1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/ceph/ceph_debug.h> 4 5 #include <linux/module.h> 6 #include <linux/slab.h> 7 8 #include <linux/ceph/libceph.h> 9 #include <linux/ceph/osdmap.h> 10 #include <linux/ceph/decode.h> 11 #include <linux/crush/hash.h> 12 #include <linux/crush/mapper.h> 13 14 static __printf(2, 3) 15 void osdmap_info(const struct ceph_osdmap *map, const char *fmt, ...) 16 { 17 struct va_format vaf; 18 va_list args; 19 20 va_start(args, fmt); 21 vaf.fmt = fmt; 22 vaf.va = &args; 23 24 printk(KERN_INFO "%s (%pU e%u): %pV", KBUILD_MODNAME, &map->fsid, 25 map->epoch, &vaf); 26 27 va_end(args); 28 } 29 30 char *ceph_osdmap_state_str(char *str, int len, u32 state) 31 { 32 if (!len) 33 return str; 34 35 if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP)) 36 snprintf(str, len, "exists, up"); 37 else if (state & CEPH_OSD_EXISTS) 38 snprintf(str, len, "exists"); 39 else if (state & CEPH_OSD_UP) 40 snprintf(str, len, "up"); 41 else 42 snprintf(str, len, "doesn't exist"); 43 44 return str; 45 } 46 47 /* maps */ 48 49 static int calc_bits_of(unsigned int t) 50 { 51 int b = 0; 52 while (t) { 53 t = t >> 1; 54 b++; 55 } 56 return b; 57 } 58 59 /* 60 * the foo_mask is the smallest value 2^n-1 that is >= foo. 61 */ 62 static void calc_pg_masks(struct ceph_pg_pool_info *pi) 63 { 64 pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1; 65 pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1; 66 } 67 68 /* 69 * decode crush map 70 */ 71 static int crush_decode_uniform_bucket(void **p, void *end, 72 struct crush_bucket_uniform *b) 73 { 74 dout("crush_decode_uniform_bucket %p to %p\n", *p, end); 75 ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad); 76 b->item_weight = ceph_decode_32(p); 77 return 0; 78 bad: 79 return -EINVAL; 80 } 81 82 static int crush_decode_list_bucket(void **p, void *end, 83 struct crush_bucket_list *b) 84 { 85 int j; 86 dout("crush_decode_list_bucket %p to %p\n", *p, end); 87 b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); 88 if (b->item_weights == NULL) 89 return -ENOMEM; 90 b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); 91 if (b->sum_weights == NULL) 92 return -ENOMEM; 93 ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad); 94 for (j = 0; j < b->h.size; j++) { 95 b->item_weights[j] = ceph_decode_32(p); 96 b->sum_weights[j] = ceph_decode_32(p); 97 } 98 return 0; 99 bad: 100 return -EINVAL; 101 } 102 103 static int crush_decode_tree_bucket(void **p, void *end, 104 struct crush_bucket_tree *b) 105 { 106 int j; 107 dout("crush_decode_tree_bucket %p to %p\n", *p, end); 108 ceph_decode_8_safe(p, end, b->num_nodes, bad); 109 b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS); 110 if (b->node_weights == NULL) 111 return -ENOMEM; 112 ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad); 113 for (j = 0; j < b->num_nodes; j++) 114 b->node_weights[j] = ceph_decode_32(p); 115 return 0; 116 bad: 117 return -EINVAL; 118 } 119 120 static int crush_decode_straw_bucket(void **p, void *end, 121 struct crush_bucket_straw *b) 122 { 123 int j; 124 dout("crush_decode_straw_bucket %p to %p\n", *p, end); 125 b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); 126 if (b->item_weights == NULL) 127 return -ENOMEM; 128 b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); 129 if (b->straws == NULL) 130 return -ENOMEM; 131 ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad); 132 for (j = 0; j < b->h.size; j++) { 133 b->item_weights[j] = ceph_decode_32(p); 134 b->straws[j] = ceph_decode_32(p); 135 } 136 return 0; 137 bad: 138 return -EINVAL; 139 } 140 141 static int crush_decode_straw2_bucket(void **p, void *end, 142 struct crush_bucket_straw2 *b) 143 { 144 int j; 145 dout("crush_decode_straw2_bucket %p to %p\n", *p, end); 146 b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS); 147 if (b->item_weights == NULL) 148 return -ENOMEM; 149 ceph_decode_need(p, end, b->h.size * sizeof(u32), bad); 150 for (j = 0; j < b->h.size; j++) 151 b->item_weights[j] = ceph_decode_32(p); 152 return 0; 153 bad: 154 return -EINVAL; 155 } 156 157 struct crush_name_node { 158 struct rb_node cn_node; 159 int cn_id; 160 char cn_name[]; 161 }; 162 163 static struct crush_name_node *alloc_crush_name(size_t name_len) 164 { 165 struct crush_name_node *cn; 166 167 cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO); 168 if (!cn) 169 return NULL; 170 171 RB_CLEAR_NODE(&cn->cn_node); 172 return cn; 173 } 174 175 static void free_crush_name(struct crush_name_node *cn) 176 { 177 WARN_ON(!RB_EMPTY_NODE(&cn->cn_node)); 178 179 kfree(cn); 180 } 181 182 DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node) 183 184 static int decode_crush_names(void **p, void *end, struct rb_root *root) 185 { 186 u32 n; 187 188 ceph_decode_32_safe(p, end, n, e_inval); 189 while (n--) { 190 struct crush_name_node *cn; 191 int id; 192 u32 name_len; 193 194 ceph_decode_32_safe(p, end, id, e_inval); 195 ceph_decode_32_safe(p, end, name_len, e_inval); 196 ceph_decode_need(p, end, name_len, e_inval); 197 198 cn = alloc_crush_name(name_len); 199 if (!cn) 200 return -ENOMEM; 201 202 cn->cn_id = id; 203 memcpy(cn->cn_name, *p, name_len); 204 cn->cn_name[name_len] = '\0'; 205 *p += name_len; 206 207 if (!__insert_crush_name(root, cn)) { 208 free_crush_name(cn); 209 return -EEXIST; 210 } 211 } 212 213 return 0; 214 215 e_inval: 216 return -EINVAL; 217 } 218 219 void clear_crush_names(struct rb_root *root) 220 { 221 while (!RB_EMPTY_ROOT(root)) { 222 struct crush_name_node *cn = 223 rb_entry(rb_first(root), struct crush_name_node, cn_node); 224 225 erase_crush_name(root, cn); 226 free_crush_name(cn); 227 } 228 } 229 230 static struct crush_choose_arg_map *alloc_choose_arg_map(void) 231 { 232 struct crush_choose_arg_map *arg_map; 233 234 arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO); 235 if (!arg_map) 236 return NULL; 237 238 RB_CLEAR_NODE(&arg_map->node); 239 return arg_map; 240 } 241 242 static void free_choose_arg_map(struct crush_choose_arg_map *arg_map) 243 { 244 if (arg_map) { 245 int i, j; 246 247 WARN_ON(!RB_EMPTY_NODE(&arg_map->node)); 248 249 for (i = 0; i < arg_map->size; i++) { 250 struct crush_choose_arg *arg = &arg_map->args[i]; 251 252 for (j = 0; j < arg->weight_set_size; j++) 253 kfree(arg->weight_set[j].weights); 254 kfree(arg->weight_set); 255 kfree(arg->ids); 256 } 257 kfree(arg_map->args); 258 kfree(arg_map); 259 } 260 } 261 262 DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index, 263 node); 264 265 void clear_choose_args(struct crush_map *c) 266 { 267 while (!RB_EMPTY_ROOT(&c->choose_args)) { 268 struct crush_choose_arg_map *arg_map = 269 rb_entry(rb_first(&c->choose_args), 270 struct crush_choose_arg_map, node); 271 272 erase_choose_arg_map(&c->choose_args, arg_map); 273 free_choose_arg_map(arg_map); 274 } 275 } 276 277 static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen) 278 { 279 u32 *a = NULL; 280 u32 len; 281 int ret; 282 283 ceph_decode_32_safe(p, end, len, e_inval); 284 if (len) { 285 u32 i; 286 287 a = kmalloc_array(len, sizeof(u32), GFP_NOIO); 288 if (!a) { 289 ret = -ENOMEM; 290 goto fail; 291 } 292 293 ceph_decode_need(p, end, len * sizeof(u32), e_inval); 294 for (i = 0; i < len; i++) 295 a[i] = ceph_decode_32(p); 296 } 297 298 *plen = len; 299 return a; 300 301 e_inval: 302 ret = -EINVAL; 303 fail: 304 kfree(a); 305 return ERR_PTR(ret); 306 } 307 308 /* 309 * Assumes @arg is zero-initialized. 310 */ 311 static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg) 312 { 313 int ret; 314 315 ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval); 316 if (arg->weight_set_size) { 317 u32 i; 318 319 arg->weight_set = kmalloc_array(arg->weight_set_size, 320 sizeof(*arg->weight_set), 321 GFP_NOIO); 322 if (!arg->weight_set) 323 return -ENOMEM; 324 325 for (i = 0; i < arg->weight_set_size; i++) { 326 struct crush_weight_set *w = &arg->weight_set[i]; 327 328 w->weights = decode_array_32_alloc(p, end, &w->size); 329 if (IS_ERR(w->weights)) { 330 ret = PTR_ERR(w->weights); 331 w->weights = NULL; 332 return ret; 333 } 334 } 335 } 336 337 arg->ids = decode_array_32_alloc(p, end, &arg->ids_size); 338 if (IS_ERR(arg->ids)) { 339 ret = PTR_ERR(arg->ids); 340 arg->ids = NULL; 341 return ret; 342 } 343 344 return 0; 345 346 e_inval: 347 return -EINVAL; 348 } 349 350 static int decode_choose_args(void **p, void *end, struct crush_map *c) 351 { 352 struct crush_choose_arg_map *arg_map = NULL; 353 u32 num_choose_arg_maps, num_buckets; 354 int ret; 355 356 ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval); 357 while (num_choose_arg_maps--) { 358 arg_map = alloc_choose_arg_map(); 359 if (!arg_map) { 360 ret = -ENOMEM; 361 goto fail; 362 } 363 364 ceph_decode_64_safe(p, end, arg_map->choose_args_index, 365 e_inval); 366 arg_map->size = c->max_buckets; 367 arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args), 368 GFP_NOIO); 369 if (!arg_map->args) { 370 ret = -ENOMEM; 371 goto fail; 372 } 373 374 ceph_decode_32_safe(p, end, num_buckets, e_inval); 375 while (num_buckets--) { 376 struct crush_choose_arg *arg; 377 u32 bucket_index; 378 379 ceph_decode_32_safe(p, end, bucket_index, e_inval); 380 if (bucket_index >= arg_map->size) 381 goto e_inval; 382 383 arg = &arg_map->args[bucket_index]; 384 ret = decode_choose_arg(p, end, arg); 385 if (ret) 386 goto fail; 387 388 if (arg->ids_size && 389 arg->ids_size != c->buckets[bucket_index]->size) 390 goto e_inval; 391 } 392 393 insert_choose_arg_map(&c->choose_args, arg_map); 394 } 395 396 return 0; 397 398 e_inval: 399 ret = -EINVAL; 400 fail: 401 free_choose_arg_map(arg_map); 402 return ret; 403 } 404 405 static void crush_finalize(struct crush_map *c) 406 { 407 __s32 b; 408 409 /* Space for the array of pointers to per-bucket workspace */ 410 c->working_size = sizeof(struct crush_work) + 411 c->max_buckets * sizeof(struct crush_work_bucket *); 412 413 for (b = 0; b < c->max_buckets; b++) { 414 if (!c->buckets[b]) 415 continue; 416 417 switch (c->buckets[b]->alg) { 418 default: 419 /* 420 * The base case, permutation variables and 421 * the pointer to the permutation array. 422 */ 423 c->working_size += sizeof(struct crush_work_bucket); 424 break; 425 } 426 /* Every bucket has a permutation array. */ 427 c->working_size += c->buckets[b]->size * sizeof(__u32); 428 } 429 } 430 431 static struct crush_map *crush_decode(void *pbyval, void *end) 432 { 433 struct crush_map *c; 434 int err; 435 int i, j; 436 void **p = &pbyval; 437 void *start = pbyval; 438 u32 magic; 439 440 dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p)); 441 442 c = kzalloc(sizeof(*c), GFP_NOFS); 443 if (c == NULL) 444 return ERR_PTR(-ENOMEM); 445 446 c->type_names = RB_ROOT; 447 c->names = RB_ROOT; 448 c->choose_args = RB_ROOT; 449 450 /* set tunables to default values */ 451 c->choose_local_tries = 2; 452 c->choose_local_fallback_tries = 5; 453 c->choose_total_tries = 19; 454 c->chooseleaf_descend_once = 0; 455 456 ceph_decode_need(p, end, 4*sizeof(u32), bad); 457 magic = ceph_decode_32(p); 458 if (magic != CRUSH_MAGIC) { 459 pr_err("crush_decode magic %x != current %x\n", 460 (unsigned int)magic, (unsigned int)CRUSH_MAGIC); 461 goto bad; 462 } 463 c->max_buckets = ceph_decode_32(p); 464 c->max_rules = ceph_decode_32(p); 465 c->max_devices = ceph_decode_32(p); 466 467 c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS); 468 if (c->buckets == NULL) 469 goto badmem; 470 c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS); 471 if (c->rules == NULL) 472 goto badmem; 473 474 /* buckets */ 475 for (i = 0; i < c->max_buckets; i++) { 476 int size = 0; 477 u32 alg; 478 struct crush_bucket *b; 479 480 ceph_decode_32_safe(p, end, alg, bad); 481 if (alg == 0) { 482 c->buckets[i] = NULL; 483 continue; 484 } 485 dout("crush_decode bucket %d off %x %p to %p\n", 486 i, (int)(*p-start), *p, end); 487 488 switch (alg) { 489 case CRUSH_BUCKET_UNIFORM: 490 size = sizeof(struct crush_bucket_uniform); 491 break; 492 case CRUSH_BUCKET_LIST: 493 size = sizeof(struct crush_bucket_list); 494 break; 495 case CRUSH_BUCKET_TREE: 496 size = sizeof(struct crush_bucket_tree); 497 break; 498 case CRUSH_BUCKET_STRAW: 499 size = sizeof(struct crush_bucket_straw); 500 break; 501 case CRUSH_BUCKET_STRAW2: 502 size = sizeof(struct crush_bucket_straw2); 503 break; 504 default: 505 goto bad; 506 } 507 BUG_ON(size == 0); 508 b = c->buckets[i] = kzalloc(size, GFP_NOFS); 509 if (b == NULL) 510 goto badmem; 511 512 ceph_decode_need(p, end, 4*sizeof(u32), bad); 513 b->id = ceph_decode_32(p); 514 b->type = ceph_decode_16(p); 515 b->alg = ceph_decode_8(p); 516 b->hash = ceph_decode_8(p); 517 b->weight = ceph_decode_32(p); 518 b->size = ceph_decode_32(p); 519 520 dout("crush_decode bucket size %d off %x %p to %p\n", 521 b->size, (int)(*p-start), *p, end); 522 523 b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS); 524 if (b->items == NULL) 525 goto badmem; 526 527 ceph_decode_need(p, end, b->size*sizeof(u32), bad); 528 for (j = 0; j < b->size; j++) 529 b->items[j] = ceph_decode_32(p); 530 531 switch (b->alg) { 532 case CRUSH_BUCKET_UNIFORM: 533 err = crush_decode_uniform_bucket(p, end, 534 (struct crush_bucket_uniform *)b); 535 if (err < 0) 536 goto fail; 537 break; 538 case CRUSH_BUCKET_LIST: 539 err = crush_decode_list_bucket(p, end, 540 (struct crush_bucket_list *)b); 541 if (err < 0) 542 goto fail; 543 break; 544 case CRUSH_BUCKET_TREE: 545 err = crush_decode_tree_bucket(p, end, 546 (struct crush_bucket_tree *)b); 547 if (err < 0) 548 goto fail; 549 break; 550 case CRUSH_BUCKET_STRAW: 551 err = crush_decode_straw_bucket(p, end, 552 (struct crush_bucket_straw *)b); 553 if (err < 0) 554 goto fail; 555 break; 556 case CRUSH_BUCKET_STRAW2: 557 err = crush_decode_straw2_bucket(p, end, 558 (struct crush_bucket_straw2 *)b); 559 if (err < 0) 560 goto fail; 561 break; 562 } 563 } 564 565 /* rules */ 566 dout("rule vec is %p\n", c->rules); 567 for (i = 0; i < c->max_rules; i++) { 568 u32 yes; 569 struct crush_rule *r; 570 571 ceph_decode_32_safe(p, end, yes, bad); 572 if (!yes) { 573 dout("crush_decode NO rule %d off %x %p to %p\n", 574 i, (int)(*p-start), *p, end); 575 c->rules[i] = NULL; 576 continue; 577 } 578 579 dout("crush_decode rule %d off %x %p to %p\n", 580 i, (int)(*p-start), *p, end); 581 582 /* len */ 583 ceph_decode_32_safe(p, end, yes, bad); 584 #if BITS_PER_LONG == 32 585 if (yes > (ULONG_MAX - sizeof(*r)) 586 / sizeof(struct crush_rule_step)) 587 goto bad; 588 #endif 589 r = kmalloc(struct_size(r, steps, yes), GFP_NOFS); 590 if (r == NULL) 591 goto badmem; 592 dout(" rule %d is at %p\n", i, r); 593 c->rules[i] = r; 594 r->len = yes; 595 ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */ 596 ceph_decode_need(p, end, r->len*3*sizeof(u32), bad); 597 for (j = 0; j < r->len; j++) { 598 r->steps[j].op = ceph_decode_32(p); 599 r->steps[j].arg1 = ceph_decode_32(p); 600 r->steps[j].arg2 = ceph_decode_32(p); 601 } 602 } 603 604 err = decode_crush_names(p, end, &c->type_names); 605 if (err) 606 goto fail; 607 608 err = decode_crush_names(p, end, &c->names); 609 if (err) 610 goto fail; 611 612 ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */ 613 614 /* tunables */ 615 ceph_decode_need(p, end, 3*sizeof(u32), done); 616 c->choose_local_tries = ceph_decode_32(p); 617 c->choose_local_fallback_tries = ceph_decode_32(p); 618 c->choose_total_tries = ceph_decode_32(p); 619 dout("crush decode tunable choose_local_tries = %d\n", 620 c->choose_local_tries); 621 dout("crush decode tunable choose_local_fallback_tries = %d\n", 622 c->choose_local_fallback_tries); 623 dout("crush decode tunable choose_total_tries = %d\n", 624 c->choose_total_tries); 625 626 ceph_decode_need(p, end, sizeof(u32), done); 627 c->chooseleaf_descend_once = ceph_decode_32(p); 628 dout("crush decode tunable chooseleaf_descend_once = %d\n", 629 c->chooseleaf_descend_once); 630 631 ceph_decode_need(p, end, sizeof(u8), done); 632 c->chooseleaf_vary_r = ceph_decode_8(p); 633 dout("crush decode tunable chooseleaf_vary_r = %d\n", 634 c->chooseleaf_vary_r); 635 636 /* skip straw_calc_version, allowed_bucket_algs */ 637 ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done); 638 *p += sizeof(u8) + sizeof(u32); 639 640 ceph_decode_need(p, end, sizeof(u8), done); 641 c->chooseleaf_stable = ceph_decode_8(p); 642 dout("crush decode tunable chooseleaf_stable = %d\n", 643 c->chooseleaf_stable); 644 645 if (*p != end) { 646 /* class_map */ 647 ceph_decode_skip_map(p, end, 32, 32, bad); 648 /* class_name */ 649 ceph_decode_skip_map(p, end, 32, string, bad); 650 /* class_bucket */ 651 ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad); 652 } 653 654 if (*p != end) { 655 err = decode_choose_args(p, end, c); 656 if (err) 657 goto fail; 658 } 659 660 done: 661 crush_finalize(c); 662 dout("crush_decode success\n"); 663 return c; 664 665 badmem: 666 err = -ENOMEM; 667 fail: 668 dout("crush_decode fail %d\n", err); 669 crush_destroy(c); 670 return ERR_PTR(err); 671 672 bad: 673 err = -EINVAL; 674 goto fail; 675 } 676 677 int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs) 678 { 679 if (lhs->pool < rhs->pool) 680 return -1; 681 if (lhs->pool > rhs->pool) 682 return 1; 683 if (lhs->seed < rhs->seed) 684 return -1; 685 if (lhs->seed > rhs->seed) 686 return 1; 687 688 return 0; 689 } 690 691 int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs) 692 { 693 int ret; 694 695 ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid); 696 if (ret) 697 return ret; 698 699 if (lhs->shard < rhs->shard) 700 return -1; 701 if (lhs->shard > rhs->shard) 702 return 1; 703 704 return 0; 705 } 706 707 static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len) 708 { 709 struct ceph_pg_mapping *pg; 710 711 pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO); 712 if (!pg) 713 return NULL; 714 715 RB_CLEAR_NODE(&pg->node); 716 return pg; 717 } 718 719 static void free_pg_mapping(struct ceph_pg_mapping *pg) 720 { 721 WARN_ON(!RB_EMPTY_NODE(&pg->node)); 722 723 kfree(pg); 724 } 725 726 /* 727 * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid 728 * to a set of osds) and primary_temp (explicit primary setting) 729 */ 730 DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare, 731 RB_BYPTR, const struct ceph_pg *, node) 732 733 /* 734 * rbtree of pg pool info 735 */ 736 DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node) 737 738 struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id) 739 { 740 return lookup_pg_pool(&map->pg_pools, id); 741 } 742 743 const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id) 744 { 745 struct ceph_pg_pool_info *pi; 746 747 if (id == CEPH_NOPOOL) 748 return NULL; 749 750 if (WARN_ON_ONCE(id > (u64) INT_MAX)) 751 return NULL; 752 753 pi = lookup_pg_pool(&map->pg_pools, id); 754 return pi ? pi->name : NULL; 755 } 756 EXPORT_SYMBOL(ceph_pg_pool_name_by_id); 757 758 int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name) 759 { 760 struct rb_node *rbp; 761 762 for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) { 763 struct ceph_pg_pool_info *pi = 764 rb_entry(rbp, struct ceph_pg_pool_info, node); 765 if (pi->name && strcmp(pi->name, name) == 0) 766 return pi->id; 767 } 768 return -ENOENT; 769 } 770 EXPORT_SYMBOL(ceph_pg_poolid_by_name); 771 772 u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id) 773 { 774 struct ceph_pg_pool_info *pi; 775 776 pi = lookup_pg_pool(&map->pg_pools, id); 777 return pi ? pi->flags : 0; 778 } 779 EXPORT_SYMBOL(ceph_pg_pool_flags); 780 781 static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi) 782 { 783 erase_pg_pool(root, pi); 784 kfree(pi->name); 785 kfree(pi); 786 } 787 788 static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi) 789 { 790 u8 ev, cv; 791 unsigned len, num; 792 void *pool_end; 793 794 ceph_decode_need(p, end, 2 + 4, bad); 795 ev = ceph_decode_8(p); /* encoding version */ 796 cv = ceph_decode_8(p); /* compat version */ 797 if (ev < 5) { 798 pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv); 799 return -EINVAL; 800 } 801 if (cv > 9) { 802 pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv); 803 return -EINVAL; 804 } 805 len = ceph_decode_32(p); 806 ceph_decode_need(p, end, len, bad); 807 pool_end = *p + len; 808 809 pi->type = ceph_decode_8(p); 810 pi->size = ceph_decode_8(p); 811 pi->crush_ruleset = ceph_decode_8(p); 812 pi->object_hash = ceph_decode_8(p); 813 814 pi->pg_num = ceph_decode_32(p); 815 pi->pgp_num = ceph_decode_32(p); 816 817 *p += 4 + 4; /* skip lpg* */ 818 *p += 4; /* skip last_change */ 819 *p += 8 + 4; /* skip snap_seq, snap_epoch */ 820 821 /* skip snaps */ 822 num = ceph_decode_32(p); 823 while (num--) { 824 *p += 8; /* snapid key */ 825 *p += 1 + 1; /* versions */ 826 len = ceph_decode_32(p); 827 *p += len; 828 } 829 830 /* skip removed_snaps */ 831 num = ceph_decode_32(p); 832 *p += num * (8 + 8); 833 834 *p += 8; /* skip auid */ 835 pi->flags = ceph_decode_64(p); 836 *p += 4; /* skip crash_replay_interval */ 837 838 if (ev >= 7) 839 pi->min_size = ceph_decode_8(p); 840 else 841 pi->min_size = pi->size - pi->size / 2; 842 843 if (ev >= 8) 844 *p += 8 + 8; /* skip quota_max_* */ 845 846 if (ev >= 9) { 847 /* skip tiers */ 848 num = ceph_decode_32(p); 849 *p += num * 8; 850 851 *p += 8; /* skip tier_of */ 852 *p += 1; /* skip cache_mode */ 853 854 pi->read_tier = ceph_decode_64(p); 855 pi->write_tier = ceph_decode_64(p); 856 } else { 857 pi->read_tier = -1; 858 pi->write_tier = -1; 859 } 860 861 if (ev >= 10) { 862 /* skip properties */ 863 num = ceph_decode_32(p); 864 while (num--) { 865 len = ceph_decode_32(p); 866 *p += len; /* key */ 867 len = ceph_decode_32(p); 868 *p += len; /* val */ 869 } 870 } 871 872 if (ev >= 11) { 873 /* skip hit_set_params */ 874 *p += 1 + 1; /* versions */ 875 len = ceph_decode_32(p); 876 *p += len; 877 878 *p += 4; /* skip hit_set_period */ 879 *p += 4; /* skip hit_set_count */ 880 } 881 882 if (ev >= 12) 883 *p += 4; /* skip stripe_width */ 884 885 if (ev >= 13) { 886 *p += 8; /* skip target_max_bytes */ 887 *p += 8; /* skip target_max_objects */ 888 *p += 4; /* skip cache_target_dirty_ratio_micro */ 889 *p += 4; /* skip cache_target_full_ratio_micro */ 890 *p += 4; /* skip cache_min_flush_age */ 891 *p += 4; /* skip cache_min_evict_age */ 892 } 893 894 if (ev >= 14) { 895 /* skip erasure_code_profile */ 896 len = ceph_decode_32(p); 897 *p += len; 898 } 899 900 /* 901 * last_force_op_resend_preluminous, will be overridden if the 902 * map was encoded with RESEND_ON_SPLIT 903 */ 904 if (ev >= 15) 905 pi->last_force_request_resend = ceph_decode_32(p); 906 else 907 pi->last_force_request_resend = 0; 908 909 if (ev >= 16) 910 *p += 4; /* skip min_read_recency_for_promote */ 911 912 if (ev >= 17) 913 *p += 8; /* skip expected_num_objects */ 914 915 if (ev >= 19) 916 *p += 4; /* skip cache_target_dirty_high_ratio_micro */ 917 918 if (ev >= 20) 919 *p += 4; /* skip min_write_recency_for_promote */ 920 921 if (ev >= 21) 922 *p += 1; /* skip use_gmt_hitset */ 923 924 if (ev >= 22) 925 *p += 1; /* skip fast_read */ 926 927 if (ev >= 23) { 928 *p += 4; /* skip hit_set_grade_decay_rate */ 929 *p += 4; /* skip hit_set_search_last_n */ 930 } 931 932 if (ev >= 24) { 933 /* skip opts */ 934 *p += 1 + 1; /* versions */ 935 len = ceph_decode_32(p); 936 *p += len; 937 } 938 939 if (ev >= 25) 940 pi->last_force_request_resend = ceph_decode_32(p); 941 942 /* ignore the rest */ 943 944 *p = pool_end; 945 calc_pg_masks(pi); 946 return 0; 947 948 bad: 949 return -EINVAL; 950 } 951 952 static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map) 953 { 954 struct ceph_pg_pool_info *pi; 955 u32 num, len; 956 u64 pool; 957 958 ceph_decode_32_safe(p, end, num, bad); 959 dout(" %d pool names\n", num); 960 while (num--) { 961 ceph_decode_64_safe(p, end, pool, bad); 962 ceph_decode_32_safe(p, end, len, bad); 963 dout(" pool %llu len %d\n", pool, len); 964 ceph_decode_need(p, end, len, bad); 965 pi = lookup_pg_pool(&map->pg_pools, pool); 966 if (pi) { 967 char *name = kstrndup(*p, len, GFP_NOFS); 968 969 if (!name) 970 return -ENOMEM; 971 kfree(pi->name); 972 pi->name = name; 973 dout(" name is %s\n", pi->name); 974 } 975 *p += len; 976 } 977 return 0; 978 979 bad: 980 return -EINVAL; 981 } 982 983 /* 984 * CRUSH workspaces 985 * 986 * workspace_manager framework borrowed from fs/btrfs/compression.c. 987 * Two simplifications: there is only one type of workspace and there 988 * is always at least one workspace. 989 */ 990 static struct crush_work *alloc_workspace(const struct crush_map *c) 991 { 992 struct crush_work *work; 993 size_t work_size; 994 995 WARN_ON(!c->working_size); 996 work_size = crush_work_size(c, CEPH_PG_MAX_SIZE); 997 dout("%s work_size %zu bytes\n", __func__, work_size); 998 999 work = kvmalloc(work_size, GFP_NOIO); 1000 if (!work) 1001 return NULL; 1002 1003 INIT_LIST_HEAD(&work->item); 1004 crush_init_workspace(c, work); 1005 return work; 1006 } 1007 1008 static void free_workspace(struct crush_work *work) 1009 { 1010 WARN_ON(!list_empty(&work->item)); 1011 kvfree(work); 1012 } 1013 1014 static void init_workspace_manager(struct workspace_manager *wsm) 1015 { 1016 INIT_LIST_HEAD(&wsm->idle_ws); 1017 spin_lock_init(&wsm->ws_lock); 1018 atomic_set(&wsm->total_ws, 0); 1019 wsm->free_ws = 0; 1020 init_waitqueue_head(&wsm->ws_wait); 1021 } 1022 1023 static void add_initial_workspace(struct workspace_manager *wsm, 1024 struct crush_work *work) 1025 { 1026 WARN_ON(!list_empty(&wsm->idle_ws)); 1027 1028 list_add(&work->item, &wsm->idle_ws); 1029 atomic_set(&wsm->total_ws, 1); 1030 wsm->free_ws = 1; 1031 } 1032 1033 static void cleanup_workspace_manager(struct workspace_manager *wsm) 1034 { 1035 struct crush_work *work; 1036 1037 while (!list_empty(&wsm->idle_ws)) { 1038 work = list_first_entry(&wsm->idle_ws, struct crush_work, 1039 item); 1040 list_del_init(&work->item); 1041 free_workspace(work); 1042 } 1043 atomic_set(&wsm->total_ws, 0); 1044 wsm->free_ws = 0; 1045 } 1046 1047 /* 1048 * Finds an available workspace or allocates a new one. If it's not 1049 * possible to allocate a new one, waits until there is one. 1050 */ 1051 static struct crush_work *get_workspace(struct workspace_manager *wsm, 1052 const struct crush_map *c) 1053 { 1054 struct crush_work *work; 1055 int cpus = num_online_cpus(); 1056 1057 again: 1058 spin_lock(&wsm->ws_lock); 1059 if (!list_empty(&wsm->idle_ws)) { 1060 work = list_first_entry(&wsm->idle_ws, struct crush_work, 1061 item); 1062 list_del_init(&work->item); 1063 wsm->free_ws--; 1064 spin_unlock(&wsm->ws_lock); 1065 return work; 1066 1067 } 1068 if (atomic_read(&wsm->total_ws) > cpus) { 1069 DEFINE_WAIT(wait); 1070 1071 spin_unlock(&wsm->ws_lock); 1072 prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1073 if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws) 1074 schedule(); 1075 finish_wait(&wsm->ws_wait, &wait); 1076 goto again; 1077 } 1078 atomic_inc(&wsm->total_ws); 1079 spin_unlock(&wsm->ws_lock); 1080 1081 work = alloc_workspace(c); 1082 if (!work) { 1083 atomic_dec(&wsm->total_ws); 1084 wake_up(&wsm->ws_wait); 1085 1086 /* 1087 * Do not return the error but go back to waiting. We 1088 * have the initial workspace and the CRUSH computation 1089 * time is bounded so we will get it eventually. 1090 */ 1091 WARN_ON(atomic_read(&wsm->total_ws) < 1); 1092 goto again; 1093 } 1094 return work; 1095 } 1096 1097 /* 1098 * Puts a workspace back on the list or frees it if we have enough 1099 * idle ones sitting around. 1100 */ 1101 static void put_workspace(struct workspace_manager *wsm, 1102 struct crush_work *work) 1103 { 1104 spin_lock(&wsm->ws_lock); 1105 if (wsm->free_ws <= num_online_cpus()) { 1106 list_add(&work->item, &wsm->idle_ws); 1107 wsm->free_ws++; 1108 spin_unlock(&wsm->ws_lock); 1109 goto wake; 1110 } 1111 spin_unlock(&wsm->ws_lock); 1112 1113 free_workspace(work); 1114 atomic_dec(&wsm->total_ws); 1115 wake: 1116 if (wq_has_sleeper(&wsm->ws_wait)) 1117 wake_up(&wsm->ws_wait); 1118 } 1119 1120 /* 1121 * osd map 1122 */ 1123 struct ceph_osdmap *ceph_osdmap_alloc(void) 1124 { 1125 struct ceph_osdmap *map; 1126 1127 map = kzalloc(sizeof(*map), GFP_NOIO); 1128 if (!map) 1129 return NULL; 1130 1131 map->pg_pools = RB_ROOT; 1132 map->pool_max = -1; 1133 map->pg_temp = RB_ROOT; 1134 map->primary_temp = RB_ROOT; 1135 map->pg_upmap = RB_ROOT; 1136 map->pg_upmap_items = RB_ROOT; 1137 1138 init_workspace_manager(&map->crush_wsm); 1139 1140 return map; 1141 } 1142 1143 void ceph_osdmap_destroy(struct ceph_osdmap *map) 1144 { 1145 dout("osdmap_destroy %p\n", map); 1146 1147 if (map->crush) 1148 crush_destroy(map->crush); 1149 cleanup_workspace_manager(&map->crush_wsm); 1150 1151 while (!RB_EMPTY_ROOT(&map->pg_temp)) { 1152 struct ceph_pg_mapping *pg = 1153 rb_entry(rb_first(&map->pg_temp), 1154 struct ceph_pg_mapping, node); 1155 erase_pg_mapping(&map->pg_temp, pg); 1156 free_pg_mapping(pg); 1157 } 1158 while (!RB_EMPTY_ROOT(&map->primary_temp)) { 1159 struct ceph_pg_mapping *pg = 1160 rb_entry(rb_first(&map->primary_temp), 1161 struct ceph_pg_mapping, node); 1162 erase_pg_mapping(&map->primary_temp, pg); 1163 free_pg_mapping(pg); 1164 } 1165 while (!RB_EMPTY_ROOT(&map->pg_upmap)) { 1166 struct ceph_pg_mapping *pg = 1167 rb_entry(rb_first(&map->pg_upmap), 1168 struct ceph_pg_mapping, node); 1169 rb_erase(&pg->node, &map->pg_upmap); 1170 kfree(pg); 1171 } 1172 while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) { 1173 struct ceph_pg_mapping *pg = 1174 rb_entry(rb_first(&map->pg_upmap_items), 1175 struct ceph_pg_mapping, node); 1176 rb_erase(&pg->node, &map->pg_upmap_items); 1177 kfree(pg); 1178 } 1179 while (!RB_EMPTY_ROOT(&map->pg_pools)) { 1180 struct ceph_pg_pool_info *pi = 1181 rb_entry(rb_first(&map->pg_pools), 1182 struct ceph_pg_pool_info, node); 1183 __remove_pg_pool(&map->pg_pools, pi); 1184 } 1185 kvfree(map->osd_state); 1186 kvfree(map->osd_weight); 1187 kvfree(map->osd_addr); 1188 kvfree(map->osd_primary_affinity); 1189 kfree(map); 1190 } 1191 1192 /* 1193 * Adjust max_osd value, (re)allocate arrays. 1194 * 1195 * The new elements are properly initialized. 1196 */ 1197 static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max) 1198 { 1199 u32 *state; 1200 u32 *weight; 1201 struct ceph_entity_addr *addr; 1202 u32 to_copy; 1203 int i; 1204 1205 dout("%s old %u new %u\n", __func__, map->max_osd, max); 1206 if (max == map->max_osd) 1207 return 0; 1208 1209 state = kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS); 1210 weight = kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS); 1211 addr = kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS); 1212 if (!state || !weight || !addr) { 1213 kvfree(state); 1214 kvfree(weight); 1215 kvfree(addr); 1216 return -ENOMEM; 1217 } 1218 1219 to_copy = min(map->max_osd, max); 1220 if (map->osd_state) { 1221 memcpy(state, map->osd_state, to_copy * sizeof(*state)); 1222 memcpy(weight, map->osd_weight, to_copy * sizeof(*weight)); 1223 memcpy(addr, map->osd_addr, to_copy * sizeof(*addr)); 1224 kvfree(map->osd_state); 1225 kvfree(map->osd_weight); 1226 kvfree(map->osd_addr); 1227 } 1228 1229 map->osd_state = state; 1230 map->osd_weight = weight; 1231 map->osd_addr = addr; 1232 for (i = map->max_osd; i < max; i++) { 1233 map->osd_state[i] = 0; 1234 map->osd_weight[i] = CEPH_OSD_OUT; 1235 memset(map->osd_addr + i, 0, sizeof(*map->osd_addr)); 1236 } 1237 1238 if (map->osd_primary_affinity) { 1239 u32 *affinity; 1240 1241 affinity = kvmalloc(array_size(max, sizeof(*affinity)), 1242 GFP_NOFS); 1243 if (!affinity) 1244 return -ENOMEM; 1245 1246 memcpy(affinity, map->osd_primary_affinity, 1247 to_copy * sizeof(*affinity)); 1248 kvfree(map->osd_primary_affinity); 1249 1250 map->osd_primary_affinity = affinity; 1251 for (i = map->max_osd; i < max; i++) 1252 map->osd_primary_affinity[i] = 1253 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY; 1254 } 1255 1256 map->max_osd = max; 1257 1258 return 0; 1259 } 1260 1261 static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush) 1262 { 1263 struct crush_work *work; 1264 1265 if (IS_ERR(crush)) 1266 return PTR_ERR(crush); 1267 1268 work = alloc_workspace(crush); 1269 if (!work) { 1270 crush_destroy(crush); 1271 return -ENOMEM; 1272 } 1273 1274 if (map->crush) 1275 crush_destroy(map->crush); 1276 cleanup_workspace_manager(&map->crush_wsm); 1277 map->crush = crush; 1278 add_initial_workspace(&map->crush_wsm, work); 1279 return 0; 1280 } 1281 1282 #define OSDMAP_WRAPPER_COMPAT_VER 7 1283 #define OSDMAP_CLIENT_DATA_COMPAT_VER 1 1284 1285 /* 1286 * Return 0 or error. On success, *v is set to 0 for old (v6) osdmaps, 1287 * to struct_v of the client_data section for new (v7 and above) 1288 * osdmaps. 1289 */ 1290 static int get_osdmap_client_data_v(void **p, void *end, 1291 const char *prefix, u8 *v) 1292 { 1293 u8 struct_v; 1294 1295 ceph_decode_8_safe(p, end, struct_v, e_inval); 1296 if (struct_v >= 7) { 1297 u8 struct_compat; 1298 1299 ceph_decode_8_safe(p, end, struct_compat, e_inval); 1300 if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) { 1301 pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n", 1302 struct_v, struct_compat, 1303 OSDMAP_WRAPPER_COMPAT_VER, prefix); 1304 return -EINVAL; 1305 } 1306 *p += 4; /* ignore wrapper struct_len */ 1307 1308 ceph_decode_8_safe(p, end, struct_v, e_inval); 1309 ceph_decode_8_safe(p, end, struct_compat, e_inval); 1310 if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) { 1311 pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n", 1312 struct_v, struct_compat, 1313 OSDMAP_CLIENT_DATA_COMPAT_VER, prefix); 1314 return -EINVAL; 1315 } 1316 *p += 4; /* ignore client data struct_len */ 1317 } else { 1318 u16 version; 1319 1320 *p -= 1; 1321 ceph_decode_16_safe(p, end, version, e_inval); 1322 if (version < 6) { 1323 pr_warn("got v %d < 6 of %s ceph_osdmap\n", 1324 version, prefix); 1325 return -EINVAL; 1326 } 1327 1328 /* old osdmap encoding */ 1329 struct_v = 0; 1330 } 1331 1332 *v = struct_v; 1333 return 0; 1334 1335 e_inval: 1336 return -EINVAL; 1337 } 1338 1339 static int __decode_pools(void **p, void *end, struct ceph_osdmap *map, 1340 bool incremental) 1341 { 1342 u32 n; 1343 1344 ceph_decode_32_safe(p, end, n, e_inval); 1345 while (n--) { 1346 struct ceph_pg_pool_info *pi; 1347 u64 pool; 1348 int ret; 1349 1350 ceph_decode_64_safe(p, end, pool, e_inval); 1351 1352 pi = lookup_pg_pool(&map->pg_pools, pool); 1353 if (!incremental || !pi) { 1354 pi = kzalloc(sizeof(*pi), GFP_NOFS); 1355 if (!pi) 1356 return -ENOMEM; 1357 1358 RB_CLEAR_NODE(&pi->node); 1359 pi->id = pool; 1360 1361 if (!__insert_pg_pool(&map->pg_pools, pi)) { 1362 kfree(pi); 1363 return -EEXIST; 1364 } 1365 } 1366 1367 ret = decode_pool(p, end, pi); 1368 if (ret) 1369 return ret; 1370 } 1371 1372 return 0; 1373 1374 e_inval: 1375 return -EINVAL; 1376 } 1377 1378 static int decode_pools(void **p, void *end, struct ceph_osdmap *map) 1379 { 1380 return __decode_pools(p, end, map, false); 1381 } 1382 1383 static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map) 1384 { 1385 return __decode_pools(p, end, map, true); 1386 } 1387 1388 typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool); 1389 1390 static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root, 1391 decode_mapping_fn_t fn, bool incremental) 1392 { 1393 u32 n; 1394 1395 WARN_ON(!incremental && !fn); 1396 1397 ceph_decode_32_safe(p, end, n, e_inval); 1398 while (n--) { 1399 struct ceph_pg_mapping *pg; 1400 struct ceph_pg pgid; 1401 int ret; 1402 1403 ret = ceph_decode_pgid(p, end, &pgid); 1404 if (ret) 1405 return ret; 1406 1407 pg = lookup_pg_mapping(mapping_root, &pgid); 1408 if (pg) { 1409 WARN_ON(!incremental); 1410 erase_pg_mapping(mapping_root, pg); 1411 free_pg_mapping(pg); 1412 } 1413 1414 if (fn) { 1415 pg = fn(p, end, incremental); 1416 if (IS_ERR(pg)) 1417 return PTR_ERR(pg); 1418 1419 if (pg) { 1420 pg->pgid = pgid; /* struct */ 1421 insert_pg_mapping(mapping_root, pg); 1422 } 1423 } 1424 } 1425 1426 return 0; 1427 1428 e_inval: 1429 return -EINVAL; 1430 } 1431 1432 static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end, 1433 bool incremental) 1434 { 1435 struct ceph_pg_mapping *pg; 1436 u32 len, i; 1437 1438 ceph_decode_32_safe(p, end, len, e_inval); 1439 if (len == 0 && incremental) 1440 return NULL; /* new_pg_temp: [] to remove */ 1441 if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32)) 1442 return ERR_PTR(-EINVAL); 1443 1444 ceph_decode_need(p, end, len * sizeof(u32), e_inval); 1445 pg = alloc_pg_mapping(len * sizeof(u32)); 1446 if (!pg) 1447 return ERR_PTR(-ENOMEM); 1448 1449 pg->pg_temp.len = len; 1450 for (i = 0; i < len; i++) 1451 pg->pg_temp.osds[i] = ceph_decode_32(p); 1452 1453 return pg; 1454 1455 e_inval: 1456 return ERR_PTR(-EINVAL); 1457 } 1458 1459 static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map) 1460 { 1461 return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp, 1462 false); 1463 } 1464 1465 static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map) 1466 { 1467 return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp, 1468 true); 1469 } 1470 1471 static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end, 1472 bool incremental) 1473 { 1474 struct ceph_pg_mapping *pg; 1475 u32 osd; 1476 1477 ceph_decode_32_safe(p, end, osd, e_inval); 1478 if (osd == (u32)-1 && incremental) 1479 return NULL; /* new_primary_temp: -1 to remove */ 1480 1481 pg = alloc_pg_mapping(0); 1482 if (!pg) 1483 return ERR_PTR(-ENOMEM); 1484 1485 pg->primary_temp.osd = osd; 1486 return pg; 1487 1488 e_inval: 1489 return ERR_PTR(-EINVAL); 1490 } 1491 1492 static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map) 1493 { 1494 return decode_pg_mapping(p, end, &map->primary_temp, 1495 __decode_primary_temp, false); 1496 } 1497 1498 static int decode_new_primary_temp(void **p, void *end, 1499 struct ceph_osdmap *map) 1500 { 1501 return decode_pg_mapping(p, end, &map->primary_temp, 1502 __decode_primary_temp, true); 1503 } 1504 1505 u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd) 1506 { 1507 if (!map->osd_primary_affinity) 1508 return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY; 1509 1510 return map->osd_primary_affinity[osd]; 1511 } 1512 1513 static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff) 1514 { 1515 if (!map->osd_primary_affinity) { 1516 int i; 1517 1518 map->osd_primary_affinity = kvmalloc( 1519 array_size(map->max_osd, sizeof(*map->osd_primary_affinity)), 1520 GFP_NOFS); 1521 if (!map->osd_primary_affinity) 1522 return -ENOMEM; 1523 1524 for (i = 0; i < map->max_osd; i++) 1525 map->osd_primary_affinity[i] = 1526 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY; 1527 } 1528 1529 map->osd_primary_affinity[osd] = aff; 1530 1531 return 0; 1532 } 1533 1534 static int decode_primary_affinity(void **p, void *end, 1535 struct ceph_osdmap *map) 1536 { 1537 u32 len, i; 1538 1539 ceph_decode_32_safe(p, end, len, e_inval); 1540 if (len == 0) { 1541 kvfree(map->osd_primary_affinity); 1542 map->osd_primary_affinity = NULL; 1543 return 0; 1544 } 1545 if (len != map->max_osd) 1546 goto e_inval; 1547 1548 ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval); 1549 1550 for (i = 0; i < map->max_osd; i++) { 1551 int ret; 1552 1553 ret = set_primary_affinity(map, i, ceph_decode_32(p)); 1554 if (ret) 1555 return ret; 1556 } 1557 1558 return 0; 1559 1560 e_inval: 1561 return -EINVAL; 1562 } 1563 1564 static int decode_new_primary_affinity(void **p, void *end, 1565 struct ceph_osdmap *map) 1566 { 1567 u32 n; 1568 1569 ceph_decode_32_safe(p, end, n, e_inval); 1570 while (n--) { 1571 u32 osd, aff; 1572 int ret; 1573 1574 ceph_decode_32_safe(p, end, osd, e_inval); 1575 ceph_decode_32_safe(p, end, aff, e_inval); 1576 if (osd >= map->max_osd) 1577 goto e_inval; 1578 1579 ret = set_primary_affinity(map, osd, aff); 1580 if (ret) 1581 return ret; 1582 1583 osdmap_info(map, "osd%d primary-affinity 0x%x\n", osd, aff); 1584 } 1585 1586 return 0; 1587 1588 e_inval: 1589 return -EINVAL; 1590 } 1591 1592 static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end, 1593 bool __unused) 1594 { 1595 return __decode_pg_temp(p, end, false); 1596 } 1597 1598 static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map) 1599 { 1600 return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap, 1601 false); 1602 } 1603 1604 static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map) 1605 { 1606 return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap, 1607 true); 1608 } 1609 1610 static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map) 1611 { 1612 return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true); 1613 } 1614 1615 static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end, 1616 bool __unused) 1617 { 1618 struct ceph_pg_mapping *pg; 1619 u32 len, i; 1620 1621 ceph_decode_32_safe(p, end, len, e_inval); 1622 if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32))) 1623 return ERR_PTR(-EINVAL); 1624 1625 ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval); 1626 pg = alloc_pg_mapping(2 * len * sizeof(u32)); 1627 if (!pg) 1628 return ERR_PTR(-ENOMEM); 1629 1630 pg->pg_upmap_items.len = len; 1631 for (i = 0; i < len; i++) { 1632 pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p); 1633 pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p); 1634 } 1635 1636 return pg; 1637 1638 e_inval: 1639 return ERR_PTR(-EINVAL); 1640 } 1641 1642 static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map) 1643 { 1644 return decode_pg_mapping(p, end, &map->pg_upmap_items, 1645 __decode_pg_upmap_items, false); 1646 } 1647 1648 static int decode_new_pg_upmap_items(void **p, void *end, 1649 struct ceph_osdmap *map) 1650 { 1651 return decode_pg_mapping(p, end, &map->pg_upmap_items, 1652 __decode_pg_upmap_items, true); 1653 } 1654 1655 static int decode_old_pg_upmap_items(void **p, void *end, 1656 struct ceph_osdmap *map) 1657 { 1658 return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true); 1659 } 1660 1661 /* 1662 * decode a full map. 1663 */ 1664 static int osdmap_decode(void **p, void *end, bool msgr2, 1665 struct ceph_osdmap *map) 1666 { 1667 u8 struct_v; 1668 u32 epoch = 0; 1669 void *start = *p; 1670 u32 max; 1671 u32 len, i; 1672 int err; 1673 1674 dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p)); 1675 1676 err = get_osdmap_client_data_v(p, end, "full", &struct_v); 1677 if (err) 1678 goto bad; 1679 1680 /* fsid, epoch, created, modified */ 1681 ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) + 1682 sizeof(map->created) + sizeof(map->modified), e_inval); 1683 ceph_decode_copy(p, &map->fsid, sizeof(map->fsid)); 1684 epoch = map->epoch = ceph_decode_32(p); 1685 ceph_decode_copy(p, &map->created, sizeof(map->created)); 1686 ceph_decode_copy(p, &map->modified, sizeof(map->modified)); 1687 1688 /* pools */ 1689 err = decode_pools(p, end, map); 1690 if (err) 1691 goto bad; 1692 1693 /* pool_name */ 1694 err = decode_pool_names(p, end, map); 1695 if (err) 1696 goto bad; 1697 1698 ceph_decode_32_safe(p, end, map->pool_max, e_inval); 1699 1700 ceph_decode_32_safe(p, end, map->flags, e_inval); 1701 1702 /* max_osd */ 1703 ceph_decode_32_safe(p, end, max, e_inval); 1704 1705 /* (re)alloc osd arrays */ 1706 err = osdmap_set_max_osd(map, max); 1707 if (err) 1708 goto bad; 1709 1710 /* osd_state, osd_weight, osd_addrs->client_addr */ 1711 ceph_decode_need(p, end, 3*sizeof(u32) + 1712 map->max_osd*(struct_v >= 5 ? sizeof(u32) : 1713 sizeof(u8)) + 1714 sizeof(*map->osd_weight), e_inval); 1715 if (ceph_decode_32(p) != map->max_osd) 1716 goto e_inval; 1717 1718 if (struct_v >= 5) { 1719 for (i = 0; i < map->max_osd; i++) 1720 map->osd_state[i] = ceph_decode_32(p); 1721 } else { 1722 for (i = 0; i < map->max_osd; i++) 1723 map->osd_state[i] = ceph_decode_8(p); 1724 } 1725 1726 if (ceph_decode_32(p) != map->max_osd) 1727 goto e_inval; 1728 1729 for (i = 0; i < map->max_osd; i++) 1730 map->osd_weight[i] = ceph_decode_32(p); 1731 1732 if (ceph_decode_32(p) != map->max_osd) 1733 goto e_inval; 1734 1735 for (i = 0; i < map->max_osd; i++) { 1736 struct ceph_entity_addr *addr = &map->osd_addr[i]; 1737 1738 if (struct_v >= 8) 1739 err = ceph_decode_entity_addrvec(p, end, msgr2, addr); 1740 else 1741 err = ceph_decode_entity_addr(p, end, addr); 1742 if (err) 1743 goto bad; 1744 1745 dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr)); 1746 } 1747 1748 /* pg_temp */ 1749 err = decode_pg_temp(p, end, map); 1750 if (err) 1751 goto bad; 1752 1753 /* primary_temp */ 1754 if (struct_v >= 1) { 1755 err = decode_primary_temp(p, end, map); 1756 if (err) 1757 goto bad; 1758 } 1759 1760 /* primary_affinity */ 1761 if (struct_v >= 2) { 1762 err = decode_primary_affinity(p, end, map); 1763 if (err) 1764 goto bad; 1765 } else { 1766 WARN_ON(map->osd_primary_affinity); 1767 } 1768 1769 /* crush */ 1770 ceph_decode_32_safe(p, end, len, e_inval); 1771 err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end))); 1772 if (err) 1773 goto bad; 1774 1775 *p += len; 1776 if (struct_v >= 3) { 1777 /* erasure_code_profiles */ 1778 ceph_decode_skip_map_of_map(p, end, string, string, string, 1779 e_inval); 1780 } 1781 1782 if (struct_v >= 4) { 1783 err = decode_pg_upmap(p, end, map); 1784 if (err) 1785 goto bad; 1786 1787 err = decode_pg_upmap_items(p, end, map); 1788 if (err) 1789 goto bad; 1790 } else { 1791 WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap)); 1792 WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items)); 1793 } 1794 1795 /* ignore the rest */ 1796 *p = end; 1797 1798 dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd); 1799 return 0; 1800 1801 e_inval: 1802 err = -EINVAL; 1803 bad: 1804 pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n", 1805 err, epoch, (int)(*p - start), *p, start, end); 1806 print_hex_dump(KERN_DEBUG, "osdmap: ", 1807 DUMP_PREFIX_OFFSET, 16, 1, 1808 start, end - start, true); 1809 return err; 1810 } 1811 1812 /* 1813 * Allocate and decode a full map. 1814 */ 1815 struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2) 1816 { 1817 struct ceph_osdmap *map; 1818 int ret; 1819 1820 map = ceph_osdmap_alloc(); 1821 if (!map) 1822 return ERR_PTR(-ENOMEM); 1823 1824 ret = osdmap_decode(p, end, msgr2, map); 1825 if (ret) { 1826 ceph_osdmap_destroy(map); 1827 return ERR_PTR(ret); 1828 } 1829 1830 return map; 1831 } 1832 1833 /* 1834 * Encoding order is (new_up_client, new_state, new_weight). Need to 1835 * apply in the (new_weight, new_state, new_up_client) order, because 1836 * an incremental map may look like e.g. 1837 * 1838 * new_up_client: { osd=6, addr=... } # set osd_state and addr 1839 * new_state: { osd=6, xorstate=EXISTS } # clear osd_state 1840 */ 1841 static int decode_new_up_state_weight(void **p, void *end, u8 struct_v, 1842 bool msgr2, struct ceph_osdmap *map) 1843 { 1844 void *new_up_client; 1845 void *new_state; 1846 void *new_weight_end; 1847 u32 len; 1848 int ret; 1849 int i; 1850 1851 new_up_client = *p; 1852 ceph_decode_32_safe(p, end, len, e_inval); 1853 for (i = 0; i < len; ++i) { 1854 struct ceph_entity_addr addr; 1855 1856 ceph_decode_skip_32(p, end, e_inval); 1857 if (struct_v >= 7) 1858 ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr); 1859 else 1860 ret = ceph_decode_entity_addr(p, end, &addr); 1861 if (ret) 1862 return ret; 1863 } 1864 1865 new_state = *p; 1866 ceph_decode_32_safe(p, end, len, e_inval); 1867 len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8)); 1868 ceph_decode_need(p, end, len, e_inval); 1869 *p += len; 1870 1871 /* new_weight */ 1872 ceph_decode_32_safe(p, end, len, e_inval); 1873 while (len--) { 1874 s32 osd; 1875 u32 w; 1876 1877 ceph_decode_need(p, end, 2*sizeof(u32), e_inval); 1878 osd = ceph_decode_32(p); 1879 w = ceph_decode_32(p); 1880 if (osd >= map->max_osd) 1881 goto e_inval; 1882 1883 osdmap_info(map, "osd%d weight 0x%x %s\n", osd, w, 1884 w == CEPH_OSD_IN ? "(in)" : 1885 (w == CEPH_OSD_OUT ? "(out)" : "")); 1886 map->osd_weight[osd] = w; 1887 1888 /* 1889 * If we are marking in, set the EXISTS, and clear the 1890 * AUTOOUT and NEW bits. 1891 */ 1892 if (w) { 1893 map->osd_state[osd] |= CEPH_OSD_EXISTS; 1894 map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT | 1895 CEPH_OSD_NEW); 1896 } 1897 } 1898 new_weight_end = *p; 1899 1900 /* new_state (up/down) */ 1901 *p = new_state; 1902 len = ceph_decode_32(p); 1903 while (len--) { 1904 s32 osd; 1905 u32 xorstate; 1906 1907 osd = ceph_decode_32(p); 1908 if (osd >= map->max_osd) 1909 goto e_inval; 1910 1911 if (struct_v >= 5) 1912 xorstate = ceph_decode_32(p); 1913 else 1914 xorstate = ceph_decode_8(p); 1915 if (xorstate == 0) 1916 xorstate = CEPH_OSD_UP; 1917 if ((map->osd_state[osd] & CEPH_OSD_UP) && 1918 (xorstate & CEPH_OSD_UP)) 1919 osdmap_info(map, "osd%d down\n", osd); 1920 if ((map->osd_state[osd] & CEPH_OSD_EXISTS) && 1921 (xorstate & CEPH_OSD_EXISTS)) { 1922 osdmap_info(map, "osd%d does not exist\n", osd); 1923 ret = set_primary_affinity(map, osd, 1924 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY); 1925 if (ret) 1926 return ret; 1927 memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr)); 1928 map->osd_state[osd] = 0; 1929 } else { 1930 map->osd_state[osd] ^= xorstate; 1931 } 1932 } 1933 1934 /* new_up_client */ 1935 *p = new_up_client; 1936 len = ceph_decode_32(p); 1937 while (len--) { 1938 s32 osd; 1939 struct ceph_entity_addr addr; 1940 1941 osd = ceph_decode_32(p); 1942 if (osd >= map->max_osd) 1943 goto e_inval; 1944 1945 if (struct_v >= 7) 1946 ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr); 1947 else 1948 ret = ceph_decode_entity_addr(p, end, &addr); 1949 if (ret) 1950 return ret; 1951 1952 dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr)); 1953 1954 osdmap_info(map, "osd%d up\n", osd); 1955 map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP; 1956 map->osd_addr[osd] = addr; 1957 } 1958 1959 *p = new_weight_end; 1960 return 0; 1961 1962 e_inval: 1963 return -EINVAL; 1964 } 1965 1966 /* 1967 * decode and apply an incremental map update. 1968 */ 1969 struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2, 1970 struct ceph_osdmap *map) 1971 { 1972 struct ceph_fsid fsid; 1973 u32 epoch = 0; 1974 struct ceph_timespec modified; 1975 s32 len; 1976 u64 pool; 1977 __s64 new_pool_max; 1978 __s32 new_flags, max; 1979 void *start = *p; 1980 int err; 1981 u8 struct_v; 1982 1983 dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p)); 1984 1985 err = get_osdmap_client_data_v(p, end, "inc", &struct_v); 1986 if (err) 1987 goto bad; 1988 1989 /* fsid, epoch, modified, new_pool_max, new_flags */ 1990 ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) + 1991 sizeof(u64) + sizeof(u32), e_inval); 1992 ceph_decode_copy(p, &fsid, sizeof(fsid)); 1993 epoch = ceph_decode_32(p); 1994 BUG_ON(epoch != map->epoch+1); 1995 ceph_decode_copy(p, &modified, sizeof(modified)); 1996 new_pool_max = ceph_decode_64(p); 1997 new_flags = ceph_decode_32(p); 1998 1999 /* full map? */ 2000 ceph_decode_32_safe(p, end, len, e_inval); 2001 if (len > 0) { 2002 dout("apply_incremental full map len %d, %p to %p\n", 2003 len, *p, end); 2004 return ceph_osdmap_decode(p, min(*p+len, end), msgr2); 2005 } 2006 2007 /* new crush? */ 2008 ceph_decode_32_safe(p, end, len, e_inval); 2009 if (len > 0) { 2010 err = osdmap_set_crush(map, 2011 crush_decode(*p, min(*p + len, end))); 2012 if (err) 2013 goto bad; 2014 *p += len; 2015 } 2016 2017 /* new flags? */ 2018 if (new_flags >= 0) 2019 map->flags = new_flags; 2020 if (new_pool_max >= 0) 2021 map->pool_max = new_pool_max; 2022 2023 /* new max? */ 2024 ceph_decode_32_safe(p, end, max, e_inval); 2025 if (max >= 0) { 2026 err = osdmap_set_max_osd(map, max); 2027 if (err) 2028 goto bad; 2029 } 2030 2031 map->epoch++; 2032 map->modified = modified; 2033 2034 /* new_pools */ 2035 err = decode_new_pools(p, end, map); 2036 if (err) 2037 goto bad; 2038 2039 /* new_pool_names */ 2040 err = decode_pool_names(p, end, map); 2041 if (err) 2042 goto bad; 2043 2044 /* old_pool */ 2045 ceph_decode_32_safe(p, end, len, e_inval); 2046 while (len--) { 2047 struct ceph_pg_pool_info *pi; 2048 2049 ceph_decode_64_safe(p, end, pool, e_inval); 2050 pi = lookup_pg_pool(&map->pg_pools, pool); 2051 if (pi) 2052 __remove_pg_pool(&map->pg_pools, pi); 2053 } 2054 2055 /* new_up_client, new_state, new_weight */ 2056 err = decode_new_up_state_weight(p, end, struct_v, msgr2, map); 2057 if (err) 2058 goto bad; 2059 2060 /* new_pg_temp */ 2061 err = decode_new_pg_temp(p, end, map); 2062 if (err) 2063 goto bad; 2064 2065 /* new_primary_temp */ 2066 if (struct_v >= 1) { 2067 err = decode_new_primary_temp(p, end, map); 2068 if (err) 2069 goto bad; 2070 } 2071 2072 /* new_primary_affinity */ 2073 if (struct_v >= 2) { 2074 err = decode_new_primary_affinity(p, end, map); 2075 if (err) 2076 goto bad; 2077 } 2078 2079 if (struct_v >= 3) { 2080 /* new_erasure_code_profiles */ 2081 ceph_decode_skip_map_of_map(p, end, string, string, string, 2082 e_inval); 2083 /* old_erasure_code_profiles */ 2084 ceph_decode_skip_set(p, end, string, e_inval); 2085 } 2086 2087 if (struct_v >= 4) { 2088 err = decode_new_pg_upmap(p, end, map); 2089 if (err) 2090 goto bad; 2091 2092 err = decode_old_pg_upmap(p, end, map); 2093 if (err) 2094 goto bad; 2095 2096 err = decode_new_pg_upmap_items(p, end, map); 2097 if (err) 2098 goto bad; 2099 2100 err = decode_old_pg_upmap_items(p, end, map); 2101 if (err) 2102 goto bad; 2103 } 2104 2105 /* ignore the rest */ 2106 *p = end; 2107 2108 dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd); 2109 return map; 2110 2111 e_inval: 2112 err = -EINVAL; 2113 bad: 2114 pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n", 2115 err, epoch, (int)(*p - start), *p, start, end); 2116 print_hex_dump(KERN_DEBUG, "osdmap: ", 2117 DUMP_PREFIX_OFFSET, 16, 1, 2118 start, end - start, true); 2119 return ERR_PTR(err); 2120 } 2121 2122 void ceph_oloc_copy(struct ceph_object_locator *dest, 2123 const struct ceph_object_locator *src) 2124 { 2125 ceph_oloc_destroy(dest); 2126 2127 dest->pool = src->pool; 2128 if (src->pool_ns) 2129 dest->pool_ns = ceph_get_string(src->pool_ns); 2130 else 2131 dest->pool_ns = NULL; 2132 } 2133 EXPORT_SYMBOL(ceph_oloc_copy); 2134 2135 void ceph_oloc_destroy(struct ceph_object_locator *oloc) 2136 { 2137 ceph_put_string(oloc->pool_ns); 2138 } 2139 EXPORT_SYMBOL(ceph_oloc_destroy); 2140 2141 void ceph_oid_copy(struct ceph_object_id *dest, 2142 const struct ceph_object_id *src) 2143 { 2144 ceph_oid_destroy(dest); 2145 2146 if (src->name != src->inline_name) { 2147 /* very rare, see ceph_object_id definition */ 2148 dest->name = kmalloc(src->name_len + 1, 2149 GFP_NOIO | __GFP_NOFAIL); 2150 } else { 2151 dest->name = dest->inline_name; 2152 } 2153 memcpy(dest->name, src->name, src->name_len + 1); 2154 dest->name_len = src->name_len; 2155 } 2156 EXPORT_SYMBOL(ceph_oid_copy); 2157 2158 static __printf(2, 0) 2159 int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap) 2160 { 2161 int len; 2162 2163 WARN_ON(!ceph_oid_empty(oid)); 2164 2165 len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap); 2166 if (len >= sizeof(oid->inline_name)) 2167 return len; 2168 2169 oid->name_len = len; 2170 return 0; 2171 } 2172 2173 /* 2174 * If oid doesn't fit into inline buffer, BUG. 2175 */ 2176 void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...) 2177 { 2178 va_list ap; 2179 2180 va_start(ap, fmt); 2181 BUG_ON(oid_printf_vargs(oid, fmt, ap)); 2182 va_end(ap); 2183 } 2184 EXPORT_SYMBOL(ceph_oid_printf); 2185 2186 static __printf(3, 0) 2187 int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp, 2188 const char *fmt, va_list ap) 2189 { 2190 va_list aq; 2191 int len; 2192 2193 va_copy(aq, ap); 2194 len = oid_printf_vargs(oid, fmt, aq); 2195 va_end(aq); 2196 2197 if (len) { 2198 char *external_name; 2199 2200 external_name = kmalloc(len + 1, gfp); 2201 if (!external_name) 2202 return -ENOMEM; 2203 2204 oid->name = external_name; 2205 WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len); 2206 oid->name_len = len; 2207 } 2208 2209 return 0; 2210 } 2211 2212 /* 2213 * If oid doesn't fit into inline buffer, allocate. 2214 */ 2215 int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp, 2216 const char *fmt, ...) 2217 { 2218 va_list ap; 2219 int ret; 2220 2221 va_start(ap, fmt); 2222 ret = oid_aprintf_vargs(oid, gfp, fmt, ap); 2223 va_end(ap); 2224 2225 return ret; 2226 } 2227 EXPORT_SYMBOL(ceph_oid_aprintf); 2228 2229 void ceph_oid_destroy(struct ceph_object_id *oid) 2230 { 2231 if (oid->name != oid->inline_name) 2232 kfree(oid->name); 2233 } 2234 EXPORT_SYMBOL(ceph_oid_destroy); 2235 2236 /* 2237 * osds only 2238 */ 2239 static bool __osds_equal(const struct ceph_osds *lhs, 2240 const struct ceph_osds *rhs) 2241 { 2242 if (lhs->size == rhs->size && 2243 !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0]))) 2244 return true; 2245 2246 return false; 2247 } 2248 2249 /* 2250 * osds + primary 2251 */ 2252 static bool osds_equal(const struct ceph_osds *lhs, 2253 const struct ceph_osds *rhs) 2254 { 2255 if (__osds_equal(lhs, rhs) && 2256 lhs->primary == rhs->primary) 2257 return true; 2258 2259 return false; 2260 } 2261 2262 static bool osds_valid(const struct ceph_osds *set) 2263 { 2264 /* non-empty set */ 2265 if (set->size > 0 && set->primary >= 0) 2266 return true; 2267 2268 /* empty can_shift_osds set */ 2269 if (!set->size && set->primary == -1) 2270 return true; 2271 2272 /* empty !can_shift_osds set - all NONE */ 2273 if (set->size > 0 && set->primary == -1) { 2274 int i; 2275 2276 for (i = 0; i < set->size; i++) { 2277 if (set->osds[i] != CRUSH_ITEM_NONE) 2278 break; 2279 } 2280 if (i == set->size) 2281 return true; 2282 } 2283 2284 return false; 2285 } 2286 2287 void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src) 2288 { 2289 memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0])); 2290 dest->size = src->size; 2291 dest->primary = src->primary; 2292 } 2293 2294 bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num, 2295 u32 new_pg_num) 2296 { 2297 int old_bits = calc_bits_of(old_pg_num); 2298 int old_mask = (1 << old_bits) - 1; 2299 int n; 2300 2301 WARN_ON(pgid->seed >= old_pg_num); 2302 if (new_pg_num <= old_pg_num) 2303 return false; 2304 2305 for (n = 1; ; n++) { 2306 int next_bit = n << (old_bits - 1); 2307 u32 s = next_bit | pgid->seed; 2308 2309 if (s < old_pg_num || s == pgid->seed) 2310 continue; 2311 if (s >= new_pg_num) 2312 break; 2313 2314 s = ceph_stable_mod(s, old_pg_num, old_mask); 2315 if (s == pgid->seed) 2316 return true; 2317 } 2318 2319 return false; 2320 } 2321 2322 bool ceph_is_new_interval(const struct ceph_osds *old_acting, 2323 const struct ceph_osds *new_acting, 2324 const struct ceph_osds *old_up, 2325 const struct ceph_osds *new_up, 2326 int old_size, 2327 int new_size, 2328 int old_min_size, 2329 int new_min_size, 2330 u32 old_pg_num, 2331 u32 new_pg_num, 2332 bool old_sort_bitwise, 2333 bool new_sort_bitwise, 2334 bool old_recovery_deletes, 2335 bool new_recovery_deletes, 2336 const struct ceph_pg *pgid) 2337 { 2338 return !osds_equal(old_acting, new_acting) || 2339 !osds_equal(old_up, new_up) || 2340 old_size != new_size || 2341 old_min_size != new_min_size || 2342 ceph_pg_is_split(pgid, old_pg_num, new_pg_num) || 2343 old_sort_bitwise != new_sort_bitwise || 2344 old_recovery_deletes != new_recovery_deletes; 2345 } 2346 2347 static int calc_pg_rank(int osd, const struct ceph_osds *acting) 2348 { 2349 int i; 2350 2351 for (i = 0; i < acting->size; i++) { 2352 if (acting->osds[i] == osd) 2353 return i; 2354 } 2355 2356 return -1; 2357 } 2358 2359 static bool primary_changed(const struct ceph_osds *old_acting, 2360 const struct ceph_osds *new_acting) 2361 { 2362 if (!old_acting->size && !new_acting->size) 2363 return false; /* both still empty */ 2364 2365 if (!old_acting->size ^ !new_acting->size) 2366 return true; /* was empty, now not, or vice versa */ 2367 2368 if (old_acting->primary != new_acting->primary) 2369 return true; /* primary changed */ 2370 2371 if (calc_pg_rank(old_acting->primary, old_acting) != 2372 calc_pg_rank(new_acting->primary, new_acting)) 2373 return true; 2374 2375 return false; /* same primary (tho replicas may have changed) */ 2376 } 2377 2378 bool ceph_osds_changed(const struct ceph_osds *old_acting, 2379 const struct ceph_osds *new_acting, 2380 bool any_change) 2381 { 2382 if (primary_changed(old_acting, new_acting)) 2383 return true; 2384 2385 if (any_change && !__osds_equal(old_acting, new_acting)) 2386 return true; 2387 2388 return false; 2389 } 2390 2391 /* 2392 * Map an object into a PG. 2393 * 2394 * Should only be called with target_oid and target_oloc (as opposed to 2395 * base_oid and base_oloc), since tiering isn't taken into account. 2396 */ 2397 void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi, 2398 const struct ceph_object_id *oid, 2399 const struct ceph_object_locator *oloc, 2400 struct ceph_pg *raw_pgid) 2401 { 2402 WARN_ON(pi->id != oloc->pool); 2403 2404 if (!oloc->pool_ns) { 2405 raw_pgid->pool = oloc->pool; 2406 raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name, 2407 oid->name_len); 2408 dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name, 2409 raw_pgid->pool, raw_pgid->seed); 2410 } else { 2411 char stack_buf[256]; 2412 char *buf = stack_buf; 2413 int nsl = oloc->pool_ns->len; 2414 size_t total = nsl + 1 + oid->name_len; 2415 2416 if (total > sizeof(stack_buf)) 2417 buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL); 2418 memcpy(buf, oloc->pool_ns->str, nsl); 2419 buf[nsl] = '\037'; 2420 memcpy(buf + nsl + 1, oid->name, oid->name_len); 2421 raw_pgid->pool = oloc->pool; 2422 raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total); 2423 if (buf != stack_buf) 2424 kfree(buf); 2425 dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__, 2426 oid->name, nsl, oloc->pool_ns->str, 2427 raw_pgid->pool, raw_pgid->seed); 2428 } 2429 } 2430 2431 int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap, 2432 const struct ceph_object_id *oid, 2433 const struct ceph_object_locator *oloc, 2434 struct ceph_pg *raw_pgid) 2435 { 2436 struct ceph_pg_pool_info *pi; 2437 2438 pi = ceph_pg_pool_by_id(osdmap, oloc->pool); 2439 if (!pi) 2440 return -ENOENT; 2441 2442 __ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid); 2443 return 0; 2444 } 2445 EXPORT_SYMBOL(ceph_object_locator_to_pg); 2446 2447 /* 2448 * Map a raw PG (full precision ps) into an actual PG. 2449 */ 2450 static void raw_pg_to_pg(struct ceph_pg_pool_info *pi, 2451 const struct ceph_pg *raw_pgid, 2452 struct ceph_pg *pgid) 2453 { 2454 pgid->pool = raw_pgid->pool; 2455 pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num, 2456 pi->pg_num_mask); 2457 } 2458 2459 /* 2460 * Map a raw PG (full precision ps) into a placement ps (placement 2461 * seed). Include pool id in that value so that different pools don't 2462 * use the same seeds. 2463 */ 2464 static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi, 2465 const struct ceph_pg *raw_pgid) 2466 { 2467 if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) { 2468 /* hash pool id and seed so that pool PGs do not overlap */ 2469 return crush_hash32_2(CRUSH_HASH_RJENKINS1, 2470 ceph_stable_mod(raw_pgid->seed, 2471 pi->pgp_num, 2472 pi->pgp_num_mask), 2473 raw_pgid->pool); 2474 } else { 2475 /* 2476 * legacy behavior: add ps and pool together. this is 2477 * not a great approach because the PGs from each pool 2478 * will overlap on top of each other: 0.5 == 1.4 == 2479 * 2.3 == ... 2480 */ 2481 return ceph_stable_mod(raw_pgid->seed, pi->pgp_num, 2482 pi->pgp_num_mask) + 2483 (unsigned)raw_pgid->pool; 2484 } 2485 } 2486 2487 /* 2488 * Magic value used for a "default" fallback choose_args, used if the 2489 * crush_choose_arg_map passed to do_crush() does not exist. If this 2490 * also doesn't exist, fall back to canonical weights. 2491 */ 2492 #define CEPH_DEFAULT_CHOOSE_ARGS -1 2493 2494 static int do_crush(struct ceph_osdmap *map, int ruleno, int x, 2495 int *result, int result_max, 2496 const __u32 *weight, int weight_max, 2497 s64 choose_args_index) 2498 { 2499 struct crush_choose_arg_map *arg_map; 2500 struct crush_work *work; 2501 int r; 2502 2503 BUG_ON(result_max > CEPH_PG_MAX_SIZE); 2504 2505 arg_map = lookup_choose_arg_map(&map->crush->choose_args, 2506 choose_args_index); 2507 if (!arg_map) 2508 arg_map = lookup_choose_arg_map(&map->crush->choose_args, 2509 CEPH_DEFAULT_CHOOSE_ARGS); 2510 2511 work = get_workspace(&map->crush_wsm, map->crush); 2512 r = crush_do_rule(map->crush, ruleno, x, result, result_max, 2513 weight, weight_max, work, 2514 arg_map ? arg_map->args : NULL); 2515 put_workspace(&map->crush_wsm, work); 2516 return r; 2517 } 2518 2519 static void remove_nonexistent_osds(struct ceph_osdmap *osdmap, 2520 struct ceph_pg_pool_info *pi, 2521 struct ceph_osds *set) 2522 { 2523 int i; 2524 2525 if (ceph_can_shift_osds(pi)) { 2526 int removed = 0; 2527 2528 /* shift left */ 2529 for (i = 0; i < set->size; i++) { 2530 if (!ceph_osd_exists(osdmap, set->osds[i])) { 2531 removed++; 2532 continue; 2533 } 2534 if (removed) 2535 set->osds[i - removed] = set->osds[i]; 2536 } 2537 set->size -= removed; 2538 } else { 2539 /* set dne devices to NONE */ 2540 for (i = 0; i < set->size; i++) { 2541 if (!ceph_osd_exists(osdmap, set->osds[i])) 2542 set->osds[i] = CRUSH_ITEM_NONE; 2543 } 2544 } 2545 } 2546 2547 /* 2548 * Calculate raw set (CRUSH output) for given PG and filter out 2549 * nonexistent OSDs. ->primary is undefined for a raw set. 2550 * 2551 * Placement seed (CRUSH input) is returned through @ppps. 2552 */ 2553 static void pg_to_raw_osds(struct ceph_osdmap *osdmap, 2554 struct ceph_pg_pool_info *pi, 2555 const struct ceph_pg *raw_pgid, 2556 struct ceph_osds *raw, 2557 u32 *ppps) 2558 { 2559 u32 pps = raw_pg_to_pps(pi, raw_pgid); 2560 int ruleno; 2561 int len; 2562 2563 ceph_osds_init(raw); 2564 if (ppps) 2565 *ppps = pps; 2566 2567 ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type, 2568 pi->size); 2569 if (ruleno < 0) { 2570 pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n", 2571 pi->id, pi->crush_ruleset, pi->type, pi->size); 2572 return; 2573 } 2574 2575 if (pi->size > ARRAY_SIZE(raw->osds)) { 2576 pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n", 2577 pi->id, pi->crush_ruleset, pi->type, pi->size, 2578 ARRAY_SIZE(raw->osds)); 2579 return; 2580 } 2581 2582 len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size, 2583 osdmap->osd_weight, osdmap->max_osd, pi->id); 2584 if (len < 0) { 2585 pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n", 2586 len, ruleno, pi->id, pi->crush_ruleset, pi->type, 2587 pi->size); 2588 return; 2589 } 2590 2591 raw->size = len; 2592 remove_nonexistent_osds(osdmap, pi, raw); 2593 } 2594 2595 /* apply pg_upmap[_items] mappings */ 2596 static void apply_upmap(struct ceph_osdmap *osdmap, 2597 const struct ceph_pg *pgid, 2598 struct ceph_osds *raw) 2599 { 2600 struct ceph_pg_mapping *pg; 2601 int i, j; 2602 2603 pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid); 2604 if (pg) { 2605 /* make sure targets aren't marked out */ 2606 for (i = 0; i < pg->pg_upmap.len; i++) { 2607 int osd = pg->pg_upmap.osds[i]; 2608 2609 if (osd != CRUSH_ITEM_NONE && 2610 osd < osdmap->max_osd && 2611 osdmap->osd_weight[osd] == 0) { 2612 /* reject/ignore explicit mapping */ 2613 return; 2614 } 2615 } 2616 for (i = 0; i < pg->pg_upmap.len; i++) 2617 raw->osds[i] = pg->pg_upmap.osds[i]; 2618 raw->size = pg->pg_upmap.len; 2619 /* check and apply pg_upmap_items, if any */ 2620 } 2621 2622 pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid); 2623 if (pg) { 2624 /* 2625 * Note: this approach does not allow a bidirectional swap, 2626 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1]. 2627 */ 2628 for (i = 0; i < pg->pg_upmap_items.len; i++) { 2629 int from = pg->pg_upmap_items.from_to[i][0]; 2630 int to = pg->pg_upmap_items.from_to[i][1]; 2631 int pos = -1; 2632 bool exists = false; 2633 2634 /* make sure replacement doesn't already appear */ 2635 for (j = 0; j < raw->size; j++) { 2636 int osd = raw->osds[j]; 2637 2638 if (osd == to) { 2639 exists = true; 2640 break; 2641 } 2642 /* ignore mapping if target is marked out */ 2643 if (osd == from && pos < 0 && 2644 !(to != CRUSH_ITEM_NONE && 2645 to < osdmap->max_osd && 2646 osdmap->osd_weight[to] == 0)) { 2647 pos = j; 2648 } 2649 } 2650 if (!exists && pos >= 0) 2651 raw->osds[pos] = to; 2652 } 2653 } 2654 } 2655 2656 /* 2657 * Given raw set, calculate up set and up primary. By definition of an 2658 * up set, the result won't contain nonexistent or down OSDs. 2659 * 2660 * This is done in-place - on return @set is the up set. If it's 2661 * empty, ->primary will remain undefined. 2662 */ 2663 static void raw_to_up_osds(struct ceph_osdmap *osdmap, 2664 struct ceph_pg_pool_info *pi, 2665 struct ceph_osds *set) 2666 { 2667 int i; 2668 2669 /* ->primary is undefined for a raw set */ 2670 BUG_ON(set->primary != -1); 2671 2672 if (ceph_can_shift_osds(pi)) { 2673 int removed = 0; 2674 2675 /* shift left */ 2676 for (i = 0; i < set->size; i++) { 2677 if (ceph_osd_is_down(osdmap, set->osds[i])) { 2678 removed++; 2679 continue; 2680 } 2681 if (removed) 2682 set->osds[i - removed] = set->osds[i]; 2683 } 2684 set->size -= removed; 2685 if (set->size > 0) 2686 set->primary = set->osds[0]; 2687 } else { 2688 /* set down/dne devices to NONE */ 2689 for (i = set->size - 1; i >= 0; i--) { 2690 if (ceph_osd_is_down(osdmap, set->osds[i])) 2691 set->osds[i] = CRUSH_ITEM_NONE; 2692 else 2693 set->primary = set->osds[i]; 2694 } 2695 } 2696 } 2697 2698 static void apply_primary_affinity(struct ceph_osdmap *osdmap, 2699 struct ceph_pg_pool_info *pi, 2700 u32 pps, 2701 struct ceph_osds *up) 2702 { 2703 int i; 2704 int pos = -1; 2705 2706 /* 2707 * Do we have any non-default primary_affinity values for these 2708 * osds? 2709 */ 2710 if (!osdmap->osd_primary_affinity) 2711 return; 2712 2713 for (i = 0; i < up->size; i++) { 2714 int osd = up->osds[i]; 2715 2716 if (osd != CRUSH_ITEM_NONE && 2717 osdmap->osd_primary_affinity[osd] != 2718 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) { 2719 break; 2720 } 2721 } 2722 if (i == up->size) 2723 return; 2724 2725 /* 2726 * Pick the primary. Feed both the seed (for the pg) and the 2727 * osd into the hash/rng so that a proportional fraction of an 2728 * osd's pgs get rejected as primary. 2729 */ 2730 for (i = 0; i < up->size; i++) { 2731 int osd = up->osds[i]; 2732 u32 aff; 2733 2734 if (osd == CRUSH_ITEM_NONE) 2735 continue; 2736 2737 aff = osdmap->osd_primary_affinity[osd]; 2738 if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY && 2739 (crush_hash32_2(CRUSH_HASH_RJENKINS1, 2740 pps, osd) >> 16) >= aff) { 2741 /* 2742 * We chose not to use this primary. Note it 2743 * anyway as a fallback in case we don't pick 2744 * anyone else, but keep looking. 2745 */ 2746 if (pos < 0) 2747 pos = i; 2748 } else { 2749 pos = i; 2750 break; 2751 } 2752 } 2753 if (pos < 0) 2754 return; 2755 2756 up->primary = up->osds[pos]; 2757 2758 if (ceph_can_shift_osds(pi) && pos > 0) { 2759 /* move the new primary to the front */ 2760 for (i = pos; i > 0; i--) 2761 up->osds[i] = up->osds[i - 1]; 2762 up->osds[0] = up->primary; 2763 } 2764 } 2765 2766 /* 2767 * Get pg_temp and primary_temp mappings for given PG. 2768 * 2769 * Note that a PG may have none, only pg_temp, only primary_temp or 2770 * both pg_temp and primary_temp mappings. This means @temp isn't 2771 * always a valid OSD set on return: in the "only primary_temp" case, 2772 * @temp will have its ->primary >= 0 but ->size == 0. 2773 */ 2774 static void get_temp_osds(struct ceph_osdmap *osdmap, 2775 struct ceph_pg_pool_info *pi, 2776 const struct ceph_pg *pgid, 2777 struct ceph_osds *temp) 2778 { 2779 struct ceph_pg_mapping *pg; 2780 int i; 2781 2782 ceph_osds_init(temp); 2783 2784 /* pg_temp? */ 2785 pg = lookup_pg_mapping(&osdmap->pg_temp, pgid); 2786 if (pg) { 2787 for (i = 0; i < pg->pg_temp.len; i++) { 2788 if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) { 2789 if (ceph_can_shift_osds(pi)) 2790 continue; 2791 2792 temp->osds[temp->size++] = CRUSH_ITEM_NONE; 2793 } else { 2794 temp->osds[temp->size++] = pg->pg_temp.osds[i]; 2795 } 2796 } 2797 2798 /* apply pg_temp's primary */ 2799 for (i = 0; i < temp->size; i++) { 2800 if (temp->osds[i] != CRUSH_ITEM_NONE) { 2801 temp->primary = temp->osds[i]; 2802 break; 2803 } 2804 } 2805 } 2806 2807 /* primary_temp? */ 2808 pg = lookup_pg_mapping(&osdmap->primary_temp, pgid); 2809 if (pg) 2810 temp->primary = pg->primary_temp.osd; 2811 } 2812 2813 /* 2814 * Map a PG to its acting set as well as its up set. 2815 * 2816 * Acting set is used for data mapping purposes, while up set can be 2817 * recorded for detecting interval changes and deciding whether to 2818 * resend a request. 2819 */ 2820 void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap, 2821 struct ceph_pg_pool_info *pi, 2822 const struct ceph_pg *raw_pgid, 2823 struct ceph_osds *up, 2824 struct ceph_osds *acting) 2825 { 2826 struct ceph_pg pgid; 2827 u32 pps; 2828 2829 WARN_ON(pi->id != raw_pgid->pool); 2830 raw_pg_to_pg(pi, raw_pgid, &pgid); 2831 2832 pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps); 2833 apply_upmap(osdmap, &pgid, up); 2834 raw_to_up_osds(osdmap, pi, up); 2835 apply_primary_affinity(osdmap, pi, pps, up); 2836 get_temp_osds(osdmap, pi, &pgid, acting); 2837 if (!acting->size) { 2838 memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0])); 2839 acting->size = up->size; 2840 if (acting->primary == -1) 2841 acting->primary = up->primary; 2842 } 2843 WARN_ON(!osds_valid(up) || !osds_valid(acting)); 2844 } 2845 2846 bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap, 2847 struct ceph_pg_pool_info *pi, 2848 const struct ceph_pg *raw_pgid, 2849 struct ceph_spg *spgid) 2850 { 2851 struct ceph_pg pgid; 2852 struct ceph_osds up, acting; 2853 int i; 2854 2855 WARN_ON(pi->id != raw_pgid->pool); 2856 raw_pg_to_pg(pi, raw_pgid, &pgid); 2857 2858 if (ceph_can_shift_osds(pi)) { 2859 spgid->pgid = pgid; /* struct */ 2860 spgid->shard = CEPH_SPG_NOSHARD; 2861 return true; 2862 } 2863 2864 ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting); 2865 for (i = 0; i < acting.size; i++) { 2866 if (acting.osds[i] == acting.primary) { 2867 spgid->pgid = pgid; /* struct */ 2868 spgid->shard = i; 2869 return true; 2870 } 2871 } 2872 2873 return false; 2874 } 2875 2876 /* 2877 * Return acting primary for given PG, or -1 if none. 2878 */ 2879 int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap, 2880 const struct ceph_pg *raw_pgid) 2881 { 2882 struct ceph_pg_pool_info *pi; 2883 struct ceph_osds up, acting; 2884 2885 pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool); 2886 if (!pi) 2887 return -1; 2888 2889 ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting); 2890 return acting.primary; 2891 } 2892 EXPORT_SYMBOL(ceph_pg_to_acting_primary); 2893 2894 static struct crush_loc_node *alloc_crush_loc(size_t type_name_len, 2895 size_t name_len) 2896 { 2897 struct crush_loc_node *loc; 2898 2899 loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO); 2900 if (!loc) 2901 return NULL; 2902 2903 RB_CLEAR_NODE(&loc->cl_node); 2904 return loc; 2905 } 2906 2907 static void free_crush_loc(struct crush_loc_node *loc) 2908 { 2909 WARN_ON(!RB_EMPTY_NODE(&loc->cl_node)); 2910 2911 kfree(loc); 2912 } 2913 2914 static int crush_loc_compare(const struct crush_loc *loc1, 2915 const struct crush_loc *loc2) 2916 { 2917 return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?: 2918 strcmp(loc1->cl_name, loc2->cl_name); 2919 } 2920 2921 DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare, 2922 RB_BYPTR, const struct crush_loc *, cl_node) 2923 2924 /* 2925 * Parses a set of <bucket type name>':'<bucket name> pairs separated 2926 * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar". 2927 * 2928 * Note that @crush_location is modified by strsep(). 2929 */ 2930 int ceph_parse_crush_location(char *crush_location, struct rb_root *locs) 2931 { 2932 struct crush_loc_node *loc; 2933 const char *type_name, *name, *colon; 2934 size_t type_name_len, name_len; 2935 2936 dout("%s '%s'\n", __func__, crush_location); 2937 while ((type_name = strsep(&crush_location, "|"))) { 2938 colon = strchr(type_name, ':'); 2939 if (!colon) 2940 return -EINVAL; 2941 2942 type_name_len = colon - type_name; 2943 if (type_name_len == 0) 2944 return -EINVAL; 2945 2946 name = colon + 1; 2947 name_len = strlen(name); 2948 if (name_len == 0) 2949 return -EINVAL; 2950 2951 loc = alloc_crush_loc(type_name_len, name_len); 2952 if (!loc) 2953 return -ENOMEM; 2954 2955 loc->cl_loc.cl_type_name = loc->cl_data; 2956 memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len); 2957 loc->cl_loc.cl_type_name[type_name_len] = '\0'; 2958 2959 loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1; 2960 memcpy(loc->cl_loc.cl_name, name, name_len); 2961 loc->cl_loc.cl_name[name_len] = '\0'; 2962 2963 if (!__insert_crush_loc(locs, loc)) { 2964 free_crush_loc(loc); 2965 return -EEXIST; 2966 } 2967 2968 dout("%s type_name '%s' name '%s'\n", __func__, 2969 loc->cl_loc.cl_type_name, loc->cl_loc.cl_name); 2970 } 2971 2972 return 0; 2973 } 2974 2975 int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2) 2976 { 2977 struct rb_node *n1 = rb_first(locs1); 2978 struct rb_node *n2 = rb_first(locs2); 2979 int ret; 2980 2981 for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) { 2982 struct crush_loc_node *loc1 = 2983 rb_entry(n1, struct crush_loc_node, cl_node); 2984 struct crush_loc_node *loc2 = 2985 rb_entry(n2, struct crush_loc_node, cl_node); 2986 2987 ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc); 2988 if (ret) 2989 return ret; 2990 } 2991 2992 if (!n1 && n2) 2993 return -1; 2994 if (n1 && !n2) 2995 return 1; 2996 return 0; 2997 } 2998 2999 void ceph_clear_crush_locs(struct rb_root *locs) 3000 { 3001 while (!RB_EMPTY_ROOT(locs)) { 3002 struct crush_loc_node *loc = 3003 rb_entry(rb_first(locs), struct crush_loc_node, cl_node); 3004 3005 erase_crush_loc(locs, loc); 3006 free_crush_loc(loc); 3007 } 3008 } 3009 3010 /* 3011 * [a-zA-Z0-9-_.]+ 3012 */ 3013 static bool is_valid_crush_name(const char *name) 3014 { 3015 do { 3016 if (!('a' <= *name && *name <= 'z') && 3017 !('A' <= *name && *name <= 'Z') && 3018 !('0' <= *name && *name <= '9') && 3019 *name != '-' && *name != '_' && *name != '.') 3020 return false; 3021 } while (*++name != '\0'); 3022 3023 return true; 3024 } 3025 3026 /* 3027 * Gets the parent of an item. Returns its id (<0 because the 3028 * parent is always a bucket), type id (>0 for the same reason, 3029 * via @parent_type_id) and location (via @parent_loc). If no 3030 * parent, returns 0. 3031 * 3032 * Does a linear search, as there are no parent pointers of any 3033 * kind. Note that the result is ambiguous for items that occur 3034 * multiple times in the map. 3035 */ 3036 static int get_immediate_parent(struct crush_map *c, int id, 3037 u16 *parent_type_id, 3038 struct crush_loc *parent_loc) 3039 { 3040 struct crush_bucket *b; 3041 struct crush_name_node *type_cn, *cn; 3042 int i, j; 3043 3044 for (i = 0; i < c->max_buckets; i++) { 3045 b = c->buckets[i]; 3046 if (!b) 3047 continue; 3048 3049 /* ignore per-class shadow hierarchy */ 3050 cn = lookup_crush_name(&c->names, b->id); 3051 if (!cn || !is_valid_crush_name(cn->cn_name)) 3052 continue; 3053 3054 for (j = 0; j < b->size; j++) { 3055 if (b->items[j] != id) 3056 continue; 3057 3058 *parent_type_id = b->type; 3059 type_cn = lookup_crush_name(&c->type_names, b->type); 3060 parent_loc->cl_type_name = type_cn->cn_name; 3061 parent_loc->cl_name = cn->cn_name; 3062 return b->id; 3063 } 3064 } 3065 3066 return 0; /* no parent */ 3067 } 3068 3069 /* 3070 * Calculates the locality/distance from an item to a client 3071 * location expressed in terms of CRUSH hierarchy as a set of 3072 * (bucket type name, bucket name) pairs. Specifically, looks 3073 * for the lowest-valued bucket type for which the location of 3074 * @id matches one of the locations in @locs, so for standard 3075 * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9) 3076 * a matching host is closer than a matching rack and a matching 3077 * data center is closer than a matching zone. 3078 * 3079 * Specifying multiple locations (a "multipath" location) such 3080 * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs 3081 * is a multimap. The locality will be: 3082 * 3083 * - 3 for OSDs in racks foo1 and foo2 3084 * - 8 for OSDs in data center bar 3085 * - -1 for all other OSDs 3086 * 3087 * The lowest possible bucket type is 1, so the best locality 3088 * for an OSD is 1 (i.e. a matching host). Locality 0 would be 3089 * the OSD itself. 3090 */ 3091 int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id, 3092 struct rb_root *locs) 3093 { 3094 struct crush_loc loc; 3095 u16 type_id; 3096 3097 /* 3098 * Instead of repeated get_immediate_parent() calls, 3099 * the location of @id could be obtained with a single 3100 * depth-first traversal. 3101 */ 3102 for (;;) { 3103 id = get_immediate_parent(osdmap->crush, id, &type_id, &loc); 3104 if (id >= 0) 3105 return -1; /* not local */ 3106 3107 if (lookup_crush_loc(locs, &loc)) 3108 return type_id; 3109 } 3110 } 3111