1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/ceph/ceph_debug.h> 4 5 #include <linux/module.h> 6 #include <linux/slab.h> 7 8 #include <linux/ceph/libceph.h> 9 #include <linux/ceph/osdmap.h> 10 #include <linux/ceph/decode.h> 11 #include <linux/crush/hash.h> 12 #include <linux/crush/mapper.h> 13 14 static __printf(2, 3) 15 void osdmap_info(const struct ceph_osdmap *map, const char *fmt, ...) 16 { 17 struct va_format vaf; 18 va_list args; 19 20 va_start(args, fmt); 21 vaf.fmt = fmt; 22 vaf.va = &args; 23 24 printk(KERN_INFO "%s (%pU e%u): %pV", KBUILD_MODNAME, &map->fsid, 25 map->epoch, &vaf); 26 27 va_end(args); 28 } 29 30 char *ceph_osdmap_state_str(char *str, int len, u32 state) 31 { 32 if (!len) 33 return str; 34 35 if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP)) 36 snprintf(str, len, "exists, up"); 37 else if (state & CEPH_OSD_EXISTS) 38 snprintf(str, len, "exists"); 39 else if (state & CEPH_OSD_UP) 40 snprintf(str, len, "up"); 41 else 42 snprintf(str, len, "doesn't exist"); 43 44 return str; 45 } 46 47 /* maps */ 48 49 static int calc_bits_of(unsigned int t) 50 { 51 int b = 0; 52 while (t) { 53 t = t >> 1; 54 b++; 55 } 56 return b; 57 } 58 59 /* 60 * the foo_mask is the smallest value 2^n-1 that is >= foo. 61 */ 62 static void calc_pg_masks(struct ceph_pg_pool_info *pi) 63 { 64 pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1; 65 pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1; 66 } 67 68 /* 69 * decode crush map 70 */ 71 static int crush_decode_uniform_bucket(void **p, void *end, 72 struct crush_bucket_uniform *b) 73 { 74 dout("crush_decode_uniform_bucket %p to %p\n", *p, end); 75 ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad); 76 b->item_weight = ceph_decode_32(p); 77 return 0; 78 bad: 79 return -EINVAL; 80 } 81 82 static int crush_decode_list_bucket(void **p, void *end, 83 struct crush_bucket_list *b) 84 { 85 int j; 86 dout("crush_decode_list_bucket %p to %p\n", *p, end); 87 b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); 88 if (b->item_weights == NULL) 89 return -ENOMEM; 90 b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); 91 if (b->sum_weights == NULL) 92 return -ENOMEM; 93 ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad); 94 for (j = 0; j < b->h.size; j++) { 95 b->item_weights[j] = ceph_decode_32(p); 96 b->sum_weights[j] = ceph_decode_32(p); 97 } 98 return 0; 99 bad: 100 return -EINVAL; 101 } 102 103 static int crush_decode_tree_bucket(void **p, void *end, 104 struct crush_bucket_tree *b) 105 { 106 int j; 107 dout("crush_decode_tree_bucket %p to %p\n", *p, end); 108 ceph_decode_8_safe(p, end, b->num_nodes, bad); 109 b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS); 110 if (b->node_weights == NULL) 111 return -ENOMEM; 112 ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad); 113 for (j = 0; j < b->num_nodes; j++) 114 b->node_weights[j] = ceph_decode_32(p); 115 return 0; 116 bad: 117 return -EINVAL; 118 } 119 120 static int crush_decode_straw_bucket(void **p, void *end, 121 struct crush_bucket_straw *b) 122 { 123 int j; 124 dout("crush_decode_straw_bucket %p to %p\n", *p, end); 125 b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); 126 if (b->item_weights == NULL) 127 return -ENOMEM; 128 b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); 129 if (b->straws == NULL) 130 return -ENOMEM; 131 ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad); 132 for (j = 0; j < b->h.size; j++) { 133 b->item_weights[j] = ceph_decode_32(p); 134 b->straws[j] = ceph_decode_32(p); 135 } 136 return 0; 137 bad: 138 return -EINVAL; 139 } 140 141 static int crush_decode_straw2_bucket(void **p, void *end, 142 struct crush_bucket_straw2 *b) 143 { 144 int j; 145 dout("crush_decode_straw2_bucket %p to %p\n", *p, end); 146 b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); 147 if (b->item_weights == NULL) 148 return -ENOMEM; 149 ceph_decode_need(p, end, b->h.size * sizeof(u32), bad); 150 for (j = 0; j < b->h.size; j++) 151 b->item_weights[j] = ceph_decode_32(p); 152 return 0; 153 bad: 154 return -EINVAL; 155 } 156 157 struct crush_name_node { 158 struct rb_node cn_node; 159 int cn_id; 160 char cn_name[]; 161 }; 162 163 static struct crush_name_node *alloc_crush_name(size_t name_len) 164 { 165 struct crush_name_node *cn; 166 167 cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO); 168 if (!cn) 169 return NULL; 170 171 RB_CLEAR_NODE(&cn->cn_node); 172 return cn; 173 } 174 175 static void free_crush_name(struct crush_name_node *cn) 176 { 177 WARN_ON(!RB_EMPTY_NODE(&cn->cn_node)); 178 179 kfree(cn); 180 } 181 182 DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node) 183 184 static int decode_crush_names(void **p, void *end, struct rb_root *root) 185 { 186 u32 n; 187 188 ceph_decode_32_safe(p, end, n, e_inval); 189 while (n--) { 190 struct crush_name_node *cn; 191 int id; 192 u32 name_len; 193 194 ceph_decode_32_safe(p, end, id, e_inval); 195 ceph_decode_32_safe(p, end, name_len, e_inval); 196 ceph_decode_need(p, end, name_len, e_inval); 197 198 cn = alloc_crush_name(name_len); 199 if (!cn) 200 return -ENOMEM; 201 202 cn->cn_id = id; 203 memcpy(cn->cn_name, *p, name_len); 204 cn->cn_name[name_len] = '\0'; 205 *p += name_len; 206 207 if (!__insert_crush_name(root, cn)) { 208 free_crush_name(cn); 209 return -EEXIST; 210 } 211 } 212 213 return 0; 214 215 e_inval: 216 return -EINVAL; 217 } 218 219 void clear_crush_names(struct rb_root *root) 220 { 221 while (!RB_EMPTY_ROOT(root)) { 222 struct crush_name_node *cn = 223 rb_entry(rb_first(root), struct crush_name_node, cn_node); 224 225 erase_crush_name(root, cn); 226 free_crush_name(cn); 227 } 228 } 229 230 static struct crush_choose_arg_map *alloc_choose_arg_map(void) 231 { 232 struct crush_choose_arg_map *arg_map; 233 234 arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO); 235 if (!arg_map) 236 return NULL; 237 238 RB_CLEAR_NODE(&arg_map->node); 239 return arg_map; 240 } 241 242 static void free_choose_arg_map(struct crush_choose_arg_map *arg_map) 243 { 244 if (arg_map) { 245 int i, j; 246 247 WARN_ON(!RB_EMPTY_NODE(&arg_map->node)); 248 249 for (i = 0; i < arg_map->size; i++) { 250 struct crush_choose_arg *arg = &arg_map->args[i]; 251 252 for (j = 0; j < arg->weight_set_size; j++) 253 kfree(arg->weight_set[j].weights); 254 kfree(arg->weight_set); 255 kfree(arg->ids); 256 } 257 kfree(arg_map->args); 258 kfree(arg_map); 259 } 260 } 261 262 DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index, 263 node); 264 265 void clear_choose_args(struct crush_map *c) 266 { 267 while (!RB_EMPTY_ROOT(&c->choose_args)) { 268 struct crush_choose_arg_map *arg_map = 269 rb_entry(rb_first(&c->choose_args), 270 struct crush_choose_arg_map, node); 271 272 erase_choose_arg_map(&c->choose_args, arg_map); 273 free_choose_arg_map(arg_map); 274 } 275 } 276 277 static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen) 278 { 279 u32 *a = NULL; 280 u32 len; 281 int ret; 282 283 ceph_decode_32_safe(p, end, len, e_inval); 284 if (len) { 285 u32 i; 286 287 a = kmalloc_array(len, sizeof(u32), GFP_NOIO); 288 if (!a) { 289 ret = -ENOMEM; 290 goto fail; 291 } 292 293 ceph_decode_need(p, end, len * sizeof(u32), e_inval); 294 for (i = 0; i < len; i++) 295 a[i] = ceph_decode_32(p); 296 } 297 298 *plen = len; 299 return a; 300 301 e_inval: 302 ret = -EINVAL; 303 fail: 304 kfree(a); 305 return ERR_PTR(ret); 306 } 307 308 /* 309 * Assumes @arg is zero-initialized. 310 */ 311 static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg) 312 { 313 int ret; 314 315 ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval); 316 if (arg->weight_set_size) { 317 u32 i; 318 319 arg->weight_set = kmalloc_array(arg->weight_set_size, 320 sizeof(*arg->weight_set), 321 GFP_NOIO); 322 if (!arg->weight_set) 323 return -ENOMEM; 324 325 for (i = 0; i < arg->weight_set_size; i++) { 326 struct crush_weight_set *w = &arg->weight_set[i]; 327 328 w->weights = decode_array_32_alloc(p, end, &w->size); 329 if (IS_ERR(w->weights)) { 330 ret = PTR_ERR(w->weights); 331 w->weights = NULL; 332 return ret; 333 } 334 } 335 } 336 337 arg->ids = decode_array_32_alloc(p, end, &arg->ids_size); 338 if (IS_ERR(arg->ids)) { 339 ret = PTR_ERR(arg->ids); 340 arg->ids = NULL; 341 return ret; 342 } 343 344 return 0; 345 346 e_inval: 347 return -EINVAL; 348 } 349 350 static int decode_choose_args(void **p, void *end, struct crush_map *c) 351 { 352 struct crush_choose_arg_map *arg_map = NULL; 353 u32 num_choose_arg_maps, num_buckets; 354 int ret; 355 356 ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval); 357 while (num_choose_arg_maps--) { 358 arg_map = alloc_choose_arg_map(); 359 if (!arg_map) { 360 ret = -ENOMEM; 361 goto fail; 362 } 363 364 ceph_decode_64_safe(p, end, arg_map->choose_args_index, 365 e_inval); 366 arg_map->size = c->max_buckets; 367 arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args), 368 GFP_NOIO); 369 if (!arg_map->args) { 370 ret = -ENOMEM; 371 goto fail; 372 } 373 374 ceph_decode_32_safe(p, end, num_buckets, e_inval); 375 while (num_buckets--) { 376 struct crush_choose_arg *arg; 377 u32 bucket_index; 378 379 ceph_decode_32_safe(p, end, bucket_index, e_inval); 380 if (bucket_index >= arg_map->size) 381 goto e_inval; 382 383 arg = &arg_map->args[bucket_index]; 384 ret = decode_choose_arg(p, end, arg); 385 if (ret) 386 goto fail; 387 388 if (arg->ids_size && 389 arg->ids_size != c->buckets[bucket_index]->size) 390 goto e_inval; 391 } 392 393 insert_choose_arg_map(&c->choose_args, arg_map); 394 } 395 396 return 0; 397 398 e_inval: 399 ret = -EINVAL; 400 fail: 401 free_choose_arg_map(arg_map); 402 return ret; 403 } 404 405 static void crush_finalize(struct crush_map *c) 406 { 407 __s32 b; 408 409 /* Space for the array of pointers to per-bucket workspace */ 410 c->working_size = sizeof(struct crush_work) + 411 c->max_buckets * sizeof(struct crush_work_bucket *); 412 413 for (b = 0; b < c->max_buckets; b++) { 414 if (!c->buckets[b]) 415 continue; 416 417 switch (c->buckets[b]->alg) { 418 default: 419 /* 420 * The base case, permutation variables and 421 * the pointer to the permutation array. 422 */ 423 c->working_size += sizeof(struct crush_work_bucket); 424 break; 425 } 426 /* Every bucket has a permutation array. */ 427 c->working_size += c->buckets[b]->size * sizeof(__u32); 428 } 429 } 430 431 static struct crush_map *crush_decode(void *pbyval, void *end) 432 { 433 struct crush_map *c; 434 int err; 435 int i, j; 436 void **p = &pbyval; 437 void *start = pbyval; 438 u32 magic; 439 440 dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p)); 441 442 c = kzalloc(sizeof(*c), GFP_NOFS); 443 if (c == NULL) 444 return ERR_PTR(-ENOMEM); 445 446 c->type_names = RB_ROOT; 447 c->names = RB_ROOT; 448 c->choose_args = RB_ROOT; 449 450 /* set tunables to default values */ 451 c->choose_local_tries = 2; 452 c->choose_local_fallback_tries = 5; 453 c->choose_total_tries = 19; 454 c->chooseleaf_descend_once = 0; 455 456 ceph_decode_need(p, end, 4*sizeof(u32), bad); 457 magic = ceph_decode_32(p); 458 if (magic != CRUSH_MAGIC) { 459 pr_err("crush_decode magic %x != current %x\n", 460 (unsigned int)magic, (unsigned int)CRUSH_MAGIC); 461 goto bad; 462 } 463 c->max_buckets = ceph_decode_32(p); 464 c->max_rules = ceph_decode_32(p); 465 c->max_devices = ceph_decode_32(p); 466 467 c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS); 468 if (c->buckets == NULL) 469 goto badmem; 470 c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS); 471 if (c->rules == NULL) 472 goto badmem; 473 474 /* buckets */ 475 for (i = 0; i < c->max_buckets; i++) { 476 int size = 0; 477 u32 alg; 478 struct crush_bucket *b; 479 480 ceph_decode_32_safe(p, end, alg, bad); 481 if (alg == 0) { 482 c->buckets[i] = NULL; 483 continue; 484 } 485 dout("crush_decode bucket %d off %x %p to %p\n", 486 i, (int)(*p-start), *p, end); 487 488 switch (alg) { 489 case CRUSH_BUCKET_UNIFORM: 490 size = sizeof(struct crush_bucket_uniform); 491 break; 492 case CRUSH_BUCKET_LIST: 493 size = sizeof(struct crush_bucket_list); 494 break; 495 case CRUSH_BUCKET_TREE: 496 size = sizeof(struct crush_bucket_tree); 497 break; 498 case CRUSH_BUCKET_STRAW: 499 size = sizeof(struct crush_bucket_straw); 500 break; 501 case CRUSH_BUCKET_STRAW2: 502 size = sizeof(struct crush_bucket_straw2); 503 break; 504 default: 505 goto bad; 506 } 507 BUG_ON(size == 0); 508 b = c->buckets[i] = kzalloc(size, GFP_NOFS); 509 if (b == NULL) 510 goto badmem; 511 512 ceph_decode_need(p, end, 4*sizeof(u32), bad); 513 b->id = ceph_decode_32(p); 514 b->type = ceph_decode_16(p); 515 b->alg = ceph_decode_8(p); 516 b->hash = ceph_decode_8(p); 517 b->weight = ceph_decode_32(p); 518 b->size = ceph_decode_32(p); 519 520 dout("crush_decode bucket size %d off %x %p to %p\n", 521 b->size, (int)(*p-start), *p, end); 522 523 b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS); 524 if (b->items == NULL) 525 goto badmem; 526 527 ceph_decode_need(p, end, b->size*sizeof(u32), bad); 528 for (j = 0; j < b->size; j++) 529 b->items[j] = ceph_decode_32(p); 530 531 switch (b->alg) { 532 case CRUSH_BUCKET_UNIFORM: 533 err = crush_decode_uniform_bucket(p, end, 534 (struct crush_bucket_uniform *)b); 535 if (err < 0) 536 goto fail; 537 break; 538 case CRUSH_BUCKET_LIST: 539 err = crush_decode_list_bucket(p, end, 540 (struct crush_bucket_list *)b); 541 if (err < 0) 542 goto fail; 543 break; 544 case CRUSH_BUCKET_TREE: 545 err = crush_decode_tree_bucket(p, end, 546 (struct crush_bucket_tree *)b); 547 if (err < 0) 548 goto fail; 549 break; 550 case CRUSH_BUCKET_STRAW: 551 err = crush_decode_straw_bucket(p, end, 552 (struct crush_bucket_straw *)b); 553 if (err < 0) 554 goto fail; 555 break; 556 case CRUSH_BUCKET_STRAW2: 557 err = crush_decode_straw2_bucket(p, end, 558 (struct crush_bucket_straw2 *)b); 559 if (err < 0) 560 goto fail; 561 break; 562 } 563 } 564 565 /* rules */ 566 dout("rule vec is %p\n", c->rules); 567 for (i = 0; i < c->max_rules; i++) { 568 u32 yes; 569 struct crush_rule *r; 570 571 ceph_decode_32_safe(p, end, yes, bad); 572 if (!yes) { 573 dout("crush_decode NO rule %d off %x %p to %p\n", 574 i, (int)(*p-start), *p, end); 575 c->rules[i] = NULL; 576 continue; 577 } 578 579 dout("crush_decode rule %d off %x %p to %p\n", 580 i, (int)(*p-start), *p, end); 581 582 /* len */ 583 ceph_decode_32_safe(p, end, yes, bad); 584 #if BITS_PER_LONG == 32 585 if (yes > (ULONG_MAX - sizeof(*r)) 586 / sizeof(struct crush_rule_step)) 587 goto bad; 588 #endif 589 r = kmalloc(struct_size(r, steps, yes), GFP_NOFS); 590 if (r == NULL) 591 goto badmem; 592 dout(" rule %d is at %p\n", i, r); 593 c->rules[i] = r; 594 r->len = yes; 595 ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */ 596 ceph_decode_need(p, end, r->len*3*sizeof(u32), bad); 597 for (j = 0; j < r->len; j++) { 598 r->steps[j].op = ceph_decode_32(p); 599 r->steps[j].arg1 = ceph_decode_32(p); 600 r->steps[j].arg2 = ceph_decode_32(p); 601 } 602 } 603 604 err = decode_crush_names(p, end, &c->type_names); 605 if (err) 606 goto fail; 607 608 err = decode_crush_names(p, end, &c->names); 609 if (err) 610 goto fail; 611 612 ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */ 613 614 /* tunables */ 615 ceph_decode_need(p, end, 3*sizeof(u32), done); 616 c->choose_local_tries = ceph_decode_32(p); 617 c->choose_local_fallback_tries = ceph_decode_32(p); 618 c->choose_total_tries = ceph_decode_32(p); 619 dout("crush decode tunable choose_local_tries = %d\n", 620 c->choose_local_tries); 621 dout("crush decode tunable choose_local_fallback_tries = %d\n", 622 c->choose_local_fallback_tries); 623 dout("crush decode tunable choose_total_tries = %d\n", 624 c->choose_total_tries); 625 626 ceph_decode_need(p, end, sizeof(u32), done); 627 c->chooseleaf_descend_once = ceph_decode_32(p); 628 dout("crush decode tunable chooseleaf_descend_once = %d\n", 629 c->chooseleaf_descend_once); 630 631 ceph_decode_need(p, end, sizeof(u8), done); 632 c->chooseleaf_vary_r = ceph_decode_8(p); 633 dout("crush decode tunable chooseleaf_vary_r = %d\n", 634 c->chooseleaf_vary_r); 635 636 /* skip straw_calc_version, allowed_bucket_algs */ 637 ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done); 638 *p += sizeof(u8) + sizeof(u32); 639 640 ceph_decode_need(p, end, sizeof(u8), done); 641 c->chooseleaf_stable = ceph_decode_8(p); 642 dout("crush decode tunable chooseleaf_stable = %d\n", 643 c->chooseleaf_stable); 644 645 if (*p != end) { 646 /* class_map */ 647 ceph_decode_skip_map(p, end, 32, 32, bad); 648 /* class_name */ 649 ceph_decode_skip_map(p, end, 32, string, bad); 650 /* class_bucket */ 651 ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad); 652 } 653 654 if (*p != end) { 655 err = decode_choose_args(p, end, c); 656 if (err) 657 goto fail; 658 } 659 660 done: 661 crush_finalize(c); 662 dout("crush_decode success\n"); 663 return c; 664 665 badmem: 666 err = -ENOMEM; 667 fail: 668 dout("crush_decode fail %d\n", err); 669 crush_destroy(c); 670 return ERR_PTR(err); 671 672 bad: 673 err = -EINVAL; 674 goto fail; 675 } 676 677 int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs) 678 { 679 if (lhs->pool < rhs->pool) 680 return -1; 681 if (lhs->pool > rhs->pool) 682 return 1; 683 if (lhs->seed < rhs->seed) 684 return -1; 685 if (lhs->seed > rhs->seed) 686 return 1; 687 688 return 0; 689 } 690 691 int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs) 692 { 693 int ret; 694 695 ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid); 696 if (ret) 697 return ret; 698 699 if (lhs->shard < rhs->shard) 700 return -1; 701 if (lhs->shard > rhs->shard) 702 return 1; 703 704 return 0; 705 } 706 707 static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len) 708 { 709 struct ceph_pg_mapping *pg; 710 711 pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO); 712 if (!pg) 713 return NULL; 714 715 RB_CLEAR_NODE(&pg->node); 716 return pg; 717 } 718 719 static void free_pg_mapping(struct ceph_pg_mapping *pg) 720 { 721 WARN_ON(!RB_EMPTY_NODE(&pg->node)); 722 723 kfree(pg); 724 } 725 726 /* 727 * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid 728 * to a set of osds) and primary_temp (explicit primary setting) 729 */ 730 DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare, 731 RB_BYPTR, const struct ceph_pg *, node) 732 733 /* 734 * rbtree of pg pool info 735 */ 736 DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node) 737 738 struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id) 739 { 740 return lookup_pg_pool(&map->pg_pools, id); 741 } 742 743 const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id) 744 { 745 struct ceph_pg_pool_info *pi; 746 747 if (id == CEPH_NOPOOL) 748 return NULL; 749 750 if (WARN_ON_ONCE(id > (u64) INT_MAX)) 751 return NULL; 752 753 pi = lookup_pg_pool(&map->pg_pools, id); 754 return pi ? pi->name : NULL; 755 } 756 EXPORT_SYMBOL(ceph_pg_pool_name_by_id); 757 758 int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name) 759 { 760 struct rb_node *rbp; 761 762 for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) { 763 struct ceph_pg_pool_info *pi = 764 rb_entry(rbp, struct ceph_pg_pool_info, node); 765 if (pi->name && strcmp(pi->name, name) == 0) 766 return pi->id; 767 } 768 return -ENOENT; 769 } 770 EXPORT_SYMBOL(ceph_pg_poolid_by_name); 771 772 u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id) 773 { 774 struct ceph_pg_pool_info *pi; 775 776 pi = lookup_pg_pool(&map->pg_pools, id); 777 return pi ? pi->flags : 0; 778 } 779 EXPORT_SYMBOL(ceph_pg_pool_flags); 780 781 static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi) 782 { 783 erase_pg_pool(root, pi); 784 kfree(pi->name); 785 kfree(pi); 786 } 787 788 static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi) 789 { 790 u8 ev, cv; 791 unsigned len, num; 792 void *pool_end; 793 794 ceph_decode_need(p, end, 2 + 4, bad); 795 ev = ceph_decode_8(p); /* encoding version */ 796 cv = ceph_decode_8(p); /* compat version */ 797 if (ev < 5) { 798 pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv); 799 return -EINVAL; 800 } 801 if (cv > 9) { 802 pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv); 803 return -EINVAL; 804 } 805 len = ceph_decode_32(p); 806 ceph_decode_need(p, end, len, bad); 807 pool_end = *p + len; 808 809 pi->type = ceph_decode_8(p); 810 pi->size = ceph_decode_8(p); 811 pi->crush_ruleset = ceph_decode_8(p); 812 pi->object_hash = ceph_decode_8(p); 813 814 pi->pg_num = ceph_decode_32(p); 815 pi->pgp_num = ceph_decode_32(p); 816 817 *p += 4 + 4; /* skip lpg* */ 818 *p += 4; /* skip last_change */ 819 *p += 8 + 4; /* skip snap_seq, snap_epoch */ 820 821 /* skip snaps */ 822 num = ceph_decode_32(p); 823 while (num--) { 824 *p += 8; /* snapid key */ 825 *p += 1 + 1; /* versions */ 826 len = ceph_decode_32(p); 827 *p += len; 828 } 829 830 /* skip removed_snaps */ 831 num = ceph_decode_32(p); 832 *p += num * (8 + 8); 833 834 *p += 8; /* skip auid */ 835 pi->flags = ceph_decode_64(p); 836 *p += 4; /* skip crash_replay_interval */ 837 838 if (ev >= 7) 839 pi->min_size = ceph_decode_8(p); 840 else 841 pi->min_size = pi->size - pi->size / 2; 842 843 if (ev >= 8) 844 *p += 8 + 8; /* skip quota_max_* */ 845 846 if (ev >= 9) { 847 /* skip tiers */ 848 num = ceph_decode_32(p); 849 *p += num * 8; 850 851 *p += 8; /* skip tier_of */ 852 *p += 1; /* skip cache_mode */ 853 854 pi->read_tier = ceph_decode_64(p); 855 pi->write_tier = ceph_decode_64(p); 856 } else { 857 pi->read_tier = -1; 858 pi->write_tier = -1; 859 } 860 861 if (ev >= 10) { 862 /* skip properties */ 863 num = ceph_decode_32(p); 864 while (num--) { 865 len = ceph_decode_32(p); 866 *p += len; /* key */ 867 len = ceph_decode_32(p); 868 *p += len; /* val */ 869 } 870 } 871 872 if (ev >= 11) { 873 /* skip hit_set_params */ 874 *p += 1 + 1; /* versions */ 875 len = ceph_decode_32(p); 876 *p += len; 877 878 *p += 4; /* skip hit_set_period */ 879 *p += 4; /* skip hit_set_count */ 880 } 881 882 if (ev >= 12) 883 *p += 4; /* skip stripe_width */ 884 885 if (ev >= 13) { 886 *p += 8; /* skip target_max_bytes */ 887 *p += 8; /* skip target_max_objects */ 888 *p += 4; /* skip cache_target_dirty_ratio_micro */ 889 *p += 4; /* skip cache_target_full_ratio_micro */ 890 *p += 4; /* skip cache_min_flush_age */ 891 *p += 4; /* skip cache_min_evict_age */ 892 } 893 894 if (ev >= 14) { 895 /* skip erasure_code_profile */ 896 len = ceph_decode_32(p); 897 *p += len; 898 } 899 900 /* 901 * last_force_op_resend_preluminous, will be overridden if the 902 * map was encoded with RESEND_ON_SPLIT 903 */ 904 if (ev >= 15) 905 pi->last_force_request_resend = ceph_decode_32(p); 906 else 907 pi->last_force_request_resend = 0; 908 909 if (ev >= 16) 910 *p += 4; /* skip min_read_recency_for_promote */ 911 912 if (ev >= 17) 913 *p += 8; /* skip expected_num_objects */ 914 915 if (ev >= 19) 916 *p += 4; /* skip cache_target_dirty_high_ratio_micro */ 917 918 if (ev >= 20) 919 *p += 4; /* skip min_write_recency_for_promote */ 920 921 if (ev >= 21) 922 *p += 1; /* skip use_gmt_hitset */ 923 924 if (ev >= 22) 925 *p += 1; /* skip fast_read */ 926 927 if (ev >= 23) { 928 *p += 4; /* skip hit_set_grade_decay_rate */ 929 *p += 4; /* skip hit_set_search_last_n */ 930 } 931 932 if (ev >= 24) { 933 /* skip opts */ 934 *p += 1 + 1; /* versions */ 935 len = ceph_decode_32(p); 936 *p += len; 937 } 938 939 if (ev >= 25) 940 pi->last_force_request_resend = ceph_decode_32(p); 941 942 /* ignore the rest */ 943 944 *p = pool_end; 945 calc_pg_masks(pi); 946 return 0; 947 948 bad: 949 return -EINVAL; 950 } 951 952 static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map) 953 { 954 struct ceph_pg_pool_info *pi; 955 u32 num, len; 956 u64 pool; 957 958 ceph_decode_32_safe(p, end, num, bad); 959 dout(" %d pool names\n", num); 960 while (num--) { 961 ceph_decode_64_safe(p, end, pool, bad); 962 ceph_decode_32_safe(p, end, len, bad); 963 dout(" pool %llu len %d\n", pool, len); 964 ceph_decode_need(p, end, len, bad); 965 pi = lookup_pg_pool(&map->pg_pools, pool); 966 if (pi) { 967 char *name = kstrndup(*p, len, GFP_NOFS); 968 969 if (!name) 970 return -ENOMEM; 971 kfree(pi->name); 972 pi->name = name; 973 dout(" name is %s\n", pi->name); 974 } 975 *p += len; 976 } 977 return 0; 978 979 bad: 980 return -EINVAL; 981 } 982 983 /* 984 * CRUSH workspaces 985 * 986 * workspace_manager framework borrowed from fs/btrfs/compression.c. 987 * Two simplifications: there is only one type of workspace and there 988 * is always at least one workspace. 989 */ 990 static struct crush_work *alloc_workspace(const struct crush_map *c) 991 { 992 struct crush_work *work; 993 size_t work_size; 994 995 WARN_ON(!c->working_size); 996 work_size = crush_work_size(c, CEPH_PG_MAX_SIZE); 997 dout("%s work_size %zu bytes\n", __func__, work_size); 998 999 work = kvmalloc(work_size, GFP_NOIO); 1000 if (!work) 1001 return NULL; 1002 1003 INIT_LIST_HEAD(&work->item); 1004 crush_init_workspace(c, work); 1005 return work; 1006 } 1007 1008 static void free_workspace(struct crush_work *work) 1009 { 1010 WARN_ON(!list_empty(&work->item)); 1011 kvfree(work); 1012 } 1013 1014 static void init_workspace_manager(struct workspace_manager *wsm) 1015 { 1016 INIT_LIST_HEAD(&wsm->idle_ws); 1017 spin_lock_init(&wsm->ws_lock); 1018 atomic_set(&wsm->total_ws, 0); 1019 wsm->free_ws = 0; 1020 init_waitqueue_head(&wsm->ws_wait); 1021 } 1022 1023 static void add_initial_workspace(struct workspace_manager *wsm, 1024 struct crush_work *work) 1025 { 1026 WARN_ON(!list_empty(&wsm->idle_ws)); 1027 1028 list_add(&work->item, &wsm->idle_ws); 1029 atomic_set(&wsm->total_ws, 1); 1030 wsm->free_ws = 1; 1031 } 1032 1033 static void cleanup_workspace_manager(struct workspace_manager *wsm) 1034 { 1035 struct crush_work *work; 1036 1037 while (!list_empty(&wsm->idle_ws)) { 1038 work = list_first_entry(&wsm->idle_ws, struct crush_work, 1039 item); 1040 list_del_init(&work->item); 1041 free_workspace(work); 1042 } 1043 atomic_set(&wsm->total_ws, 0); 1044 wsm->free_ws = 0; 1045 } 1046 1047 /* 1048 * Finds an available workspace or allocates a new one. If it's not 1049 * possible to allocate a new one, waits until there is one. 1050 */ 1051 static struct crush_work *get_workspace(struct workspace_manager *wsm, 1052 const struct crush_map *c) 1053 { 1054 struct crush_work *work; 1055 int cpus = num_online_cpus(); 1056 1057 again: 1058 spin_lock(&wsm->ws_lock); 1059 if (!list_empty(&wsm->idle_ws)) { 1060 work = list_first_entry(&wsm->idle_ws, struct crush_work, 1061 item); 1062 list_del_init(&work->item); 1063 wsm->free_ws--; 1064 spin_unlock(&wsm->ws_lock); 1065 return work; 1066 1067 } 1068 if (atomic_read(&wsm->total_ws) > cpus) { 1069 DEFINE_WAIT(wait); 1070 1071 spin_unlock(&wsm->ws_lock); 1072 prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1073 if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws) 1074 schedule(); 1075 finish_wait(&wsm->ws_wait, &wait); 1076 goto again; 1077 } 1078 atomic_inc(&wsm->total_ws); 1079 spin_unlock(&wsm->ws_lock); 1080 1081 work = alloc_workspace(c); 1082 if (!work) { 1083 atomic_dec(&wsm->total_ws); 1084 wake_up(&wsm->ws_wait); 1085 1086 /* 1087 * Do not return the error but go back to waiting. We 1088 * have the initial workspace and the CRUSH computation 1089 * time is bounded so we will get it eventually. 1090 */ 1091 WARN_ON(atomic_read(&wsm->total_ws) < 1); 1092 goto again; 1093 } 1094 return work; 1095 } 1096 1097 /* 1098 * Puts a workspace back on the list or frees it if we have enough 1099 * idle ones sitting around. 1100 */ 1101 static void put_workspace(struct workspace_manager *wsm, 1102 struct crush_work *work) 1103 { 1104 spin_lock(&wsm->ws_lock); 1105 if (wsm->free_ws <= num_online_cpus()) { 1106 list_add(&work->item, &wsm->idle_ws); 1107 wsm->free_ws++; 1108 spin_unlock(&wsm->ws_lock); 1109 goto wake; 1110 } 1111 spin_unlock(&wsm->ws_lock); 1112 1113 free_workspace(work); 1114 atomic_dec(&wsm->total_ws); 1115 wake: 1116 if (wq_has_sleeper(&wsm->ws_wait)) 1117 wake_up(&wsm->ws_wait); 1118 } 1119 1120 /* 1121 * osd map 1122 */ 1123 struct ceph_osdmap *ceph_osdmap_alloc(void) 1124 { 1125 struct ceph_osdmap *map; 1126 1127 map = kzalloc(sizeof(*map), GFP_NOIO); 1128 if (!map) 1129 return NULL; 1130 1131 map->pg_pools = RB_ROOT; 1132 map->pool_max = -1; 1133 map->pg_temp = RB_ROOT; 1134 map->primary_temp = RB_ROOT; 1135 map->pg_upmap = RB_ROOT; 1136 map->pg_upmap_items = RB_ROOT; 1137 1138 init_workspace_manager(&map->crush_wsm); 1139 1140 return map; 1141 } 1142 1143 void ceph_osdmap_destroy(struct ceph_osdmap *map) 1144 { 1145 dout("osdmap_destroy %p\n", map); 1146 1147 if (map->crush) 1148 crush_destroy(map->crush); 1149 cleanup_workspace_manager(&map->crush_wsm); 1150 1151 while (!RB_EMPTY_ROOT(&map->pg_temp)) { 1152 struct ceph_pg_mapping *pg = 1153 rb_entry(rb_first(&map->pg_temp), 1154 struct ceph_pg_mapping, node); 1155 erase_pg_mapping(&map->pg_temp, pg); 1156 free_pg_mapping(pg); 1157 } 1158 while (!RB_EMPTY_ROOT(&map->primary_temp)) { 1159 struct ceph_pg_mapping *pg = 1160 rb_entry(rb_first(&map->primary_temp), 1161 struct ceph_pg_mapping, node); 1162 erase_pg_mapping(&map->primary_temp, pg); 1163 free_pg_mapping(pg); 1164 } 1165 while (!RB_EMPTY_ROOT(&map->pg_upmap)) { 1166 struct ceph_pg_mapping *pg = 1167 rb_entry(rb_first(&map->pg_upmap), 1168 struct ceph_pg_mapping, node); 1169 rb_erase(&pg->node, &map->pg_upmap); 1170 kfree(pg); 1171 } 1172 while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) { 1173 struct ceph_pg_mapping *pg = 1174 rb_entry(rb_first(&map->pg_upmap_items), 1175 struct ceph_pg_mapping, node); 1176 rb_erase(&pg->node, &map->pg_upmap_items); 1177 kfree(pg); 1178 } 1179 while (!RB_EMPTY_ROOT(&map->pg_pools)) { 1180 struct ceph_pg_pool_info *pi = 1181 rb_entry(rb_first(&map->pg_pools), 1182 struct ceph_pg_pool_info, node); 1183 __remove_pg_pool(&map->pg_pools, pi); 1184 } 1185 kvfree(map->osd_state); 1186 kvfree(map->osd_weight); 1187 kvfree(map->osd_addr); 1188 kvfree(map->osd_primary_affinity); 1189 kfree(map); 1190 } 1191 1192 /* 1193 * Adjust max_osd value, (re)allocate arrays. 1194 * 1195 * The new elements are properly initialized. 1196 */ 1197 static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max) 1198 { 1199 u32 *state; 1200 u32 *weight; 1201 struct ceph_entity_addr *addr; 1202 u32 to_copy; 1203 int i; 1204 1205 dout("%s old %u new %u\n", __func__, map->max_osd, max); 1206 if (max == map->max_osd) 1207 return 0; 1208 1209 state = kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS); 1210 weight = kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS); 1211 addr = kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS); 1212 if (!state || !weight || !addr) { 1213 kvfree(state); 1214 kvfree(weight); 1215 kvfree(addr); 1216 return -ENOMEM; 1217 } 1218 1219 to_copy = min(map->max_osd, max); 1220 if (map->osd_state) { 1221 memcpy(state, map->osd_state, to_copy * sizeof(*state)); 1222 memcpy(weight, map->osd_weight, to_copy * sizeof(*weight)); 1223 memcpy(addr, map->osd_addr, to_copy * sizeof(*addr)); 1224 kvfree(map->osd_state); 1225 kvfree(map->osd_weight); 1226 kvfree(map->osd_addr); 1227 } 1228 1229 map->osd_state = state; 1230 map->osd_weight = weight; 1231 map->osd_addr = addr; 1232 for (i = map->max_osd; i < max; i++) { 1233 map->osd_state[i] = 0; 1234 map->osd_weight[i] = CEPH_OSD_OUT; 1235 memset(map->osd_addr + i, 0, sizeof(*map->osd_addr)); 1236 } 1237 1238 if (map->osd_primary_affinity) { 1239 u32 *affinity; 1240 1241 affinity = kvmalloc(array_size(max, sizeof(*affinity)), 1242 GFP_NOFS); 1243 if (!affinity) 1244 return -ENOMEM; 1245 1246 memcpy(affinity, map->osd_primary_affinity, 1247 to_copy * sizeof(*affinity)); 1248 kvfree(map->osd_primary_affinity); 1249 1250 map->osd_primary_affinity = affinity; 1251 for (i = map->max_osd; i < max; i++) 1252 map->osd_primary_affinity[i] = 1253 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY; 1254 } 1255 1256 map->max_osd = max; 1257 1258 return 0; 1259 } 1260 1261 static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush) 1262 { 1263 struct crush_work *work; 1264 1265 if (IS_ERR(crush)) 1266 return PTR_ERR(crush); 1267 1268 work = alloc_workspace(crush); 1269 if (!work) { 1270 crush_destroy(crush); 1271 return -ENOMEM; 1272 } 1273 1274 if (map->crush) 1275 crush_destroy(map->crush); 1276 cleanup_workspace_manager(&map->crush_wsm); 1277 map->crush = crush; 1278 add_initial_workspace(&map->crush_wsm, work); 1279 return 0; 1280 } 1281 1282 #define OSDMAP_WRAPPER_COMPAT_VER 7 1283 #define OSDMAP_CLIENT_DATA_COMPAT_VER 1 1284 1285 /* 1286 * Return 0 or error. On success, *v is set to 0 for old (v6) osdmaps, 1287 * to struct_v of the client_data section for new (v7 and above) 1288 * osdmaps. 1289 */ 1290 static int get_osdmap_client_data_v(void **p, void *end, 1291 const char *prefix, u8 *v) 1292 { 1293 u8 struct_v; 1294 1295 ceph_decode_8_safe(p, end, struct_v, e_inval); 1296 if (struct_v >= 7) { 1297 u8 struct_compat; 1298 1299 ceph_decode_8_safe(p, end, struct_compat, e_inval); 1300 if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) { 1301 pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n", 1302 struct_v, struct_compat, 1303 OSDMAP_WRAPPER_COMPAT_VER, prefix); 1304 return -EINVAL; 1305 } 1306 *p += 4; /* ignore wrapper struct_len */ 1307 1308 ceph_decode_8_safe(p, end, struct_v, e_inval); 1309 ceph_decode_8_safe(p, end, struct_compat, e_inval); 1310 if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) { 1311 pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n", 1312 struct_v, struct_compat, 1313 OSDMAP_CLIENT_DATA_COMPAT_VER, prefix); 1314 return -EINVAL; 1315 } 1316 *p += 4; /* ignore client data struct_len */ 1317 } else { 1318 u16 version; 1319 1320 *p -= 1; 1321 ceph_decode_16_safe(p, end, version, e_inval); 1322 if (version < 6) { 1323 pr_warn("got v %d < 6 of %s ceph_osdmap\n", 1324 version, prefix); 1325 return -EINVAL; 1326 } 1327 1328 /* old osdmap encoding */ 1329 struct_v = 0; 1330 } 1331 1332 *v = struct_v; 1333 return 0; 1334 1335 e_inval: 1336 return -EINVAL; 1337 } 1338 1339 static int __decode_pools(void **p, void *end, struct ceph_osdmap *map, 1340 bool incremental) 1341 { 1342 u32 n; 1343 1344 ceph_decode_32_safe(p, end, n, e_inval); 1345 while (n--) { 1346 struct ceph_pg_pool_info *pi; 1347 u64 pool; 1348 int ret; 1349 1350 ceph_decode_64_safe(p, end, pool, e_inval); 1351 1352 pi = lookup_pg_pool(&map->pg_pools, pool); 1353 if (!incremental || !pi) { 1354 pi = kzalloc(sizeof(*pi), GFP_NOFS); 1355 if (!pi) 1356 return -ENOMEM; 1357 1358 RB_CLEAR_NODE(&pi->node); 1359 pi->id = pool; 1360 1361 if (!__insert_pg_pool(&map->pg_pools, pi)) { 1362 kfree(pi); 1363 return -EEXIST; 1364 } 1365 } 1366 1367 ret = decode_pool(p, end, pi); 1368 if (ret) 1369 return ret; 1370 } 1371 1372 return 0; 1373 1374 e_inval: 1375 return -EINVAL; 1376 } 1377 1378 static int decode_pools(void **p, void *end, struct ceph_osdmap *map) 1379 { 1380 return __decode_pools(p, end, map, false); 1381 } 1382 1383 static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map) 1384 { 1385 return __decode_pools(p, end, map, true); 1386 } 1387 1388 typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool); 1389 1390 static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root, 1391 decode_mapping_fn_t fn, bool incremental) 1392 { 1393 u32 n; 1394 1395 WARN_ON(!incremental && !fn); 1396 1397 ceph_decode_32_safe(p, end, n, e_inval); 1398 while (n--) { 1399 struct ceph_pg_mapping *pg; 1400 struct ceph_pg pgid; 1401 int ret; 1402 1403 ret = ceph_decode_pgid(p, end, &pgid); 1404 if (ret) 1405 return ret; 1406 1407 pg = lookup_pg_mapping(mapping_root, &pgid); 1408 if (pg) { 1409 WARN_ON(!incremental); 1410 erase_pg_mapping(mapping_root, pg); 1411 free_pg_mapping(pg); 1412 } 1413 1414 if (fn) { 1415 pg = fn(p, end, incremental); 1416 if (IS_ERR(pg)) 1417 return PTR_ERR(pg); 1418 1419 if (pg) { 1420 pg->pgid = pgid; /* struct */ 1421 insert_pg_mapping(mapping_root, pg); 1422 } 1423 } 1424 } 1425 1426 return 0; 1427 1428 e_inval: 1429 return -EINVAL; 1430 } 1431 1432 static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end, 1433 bool incremental) 1434 { 1435 struct ceph_pg_mapping *pg; 1436 u32 len, i; 1437 1438 ceph_decode_32_safe(p, end, len, e_inval); 1439 if (len == 0 && incremental) 1440 return NULL; /* new_pg_temp: [] to remove */ 1441 if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32)) 1442 return ERR_PTR(-EINVAL); 1443 1444 ceph_decode_need(p, end, len * sizeof(u32), e_inval); 1445 pg = alloc_pg_mapping(len * sizeof(u32)); 1446 if (!pg) 1447 return ERR_PTR(-ENOMEM); 1448 1449 pg->pg_temp.len = len; 1450 for (i = 0; i < len; i++) 1451 pg->pg_temp.osds[i] = ceph_decode_32(p); 1452 1453 return pg; 1454 1455 e_inval: 1456 return ERR_PTR(-EINVAL); 1457 } 1458 1459 static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map) 1460 { 1461 return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp, 1462 false); 1463 } 1464 1465 static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map) 1466 { 1467 return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp, 1468 true); 1469 } 1470 1471 static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end, 1472 bool incremental) 1473 { 1474 struct ceph_pg_mapping *pg; 1475 u32 osd; 1476 1477 ceph_decode_32_safe(p, end, osd, e_inval); 1478 if (osd == (u32)-1 && incremental) 1479 return NULL; /* new_primary_temp: -1 to remove */ 1480 1481 pg = alloc_pg_mapping(0); 1482 if (!pg) 1483 return ERR_PTR(-ENOMEM); 1484 1485 pg->primary_temp.osd = osd; 1486 return pg; 1487 1488 e_inval: 1489 return ERR_PTR(-EINVAL); 1490 } 1491 1492 static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map) 1493 { 1494 return decode_pg_mapping(p, end, &map->primary_temp, 1495 __decode_primary_temp, false); 1496 } 1497 1498 static int decode_new_primary_temp(void **p, void *end, 1499 struct ceph_osdmap *map) 1500 { 1501 return decode_pg_mapping(p, end, &map->primary_temp, 1502 __decode_primary_temp, true); 1503 } 1504 1505 u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd) 1506 { 1507 BUG_ON(osd >= map->max_osd); 1508 1509 if (!map->osd_primary_affinity) 1510 return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY; 1511 1512 return map->osd_primary_affinity[osd]; 1513 } 1514 1515 static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff) 1516 { 1517 BUG_ON(osd >= map->max_osd); 1518 1519 if (!map->osd_primary_affinity) { 1520 int i; 1521 1522 map->osd_primary_affinity = kvmalloc( 1523 array_size(map->max_osd, sizeof(*map->osd_primary_affinity)), 1524 GFP_NOFS); 1525 if (!map->osd_primary_affinity) 1526 return -ENOMEM; 1527 1528 for (i = 0; i < map->max_osd; i++) 1529 map->osd_primary_affinity[i] = 1530 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY; 1531 } 1532 1533 map->osd_primary_affinity[osd] = aff; 1534 1535 return 0; 1536 } 1537 1538 static int decode_primary_affinity(void **p, void *end, 1539 struct ceph_osdmap *map) 1540 { 1541 u32 len, i; 1542 1543 ceph_decode_32_safe(p, end, len, e_inval); 1544 if (len == 0) { 1545 kvfree(map->osd_primary_affinity); 1546 map->osd_primary_affinity = NULL; 1547 return 0; 1548 } 1549 if (len != map->max_osd) 1550 goto e_inval; 1551 1552 ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval); 1553 1554 for (i = 0; i < map->max_osd; i++) { 1555 int ret; 1556 1557 ret = set_primary_affinity(map, i, ceph_decode_32(p)); 1558 if (ret) 1559 return ret; 1560 } 1561 1562 return 0; 1563 1564 e_inval: 1565 return -EINVAL; 1566 } 1567 1568 static int decode_new_primary_affinity(void **p, void *end, 1569 struct ceph_osdmap *map) 1570 { 1571 u32 n; 1572 1573 ceph_decode_32_safe(p, end, n, e_inval); 1574 while (n--) { 1575 u32 osd, aff; 1576 int ret; 1577 1578 ceph_decode_32_safe(p, end, osd, e_inval); 1579 ceph_decode_32_safe(p, end, aff, e_inval); 1580 1581 ret = set_primary_affinity(map, osd, aff); 1582 if (ret) 1583 return ret; 1584 1585 osdmap_info(map, "osd%d primary-affinity 0x%x\n", osd, aff); 1586 } 1587 1588 return 0; 1589 1590 e_inval: 1591 return -EINVAL; 1592 } 1593 1594 static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end, 1595 bool __unused) 1596 { 1597 return __decode_pg_temp(p, end, false); 1598 } 1599 1600 static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map) 1601 { 1602 return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap, 1603 false); 1604 } 1605 1606 static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map) 1607 { 1608 return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap, 1609 true); 1610 } 1611 1612 static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map) 1613 { 1614 return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true); 1615 } 1616 1617 static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end, 1618 bool __unused) 1619 { 1620 struct ceph_pg_mapping *pg; 1621 u32 len, i; 1622 1623 ceph_decode_32_safe(p, end, len, e_inval); 1624 if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32))) 1625 return ERR_PTR(-EINVAL); 1626 1627 ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval); 1628 pg = alloc_pg_mapping(2 * len * sizeof(u32)); 1629 if (!pg) 1630 return ERR_PTR(-ENOMEM); 1631 1632 pg->pg_upmap_items.len = len; 1633 for (i = 0; i < len; i++) { 1634 pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p); 1635 pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p); 1636 } 1637 1638 return pg; 1639 1640 e_inval: 1641 return ERR_PTR(-EINVAL); 1642 } 1643 1644 static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map) 1645 { 1646 return decode_pg_mapping(p, end, &map->pg_upmap_items, 1647 __decode_pg_upmap_items, false); 1648 } 1649 1650 static int decode_new_pg_upmap_items(void **p, void *end, 1651 struct ceph_osdmap *map) 1652 { 1653 return decode_pg_mapping(p, end, &map->pg_upmap_items, 1654 __decode_pg_upmap_items, true); 1655 } 1656 1657 static int decode_old_pg_upmap_items(void **p, void *end, 1658 struct ceph_osdmap *map) 1659 { 1660 return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true); 1661 } 1662 1663 /* 1664 * decode a full map. 1665 */ 1666 static int osdmap_decode(void **p, void *end, bool msgr2, 1667 struct ceph_osdmap *map) 1668 { 1669 u8 struct_v; 1670 u32 epoch = 0; 1671 void *start = *p; 1672 u32 max; 1673 u32 len, i; 1674 int err; 1675 1676 dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p)); 1677 1678 err = get_osdmap_client_data_v(p, end, "full", &struct_v); 1679 if (err) 1680 goto bad; 1681 1682 /* fsid, epoch, created, modified */ 1683 ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) + 1684 sizeof(map->created) + sizeof(map->modified), e_inval); 1685 ceph_decode_copy(p, &map->fsid, sizeof(map->fsid)); 1686 epoch = map->epoch = ceph_decode_32(p); 1687 ceph_decode_copy(p, &map->created, sizeof(map->created)); 1688 ceph_decode_copy(p, &map->modified, sizeof(map->modified)); 1689 1690 /* pools */ 1691 err = decode_pools(p, end, map); 1692 if (err) 1693 goto bad; 1694 1695 /* pool_name */ 1696 err = decode_pool_names(p, end, map); 1697 if (err) 1698 goto bad; 1699 1700 ceph_decode_32_safe(p, end, map->pool_max, e_inval); 1701 1702 ceph_decode_32_safe(p, end, map->flags, e_inval); 1703 1704 /* max_osd */ 1705 ceph_decode_32_safe(p, end, max, e_inval); 1706 1707 /* (re)alloc osd arrays */ 1708 err = osdmap_set_max_osd(map, max); 1709 if (err) 1710 goto bad; 1711 1712 /* osd_state, osd_weight, osd_addrs->client_addr */ 1713 ceph_decode_need(p, end, 3*sizeof(u32) + 1714 map->max_osd*(struct_v >= 5 ? sizeof(u32) : 1715 sizeof(u8)) + 1716 sizeof(*map->osd_weight), e_inval); 1717 if (ceph_decode_32(p) != map->max_osd) 1718 goto e_inval; 1719 1720 if (struct_v >= 5) { 1721 for (i = 0; i < map->max_osd; i++) 1722 map->osd_state[i] = ceph_decode_32(p); 1723 } else { 1724 for (i = 0; i < map->max_osd; i++) 1725 map->osd_state[i] = ceph_decode_8(p); 1726 } 1727 1728 if (ceph_decode_32(p) != map->max_osd) 1729 goto e_inval; 1730 1731 for (i = 0; i < map->max_osd; i++) 1732 map->osd_weight[i] = ceph_decode_32(p); 1733 1734 if (ceph_decode_32(p) != map->max_osd) 1735 goto e_inval; 1736 1737 for (i = 0; i < map->max_osd; i++) { 1738 struct ceph_entity_addr *addr = &map->osd_addr[i]; 1739 1740 if (struct_v >= 8) 1741 err = ceph_decode_entity_addrvec(p, end, msgr2, addr); 1742 else 1743 err = ceph_decode_entity_addr(p, end, addr); 1744 if (err) 1745 goto bad; 1746 1747 dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr)); 1748 } 1749 1750 /* pg_temp */ 1751 err = decode_pg_temp(p, end, map); 1752 if (err) 1753 goto bad; 1754 1755 /* primary_temp */ 1756 if (struct_v >= 1) { 1757 err = decode_primary_temp(p, end, map); 1758 if (err) 1759 goto bad; 1760 } 1761 1762 /* primary_affinity */ 1763 if (struct_v >= 2) { 1764 err = decode_primary_affinity(p, end, map); 1765 if (err) 1766 goto bad; 1767 } else { 1768 WARN_ON(map->osd_primary_affinity); 1769 } 1770 1771 /* crush */ 1772 ceph_decode_32_safe(p, end, len, e_inval); 1773 err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end))); 1774 if (err) 1775 goto bad; 1776 1777 *p += len; 1778 if (struct_v >= 3) { 1779 /* erasure_code_profiles */ 1780 ceph_decode_skip_map_of_map(p, end, string, string, string, 1781 e_inval); 1782 } 1783 1784 if (struct_v >= 4) { 1785 err = decode_pg_upmap(p, end, map); 1786 if (err) 1787 goto bad; 1788 1789 err = decode_pg_upmap_items(p, end, map); 1790 if (err) 1791 goto bad; 1792 } else { 1793 WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap)); 1794 WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items)); 1795 } 1796 1797 /* ignore the rest */ 1798 *p = end; 1799 1800 dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd); 1801 return 0; 1802 1803 e_inval: 1804 err = -EINVAL; 1805 bad: 1806 pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n", 1807 err, epoch, (int)(*p - start), *p, start, end); 1808 print_hex_dump(KERN_DEBUG, "osdmap: ", 1809 DUMP_PREFIX_OFFSET, 16, 1, 1810 start, end - start, true); 1811 return err; 1812 } 1813 1814 /* 1815 * Allocate and decode a full map. 1816 */ 1817 struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2) 1818 { 1819 struct ceph_osdmap *map; 1820 int ret; 1821 1822 map = ceph_osdmap_alloc(); 1823 if (!map) 1824 return ERR_PTR(-ENOMEM); 1825 1826 ret = osdmap_decode(p, end, msgr2, map); 1827 if (ret) { 1828 ceph_osdmap_destroy(map); 1829 return ERR_PTR(ret); 1830 } 1831 1832 return map; 1833 } 1834 1835 /* 1836 * Encoding order is (new_up_client, new_state, new_weight). Need to 1837 * apply in the (new_weight, new_state, new_up_client) order, because 1838 * an incremental map may look like e.g. 1839 * 1840 * new_up_client: { osd=6, addr=... } # set osd_state and addr 1841 * new_state: { osd=6, xorstate=EXISTS } # clear osd_state 1842 */ 1843 static int decode_new_up_state_weight(void **p, void *end, u8 struct_v, 1844 bool msgr2, struct ceph_osdmap *map) 1845 { 1846 void *new_up_client; 1847 void *new_state; 1848 void *new_weight_end; 1849 u32 len; 1850 int ret; 1851 int i; 1852 1853 new_up_client = *p; 1854 ceph_decode_32_safe(p, end, len, e_inval); 1855 for (i = 0; i < len; ++i) { 1856 struct ceph_entity_addr addr; 1857 1858 ceph_decode_skip_32(p, end, e_inval); 1859 if (struct_v >= 7) 1860 ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr); 1861 else 1862 ret = ceph_decode_entity_addr(p, end, &addr); 1863 if (ret) 1864 return ret; 1865 } 1866 1867 new_state = *p; 1868 ceph_decode_32_safe(p, end, len, e_inval); 1869 len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8)); 1870 ceph_decode_need(p, end, len, e_inval); 1871 *p += len; 1872 1873 /* new_weight */ 1874 ceph_decode_32_safe(p, end, len, e_inval); 1875 while (len--) { 1876 s32 osd; 1877 u32 w; 1878 1879 ceph_decode_need(p, end, 2*sizeof(u32), e_inval); 1880 osd = ceph_decode_32(p); 1881 w = ceph_decode_32(p); 1882 BUG_ON(osd >= map->max_osd); 1883 osdmap_info(map, "osd%d weight 0x%x %s\n", osd, w, 1884 w == CEPH_OSD_IN ? "(in)" : 1885 (w == CEPH_OSD_OUT ? "(out)" : "")); 1886 map->osd_weight[osd] = w; 1887 1888 /* 1889 * If we are marking in, set the EXISTS, and clear the 1890 * AUTOOUT and NEW bits. 1891 */ 1892 if (w) { 1893 map->osd_state[osd] |= CEPH_OSD_EXISTS; 1894 map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT | 1895 CEPH_OSD_NEW); 1896 } 1897 } 1898 new_weight_end = *p; 1899 1900 /* new_state (up/down) */ 1901 *p = new_state; 1902 len = ceph_decode_32(p); 1903 while (len--) { 1904 s32 osd; 1905 u32 xorstate; 1906 1907 osd = ceph_decode_32(p); 1908 if (struct_v >= 5) 1909 xorstate = ceph_decode_32(p); 1910 else 1911 xorstate = ceph_decode_8(p); 1912 if (xorstate == 0) 1913 xorstate = CEPH_OSD_UP; 1914 BUG_ON(osd >= map->max_osd); 1915 if ((map->osd_state[osd] & CEPH_OSD_UP) && 1916 (xorstate & CEPH_OSD_UP)) 1917 osdmap_info(map, "osd%d down\n", osd); 1918 if ((map->osd_state[osd] & CEPH_OSD_EXISTS) && 1919 (xorstate & CEPH_OSD_EXISTS)) { 1920 osdmap_info(map, "osd%d does not exist\n", osd); 1921 ret = set_primary_affinity(map, osd, 1922 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY); 1923 if (ret) 1924 return ret; 1925 memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr)); 1926 map->osd_state[osd] = 0; 1927 } else { 1928 map->osd_state[osd] ^= xorstate; 1929 } 1930 } 1931 1932 /* new_up_client */ 1933 *p = new_up_client; 1934 len = ceph_decode_32(p); 1935 while (len--) { 1936 s32 osd; 1937 struct ceph_entity_addr addr; 1938 1939 osd = ceph_decode_32(p); 1940 BUG_ON(osd >= map->max_osd); 1941 if (struct_v >= 7) 1942 ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr); 1943 else 1944 ret = ceph_decode_entity_addr(p, end, &addr); 1945 if (ret) 1946 return ret; 1947 1948 dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr)); 1949 1950 osdmap_info(map, "osd%d up\n", osd); 1951 map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP; 1952 map->osd_addr[osd] = addr; 1953 } 1954 1955 *p = new_weight_end; 1956 return 0; 1957 1958 e_inval: 1959 return -EINVAL; 1960 } 1961 1962 /* 1963 * decode and apply an incremental map update. 1964 */ 1965 struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2, 1966 struct ceph_osdmap *map) 1967 { 1968 struct ceph_fsid fsid; 1969 u32 epoch = 0; 1970 struct ceph_timespec modified; 1971 s32 len; 1972 u64 pool; 1973 __s64 new_pool_max; 1974 __s32 new_flags, max; 1975 void *start = *p; 1976 int err; 1977 u8 struct_v; 1978 1979 dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p)); 1980 1981 err = get_osdmap_client_data_v(p, end, "inc", &struct_v); 1982 if (err) 1983 goto bad; 1984 1985 /* fsid, epoch, modified, new_pool_max, new_flags */ 1986 ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) + 1987 sizeof(u64) + sizeof(u32), e_inval); 1988 ceph_decode_copy(p, &fsid, sizeof(fsid)); 1989 epoch = ceph_decode_32(p); 1990 BUG_ON(epoch != map->epoch+1); 1991 ceph_decode_copy(p, &modified, sizeof(modified)); 1992 new_pool_max = ceph_decode_64(p); 1993 new_flags = ceph_decode_32(p); 1994 1995 /* full map? */ 1996 ceph_decode_32_safe(p, end, len, e_inval); 1997 if (len > 0) { 1998 dout("apply_incremental full map len %d, %p to %p\n", 1999 len, *p, end); 2000 return ceph_osdmap_decode(p, min(*p+len, end), msgr2); 2001 } 2002 2003 /* new crush? */ 2004 ceph_decode_32_safe(p, end, len, e_inval); 2005 if (len > 0) { 2006 err = osdmap_set_crush(map, 2007 crush_decode(*p, min(*p + len, end))); 2008 if (err) 2009 goto bad; 2010 *p += len; 2011 } 2012 2013 /* new flags? */ 2014 if (new_flags >= 0) 2015 map->flags = new_flags; 2016 if (new_pool_max >= 0) 2017 map->pool_max = new_pool_max; 2018 2019 /* new max? */ 2020 ceph_decode_32_safe(p, end, max, e_inval); 2021 if (max >= 0) { 2022 err = osdmap_set_max_osd(map, max); 2023 if (err) 2024 goto bad; 2025 } 2026 2027 map->epoch++; 2028 map->modified = modified; 2029 2030 /* new_pools */ 2031 err = decode_new_pools(p, end, map); 2032 if (err) 2033 goto bad; 2034 2035 /* new_pool_names */ 2036 err = decode_pool_names(p, end, map); 2037 if (err) 2038 goto bad; 2039 2040 /* old_pool */ 2041 ceph_decode_32_safe(p, end, len, e_inval); 2042 while (len--) { 2043 struct ceph_pg_pool_info *pi; 2044 2045 ceph_decode_64_safe(p, end, pool, e_inval); 2046 pi = lookup_pg_pool(&map->pg_pools, pool); 2047 if (pi) 2048 __remove_pg_pool(&map->pg_pools, pi); 2049 } 2050 2051 /* new_up_client, new_state, new_weight */ 2052 err = decode_new_up_state_weight(p, end, struct_v, msgr2, map); 2053 if (err) 2054 goto bad; 2055 2056 /* new_pg_temp */ 2057 err = decode_new_pg_temp(p, end, map); 2058 if (err) 2059 goto bad; 2060 2061 /* new_primary_temp */ 2062 if (struct_v >= 1) { 2063 err = decode_new_primary_temp(p, end, map); 2064 if (err) 2065 goto bad; 2066 } 2067 2068 /* new_primary_affinity */ 2069 if (struct_v >= 2) { 2070 err = decode_new_primary_affinity(p, end, map); 2071 if (err) 2072 goto bad; 2073 } 2074 2075 if (struct_v >= 3) { 2076 /* new_erasure_code_profiles */ 2077 ceph_decode_skip_map_of_map(p, end, string, string, string, 2078 e_inval); 2079 /* old_erasure_code_profiles */ 2080 ceph_decode_skip_set(p, end, string, e_inval); 2081 } 2082 2083 if (struct_v >= 4) { 2084 err = decode_new_pg_upmap(p, end, map); 2085 if (err) 2086 goto bad; 2087 2088 err = decode_old_pg_upmap(p, end, map); 2089 if (err) 2090 goto bad; 2091 2092 err = decode_new_pg_upmap_items(p, end, map); 2093 if (err) 2094 goto bad; 2095 2096 err = decode_old_pg_upmap_items(p, end, map); 2097 if (err) 2098 goto bad; 2099 } 2100 2101 /* ignore the rest */ 2102 *p = end; 2103 2104 dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd); 2105 return map; 2106 2107 e_inval: 2108 err = -EINVAL; 2109 bad: 2110 pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n", 2111 err, epoch, (int)(*p - start), *p, start, end); 2112 print_hex_dump(KERN_DEBUG, "osdmap: ", 2113 DUMP_PREFIX_OFFSET, 16, 1, 2114 start, end - start, true); 2115 return ERR_PTR(err); 2116 } 2117 2118 void ceph_oloc_copy(struct ceph_object_locator *dest, 2119 const struct ceph_object_locator *src) 2120 { 2121 ceph_oloc_destroy(dest); 2122 2123 dest->pool = src->pool; 2124 if (src->pool_ns) 2125 dest->pool_ns = ceph_get_string(src->pool_ns); 2126 else 2127 dest->pool_ns = NULL; 2128 } 2129 EXPORT_SYMBOL(ceph_oloc_copy); 2130 2131 void ceph_oloc_destroy(struct ceph_object_locator *oloc) 2132 { 2133 ceph_put_string(oloc->pool_ns); 2134 } 2135 EXPORT_SYMBOL(ceph_oloc_destroy); 2136 2137 void ceph_oid_copy(struct ceph_object_id *dest, 2138 const struct ceph_object_id *src) 2139 { 2140 ceph_oid_destroy(dest); 2141 2142 if (src->name != src->inline_name) { 2143 /* very rare, see ceph_object_id definition */ 2144 dest->name = kmalloc(src->name_len + 1, 2145 GFP_NOIO | __GFP_NOFAIL); 2146 } else { 2147 dest->name = dest->inline_name; 2148 } 2149 memcpy(dest->name, src->name, src->name_len + 1); 2150 dest->name_len = src->name_len; 2151 } 2152 EXPORT_SYMBOL(ceph_oid_copy); 2153 2154 static __printf(2, 0) 2155 int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap) 2156 { 2157 int len; 2158 2159 WARN_ON(!ceph_oid_empty(oid)); 2160 2161 len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap); 2162 if (len >= sizeof(oid->inline_name)) 2163 return len; 2164 2165 oid->name_len = len; 2166 return 0; 2167 } 2168 2169 /* 2170 * If oid doesn't fit into inline buffer, BUG. 2171 */ 2172 void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...) 2173 { 2174 va_list ap; 2175 2176 va_start(ap, fmt); 2177 BUG_ON(oid_printf_vargs(oid, fmt, ap)); 2178 va_end(ap); 2179 } 2180 EXPORT_SYMBOL(ceph_oid_printf); 2181 2182 static __printf(3, 0) 2183 int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp, 2184 const char *fmt, va_list ap) 2185 { 2186 va_list aq; 2187 int len; 2188 2189 va_copy(aq, ap); 2190 len = oid_printf_vargs(oid, fmt, aq); 2191 va_end(aq); 2192 2193 if (len) { 2194 char *external_name; 2195 2196 external_name = kmalloc(len + 1, gfp); 2197 if (!external_name) 2198 return -ENOMEM; 2199 2200 oid->name = external_name; 2201 WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len); 2202 oid->name_len = len; 2203 } 2204 2205 return 0; 2206 } 2207 2208 /* 2209 * If oid doesn't fit into inline buffer, allocate. 2210 */ 2211 int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp, 2212 const char *fmt, ...) 2213 { 2214 va_list ap; 2215 int ret; 2216 2217 va_start(ap, fmt); 2218 ret = oid_aprintf_vargs(oid, gfp, fmt, ap); 2219 va_end(ap); 2220 2221 return ret; 2222 } 2223 EXPORT_SYMBOL(ceph_oid_aprintf); 2224 2225 void ceph_oid_destroy(struct ceph_object_id *oid) 2226 { 2227 if (oid->name != oid->inline_name) 2228 kfree(oid->name); 2229 } 2230 EXPORT_SYMBOL(ceph_oid_destroy); 2231 2232 /* 2233 * osds only 2234 */ 2235 static bool __osds_equal(const struct ceph_osds *lhs, 2236 const struct ceph_osds *rhs) 2237 { 2238 if (lhs->size == rhs->size && 2239 !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0]))) 2240 return true; 2241 2242 return false; 2243 } 2244 2245 /* 2246 * osds + primary 2247 */ 2248 static bool osds_equal(const struct ceph_osds *lhs, 2249 const struct ceph_osds *rhs) 2250 { 2251 if (__osds_equal(lhs, rhs) && 2252 lhs->primary == rhs->primary) 2253 return true; 2254 2255 return false; 2256 } 2257 2258 static bool osds_valid(const struct ceph_osds *set) 2259 { 2260 /* non-empty set */ 2261 if (set->size > 0 && set->primary >= 0) 2262 return true; 2263 2264 /* empty can_shift_osds set */ 2265 if (!set->size && set->primary == -1) 2266 return true; 2267 2268 /* empty !can_shift_osds set - all NONE */ 2269 if (set->size > 0 && set->primary == -1) { 2270 int i; 2271 2272 for (i = 0; i < set->size; i++) { 2273 if (set->osds[i] != CRUSH_ITEM_NONE) 2274 break; 2275 } 2276 if (i == set->size) 2277 return true; 2278 } 2279 2280 return false; 2281 } 2282 2283 void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src) 2284 { 2285 memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0])); 2286 dest->size = src->size; 2287 dest->primary = src->primary; 2288 } 2289 2290 bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num, 2291 u32 new_pg_num) 2292 { 2293 int old_bits = calc_bits_of(old_pg_num); 2294 int old_mask = (1 << old_bits) - 1; 2295 int n; 2296 2297 WARN_ON(pgid->seed >= old_pg_num); 2298 if (new_pg_num <= old_pg_num) 2299 return false; 2300 2301 for (n = 1; ; n++) { 2302 int next_bit = n << (old_bits - 1); 2303 u32 s = next_bit | pgid->seed; 2304 2305 if (s < old_pg_num || s == pgid->seed) 2306 continue; 2307 if (s >= new_pg_num) 2308 break; 2309 2310 s = ceph_stable_mod(s, old_pg_num, old_mask); 2311 if (s == pgid->seed) 2312 return true; 2313 } 2314 2315 return false; 2316 } 2317 2318 bool ceph_is_new_interval(const struct ceph_osds *old_acting, 2319 const struct ceph_osds *new_acting, 2320 const struct ceph_osds *old_up, 2321 const struct ceph_osds *new_up, 2322 int old_size, 2323 int new_size, 2324 int old_min_size, 2325 int new_min_size, 2326 u32 old_pg_num, 2327 u32 new_pg_num, 2328 bool old_sort_bitwise, 2329 bool new_sort_bitwise, 2330 bool old_recovery_deletes, 2331 bool new_recovery_deletes, 2332 const struct ceph_pg *pgid) 2333 { 2334 return !osds_equal(old_acting, new_acting) || 2335 !osds_equal(old_up, new_up) || 2336 old_size != new_size || 2337 old_min_size != new_min_size || 2338 ceph_pg_is_split(pgid, old_pg_num, new_pg_num) || 2339 old_sort_bitwise != new_sort_bitwise || 2340 old_recovery_deletes != new_recovery_deletes; 2341 } 2342 2343 static int calc_pg_rank(int osd, const struct ceph_osds *acting) 2344 { 2345 int i; 2346 2347 for (i = 0; i < acting->size; i++) { 2348 if (acting->osds[i] == osd) 2349 return i; 2350 } 2351 2352 return -1; 2353 } 2354 2355 static bool primary_changed(const struct ceph_osds *old_acting, 2356 const struct ceph_osds *new_acting) 2357 { 2358 if (!old_acting->size && !new_acting->size) 2359 return false; /* both still empty */ 2360 2361 if (!old_acting->size ^ !new_acting->size) 2362 return true; /* was empty, now not, or vice versa */ 2363 2364 if (old_acting->primary != new_acting->primary) 2365 return true; /* primary changed */ 2366 2367 if (calc_pg_rank(old_acting->primary, old_acting) != 2368 calc_pg_rank(new_acting->primary, new_acting)) 2369 return true; 2370 2371 return false; /* same primary (tho replicas may have changed) */ 2372 } 2373 2374 bool ceph_osds_changed(const struct ceph_osds *old_acting, 2375 const struct ceph_osds *new_acting, 2376 bool any_change) 2377 { 2378 if (primary_changed(old_acting, new_acting)) 2379 return true; 2380 2381 if (any_change && !__osds_equal(old_acting, new_acting)) 2382 return true; 2383 2384 return false; 2385 } 2386 2387 /* 2388 * Map an object into a PG. 2389 * 2390 * Should only be called with target_oid and target_oloc (as opposed to 2391 * base_oid and base_oloc), since tiering isn't taken into account. 2392 */ 2393 void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi, 2394 const struct ceph_object_id *oid, 2395 const struct ceph_object_locator *oloc, 2396 struct ceph_pg *raw_pgid) 2397 { 2398 WARN_ON(pi->id != oloc->pool); 2399 2400 if (!oloc->pool_ns) { 2401 raw_pgid->pool = oloc->pool; 2402 raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name, 2403 oid->name_len); 2404 dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name, 2405 raw_pgid->pool, raw_pgid->seed); 2406 } else { 2407 char stack_buf[256]; 2408 char *buf = stack_buf; 2409 int nsl = oloc->pool_ns->len; 2410 size_t total = nsl + 1 + oid->name_len; 2411 2412 if (total > sizeof(stack_buf)) 2413 buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL); 2414 memcpy(buf, oloc->pool_ns->str, nsl); 2415 buf[nsl] = '\037'; 2416 memcpy(buf + nsl + 1, oid->name, oid->name_len); 2417 raw_pgid->pool = oloc->pool; 2418 raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total); 2419 if (buf != stack_buf) 2420 kfree(buf); 2421 dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__, 2422 oid->name, nsl, oloc->pool_ns->str, 2423 raw_pgid->pool, raw_pgid->seed); 2424 } 2425 } 2426 2427 int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap, 2428 const struct ceph_object_id *oid, 2429 const struct ceph_object_locator *oloc, 2430 struct ceph_pg *raw_pgid) 2431 { 2432 struct ceph_pg_pool_info *pi; 2433 2434 pi = ceph_pg_pool_by_id(osdmap, oloc->pool); 2435 if (!pi) 2436 return -ENOENT; 2437 2438 __ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid); 2439 return 0; 2440 } 2441 EXPORT_SYMBOL(ceph_object_locator_to_pg); 2442 2443 /* 2444 * Map a raw PG (full precision ps) into an actual PG. 2445 */ 2446 static void raw_pg_to_pg(struct ceph_pg_pool_info *pi, 2447 const struct ceph_pg *raw_pgid, 2448 struct ceph_pg *pgid) 2449 { 2450 pgid->pool = raw_pgid->pool; 2451 pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num, 2452 pi->pg_num_mask); 2453 } 2454 2455 /* 2456 * Map a raw PG (full precision ps) into a placement ps (placement 2457 * seed). Include pool id in that value so that different pools don't 2458 * use the same seeds. 2459 */ 2460 static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi, 2461 const struct ceph_pg *raw_pgid) 2462 { 2463 if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) { 2464 /* hash pool id and seed so that pool PGs do not overlap */ 2465 return crush_hash32_2(CRUSH_HASH_RJENKINS1, 2466 ceph_stable_mod(raw_pgid->seed, 2467 pi->pgp_num, 2468 pi->pgp_num_mask), 2469 raw_pgid->pool); 2470 } else { 2471 /* 2472 * legacy behavior: add ps and pool together. this is 2473 * not a great approach because the PGs from each pool 2474 * will overlap on top of each other: 0.5 == 1.4 == 2475 * 2.3 == ... 2476 */ 2477 return ceph_stable_mod(raw_pgid->seed, pi->pgp_num, 2478 pi->pgp_num_mask) + 2479 (unsigned)raw_pgid->pool; 2480 } 2481 } 2482 2483 /* 2484 * Magic value used for a "default" fallback choose_args, used if the 2485 * crush_choose_arg_map passed to do_crush() does not exist. If this 2486 * also doesn't exist, fall back to canonical weights. 2487 */ 2488 #define CEPH_DEFAULT_CHOOSE_ARGS -1 2489 2490 static int do_crush(struct ceph_osdmap *map, int ruleno, int x, 2491 int *result, int result_max, 2492 const __u32 *weight, int weight_max, 2493 s64 choose_args_index) 2494 { 2495 struct crush_choose_arg_map *arg_map; 2496 struct crush_work *work; 2497 int r; 2498 2499 BUG_ON(result_max > CEPH_PG_MAX_SIZE); 2500 2501 arg_map = lookup_choose_arg_map(&map->crush->choose_args, 2502 choose_args_index); 2503 if (!arg_map) 2504 arg_map = lookup_choose_arg_map(&map->crush->choose_args, 2505 CEPH_DEFAULT_CHOOSE_ARGS); 2506 2507 work = get_workspace(&map->crush_wsm, map->crush); 2508 r = crush_do_rule(map->crush, ruleno, x, result, result_max, 2509 weight, weight_max, work, 2510 arg_map ? arg_map->args : NULL); 2511 put_workspace(&map->crush_wsm, work); 2512 return r; 2513 } 2514 2515 static void remove_nonexistent_osds(struct ceph_osdmap *osdmap, 2516 struct ceph_pg_pool_info *pi, 2517 struct ceph_osds *set) 2518 { 2519 int i; 2520 2521 if (ceph_can_shift_osds(pi)) { 2522 int removed = 0; 2523 2524 /* shift left */ 2525 for (i = 0; i < set->size; i++) { 2526 if (!ceph_osd_exists(osdmap, set->osds[i])) { 2527 removed++; 2528 continue; 2529 } 2530 if (removed) 2531 set->osds[i - removed] = set->osds[i]; 2532 } 2533 set->size -= removed; 2534 } else { 2535 /* set dne devices to NONE */ 2536 for (i = 0; i < set->size; i++) { 2537 if (!ceph_osd_exists(osdmap, set->osds[i])) 2538 set->osds[i] = CRUSH_ITEM_NONE; 2539 } 2540 } 2541 } 2542 2543 /* 2544 * Calculate raw set (CRUSH output) for given PG and filter out 2545 * nonexistent OSDs. ->primary is undefined for a raw set. 2546 * 2547 * Placement seed (CRUSH input) is returned through @ppps. 2548 */ 2549 static void pg_to_raw_osds(struct ceph_osdmap *osdmap, 2550 struct ceph_pg_pool_info *pi, 2551 const struct ceph_pg *raw_pgid, 2552 struct ceph_osds *raw, 2553 u32 *ppps) 2554 { 2555 u32 pps = raw_pg_to_pps(pi, raw_pgid); 2556 int ruleno; 2557 int len; 2558 2559 ceph_osds_init(raw); 2560 if (ppps) 2561 *ppps = pps; 2562 2563 ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type, 2564 pi->size); 2565 if (ruleno < 0) { 2566 pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n", 2567 pi->id, pi->crush_ruleset, pi->type, pi->size); 2568 return; 2569 } 2570 2571 if (pi->size > ARRAY_SIZE(raw->osds)) { 2572 pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n", 2573 pi->id, pi->crush_ruleset, pi->type, pi->size, 2574 ARRAY_SIZE(raw->osds)); 2575 return; 2576 } 2577 2578 len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size, 2579 osdmap->osd_weight, osdmap->max_osd, pi->id); 2580 if (len < 0) { 2581 pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n", 2582 len, ruleno, pi->id, pi->crush_ruleset, pi->type, 2583 pi->size); 2584 return; 2585 } 2586 2587 raw->size = len; 2588 remove_nonexistent_osds(osdmap, pi, raw); 2589 } 2590 2591 /* apply pg_upmap[_items] mappings */ 2592 static void apply_upmap(struct ceph_osdmap *osdmap, 2593 const struct ceph_pg *pgid, 2594 struct ceph_osds *raw) 2595 { 2596 struct ceph_pg_mapping *pg; 2597 int i, j; 2598 2599 pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid); 2600 if (pg) { 2601 /* make sure targets aren't marked out */ 2602 for (i = 0; i < pg->pg_upmap.len; i++) { 2603 int osd = pg->pg_upmap.osds[i]; 2604 2605 if (osd != CRUSH_ITEM_NONE && 2606 osd < osdmap->max_osd && 2607 osdmap->osd_weight[osd] == 0) { 2608 /* reject/ignore explicit mapping */ 2609 return; 2610 } 2611 } 2612 for (i = 0; i < pg->pg_upmap.len; i++) 2613 raw->osds[i] = pg->pg_upmap.osds[i]; 2614 raw->size = pg->pg_upmap.len; 2615 /* check and apply pg_upmap_items, if any */ 2616 } 2617 2618 pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid); 2619 if (pg) { 2620 /* 2621 * Note: this approach does not allow a bidirectional swap, 2622 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1]. 2623 */ 2624 for (i = 0; i < pg->pg_upmap_items.len; i++) { 2625 int from = pg->pg_upmap_items.from_to[i][0]; 2626 int to = pg->pg_upmap_items.from_to[i][1]; 2627 int pos = -1; 2628 bool exists = false; 2629 2630 /* make sure replacement doesn't already appear */ 2631 for (j = 0; j < raw->size; j++) { 2632 int osd = raw->osds[j]; 2633 2634 if (osd == to) { 2635 exists = true; 2636 break; 2637 } 2638 /* ignore mapping if target is marked out */ 2639 if (osd == from && pos < 0 && 2640 !(to != CRUSH_ITEM_NONE && 2641 to < osdmap->max_osd && 2642 osdmap->osd_weight[to] == 0)) { 2643 pos = j; 2644 } 2645 } 2646 if (!exists && pos >= 0) 2647 raw->osds[pos] = to; 2648 } 2649 } 2650 } 2651 2652 /* 2653 * Given raw set, calculate up set and up primary. By definition of an 2654 * up set, the result won't contain nonexistent or down OSDs. 2655 * 2656 * This is done in-place - on return @set is the up set. If it's 2657 * empty, ->primary will remain undefined. 2658 */ 2659 static void raw_to_up_osds(struct ceph_osdmap *osdmap, 2660 struct ceph_pg_pool_info *pi, 2661 struct ceph_osds *set) 2662 { 2663 int i; 2664 2665 /* ->primary is undefined for a raw set */ 2666 BUG_ON(set->primary != -1); 2667 2668 if (ceph_can_shift_osds(pi)) { 2669 int removed = 0; 2670 2671 /* shift left */ 2672 for (i = 0; i < set->size; i++) { 2673 if (ceph_osd_is_down(osdmap, set->osds[i])) { 2674 removed++; 2675 continue; 2676 } 2677 if (removed) 2678 set->osds[i - removed] = set->osds[i]; 2679 } 2680 set->size -= removed; 2681 if (set->size > 0) 2682 set->primary = set->osds[0]; 2683 } else { 2684 /* set down/dne devices to NONE */ 2685 for (i = set->size - 1; i >= 0; i--) { 2686 if (ceph_osd_is_down(osdmap, set->osds[i])) 2687 set->osds[i] = CRUSH_ITEM_NONE; 2688 else 2689 set->primary = set->osds[i]; 2690 } 2691 } 2692 } 2693 2694 static void apply_primary_affinity(struct ceph_osdmap *osdmap, 2695 struct ceph_pg_pool_info *pi, 2696 u32 pps, 2697 struct ceph_osds *up) 2698 { 2699 int i; 2700 int pos = -1; 2701 2702 /* 2703 * Do we have any non-default primary_affinity values for these 2704 * osds? 2705 */ 2706 if (!osdmap->osd_primary_affinity) 2707 return; 2708 2709 for (i = 0; i < up->size; i++) { 2710 int osd = up->osds[i]; 2711 2712 if (osd != CRUSH_ITEM_NONE && 2713 osdmap->osd_primary_affinity[osd] != 2714 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) { 2715 break; 2716 } 2717 } 2718 if (i == up->size) 2719 return; 2720 2721 /* 2722 * Pick the primary. Feed both the seed (for the pg) and the 2723 * osd into the hash/rng so that a proportional fraction of an 2724 * osd's pgs get rejected as primary. 2725 */ 2726 for (i = 0; i < up->size; i++) { 2727 int osd = up->osds[i]; 2728 u32 aff; 2729 2730 if (osd == CRUSH_ITEM_NONE) 2731 continue; 2732 2733 aff = osdmap->osd_primary_affinity[osd]; 2734 if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY && 2735 (crush_hash32_2(CRUSH_HASH_RJENKINS1, 2736 pps, osd) >> 16) >= aff) { 2737 /* 2738 * We chose not to use this primary. Note it 2739 * anyway as a fallback in case we don't pick 2740 * anyone else, but keep looking. 2741 */ 2742 if (pos < 0) 2743 pos = i; 2744 } else { 2745 pos = i; 2746 break; 2747 } 2748 } 2749 if (pos < 0) 2750 return; 2751 2752 up->primary = up->osds[pos]; 2753 2754 if (ceph_can_shift_osds(pi) && pos > 0) { 2755 /* move the new primary to the front */ 2756 for (i = pos; i > 0; i--) 2757 up->osds[i] = up->osds[i - 1]; 2758 up->osds[0] = up->primary; 2759 } 2760 } 2761 2762 /* 2763 * Get pg_temp and primary_temp mappings for given PG. 2764 * 2765 * Note that a PG may have none, only pg_temp, only primary_temp or 2766 * both pg_temp and primary_temp mappings. This means @temp isn't 2767 * always a valid OSD set on return: in the "only primary_temp" case, 2768 * @temp will have its ->primary >= 0 but ->size == 0. 2769 */ 2770 static void get_temp_osds(struct ceph_osdmap *osdmap, 2771 struct ceph_pg_pool_info *pi, 2772 const struct ceph_pg *pgid, 2773 struct ceph_osds *temp) 2774 { 2775 struct ceph_pg_mapping *pg; 2776 int i; 2777 2778 ceph_osds_init(temp); 2779 2780 /* pg_temp? */ 2781 pg = lookup_pg_mapping(&osdmap->pg_temp, pgid); 2782 if (pg) { 2783 for (i = 0; i < pg->pg_temp.len; i++) { 2784 if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) { 2785 if (ceph_can_shift_osds(pi)) 2786 continue; 2787 2788 temp->osds[temp->size++] = CRUSH_ITEM_NONE; 2789 } else { 2790 temp->osds[temp->size++] = pg->pg_temp.osds[i]; 2791 } 2792 } 2793 2794 /* apply pg_temp's primary */ 2795 for (i = 0; i < temp->size; i++) { 2796 if (temp->osds[i] != CRUSH_ITEM_NONE) { 2797 temp->primary = temp->osds[i]; 2798 break; 2799 } 2800 } 2801 } 2802 2803 /* primary_temp? */ 2804 pg = lookup_pg_mapping(&osdmap->primary_temp, pgid); 2805 if (pg) 2806 temp->primary = pg->primary_temp.osd; 2807 } 2808 2809 /* 2810 * Map a PG to its acting set as well as its up set. 2811 * 2812 * Acting set is used for data mapping purposes, while up set can be 2813 * recorded for detecting interval changes and deciding whether to 2814 * resend a request. 2815 */ 2816 void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap, 2817 struct ceph_pg_pool_info *pi, 2818 const struct ceph_pg *raw_pgid, 2819 struct ceph_osds *up, 2820 struct ceph_osds *acting) 2821 { 2822 struct ceph_pg pgid; 2823 u32 pps; 2824 2825 WARN_ON(pi->id != raw_pgid->pool); 2826 raw_pg_to_pg(pi, raw_pgid, &pgid); 2827 2828 pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps); 2829 apply_upmap(osdmap, &pgid, up); 2830 raw_to_up_osds(osdmap, pi, up); 2831 apply_primary_affinity(osdmap, pi, pps, up); 2832 get_temp_osds(osdmap, pi, &pgid, acting); 2833 if (!acting->size) { 2834 memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0])); 2835 acting->size = up->size; 2836 if (acting->primary == -1) 2837 acting->primary = up->primary; 2838 } 2839 WARN_ON(!osds_valid(up) || !osds_valid(acting)); 2840 } 2841 2842 bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap, 2843 struct ceph_pg_pool_info *pi, 2844 const struct ceph_pg *raw_pgid, 2845 struct ceph_spg *spgid) 2846 { 2847 struct ceph_pg pgid; 2848 struct ceph_osds up, acting; 2849 int i; 2850 2851 WARN_ON(pi->id != raw_pgid->pool); 2852 raw_pg_to_pg(pi, raw_pgid, &pgid); 2853 2854 if (ceph_can_shift_osds(pi)) { 2855 spgid->pgid = pgid; /* struct */ 2856 spgid->shard = CEPH_SPG_NOSHARD; 2857 return true; 2858 } 2859 2860 ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting); 2861 for (i = 0; i < acting.size; i++) { 2862 if (acting.osds[i] == acting.primary) { 2863 spgid->pgid = pgid; /* struct */ 2864 spgid->shard = i; 2865 return true; 2866 } 2867 } 2868 2869 return false; 2870 } 2871 2872 /* 2873 * Return acting primary for given PG, or -1 if none. 2874 */ 2875 int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap, 2876 const struct ceph_pg *raw_pgid) 2877 { 2878 struct ceph_pg_pool_info *pi; 2879 struct ceph_osds up, acting; 2880 2881 pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool); 2882 if (!pi) 2883 return -1; 2884 2885 ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting); 2886 return acting.primary; 2887 } 2888 EXPORT_SYMBOL(ceph_pg_to_acting_primary); 2889 2890 static struct crush_loc_node *alloc_crush_loc(size_t type_name_len, 2891 size_t name_len) 2892 { 2893 struct crush_loc_node *loc; 2894 2895 loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO); 2896 if (!loc) 2897 return NULL; 2898 2899 RB_CLEAR_NODE(&loc->cl_node); 2900 return loc; 2901 } 2902 2903 static void free_crush_loc(struct crush_loc_node *loc) 2904 { 2905 WARN_ON(!RB_EMPTY_NODE(&loc->cl_node)); 2906 2907 kfree(loc); 2908 } 2909 2910 static int crush_loc_compare(const struct crush_loc *loc1, 2911 const struct crush_loc *loc2) 2912 { 2913 return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?: 2914 strcmp(loc1->cl_name, loc2->cl_name); 2915 } 2916 2917 DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare, 2918 RB_BYPTR, const struct crush_loc *, cl_node) 2919 2920 /* 2921 * Parses a set of <bucket type name>':'<bucket name> pairs separated 2922 * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar". 2923 * 2924 * Note that @crush_location is modified by strsep(). 2925 */ 2926 int ceph_parse_crush_location(char *crush_location, struct rb_root *locs) 2927 { 2928 struct crush_loc_node *loc; 2929 const char *type_name, *name, *colon; 2930 size_t type_name_len, name_len; 2931 2932 dout("%s '%s'\n", __func__, crush_location); 2933 while ((type_name = strsep(&crush_location, "|"))) { 2934 colon = strchr(type_name, ':'); 2935 if (!colon) 2936 return -EINVAL; 2937 2938 type_name_len = colon - type_name; 2939 if (type_name_len == 0) 2940 return -EINVAL; 2941 2942 name = colon + 1; 2943 name_len = strlen(name); 2944 if (name_len == 0) 2945 return -EINVAL; 2946 2947 loc = alloc_crush_loc(type_name_len, name_len); 2948 if (!loc) 2949 return -ENOMEM; 2950 2951 loc->cl_loc.cl_type_name = loc->cl_data; 2952 memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len); 2953 loc->cl_loc.cl_type_name[type_name_len] = '\0'; 2954 2955 loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1; 2956 memcpy(loc->cl_loc.cl_name, name, name_len); 2957 loc->cl_loc.cl_name[name_len] = '\0'; 2958 2959 if (!__insert_crush_loc(locs, loc)) { 2960 free_crush_loc(loc); 2961 return -EEXIST; 2962 } 2963 2964 dout("%s type_name '%s' name '%s'\n", __func__, 2965 loc->cl_loc.cl_type_name, loc->cl_loc.cl_name); 2966 } 2967 2968 return 0; 2969 } 2970 2971 int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2) 2972 { 2973 struct rb_node *n1 = rb_first(locs1); 2974 struct rb_node *n2 = rb_first(locs2); 2975 int ret; 2976 2977 for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) { 2978 struct crush_loc_node *loc1 = 2979 rb_entry(n1, struct crush_loc_node, cl_node); 2980 struct crush_loc_node *loc2 = 2981 rb_entry(n2, struct crush_loc_node, cl_node); 2982 2983 ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc); 2984 if (ret) 2985 return ret; 2986 } 2987 2988 if (!n1 && n2) 2989 return -1; 2990 if (n1 && !n2) 2991 return 1; 2992 return 0; 2993 } 2994 2995 void ceph_clear_crush_locs(struct rb_root *locs) 2996 { 2997 while (!RB_EMPTY_ROOT(locs)) { 2998 struct crush_loc_node *loc = 2999 rb_entry(rb_first(locs), struct crush_loc_node, cl_node); 3000 3001 erase_crush_loc(locs, loc); 3002 free_crush_loc(loc); 3003 } 3004 } 3005 3006 /* 3007 * [a-zA-Z0-9-_.]+ 3008 */ 3009 static bool is_valid_crush_name(const char *name) 3010 { 3011 do { 3012 if (!('a' <= *name && *name <= 'z') && 3013 !('A' <= *name && *name <= 'Z') && 3014 !('0' <= *name && *name <= '9') && 3015 *name != '-' && *name != '_' && *name != '.') 3016 return false; 3017 } while (*++name != '\0'); 3018 3019 return true; 3020 } 3021 3022 /* 3023 * Gets the parent of an item. Returns its id (<0 because the 3024 * parent is always a bucket), type id (>0 for the same reason, 3025 * via @parent_type_id) and location (via @parent_loc). If no 3026 * parent, returns 0. 3027 * 3028 * Does a linear search, as there are no parent pointers of any 3029 * kind. Note that the result is ambiguous for items that occur 3030 * multiple times in the map. 3031 */ 3032 static int get_immediate_parent(struct crush_map *c, int id, 3033 u16 *parent_type_id, 3034 struct crush_loc *parent_loc) 3035 { 3036 struct crush_bucket *b; 3037 struct crush_name_node *type_cn, *cn; 3038 int i, j; 3039 3040 for (i = 0; i < c->max_buckets; i++) { 3041 b = c->buckets[i]; 3042 if (!b) 3043 continue; 3044 3045 /* ignore per-class shadow hierarchy */ 3046 cn = lookup_crush_name(&c->names, b->id); 3047 if (!cn || !is_valid_crush_name(cn->cn_name)) 3048 continue; 3049 3050 for (j = 0; j < b->size; j++) { 3051 if (b->items[j] != id) 3052 continue; 3053 3054 *parent_type_id = b->type; 3055 type_cn = lookup_crush_name(&c->type_names, b->type); 3056 parent_loc->cl_type_name = type_cn->cn_name; 3057 parent_loc->cl_name = cn->cn_name; 3058 return b->id; 3059 } 3060 } 3061 3062 return 0; /* no parent */ 3063 } 3064 3065 /* 3066 * Calculates the locality/distance from an item to a client 3067 * location expressed in terms of CRUSH hierarchy as a set of 3068 * (bucket type name, bucket name) pairs. Specifically, looks 3069 * for the lowest-valued bucket type for which the location of 3070 * @id matches one of the locations in @locs, so for standard 3071 * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9) 3072 * a matching host is closer than a matching rack and a matching 3073 * data center is closer than a matching zone. 3074 * 3075 * Specifying multiple locations (a "multipath" location) such 3076 * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs 3077 * is a multimap. The locality will be: 3078 * 3079 * - 3 for OSDs in racks foo1 and foo2 3080 * - 8 for OSDs in data center bar 3081 * - -1 for all other OSDs 3082 * 3083 * The lowest possible bucket type is 1, so the best locality 3084 * for an OSD is 1 (i.e. a matching host). Locality 0 would be 3085 * the OSD itself. 3086 */ 3087 int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id, 3088 struct rb_root *locs) 3089 { 3090 struct crush_loc loc; 3091 u16 type_id; 3092 3093 /* 3094 * Instead of repeated get_immediate_parent() calls, 3095 * the location of @id could be obtained with a single 3096 * depth-first traversal. 3097 */ 3098 for (;;) { 3099 id = get_immediate_parent(osdmap->crush, id, &type_id, &loc); 3100 if (id >= 0) 3101 return -1; /* not local */ 3102 3103 if (lookup_crush_loc(locs, &loc)) 3104 return type_id; 3105 } 3106 } 3107