smap = (struct bpf_sk_storage_map *)map; 403 sk_storage = rcu_dereference(sk->sk_bpf_storage); 404 if (!sk_storage || hlist_empty(&sk_storage->list)) { 405 /* Very first elem for this sk */ 406 err = check_flags(NULL, map_flags); 407 if (err) 408 return ERR_PTR(err); 409 410 selem = selem_alloc(smap, sk, value, true); 411 if (!selem) 412 return ERR_PTR(-ENOMEM); 413 414 err = sk_storage_alloc(sk, smap, selem); 415 if (err) { 416 kfree(selem); 417 atomic_sub(smap->elem_size, &sk->sk_omem_alloc); 418 return ERR_PTR(err); 419 } 420 421 return SDATA(selem); 422 } 423 424 if ((map_flags & BPF_F_LOCK) && !(map_flags & BPF_NOEXIST)) { 425 /* Hoping to find an old_sdata to do inline update 426 * such that it can avoid taking the sk_storage->lock 427 * and changing the lists. 428 */ 429 old_sdata = __sk_storage_lookup(sk_storage, smap, false); 430 err = check_flags(old_sdata, map_flags); 431 if (err) 432 return ERR_PTR(err); 433 if (old_sdata && selem_linked_to_sk(SELEM(old_sdata))) { 434 copy_map_value_locked(map, old_sdata->data, 435 value, false); 436 return old_sdata; 437 } 438 } 439 440 raw_spin_lock_bh(&sk_storage->lock); 441 442 /* Recheck sk_storage->list under sk_storage->lock */ 443 if (unlikely(hlist_empty(&sk_storage->list))) { 444 /* A parallel del is happening and sk_storage is going 445 * away. It has just been checked before, so very 446 * unlikely. Return instead of retry to keep things 447 * simple. 448 */ 449 err = -EAGAIN; 450 goto unlock_err; 451 } 452 453 old_sdata = __sk_storage_lookup(sk_storage, smap, false); 454 err = check_flags(old_sdata, map_flags); 455 if (err) 456 goto unlock_err; 457 458 if (old_sdata && (map_flags & BPF_F_LOCK)) { 459 copy_map_value_locked(map, old_sdata->data, value, false); 460 selem = SELEM(old_sdata); 461 goto unlock; 462 } 463 464 /* sk_storage->lock is held. Hence, we are sure 465 * we can unlink and uncharge the old_sdata successfully 466 * later. Hence, instead of charging the new selem now 467 * and then uncharge the old selem later (which may cause 468 * a potential but unnecessary charge failure), avoid taking 469 * a charge at all here (the "!old_sdata" check) and the 470 * old_sdata will not be uncharged later during __selem_unlink_sk(). 471 */ 472 selem = selem_alloc(smap, sk, value, !old_sdata); 473 if (!selem) { 474 err = -ENOMEM; 475 goto unlock_err; 476 } 477 478 /* First, link the new selem to the map */ 479 selem_link_map(smap, selem); 480 481 /* Second, link (and publish) the new selem to sk_storage */ 482 __selem_link_sk(sk_storage, selem); 483 484 /* Third, remove old selem, SELEM(old_sdata) */ 485 if (old_sdata) { 486 selem_unlink_map(SELEM(old_sdata)); 487 __selem_unlink_sk(sk_storage, SELEM(old_sdata), false); 488 } 489 490 unlock: 491 raw_spin_unlock_bh(&sk_storage->lock); 492 return SDATA(selem); 493 494 unlock_err: 495 raw_spin_unlock_bh(&sk_storage->lock); 496 return ERR_PTR(err); 497 } 498 499 static int sk_storage_delete(struct sock *sk, struct bpf_map *map) 500 { 501 struct bpf_sk_storage_data *sdata; 502 503 sdata = sk_storage_lookup(sk, map, false); 504 if (!sdata) 505 return -ENOENT; 506 507 selem_unlink(SELEM(sdata)); 508 509 return 0; 510 } 511 512 /* Called by __sk_destruct() */ 513 void bpf_sk_storage_free(struct sock *sk) 514 { 515 struct bpf_sk_storage_elem *selem; 516 struct bpf_sk_storage *sk_storage; 517 bool free_sk_storage = false; 518 struct hlist_node *n; 519 520 rcu_read_lock(); 521 sk_storage = rcu_dereference(sk->sk_bpf_storage); 522 if (!sk_storage) { 523 rcu_read_unlock(); 524 return; 525 } 526 527 /* Netiher the bpf_prog nor the bpf-map's syscall 528 * could be modifying the sk_storage->list now. 529 * Thus, no elem can be added-to or deleted-from the 530 * sk_storage->list by the bpf_prog or by the bpf-map's syscall. 531 * 532 * It is racing with bpf_sk_storage_map_free() alone 533 * when unlinking elem from the sk_storage->list and 534 * the map's bucket->list. 535 */ 536 raw_spin_lock_bh(&sk_storage->lock); 537 hlist_for_each_entry_safe(selem, n, &sk_storage->list, snode) { 538 /* Always unlink from map before unlinking from 539 * sk_storage. 540 */ 541 selem_unlink_map(selem); 542 free_sk_storage = __selem_unlink_sk(sk_storage, selem, true); 543 } 544 raw_spin_unlock_bh(&sk_storage->lock); 545 rcu_read_unlock(); 546 547 if (free_sk_storage) 548 kfree_rcu(sk_storage, rcu); 549 } 550 551 static void bpf_sk_storage_map_free(struct bpf_map *map) 552 { 553 struct bpf_sk_storage_elem *selem; 554 struct bpf_sk_storage_map *smap; 555 struct bucket *b; 556 unsigned int i; 557 558 smap = (struct bpf_sk_storage_map *)map; 559 560 synchronize_rcu(); 561 562 /* bpf prog and the userspace can no longer access this map 563 * now. No new selem (of this map) can be added 564 * to the sk->sk_bpf_storage or to the map bucket's list. 565 * 566 * The elem of this map can be cleaned up here 567 * or 568 * by bpf_sk_storage_free() during __sk_destruct(). 569 */ 570 for (i = 0; i < (1U << smap->bucket_log); i++) { 571 b = &smap->buckets[i]; 572 573 rcu_read_lock(); 574 /* No one is adding to b->list now */ 575 while ((selem = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(&b->list)), 576 struct bpf_sk_storage_elem, 577 map_node))) { 578 selem_unlink(selem); 579 cond_resched_rcu(); 580 } 581 rcu_read_unlock(); 582 } 583 584 /* bpf_sk_storage_free() may still need to access the map. 585 * e.g. bpf_sk_storage_free() has unlinked selem from the map 586 * which then made the above while((selem = ...)) loop 587 * exited immediately. 588 * 589 * However, the bpf_sk_storage_free() still needs to access 590 * the smap->elem_size to do the uncharging in 591 * __selem_unlink_sk(). 592 * 593 * Hence, wait another rcu grace period for the 594 * bpf_sk_storage_free() to finish. 595 */ 596 synchronize_rcu(); 597 598 kvfree(smap->buckets); 599 kfree(map); 600 } 601 602 static int bpf_sk_storage_map_alloc_check(union bpf_attr *attr) 603 { 604 if (attr->map_flags != BPF_F_NO_PREALLOC || attr->max_entries || 605 attr->key_size != sizeof(int) || !attr->value_size || 606 /* Enforce BTF for userspace sk dumping */ 607 !attr->btf_key_type_id || !attr->btf_value_type_id) 608 return -EINVAL; 609 610 if (!capable(CAP_SYS_ADMIN)) 611 return -EPERM; 612 613 if (attr->value_size >= KMALLOC_MAX_SIZE - 614 MAX_BPF_STACK - sizeof(struct bpf_sk_storage_elem) || 615 /* U16_MAX is much more than enough for sk local storage 616 * considering a tcp_sock is ~2k. 617 */ 618 attr->value_size > U16_MAX - sizeof(struct bpf_sk_storage_elem)) 619 return -E2BIG; 620 621 return 0; 622 } 623 624 static struct bpf_map *bpf_sk_storage_map_alloc(union bpf_attr *attr) 625 { 626 struct bpf_sk_storage_map *smap; 627 unsigned int i; 628 u32 nbuckets; 629 u64 cost; 630 631 smap = kzalloc(sizeof(*smap), GFP_USER | __GFP_NOWARN); 632 if (!smap) 633 return ERR_PTR(-ENOMEM); 634 bpf_map_init_from_attr(&smap->map, attr); 635 636 smap->bucket_log = ilog2(roundup_pow_of_two(num_possible_cpus())); 637 nbuckets = 1U << smap->bucket_log; 638 smap->buckets = kvcalloc(sizeof(*smap->buckets), nbuckets, 639 GFP_USER | __GFP_NOWARN); 640 if (!smap->buckets) { 641 kfree(smap); 642 return ERR_PTR(-ENOMEM); 643 } 644 cost = sizeof(*smap->buckets) * nbuckets + sizeof(*smap); 645 646 for (i = 0; i < nbuckets; i++) { 647 INIT_HLIST_HEAD(&smap->buckets[i].list); 648 raw_spin_lock_init(&smap->buckets[i].lock); 649 } 650 651 smap->elem_size = sizeof(struct bpf_sk_storage_elem) + attr->value_size; 652 smap->cache_idx = (unsigned int)atomic_inc_return(&cache_idx) % 653 BPF_SK_STORAGE_CACHE_SIZE; 654 smap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 655 656 return &smap->map; 657 } 658 659 static int notsupp_get_next_key(struct bpf_map *map, void *key, 660 void *next_key) 661 { 662 return -ENOTSUPP; 663 } 664 665 static int bpf_sk_storage_map_check_btf(const struct bpf_map *map, 666 const struct btf *btf, 667 const struct btf_type *key_type, 668 const struct btf_type *value_type) 669 { 670 u32 int_data; 671 672 if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) 673 return -EINVAL; 674 675 int_data = *(u32 *)(key_type + 1); 676 if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) 677 return -EINVAL; 678 679 return 0; 680 } 681 682 static void *bpf_fd_sk_storage_lookup_elem(struct bpf_map *map, void *key) 683 { 684 struct bpf_sk_storage_data *sdata; 685 struct socket *sock; 686 int fd, err; 687 688 fd = *(int *)key; 689 sock = sockfd_lookup(fd, &err); 690 if (sock) { 691 sdata = sk_storage_lookup(sock->sk, map, true); 692 sockfd_put(sock); 693 return sdata ? sdata->data : NULL; 694 } 695 696 return ERR_PTR(err); 697 } 698 699 static int bpf_fd_sk_storage_update_elem(struct bpf_map *map, void *key, 700 void *value, u64 map_flags) 701 { 702 struct bpf_sk_storage_data *sdata; 703 struct socket *sock; 704 int fd, err; 705 706 fd = *(int *)key; 707 sock = sockfd_lookup(fd, &err); 708 if (sock) { 709 sdata = sk_storage_update(sock->sk, map, value, map_flags); 710 sockfd_put(sock); 711 return PTR_ERR_OR_ZERO(sdata); 712 } 713 714 return err; 715 } 716 717 static int bpf_fd_sk_storage_delete_elem(struct bpf_map *map, void *key) 718 { 719 struct socket *sock; 720 int fd, err; 721 722 fd = *(int *)key; 723 sock = sockfd_lookup(fd, &err); 724 if (sock) { 725 err = sk_storage_delete(sock->sk, map); 726 sockfd_put(sock); 727 return err; 728 } 729 730 return err; 731 } 732 733 BPF_CALL_4(bpf_sk_storage_get, struct bpf_map *, map, struct sock *, sk, 734 void *, value, u64, flags) 735 { 736 struct bpf_sk_storage_data *sdata; 737 738 if (flags > BPF_SK_STORAGE_GET_F_CREATE) 739 return (unsigned long)NULL; 740 741 sdata = sk_storage_lookup(sk, map, true); 742 if (sdata) 743 return (unsigned long)sdata->data; 744 745 if (flags == BPF_SK_STORAGE_GET_F_CREATE && 746 /* Cannot add new elem to a going away sk. 747 * Otherwise, the new elem may become a leak 748 * (and also other memory issues during map 749 * destruction). 750 */ 751 refcount_inc_not_zero(&sk->sk_refcnt)) { 752 sdata = sk_storage_update(sk, map, value, BPF_NOEXIST); 753 /* sk must be a fullsock (guaranteed by verifier), 754 * so sock_gen_put() is unnecessary. 755 */ 756 sock_put(sk); 757 return IS_ERR(sdata) ? 758 (unsigned long)NULL : (unsigned long)sdata->data; 759 } 760 761 return (unsigned long)NULL; 762 } 763 764 BPF_CALL_2(bpf_sk_storage_delete, struct bpf_map *, map, struct sock *, sk) 765 { 766 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 767 int err; 768 769 err = sk_storage_delete(sk, map); 770 sock_put(sk); 771 return err; 772 } 773 774 return -ENOENT; 775 } 776 777 const struct bpf_map_ops sk_storage_map_ops = { 778 .map_alloc_check = bpf_sk_storage_map_alloc_check, 779 .map_alloc = bpf_sk_storage_map_alloc, 780 .map_free = bpf_sk_storage_map_free, 781 .map_get_next_key = notsupp_get_next_key, 782 .map_lookup_elem = bpf_fd_sk_storage_lookup_elem, 783 .map_update_elem = bpf_fd_sk_storage_update_elem, 784 .map_delete_elem = bpf_fd_sk_storage_delete_elem, 785 .map_check_btf = bpf_sk_storage_map_check_btf, 786 }; 787 788 const struct bpf_func_proto bpf_sk_storage_get_proto = { 789 .func = bpf_sk_storage_get, 790 .gpl_only = false, 791 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 792 .arg1_type = ARG_CONST_MAP_PTR, 793 .arg2_type = ARG_PTR_TO_SOCKET, 794 .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, 795 .arg4_type = ARG_ANYTHING, 796 }; 797 798 const struct bpf_func_proto bpf_sk_storage_delete_proto = { 799 .func = bpf_sk_storage_delete, 800 .gpl_only = false, 801 .ret_type = RET_INTEGER, 802 .arg1_type = ARG_CONST_MAP_PTR, 803 .arg2_type = ARG_PTR_TO_SOCKET, 804 }; 805