1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Ceph msgr2 protocol implementation 4 * 5 * Copyright (C) 2020 Ilya Dryomov <idryomov@gmail.com> 6 */ 7 8 #include <linux/ceph/ceph_debug.h> 9 10 #include <crypto/aead.h> 11 #include <crypto/hash.h> 12 #include <crypto/sha2.h> 13 #include <crypto/utils.h> 14 #include <linux/bvec.h> 15 #include <linux/crc32c.h> 16 #include <linux/net.h> 17 #include <linux/scatterlist.h> 18 #include <linux/socket.h> 19 #include <linux/sched/mm.h> 20 #include <net/sock.h> 21 #include <net/tcp.h> 22 23 #include <linux/ceph/ceph_features.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/libceph.h> 26 #include <linux/ceph/messenger.h> 27 28 #include "crypto.h" /* for CEPH_KEY_LEN and CEPH_MAX_CON_SECRET_LEN */ 29 30 #define FRAME_TAG_HELLO 1 31 #define FRAME_TAG_AUTH_REQUEST 2 32 #define FRAME_TAG_AUTH_BAD_METHOD 3 33 #define FRAME_TAG_AUTH_REPLY_MORE 4 34 #define FRAME_TAG_AUTH_REQUEST_MORE 5 35 #define FRAME_TAG_AUTH_DONE 6 36 #define FRAME_TAG_AUTH_SIGNATURE 7 37 #define FRAME_TAG_CLIENT_IDENT 8 38 #define FRAME_TAG_SERVER_IDENT 9 39 #define FRAME_TAG_IDENT_MISSING_FEATURES 10 40 #define FRAME_TAG_SESSION_RECONNECT 11 41 #define FRAME_TAG_SESSION_RESET 12 42 #define FRAME_TAG_SESSION_RETRY 13 43 #define FRAME_TAG_SESSION_RETRY_GLOBAL 14 44 #define FRAME_TAG_SESSION_RECONNECT_OK 15 45 #define FRAME_TAG_WAIT 16 46 #define FRAME_TAG_MESSAGE 17 47 #define FRAME_TAG_KEEPALIVE2 18 48 #define FRAME_TAG_KEEPALIVE2_ACK 19 49 #define FRAME_TAG_ACK 20 50 51 #define FRAME_LATE_STATUS_ABORTED 0x1 52 #define FRAME_LATE_STATUS_COMPLETE 0xe 53 #define FRAME_LATE_STATUS_ABORTED_MASK 0xf 54 55 #define IN_S_HANDLE_PREAMBLE 1 56 #define IN_S_HANDLE_CONTROL 2 57 #define IN_S_HANDLE_CONTROL_REMAINDER 3 58 #define IN_S_PREPARE_READ_DATA 4 59 #define IN_S_PREPARE_READ_DATA_CONT 5 60 #define IN_S_PREPARE_READ_ENC_PAGE 6 61 #define IN_S_PREPARE_SPARSE_DATA 7 62 #define IN_S_PREPARE_SPARSE_DATA_CONT 8 63 #define IN_S_HANDLE_EPILOGUE 9 64 #define IN_S_FINISH_SKIP 10 65 66 #define OUT_S_QUEUE_DATA 1 67 #define OUT_S_QUEUE_DATA_CONT 2 68 #define OUT_S_QUEUE_ENC_PAGE 3 69 #define OUT_S_QUEUE_ZEROS 4 70 #define OUT_S_FINISH_MESSAGE 5 71 #define OUT_S_GET_NEXT 6 72 73 #define CTRL_BODY(p) ((void *)(p) + CEPH_PREAMBLE_LEN) 74 #define FRONT_PAD(p) ((void *)(p) + CEPH_EPILOGUE_SECURE_LEN) 75 #define MIDDLE_PAD(p) (FRONT_PAD(p) + CEPH_GCM_BLOCK_LEN) 76 #define DATA_PAD(p) (MIDDLE_PAD(p) + CEPH_GCM_BLOCK_LEN) 77 78 #define CEPH_MSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL) 79 80 static int do_recvmsg(struct socket *sock, struct iov_iter *it) 81 { 82 struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS }; 83 int ret; 84 85 msg.msg_iter = *it; 86 while (iov_iter_count(it)) { 87 ret = sock_recvmsg(sock, &msg, msg.msg_flags); 88 if (ret <= 0) { 89 if (ret == -EAGAIN) 90 ret = 0; 91 return ret; 92 } 93 94 iov_iter_advance(it, ret); 95 } 96 97 WARN_ON(msg_data_left(&msg)); 98 return 1; 99 } 100 101 /* 102 * Read as much as possible. 103 * 104 * Return: 105 * 1 - done, nothing (else) to read 106 * 0 - socket is empty, need to wait 107 * <0 - error 108 */ 109 static int ceph_tcp_recv(struct ceph_connection *con) 110 { 111 int ret; 112 113 dout("%s con %p %s %zu\n", __func__, con, 114 iov_iter_is_discard(&con->v2.in_iter) ? "discard" : "need", 115 iov_iter_count(&con->v2.in_iter)); 116 ret = do_recvmsg(con->sock, &con->v2.in_iter); 117 dout("%s con %p ret %d left %zu\n", __func__, con, ret, 118 iov_iter_count(&con->v2.in_iter)); 119 return ret; 120 } 121 122 static int do_sendmsg(struct socket *sock, struct iov_iter *it) 123 { 124 struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS }; 125 int ret; 126 127 msg.msg_iter = *it; 128 while (iov_iter_count(it)) { 129 ret = sock_sendmsg(sock, &msg); 130 if (ret <= 0) { 131 if (ret == -EAGAIN) 132 ret = 0; 133 return ret; 134 } 135 136 iov_iter_advance(it, ret); 137 } 138 139 WARN_ON(msg_data_left(&msg)); 140 return 1; 141 } 142 143 static int do_try_sendpage(struct socket *sock, struct iov_iter *it) 144 { 145 struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS }; 146 struct bio_vec bv; 147 int ret; 148 149 if (WARN_ON(!iov_iter_is_bvec(it))) 150 return -EINVAL; 151 152 while (iov_iter_count(it)) { 153 /* iov_iter_iovec() for ITER_BVEC */ 154 bvec_set_page(&bv, it->bvec->bv_page, 155 min(iov_iter_count(it), 156 it->bvec->bv_len - it->iov_offset), 157 it->bvec->bv_offset + it->iov_offset); 158 159 /* 160 * MSG_SPLICE_PAGES cannot properly handle pages with 161 * page_count == 0, we need to fall back to sendmsg if 162 * that's the case. 163 * 164 * Same goes for slab pages: skb_can_coalesce() allows 165 * coalescing neighboring slab objects into a single frag 166 * which triggers one of hardened usercopy checks. 167 */ 168 if (sendpage_ok(bv.bv_page)) 169 msg.msg_flags |= MSG_SPLICE_PAGES; 170 else 171 msg.msg_flags &= ~MSG_SPLICE_PAGES; 172 173 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bv, 1, bv.bv_len); 174 ret = sock_sendmsg(sock, &msg); 175 if (ret <= 0) { 176 if (ret == -EAGAIN) 177 ret = 0; 178 return ret; 179 } 180 181 iov_iter_advance(it, ret); 182 } 183 184 return 1; 185 } 186 187 /* 188 * Write as much as possible. The socket is expected to be corked, 189 * so we don't bother with MSG_MORE here. 190 * 191 * Return: 192 * 1 - done, nothing (else) to write 193 * 0 - socket is full, need to wait 194 * <0 - error 195 */ 196 static int ceph_tcp_send(struct ceph_connection *con) 197 { 198 int ret; 199 200 dout("%s con %p have %zu try_sendpage %d\n", __func__, con, 201 iov_iter_count(&con->v2.out_iter), con->v2.out_iter_sendpage); 202 if (con->v2.out_iter_sendpage) 203 ret = do_try_sendpage(con->sock, &con->v2.out_iter); 204 else 205 ret = do_sendmsg(con->sock, &con->v2.out_iter); 206 dout("%s con %p ret %d left %zu\n", __func__, con, ret, 207 iov_iter_count(&con->v2.out_iter)); 208 return ret; 209 } 210 211 static void add_in_kvec(struct ceph_connection *con, void *buf, int len) 212 { 213 BUG_ON(con->v2.in_kvec_cnt >= ARRAY_SIZE(con->v2.in_kvecs)); 214 WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter)); 215 216 con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_base = buf; 217 con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_len = len; 218 con->v2.in_kvec_cnt++; 219 220 con->v2.in_iter.nr_segs++; 221 con->v2.in_iter.count += len; 222 } 223 224 static void reset_in_kvecs(struct ceph_connection *con) 225 { 226 WARN_ON(iov_iter_count(&con->v2.in_iter)); 227 228 con->v2.in_kvec_cnt = 0; 229 iov_iter_kvec(&con->v2.in_iter, ITER_DEST, con->v2.in_kvecs, 0, 0); 230 } 231 232 static void set_in_bvec(struct ceph_connection *con, const struct bio_vec *bv) 233 { 234 WARN_ON(iov_iter_count(&con->v2.in_iter)); 235 236 con->v2.in_bvec = *bv; 237 iov_iter_bvec(&con->v2.in_iter, ITER_DEST, &con->v2.in_bvec, 1, bv->bv_len); 238 } 239 240 static void set_in_skip(struct ceph_connection *con, int len) 241 { 242 WARN_ON(iov_iter_count(&con->v2.in_iter)); 243 244 dout("%s con %p len %d\n", __func__, con, len); 245 iov_iter_discard(&con->v2.in_iter, ITER_DEST, len); 246 } 247 248 static void add_out_kvec(struct ceph_connection *con, void *buf, int len) 249 { 250 BUG_ON(con->v2.out_kvec_cnt >= ARRAY_SIZE(con->v2.out_kvecs)); 251 WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter)); 252 WARN_ON(con->v2.out_zero); 253 254 con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_base = buf; 255 con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_len = len; 256 con->v2.out_kvec_cnt++; 257 258 con->v2.out_iter.nr_segs++; 259 con->v2.out_iter.count += len; 260 } 261 262 static void reset_out_kvecs(struct ceph_connection *con) 263 { 264 WARN_ON(iov_iter_count(&con->v2.out_iter)); 265 WARN_ON(con->v2.out_zero); 266 267 con->v2.out_kvec_cnt = 0; 268 269 iov_iter_kvec(&con->v2.out_iter, ITER_SOURCE, con->v2.out_kvecs, 0, 0); 270 con->v2.out_iter_sendpage = false; 271 } 272 273 static void set_out_bvec(struct ceph_connection *con, const struct bio_vec *bv, 274 bool zerocopy) 275 { 276 WARN_ON(iov_iter_count(&con->v2.out_iter)); 277 WARN_ON(con->v2.out_zero); 278 279 con->v2.out_bvec = *bv; 280 con->v2.out_iter_sendpage = zerocopy; 281 iov_iter_bvec(&con->v2.out_iter, ITER_SOURCE, &con->v2.out_bvec, 1, 282 con->v2.out_bvec.bv_len); 283 } 284 285 static void set_out_bvec_zero(struct ceph_connection *con) 286 { 287 WARN_ON(iov_iter_count(&con->v2.out_iter)); 288 WARN_ON(!con->v2.out_zero); 289 290 bvec_set_page(&con->v2.out_bvec, ceph_zero_page, 291 min(con->v2.out_zero, (int)PAGE_SIZE), 0); 292 con->v2.out_iter_sendpage = true; 293 iov_iter_bvec(&con->v2.out_iter, ITER_SOURCE, &con->v2.out_bvec, 1, 294 con->v2.out_bvec.bv_len); 295 } 296 297 static void out_zero_add(struct ceph_connection *con, int len) 298 { 299 dout("%s con %p len %d\n", __func__, con, len); 300 con->v2.out_zero += len; 301 } 302 303 static void *alloc_conn_buf(struct ceph_connection *con, int len) 304 { 305 void *buf; 306 307 dout("%s con %p len %d\n", __func__, con, len); 308 309 if (WARN_ON(con->v2.conn_buf_cnt >= ARRAY_SIZE(con->v2.conn_bufs))) 310 return NULL; 311 312 buf = kvmalloc(len, GFP_NOIO); 313 if (!buf) 314 return NULL; 315 316 con->v2.conn_bufs[con->v2.conn_buf_cnt++] = buf; 317 return buf; 318 } 319 320 static void free_conn_bufs(struct ceph_connection *con) 321 { 322 while (con->v2.conn_buf_cnt) 323 kvfree(con->v2.conn_bufs[--con->v2.conn_buf_cnt]); 324 } 325 326 static void add_in_sign_kvec(struct ceph_connection *con, void *buf, int len) 327 { 328 BUG_ON(con->v2.in_sign_kvec_cnt >= ARRAY_SIZE(con->v2.in_sign_kvecs)); 329 330 con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_base = buf; 331 con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_len = len; 332 con->v2.in_sign_kvec_cnt++; 333 } 334 335 static void clear_in_sign_kvecs(struct ceph_connection *con) 336 { 337 con->v2.in_sign_kvec_cnt = 0; 338 } 339 340 static void add_out_sign_kvec(struct ceph_connection *con, void *buf, int len) 341 { 342 BUG_ON(con->v2.out_sign_kvec_cnt >= ARRAY_SIZE(con->v2.out_sign_kvecs)); 343 344 con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_base = buf; 345 con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_len = len; 346 con->v2.out_sign_kvec_cnt++; 347 } 348 349 static void clear_out_sign_kvecs(struct ceph_connection *con) 350 { 351 con->v2.out_sign_kvec_cnt = 0; 352 } 353 354 static bool con_secure(struct ceph_connection *con) 355 { 356 return con->v2.con_mode == CEPH_CON_MODE_SECURE; 357 } 358 359 static int front_len(const struct ceph_msg *msg) 360 { 361 return le32_to_cpu(msg->hdr.front_len); 362 } 363 364 static int middle_len(const struct ceph_msg *msg) 365 { 366 return le32_to_cpu(msg->hdr.middle_len); 367 } 368 369 static int data_len(const struct ceph_msg *msg) 370 { 371 return le32_to_cpu(msg->hdr.data_len); 372 } 373 374 static bool need_padding(int len) 375 { 376 return !IS_ALIGNED(len, CEPH_GCM_BLOCK_LEN); 377 } 378 379 static int padded_len(int len) 380 { 381 return ALIGN(len, CEPH_GCM_BLOCK_LEN); 382 } 383 384 static int padding_len(int len) 385 { 386 return padded_len(len) - len; 387 } 388 389 /* preamble + control segment */ 390 static int head_onwire_len(int ctrl_len, bool secure) 391 { 392 int head_len; 393 int rem_len; 394 395 BUG_ON(ctrl_len < 0 || ctrl_len > CEPH_MSG_MAX_CONTROL_LEN); 396 397 if (secure) { 398 head_len = CEPH_PREAMBLE_SECURE_LEN; 399 if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) { 400 rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; 401 head_len += padded_len(rem_len) + CEPH_GCM_TAG_LEN; 402 } 403 } else { 404 head_len = CEPH_PREAMBLE_PLAIN_LEN; 405 if (ctrl_len) 406 head_len += ctrl_len + CEPH_CRC_LEN; 407 } 408 return head_len; 409 } 410 411 /* front, middle and data segments + epilogue */ 412 static int __tail_onwire_len(int front_len, int middle_len, int data_len, 413 bool secure) 414 { 415 BUG_ON(front_len < 0 || front_len > CEPH_MSG_MAX_FRONT_LEN || 416 middle_len < 0 || middle_len > CEPH_MSG_MAX_MIDDLE_LEN || 417 data_len < 0 || data_len > CEPH_MSG_MAX_DATA_LEN); 418 419 if (!front_len && !middle_len && !data_len) 420 return 0; 421 422 if (!secure) 423 return front_len + middle_len + data_len + 424 CEPH_EPILOGUE_PLAIN_LEN; 425 426 return padded_len(front_len) + padded_len(middle_len) + 427 padded_len(data_len) + CEPH_EPILOGUE_SECURE_LEN; 428 } 429 430 static int tail_onwire_len(const struct ceph_msg *msg, bool secure) 431 { 432 return __tail_onwire_len(front_len(msg), middle_len(msg), 433 data_len(msg), secure); 434 } 435 436 /* head_onwire_len(sizeof(struct ceph_msg_header2), false) */ 437 #define MESSAGE_HEAD_PLAIN_LEN (CEPH_PREAMBLE_PLAIN_LEN + \ 438 sizeof(struct ceph_msg_header2) + \ 439 CEPH_CRC_LEN) 440 441 static const int frame_aligns[] = { 442 sizeof(void *), 443 sizeof(void *), 444 sizeof(void *), 445 PAGE_SIZE 446 }; 447 448 /* 449 * Discards trailing empty segments, unless there is just one segment. 450 * A frame always has at least one (possibly empty) segment. 451 */ 452 static int calc_segment_count(const int *lens, int len_cnt) 453 { 454 int i; 455 456 for (i = len_cnt - 1; i >= 0; i--) { 457 if (lens[i]) 458 return i + 1; 459 } 460 461 return 1; 462 } 463 464 static void init_frame_desc(struct ceph_frame_desc *desc, int tag, 465 const int *lens, int len_cnt) 466 { 467 int i; 468 469 memset(desc, 0, sizeof(*desc)); 470 471 desc->fd_tag = tag; 472 desc->fd_seg_cnt = calc_segment_count(lens, len_cnt); 473 BUG_ON(desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT); 474 for (i = 0; i < desc->fd_seg_cnt; i++) { 475 desc->fd_lens[i] = lens[i]; 476 desc->fd_aligns[i] = frame_aligns[i]; 477 } 478 } 479 480 /* 481 * Preamble crc covers everything up to itself (28 bytes) and 482 * is calculated and verified irrespective of the connection mode 483 * (i.e. even if the frame is encrypted). 484 */ 485 static void encode_preamble(const struct ceph_frame_desc *desc, void *p) 486 { 487 void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN; 488 void *start = p; 489 int i; 490 491 memset(p, 0, CEPH_PREAMBLE_LEN); 492 493 ceph_encode_8(&p, desc->fd_tag); 494 ceph_encode_8(&p, desc->fd_seg_cnt); 495 for (i = 0; i < desc->fd_seg_cnt; i++) { 496 ceph_encode_32(&p, desc->fd_lens[i]); 497 ceph_encode_16(&p, desc->fd_aligns[i]); 498 } 499 500 put_unaligned_le32(crc32c(0, start, crcp - start), crcp); 501 } 502 503 static int decode_preamble(void *p, struct ceph_frame_desc *desc) 504 { 505 void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN; 506 u32 crc, expected_crc; 507 int i; 508 509 crc = crc32c(0, p, crcp - p); 510 expected_crc = get_unaligned_le32(crcp); 511 if (crc != expected_crc) { 512 pr_err("bad preamble crc, calculated %u, expected %u\n", 513 crc, expected_crc); 514 return -EBADMSG; 515 } 516 517 memset(desc, 0, sizeof(*desc)); 518 519 desc->fd_tag = ceph_decode_8(&p); 520 desc->fd_seg_cnt = ceph_decode_8(&p); 521 if (desc->fd_seg_cnt < 1 || 522 desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT) { 523 pr_err("bad segment count %d\n", desc->fd_seg_cnt); 524 return -EINVAL; 525 } 526 for (i = 0; i < desc->fd_seg_cnt; i++) { 527 desc->fd_lens[i] = ceph_decode_32(&p); 528 desc->fd_aligns[i] = ceph_decode_16(&p); 529 } 530 531 if (desc->fd_lens[0] < 0 || 532 desc->fd_lens[0] > CEPH_MSG_MAX_CONTROL_LEN) { 533 pr_err("bad control segment length %d\n", desc->fd_lens[0]); 534 return -EINVAL; 535 } 536 if (desc->fd_lens[1] < 0 || 537 desc->fd_lens[1] > CEPH_MSG_MAX_FRONT_LEN) { 538 pr_err("bad front segment length %d\n", desc->fd_lens[1]); 539 return -EINVAL; 540 } 541 if (desc->fd_lens[2] < 0 || 542 desc->fd_lens[2] > CEPH_MSG_MAX_MIDDLE_LEN) { 543 pr_err("bad middle segment length %d\n", desc->fd_lens[2]); 544 return -EINVAL; 545 } 546 if (desc->fd_lens[3] < 0 || 547 desc->fd_lens[3] > CEPH_MSG_MAX_DATA_LEN) { 548 pr_err("bad data segment length %d\n", desc->fd_lens[3]); 549 return -EINVAL; 550 } 551 552 /* 553 * This would fire for FRAME_TAG_WAIT (it has one empty 554 * segment), but we should never get it as client. 555 */ 556 if (!desc->fd_lens[desc->fd_seg_cnt - 1]) { 557 pr_err("last segment empty, segment count %d\n", 558 desc->fd_seg_cnt); 559 return -EINVAL; 560 } 561 562 return 0; 563 } 564 565 static void encode_epilogue_plain(struct ceph_connection *con, bool aborted) 566 { 567 con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED : 568 FRAME_LATE_STATUS_COMPLETE; 569 cpu_to_le32s(&con->v2.out_epil.front_crc); 570 cpu_to_le32s(&con->v2.out_epil.middle_crc); 571 cpu_to_le32s(&con->v2.out_epil.data_crc); 572 } 573 574 static void encode_epilogue_secure(struct ceph_connection *con, bool aborted) 575 { 576 memset(&con->v2.out_epil, 0, sizeof(con->v2.out_epil)); 577 con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED : 578 FRAME_LATE_STATUS_COMPLETE; 579 } 580 581 static int decode_epilogue(void *p, u32 *front_crc, u32 *middle_crc, 582 u32 *data_crc) 583 { 584 u8 late_status; 585 586 late_status = ceph_decode_8(&p); 587 if ((late_status & FRAME_LATE_STATUS_ABORTED_MASK) != 588 FRAME_LATE_STATUS_COMPLETE) { 589 /* we should never get an aborted message as client */ 590 pr_err("bad late_status 0x%x\n", late_status); 591 return -EINVAL; 592 } 593 594 if (front_crc && middle_crc && data_crc) { 595 *front_crc = ceph_decode_32(&p); 596 *middle_crc = ceph_decode_32(&p); 597 *data_crc = ceph_decode_32(&p); 598 } 599 600 return 0; 601 } 602 603 static void fill_header(struct ceph_msg_header *hdr, 604 const struct ceph_msg_header2 *hdr2, 605 int front_len, int middle_len, int data_len, 606 const struct ceph_entity_name *peer_name) 607 { 608 hdr->seq = hdr2->seq; 609 hdr->tid = hdr2->tid; 610 hdr->type = hdr2->type; 611 hdr->priority = hdr2->priority; 612 hdr->version = hdr2->version; 613 hdr->front_len = cpu_to_le32(front_len); 614 hdr->middle_len = cpu_to_le32(middle_len); 615 hdr->data_len = cpu_to_le32(data_len); 616 hdr->data_off = hdr2->data_off; 617 hdr->src = *peer_name; 618 hdr->compat_version = hdr2->compat_version; 619 hdr->reserved = 0; 620 hdr->crc = 0; 621 } 622 623 static void fill_header2(struct ceph_msg_header2 *hdr2, 624 const struct ceph_msg_header *hdr, u64 ack_seq) 625 { 626 hdr2->seq = hdr->seq; 627 hdr2->tid = hdr->tid; 628 hdr2->type = hdr->type; 629 hdr2->priority = hdr->priority; 630 hdr2->version = hdr->version; 631 hdr2->data_pre_padding_len = 0; 632 hdr2->data_off = hdr->data_off; 633 hdr2->ack_seq = cpu_to_le64(ack_seq); 634 hdr2->flags = 0; 635 hdr2->compat_version = hdr->compat_version; 636 hdr2->reserved = 0; 637 } 638 639 static int verify_control_crc(struct ceph_connection *con) 640 { 641 int ctrl_len = con->v2.in_desc.fd_lens[0]; 642 u32 crc, expected_crc; 643 644 WARN_ON(con->v2.in_kvecs[0].iov_len != ctrl_len); 645 WARN_ON(con->v2.in_kvecs[1].iov_len != CEPH_CRC_LEN); 646 647 crc = crc32c(-1, con->v2.in_kvecs[0].iov_base, ctrl_len); 648 expected_crc = get_unaligned_le32(con->v2.in_kvecs[1].iov_base); 649 if (crc != expected_crc) { 650 pr_err("bad control crc, calculated %u, expected %u\n", 651 crc, expected_crc); 652 return -EBADMSG; 653 } 654 655 return 0; 656 } 657 658 static int verify_epilogue_crcs(struct ceph_connection *con, u32 front_crc, 659 u32 middle_crc, u32 data_crc) 660 { 661 if (front_len(con->in_msg)) { 662 con->in_front_crc = crc32c(-1, con->in_msg->front.iov_base, 663 front_len(con->in_msg)); 664 } else { 665 WARN_ON(!middle_len(con->in_msg) && !data_len(con->in_msg)); 666 con->in_front_crc = -1; 667 } 668 669 if (middle_len(con->in_msg)) 670 con->in_middle_crc = crc32c(-1, 671 con->in_msg->middle->vec.iov_base, 672 middle_len(con->in_msg)); 673 else if (data_len(con->in_msg)) 674 con->in_middle_crc = -1; 675 else 676 con->in_middle_crc = 0; 677 678 if (!data_len(con->in_msg)) 679 con->in_data_crc = 0; 680 681 dout("%s con %p msg %p crcs %u %u %u\n", __func__, con, con->in_msg, 682 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 683 684 if (con->in_front_crc != front_crc) { 685 pr_err("bad front crc, calculated %u, expected %u\n", 686 con->in_front_crc, front_crc); 687 return -EBADMSG; 688 } 689 if (con->in_middle_crc != middle_crc) { 690 pr_err("bad middle crc, calculated %u, expected %u\n", 691 con->in_middle_crc, middle_crc); 692 return -EBADMSG; 693 } 694 if (con->in_data_crc != data_crc) { 695 pr_err("bad data crc, calculated %u, expected %u\n", 696 con->in_data_crc, data_crc); 697 return -EBADMSG; 698 } 699 700 return 0; 701 } 702 703 static int setup_crypto(struct ceph_connection *con, 704 const u8 *session_key, int session_key_len, 705 const u8 *con_secret, int con_secret_len) 706 { 707 unsigned int noio_flag; 708 int ret; 709 710 dout("%s con %p con_mode %d session_key_len %d con_secret_len %d\n", 711 __func__, con, con->v2.con_mode, session_key_len, con_secret_len); 712 WARN_ON(con->v2.hmac_key_set || con->v2.gcm_tfm || con->v2.gcm_req); 713 714 if (con->v2.con_mode != CEPH_CON_MODE_CRC && 715 con->v2.con_mode != CEPH_CON_MODE_SECURE) { 716 pr_err("bad con_mode %d\n", con->v2.con_mode); 717 return -EINVAL; 718 } 719 720 if (!session_key_len) { 721 WARN_ON(con->v2.con_mode != CEPH_CON_MODE_CRC); 722 WARN_ON(con_secret_len); 723 return 0; /* auth_none */ 724 } 725 726 hmac_sha256_preparekey(&con->v2.hmac_key, session_key, session_key_len); 727 con->v2.hmac_key_set = true; 728 729 if (con->v2.con_mode == CEPH_CON_MODE_CRC) { 730 WARN_ON(con_secret_len); 731 return 0; /* auth_x, plain mode */ 732 } 733 734 if (con_secret_len < CEPH_GCM_KEY_LEN + 2 * CEPH_GCM_IV_LEN) { 735 pr_err("con_secret too small %d\n", con_secret_len); 736 return -EINVAL; 737 } 738 739 noio_flag = memalloc_noio_save(); 740 con->v2.gcm_tfm = crypto_alloc_aead("gcm(aes)", 0, 0); 741 memalloc_noio_restore(noio_flag); 742 if (IS_ERR(con->v2.gcm_tfm)) { 743 ret = PTR_ERR(con->v2.gcm_tfm); 744 con->v2.gcm_tfm = NULL; 745 pr_err("failed to allocate gcm tfm context: %d\n", ret); 746 return ret; 747 } 748 749 WARN_ON((unsigned long)con_secret & 750 crypto_aead_alignmask(con->v2.gcm_tfm)); 751 ret = crypto_aead_setkey(con->v2.gcm_tfm, con_secret, CEPH_GCM_KEY_LEN); 752 if (ret) { 753 pr_err("failed to set gcm key: %d\n", ret); 754 return ret; 755 } 756 757 WARN_ON(crypto_aead_ivsize(con->v2.gcm_tfm) != CEPH_GCM_IV_LEN); 758 ret = crypto_aead_setauthsize(con->v2.gcm_tfm, CEPH_GCM_TAG_LEN); 759 if (ret) { 760 pr_err("failed to set gcm tag size: %d\n", ret); 761 return ret; 762 } 763 764 con->v2.gcm_req = aead_request_alloc(con->v2.gcm_tfm, GFP_NOIO); 765 if (!con->v2.gcm_req) { 766 pr_err("failed to allocate gcm request\n"); 767 return -ENOMEM; 768 } 769 770 crypto_init_wait(&con->v2.gcm_wait); 771 aead_request_set_callback(con->v2.gcm_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 772 crypto_req_done, &con->v2.gcm_wait); 773 774 memcpy(&con->v2.in_gcm_nonce, con_secret + CEPH_GCM_KEY_LEN, 775 CEPH_GCM_IV_LEN); 776 memcpy(&con->v2.out_gcm_nonce, 777 con_secret + CEPH_GCM_KEY_LEN + CEPH_GCM_IV_LEN, 778 CEPH_GCM_IV_LEN); 779 return 0; /* auth_x, secure mode */ 780 } 781 782 static void ceph_hmac_sha256(struct ceph_connection *con, 783 const struct kvec *kvecs, int kvec_cnt, 784 u8 hmac[SHA256_DIGEST_SIZE]) 785 { 786 struct hmac_sha256_ctx ctx; 787 int i; 788 789 dout("%s con %p hmac_key_set %d kvec_cnt %d\n", __func__, con, 790 con->v2.hmac_key_set, kvec_cnt); 791 792 if (!con->v2.hmac_key_set) { 793 memset(hmac, 0, SHA256_DIGEST_SIZE); 794 return; /* auth_none */ 795 } 796 797 /* auth_x, both plain and secure modes */ 798 hmac_sha256_init(&ctx, &con->v2.hmac_key); 799 for (i = 0; i < kvec_cnt; i++) 800 hmac_sha256_update(&ctx, kvecs[i].iov_base, kvecs[i].iov_len); 801 hmac_sha256_final(&ctx, hmac); 802 } 803 804 static void gcm_inc_nonce(struct ceph_gcm_nonce *nonce) 805 { 806 u64 counter; 807 808 counter = le64_to_cpu(nonce->counter); 809 nonce->counter = cpu_to_le64(counter + 1); 810 } 811 812 static int gcm_crypt(struct ceph_connection *con, bool encrypt, 813 struct scatterlist *src, struct scatterlist *dst, 814 int src_len) 815 { 816 struct ceph_gcm_nonce *nonce; 817 int ret; 818 819 nonce = encrypt ? &con->v2.out_gcm_nonce : &con->v2.in_gcm_nonce; 820 821 aead_request_set_ad(con->v2.gcm_req, 0); /* no AAD */ 822 aead_request_set_crypt(con->v2.gcm_req, src, dst, src_len, (u8 *)nonce); 823 ret = crypto_wait_req(encrypt ? crypto_aead_encrypt(con->v2.gcm_req) : 824 crypto_aead_decrypt(con->v2.gcm_req), 825 &con->v2.gcm_wait); 826 if (ret) 827 return ret; 828 829 gcm_inc_nonce(nonce); 830 return 0; 831 } 832 833 static void get_bvec_at(struct ceph_msg_data_cursor *cursor, 834 struct bio_vec *bv) 835 { 836 struct page *page; 837 size_t off, len; 838 839 WARN_ON(!cursor->total_resid); 840 841 /* skip zero-length data items */ 842 while (!cursor->resid) 843 ceph_msg_data_advance(cursor, 0); 844 845 /* get a piece of data, cursor isn't advanced */ 846 page = ceph_msg_data_next(cursor, &off, &len); 847 bvec_set_page(bv, page, len, off); 848 } 849 850 static int calc_sg_cnt(void *buf, int buf_len) 851 { 852 int sg_cnt; 853 854 if (!buf_len) 855 return 0; 856 857 sg_cnt = need_padding(buf_len) ? 1 : 0; 858 if (is_vmalloc_addr(buf)) { 859 WARN_ON(offset_in_page(buf)); 860 sg_cnt += PAGE_ALIGN(buf_len) >> PAGE_SHIFT; 861 } else { 862 sg_cnt++; 863 } 864 865 return sg_cnt; 866 } 867 868 static int calc_sg_cnt_cursor(struct ceph_msg_data_cursor *cursor) 869 { 870 int data_len = cursor->total_resid; 871 struct bio_vec bv; 872 int sg_cnt; 873 874 if (!data_len) 875 return 0; 876 877 sg_cnt = need_padding(data_len) ? 1 : 0; 878 do { 879 get_bvec_at(cursor, &bv); 880 sg_cnt++; 881 882 ceph_msg_data_advance(cursor, bv.bv_len); 883 } while (cursor->total_resid); 884 885 return sg_cnt; 886 } 887 888 static void init_sgs(struct scatterlist **sg, void *buf, int buf_len, u8 *pad) 889 { 890 void *end = buf + buf_len; 891 struct page *page; 892 int len; 893 void *p; 894 895 if (!buf_len) 896 return; 897 898 if (is_vmalloc_addr(buf)) { 899 p = buf; 900 do { 901 page = vmalloc_to_page(p); 902 len = min_t(int, end - p, PAGE_SIZE); 903 WARN_ON(!page || !len || offset_in_page(p)); 904 sg_set_page(*sg, page, len, 0); 905 *sg = sg_next(*sg); 906 p += len; 907 } while (p != end); 908 } else { 909 sg_set_buf(*sg, buf, buf_len); 910 *sg = sg_next(*sg); 911 } 912 913 if (need_padding(buf_len)) { 914 sg_set_buf(*sg, pad, padding_len(buf_len)); 915 *sg = sg_next(*sg); 916 } 917 } 918 919 static void init_sgs_cursor(struct scatterlist **sg, 920 struct ceph_msg_data_cursor *cursor, u8 *pad) 921 { 922 int data_len = cursor->total_resid; 923 struct bio_vec bv; 924 925 if (!data_len) 926 return; 927 928 do { 929 get_bvec_at(cursor, &bv); 930 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 931 *sg = sg_next(*sg); 932 933 ceph_msg_data_advance(cursor, bv.bv_len); 934 } while (cursor->total_resid); 935 936 if (need_padding(data_len)) { 937 sg_set_buf(*sg, pad, padding_len(data_len)); 938 *sg = sg_next(*sg); 939 } 940 } 941 942 /** 943 * init_sgs_pages: set up scatterlist on an array of page pointers 944 * @sg: scatterlist to populate 945 * @pages: pointer to page array 946 * @dpos: position in the array to start (bytes) 947 * @dlen: len to add to sg (bytes) 948 * @pad: pointer to pad destination (if any) 949 * 950 * Populate the scatterlist from the page array, starting at an arbitrary 951 * byte in the array and running for a specified length. 952 */ 953 static void init_sgs_pages(struct scatterlist **sg, struct page **pages, 954 int dpos, int dlen, u8 *pad) 955 { 956 int idx = dpos >> PAGE_SHIFT; 957 int off = offset_in_page(dpos); 958 int resid = dlen; 959 960 do { 961 int len = min(resid, (int)PAGE_SIZE - off); 962 963 sg_set_page(*sg, pages[idx], len, off); 964 *sg = sg_next(*sg); 965 off = 0; 966 ++idx; 967 resid -= len; 968 } while (resid); 969 970 if (need_padding(dlen)) { 971 sg_set_buf(*sg, pad, padding_len(dlen)); 972 *sg = sg_next(*sg); 973 } 974 } 975 976 static int setup_message_sgs(struct sg_table *sgt, struct ceph_msg *msg, 977 u8 *front_pad, u8 *middle_pad, u8 *data_pad, 978 void *epilogue, struct page **pages, int dpos, 979 bool add_tag) 980 { 981 struct ceph_msg_data_cursor cursor; 982 struct scatterlist *cur_sg; 983 int dlen = data_len(msg); 984 int sg_cnt; 985 int ret; 986 987 if (!front_len(msg) && !middle_len(msg) && !data_len(msg)) 988 return 0; 989 990 sg_cnt = 1; /* epilogue + [auth tag] */ 991 if (front_len(msg)) 992 sg_cnt += calc_sg_cnt(msg->front.iov_base, 993 front_len(msg)); 994 if (middle_len(msg)) 995 sg_cnt += calc_sg_cnt(msg->middle->vec.iov_base, 996 middle_len(msg)); 997 if (dlen) { 998 if (pages) { 999 sg_cnt += calc_pages_for(dpos, dlen); 1000 if (need_padding(dlen)) 1001 sg_cnt++; 1002 } else { 1003 ceph_msg_data_cursor_init(&cursor, msg, dlen); 1004 sg_cnt += calc_sg_cnt_cursor(&cursor); 1005 } 1006 } 1007 1008 ret = sg_alloc_table(sgt, sg_cnt, GFP_NOIO); 1009 if (ret) 1010 return ret; 1011 1012 cur_sg = sgt->sgl; 1013 if (front_len(msg)) 1014 init_sgs(&cur_sg, msg->front.iov_base, front_len(msg), 1015 front_pad); 1016 if (middle_len(msg)) 1017 init_sgs(&cur_sg, msg->middle->vec.iov_base, middle_len(msg), 1018 middle_pad); 1019 if (dlen) { 1020 if (pages) { 1021 init_sgs_pages(&cur_sg, pages, dpos, dlen, data_pad); 1022 } else { 1023 ceph_msg_data_cursor_init(&cursor, msg, dlen); 1024 init_sgs_cursor(&cur_sg, &cursor, data_pad); 1025 } 1026 } 1027 1028 WARN_ON(!sg_is_last(cur_sg)); 1029 sg_set_buf(cur_sg, epilogue, 1030 CEPH_GCM_BLOCK_LEN + (add_tag ? CEPH_GCM_TAG_LEN : 0)); 1031 return 0; 1032 } 1033 1034 static int decrypt_preamble(struct ceph_connection *con) 1035 { 1036 struct scatterlist sg; 1037 1038 sg_init_one(&sg, con->v2.in_buf, CEPH_PREAMBLE_SECURE_LEN); 1039 return gcm_crypt(con, false, &sg, &sg, CEPH_PREAMBLE_SECURE_LEN); 1040 } 1041 1042 static int decrypt_control_remainder(struct ceph_connection *con) 1043 { 1044 int ctrl_len = con->v2.in_desc.fd_lens[0]; 1045 int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; 1046 int pt_len = padding_len(rem_len) + CEPH_GCM_TAG_LEN; 1047 struct scatterlist sgs[2]; 1048 1049 WARN_ON(con->v2.in_kvecs[0].iov_len != rem_len); 1050 WARN_ON(con->v2.in_kvecs[1].iov_len != pt_len); 1051 1052 sg_init_table(sgs, 2); 1053 sg_set_buf(&sgs[0], con->v2.in_kvecs[0].iov_base, rem_len); 1054 sg_set_buf(&sgs[1], con->v2.in_buf, pt_len); 1055 1056 return gcm_crypt(con, false, sgs, sgs, 1057 padded_len(rem_len) + CEPH_GCM_TAG_LEN); 1058 } 1059 1060 /* Process sparse read data that lives in a buffer */ 1061 static int process_v2_sparse_read(struct ceph_connection *con, 1062 struct page **pages, int spos) 1063 { 1064 struct ceph_msg_data_cursor cursor; 1065 int ret; 1066 1067 ceph_msg_data_cursor_init(&cursor, con->in_msg, 1068 con->in_msg->sparse_read_total); 1069 1070 for (;;) { 1071 char *buf = NULL; 1072 1073 ret = con->ops->sparse_read(con, &cursor, &buf); 1074 if (ret <= 0) 1075 return ret; 1076 1077 dout("%s: sparse_read return %x buf %p\n", __func__, ret, buf); 1078 1079 do { 1080 int idx = spos >> PAGE_SHIFT; 1081 int soff = offset_in_page(spos); 1082 struct page *spage = con->v2.in_enc_pages[idx]; 1083 int len = min_t(int, ret, PAGE_SIZE - soff); 1084 1085 if (buf) { 1086 memcpy_from_page(buf, spage, soff, len); 1087 buf += len; 1088 } else { 1089 struct bio_vec bv; 1090 1091 get_bvec_at(&cursor, &bv); 1092 len = min_t(int, len, bv.bv_len); 1093 memcpy_page(bv.bv_page, bv.bv_offset, 1094 spage, soff, len); 1095 ceph_msg_data_advance(&cursor, len); 1096 } 1097 spos += len; 1098 ret -= len; 1099 } while (ret); 1100 } 1101 } 1102 1103 static int decrypt_tail(struct ceph_connection *con) 1104 { 1105 struct sg_table enc_sgt = {}; 1106 struct sg_table sgt = {}; 1107 struct page **pages = NULL; 1108 bool sparse = !!con->in_msg->sparse_read_total; 1109 int dpos = 0; 1110 int tail_len; 1111 int ret; 1112 1113 tail_len = tail_onwire_len(con->in_msg, true); 1114 ret = sg_alloc_table_from_pages(&enc_sgt, con->v2.in_enc_pages, 1115 con->v2.in_enc_page_cnt, 0, tail_len, 1116 GFP_NOIO); 1117 if (ret) 1118 goto out; 1119 1120 if (sparse) { 1121 dpos = padded_len(front_len(con->in_msg) + padded_len(middle_len(con->in_msg))); 1122 pages = con->v2.in_enc_pages; 1123 } 1124 1125 ret = setup_message_sgs(&sgt, con->in_msg, FRONT_PAD(con->v2.in_buf), 1126 MIDDLE_PAD(con->v2.in_buf), DATA_PAD(con->v2.in_buf), 1127 con->v2.in_buf, pages, dpos, true); 1128 if (ret) 1129 goto out; 1130 1131 dout("%s con %p msg %p enc_page_cnt %d sg_cnt %d\n", __func__, con, 1132 con->in_msg, con->v2.in_enc_page_cnt, sgt.orig_nents); 1133 ret = gcm_crypt(con, false, enc_sgt.sgl, sgt.sgl, tail_len); 1134 if (ret) 1135 goto out; 1136 1137 if (sparse && data_len(con->in_msg)) { 1138 ret = process_v2_sparse_read(con, con->v2.in_enc_pages, dpos); 1139 if (ret) 1140 goto out; 1141 } 1142 1143 WARN_ON(!con->v2.in_enc_page_cnt); 1144 ceph_release_page_vector(con->v2.in_enc_pages, 1145 con->v2.in_enc_page_cnt); 1146 con->v2.in_enc_pages = NULL; 1147 con->v2.in_enc_page_cnt = 0; 1148 1149 out: 1150 sg_free_table(&sgt); 1151 sg_free_table(&enc_sgt); 1152 return ret; 1153 } 1154 1155 static int prepare_banner(struct ceph_connection *con) 1156 { 1157 int buf_len = CEPH_BANNER_V2_LEN + 2 + 8 + 8; 1158 void *buf, *p; 1159 1160 buf = alloc_conn_buf(con, buf_len); 1161 if (!buf) 1162 return -ENOMEM; 1163 1164 p = buf; 1165 ceph_encode_copy(&p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN); 1166 ceph_encode_16(&p, sizeof(u64) + sizeof(u64)); 1167 ceph_encode_64(&p, CEPH_MSGR2_SUPPORTED_FEATURES); 1168 ceph_encode_64(&p, CEPH_MSGR2_REQUIRED_FEATURES); 1169 WARN_ON(p != buf + buf_len); 1170 1171 add_out_kvec(con, buf, buf_len); 1172 add_out_sign_kvec(con, buf, buf_len); 1173 ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING); 1174 return 0; 1175 } 1176 1177 /* 1178 * base: 1179 * preamble 1180 * control body (ctrl_len bytes) 1181 * space for control crc 1182 * 1183 * extdata (optional): 1184 * control body (extdata_len bytes) 1185 * 1186 * Compute control crc and gather base and extdata into: 1187 * 1188 * preamble 1189 * control body (ctrl_len + extdata_len bytes) 1190 * control crc 1191 * 1192 * Preamble should already be encoded at the start of base. 1193 */ 1194 static void prepare_head_plain(struct ceph_connection *con, void *base, 1195 int ctrl_len, void *extdata, int extdata_len, 1196 bool to_be_signed) 1197 { 1198 int base_len = CEPH_PREAMBLE_LEN + ctrl_len + CEPH_CRC_LEN; 1199 void *crcp = base + base_len - CEPH_CRC_LEN; 1200 u32 crc; 1201 1202 crc = crc32c(-1, CTRL_BODY(base), ctrl_len); 1203 if (extdata_len) 1204 crc = crc32c(crc, extdata, extdata_len); 1205 put_unaligned_le32(crc, crcp); 1206 1207 if (!extdata_len) { 1208 add_out_kvec(con, base, base_len); 1209 if (to_be_signed) 1210 add_out_sign_kvec(con, base, base_len); 1211 return; 1212 } 1213 1214 add_out_kvec(con, base, crcp - base); 1215 add_out_kvec(con, extdata, extdata_len); 1216 add_out_kvec(con, crcp, CEPH_CRC_LEN); 1217 if (to_be_signed) { 1218 add_out_sign_kvec(con, base, crcp - base); 1219 add_out_sign_kvec(con, extdata, extdata_len); 1220 add_out_sign_kvec(con, crcp, CEPH_CRC_LEN); 1221 } 1222 } 1223 1224 static int prepare_head_secure_small(struct ceph_connection *con, 1225 void *base, int ctrl_len) 1226 { 1227 struct scatterlist sg; 1228 int ret; 1229 1230 /* inline buffer padding? */ 1231 if (ctrl_len < CEPH_PREAMBLE_INLINE_LEN) 1232 memset(CTRL_BODY(base) + ctrl_len, 0, 1233 CEPH_PREAMBLE_INLINE_LEN - ctrl_len); 1234 1235 sg_init_one(&sg, base, CEPH_PREAMBLE_SECURE_LEN); 1236 ret = gcm_crypt(con, true, &sg, &sg, 1237 CEPH_PREAMBLE_SECURE_LEN - CEPH_GCM_TAG_LEN); 1238 if (ret) 1239 return ret; 1240 1241 add_out_kvec(con, base, CEPH_PREAMBLE_SECURE_LEN); 1242 return 0; 1243 } 1244 1245 /* 1246 * base: 1247 * preamble 1248 * control body (ctrl_len bytes) 1249 * space for padding, if needed 1250 * space for control remainder auth tag 1251 * space for preamble auth tag 1252 * 1253 * Encrypt preamble and the inline portion, then encrypt the remainder 1254 * and gather into: 1255 * 1256 * preamble 1257 * control body (48 bytes) 1258 * preamble auth tag 1259 * control body (ctrl_len - 48 bytes) 1260 * zero padding, if needed 1261 * control remainder auth tag 1262 * 1263 * Preamble should already be encoded at the start of base. 1264 */ 1265 static int prepare_head_secure_big(struct ceph_connection *con, 1266 void *base, int ctrl_len) 1267 { 1268 int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; 1269 void *rem = CTRL_BODY(base) + CEPH_PREAMBLE_INLINE_LEN; 1270 void *rem_tag = rem + padded_len(rem_len); 1271 void *pmbl_tag = rem_tag + CEPH_GCM_TAG_LEN; 1272 struct scatterlist sgs[2]; 1273 int ret; 1274 1275 sg_init_table(sgs, 2); 1276 sg_set_buf(&sgs[0], base, rem - base); 1277 sg_set_buf(&sgs[1], pmbl_tag, CEPH_GCM_TAG_LEN); 1278 ret = gcm_crypt(con, true, sgs, sgs, rem - base); 1279 if (ret) 1280 return ret; 1281 1282 /* control remainder padding? */ 1283 if (need_padding(rem_len)) 1284 memset(rem + rem_len, 0, padding_len(rem_len)); 1285 1286 sg_init_one(&sgs[0], rem, pmbl_tag - rem); 1287 ret = gcm_crypt(con, true, sgs, sgs, rem_tag - rem); 1288 if (ret) 1289 return ret; 1290 1291 add_out_kvec(con, base, rem - base); 1292 add_out_kvec(con, pmbl_tag, CEPH_GCM_TAG_LEN); 1293 add_out_kvec(con, rem, pmbl_tag - rem); 1294 return 0; 1295 } 1296 1297 static int __prepare_control(struct ceph_connection *con, int tag, 1298 void *base, int ctrl_len, void *extdata, 1299 int extdata_len, bool to_be_signed) 1300 { 1301 int total_len = ctrl_len + extdata_len; 1302 struct ceph_frame_desc desc; 1303 int ret; 1304 1305 dout("%s con %p tag %d len %d (%d+%d)\n", __func__, con, tag, 1306 total_len, ctrl_len, extdata_len); 1307 1308 /* extdata may be vmalloc'ed but not base */ 1309 if (WARN_ON(is_vmalloc_addr(base) || !ctrl_len)) 1310 return -EINVAL; 1311 1312 init_frame_desc(&desc, tag, &total_len, 1); 1313 encode_preamble(&desc, base); 1314 1315 if (con_secure(con)) { 1316 if (WARN_ON(extdata_len || to_be_signed)) 1317 return -EINVAL; 1318 1319 if (ctrl_len <= CEPH_PREAMBLE_INLINE_LEN) 1320 /* fully inlined, inline buffer may need padding */ 1321 ret = prepare_head_secure_small(con, base, ctrl_len); 1322 else 1323 /* partially inlined, inline buffer is full */ 1324 ret = prepare_head_secure_big(con, base, ctrl_len); 1325 if (ret) 1326 return ret; 1327 } else { 1328 prepare_head_plain(con, base, ctrl_len, extdata, extdata_len, 1329 to_be_signed); 1330 } 1331 1332 ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING); 1333 return 0; 1334 } 1335 1336 static int prepare_control(struct ceph_connection *con, int tag, 1337 void *base, int ctrl_len) 1338 { 1339 return __prepare_control(con, tag, base, ctrl_len, NULL, 0, false); 1340 } 1341 1342 static int prepare_hello(struct ceph_connection *con) 1343 { 1344 void *buf, *p; 1345 int ctrl_len; 1346 1347 ctrl_len = 1 + ceph_entity_addr_encoding_len(&con->peer_addr); 1348 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false)); 1349 if (!buf) 1350 return -ENOMEM; 1351 1352 p = CTRL_BODY(buf); 1353 ceph_encode_8(&p, CEPH_ENTITY_TYPE_CLIENT); 1354 ceph_encode_entity_addr(&p, &con->peer_addr); 1355 WARN_ON(p != CTRL_BODY(buf) + ctrl_len); 1356 1357 return __prepare_control(con, FRAME_TAG_HELLO, buf, ctrl_len, 1358 NULL, 0, true); 1359 } 1360 1361 /* so that head_onwire_len(AUTH_BUF_LEN, false) is 512 */ 1362 #define AUTH_BUF_LEN (512 - CEPH_CRC_LEN - CEPH_PREAMBLE_PLAIN_LEN) 1363 1364 static int prepare_auth_request(struct ceph_connection *con) 1365 { 1366 void *authorizer, *authorizer_copy; 1367 int ctrl_len, authorizer_len; 1368 void *buf; 1369 int ret; 1370 1371 ctrl_len = AUTH_BUF_LEN; 1372 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false)); 1373 if (!buf) 1374 return -ENOMEM; 1375 1376 mutex_unlock(&con->mutex); 1377 ret = con->ops->get_auth_request(con, CTRL_BODY(buf), &ctrl_len, 1378 &authorizer, &authorizer_len); 1379 mutex_lock(&con->mutex); 1380 if (con->state != CEPH_CON_S_V2_HELLO) { 1381 dout("%s con %p state changed to %d\n", __func__, con, 1382 con->state); 1383 return -EAGAIN; 1384 } 1385 1386 dout("%s con %p get_auth_request ret %d\n", __func__, con, ret); 1387 if (ret) 1388 return ret; 1389 1390 authorizer_copy = alloc_conn_buf(con, authorizer_len); 1391 if (!authorizer_copy) 1392 return -ENOMEM; 1393 1394 memcpy(authorizer_copy, authorizer, authorizer_len); 1395 1396 return __prepare_control(con, FRAME_TAG_AUTH_REQUEST, buf, ctrl_len, 1397 authorizer_copy, authorizer_len, true); 1398 } 1399 1400 static int prepare_auth_request_more(struct ceph_connection *con, 1401 void *reply, int reply_len) 1402 { 1403 int ctrl_len, authorizer_len; 1404 void *authorizer; 1405 void *buf; 1406 int ret; 1407 1408 ctrl_len = AUTH_BUF_LEN; 1409 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false)); 1410 if (!buf) 1411 return -ENOMEM; 1412 1413 mutex_unlock(&con->mutex); 1414 ret = con->ops->handle_auth_reply_more(con, reply, reply_len, 1415 CTRL_BODY(buf), &ctrl_len, 1416 &authorizer, &authorizer_len); 1417 mutex_lock(&con->mutex); 1418 if (con->state != CEPH_CON_S_V2_AUTH) { 1419 dout("%s con %p state changed to %d\n", __func__, con, 1420 con->state); 1421 return -EAGAIN; 1422 } 1423 1424 dout("%s con %p handle_auth_reply_more ret %d\n", __func__, con, ret); 1425 if (ret) 1426 return ret; 1427 1428 return __prepare_control(con, FRAME_TAG_AUTH_REQUEST_MORE, buf, 1429 ctrl_len, authorizer, authorizer_len, true); 1430 } 1431 1432 static int prepare_auth_signature(struct ceph_connection *con) 1433 { 1434 void *buf; 1435 1436 buf = alloc_conn_buf(con, head_onwire_len(SHA256_DIGEST_SIZE, 1437 con_secure(con))); 1438 if (!buf) 1439 return -ENOMEM; 1440 1441 ceph_hmac_sha256(con, con->v2.in_sign_kvecs, con->v2.in_sign_kvec_cnt, 1442 CTRL_BODY(buf)); 1443 1444 return prepare_control(con, FRAME_TAG_AUTH_SIGNATURE, buf, 1445 SHA256_DIGEST_SIZE); 1446 } 1447 1448 static int prepare_client_ident(struct ceph_connection *con) 1449 { 1450 struct ceph_entity_addr *my_addr = &con->msgr->inst.addr; 1451 struct ceph_client *client = from_msgr(con->msgr); 1452 u64 global_id = ceph_client_gid(client); 1453 void *buf, *p; 1454 int ctrl_len; 1455 1456 WARN_ON(con->v2.server_cookie); 1457 WARN_ON(con->v2.connect_seq); 1458 WARN_ON(con->v2.peer_global_seq); 1459 1460 if (!con->v2.client_cookie) { 1461 do { 1462 get_random_bytes(&con->v2.client_cookie, 1463 sizeof(con->v2.client_cookie)); 1464 } while (!con->v2.client_cookie); 1465 dout("%s con %p generated cookie 0x%llx\n", __func__, con, 1466 con->v2.client_cookie); 1467 } else { 1468 dout("%s con %p cookie already set 0x%llx\n", __func__, con, 1469 con->v2.client_cookie); 1470 } 1471 1472 dout("%s con %p my_addr %s/%u peer_addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx cookie 0x%llx\n", 1473 __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce), 1474 ceph_pr_addr(&con->peer_addr), le32_to_cpu(con->peer_addr.nonce), 1475 global_id, con->v2.global_seq, client->supported_features, 1476 client->required_features, con->v2.client_cookie); 1477 1478 ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 1479 ceph_entity_addr_encoding_len(&con->peer_addr) + 6 * 8; 1480 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con))); 1481 if (!buf) 1482 return -ENOMEM; 1483 1484 p = CTRL_BODY(buf); 1485 ceph_encode_8(&p, 2); /* addrvec marker */ 1486 ceph_encode_32(&p, 1); /* addr_cnt */ 1487 ceph_encode_entity_addr(&p, my_addr); 1488 ceph_encode_entity_addr(&p, &con->peer_addr); 1489 ceph_encode_64(&p, global_id); 1490 ceph_encode_64(&p, con->v2.global_seq); 1491 ceph_encode_64(&p, client->supported_features); 1492 ceph_encode_64(&p, client->required_features); 1493 ceph_encode_64(&p, 0); /* flags */ 1494 ceph_encode_64(&p, con->v2.client_cookie); 1495 WARN_ON(p != CTRL_BODY(buf) + ctrl_len); 1496 1497 return prepare_control(con, FRAME_TAG_CLIENT_IDENT, buf, ctrl_len); 1498 } 1499 1500 static int prepare_session_reconnect(struct ceph_connection *con) 1501 { 1502 struct ceph_entity_addr *my_addr = &con->msgr->inst.addr; 1503 void *buf, *p; 1504 int ctrl_len; 1505 1506 WARN_ON(!con->v2.client_cookie); 1507 WARN_ON(!con->v2.server_cookie); 1508 WARN_ON(!con->v2.connect_seq); 1509 WARN_ON(!con->v2.peer_global_seq); 1510 1511 dout("%s con %p my_addr %s/%u client_cookie 0x%llx server_cookie 0x%llx global_seq %llu connect_seq %llu in_seq %llu\n", 1512 __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce), 1513 con->v2.client_cookie, con->v2.server_cookie, con->v2.global_seq, 1514 con->v2.connect_seq, con->in_seq); 1515 1516 ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 5 * 8; 1517 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con))); 1518 if (!buf) 1519 return -ENOMEM; 1520 1521 p = CTRL_BODY(buf); 1522 ceph_encode_8(&p, 2); /* entity_addrvec_t marker */ 1523 ceph_encode_32(&p, 1); /* my_addrs len */ 1524 ceph_encode_entity_addr(&p, my_addr); 1525 ceph_encode_64(&p, con->v2.client_cookie); 1526 ceph_encode_64(&p, con->v2.server_cookie); 1527 ceph_encode_64(&p, con->v2.global_seq); 1528 ceph_encode_64(&p, con->v2.connect_seq); 1529 ceph_encode_64(&p, con->in_seq); 1530 WARN_ON(p != CTRL_BODY(buf) + ctrl_len); 1531 1532 return prepare_control(con, FRAME_TAG_SESSION_RECONNECT, buf, ctrl_len); 1533 } 1534 1535 static int prepare_keepalive2(struct ceph_connection *con) 1536 { 1537 struct ceph_timespec *ts = CTRL_BODY(con->v2.out_buf); 1538 struct timespec64 now; 1539 1540 ktime_get_real_ts64(&now); 1541 dout("%s con %p timestamp %ptSp\n", __func__, con, &now); 1542 1543 ceph_encode_timespec64(ts, &now); 1544 1545 reset_out_kvecs(con); 1546 return prepare_control(con, FRAME_TAG_KEEPALIVE2, con->v2.out_buf, 1547 sizeof(struct ceph_timespec)); 1548 } 1549 1550 static int prepare_ack(struct ceph_connection *con) 1551 { 1552 void *p; 1553 1554 dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con, 1555 con->in_seq_acked, con->in_seq); 1556 con->in_seq_acked = con->in_seq; 1557 1558 p = CTRL_BODY(con->v2.out_buf); 1559 ceph_encode_64(&p, con->in_seq_acked); 1560 1561 reset_out_kvecs(con); 1562 return prepare_control(con, FRAME_TAG_ACK, con->v2.out_buf, 8); 1563 } 1564 1565 static void prepare_epilogue_plain(struct ceph_connection *con, 1566 struct ceph_msg *msg, bool aborted) 1567 { 1568 dout("%s con %p msg %p aborted %d crcs %u %u %u\n", __func__, con, 1569 msg, aborted, con->v2.out_epil.front_crc, 1570 con->v2.out_epil.middle_crc, con->v2.out_epil.data_crc); 1571 1572 encode_epilogue_plain(con, aborted); 1573 add_out_kvec(con, &con->v2.out_epil, CEPH_EPILOGUE_PLAIN_LEN); 1574 } 1575 1576 /* 1577 * For "used" empty segments, crc is -1. For unused (trailing) 1578 * segments, crc is 0. 1579 */ 1580 static void prepare_message_plain(struct ceph_connection *con, 1581 struct ceph_msg *msg) 1582 { 1583 prepare_head_plain(con, con->v2.out_buf, 1584 sizeof(struct ceph_msg_header2), NULL, 0, false); 1585 1586 if (!front_len(msg) && !middle_len(msg)) { 1587 if (!data_len(msg)) { 1588 /* 1589 * Empty message: once the head is written, 1590 * we are done -- there is no epilogue. 1591 */ 1592 con->v2.out_state = OUT_S_FINISH_MESSAGE; 1593 return; 1594 } 1595 1596 con->v2.out_epil.front_crc = -1; 1597 con->v2.out_epil.middle_crc = -1; 1598 con->v2.out_state = OUT_S_QUEUE_DATA; 1599 return; 1600 } 1601 1602 if (front_len(msg)) { 1603 con->v2.out_epil.front_crc = crc32c(-1, msg->front.iov_base, 1604 front_len(msg)); 1605 add_out_kvec(con, msg->front.iov_base, front_len(msg)); 1606 } else { 1607 /* middle (at least) is there, checked above */ 1608 con->v2.out_epil.front_crc = -1; 1609 } 1610 1611 if (middle_len(msg)) { 1612 con->v2.out_epil.middle_crc = 1613 crc32c(-1, msg->middle->vec.iov_base, middle_len(msg)); 1614 add_out_kvec(con, msg->middle->vec.iov_base, middle_len(msg)); 1615 } else { 1616 con->v2.out_epil.middle_crc = data_len(msg) ? -1 : 0; 1617 } 1618 1619 if (data_len(msg)) { 1620 con->v2.out_state = OUT_S_QUEUE_DATA; 1621 } else { 1622 con->v2.out_epil.data_crc = 0; 1623 prepare_epilogue_plain(con, msg, false); 1624 con->v2.out_state = OUT_S_FINISH_MESSAGE; 1625 } 1626 } 1627 1628 /* 1629 * Unfortunately the kernel crypto API doesn't support streaming 1630 * (piecewise) operation for AEAD algorithms, so we can't get away 1631 * with a fixed size buffer and a couple sgs. Instead, we have to 1632 * allocate pages for the entire tail of the message (currently up 1633 * to ~32M) and two sgs arrays (up to ~256K each)... 1634 */ 1635 static int prepare_message_secure(struct ceph_connection *con, 1636 struct ceph_msg *msg) 1637 { 1638 void *zerop = page_address(ceph_zero_page); 1639 struct sg_table enc_sgt = {}; 1640 struct sg_table sgt = {}; 1641 struct page **enc_pages; 1642 int enc_page_cnt; 1643 int tail_len; 1644 int ret; 1645 1646 ret = prepare_head_secure_small(con, con->v2.out_buf, 1647 sizeof(struct ceph_msg_header2)); 1648 if (ret) 1649 return ret; 1650 1651 tail_len = tail_onwire_len(msg, true); 1652 if (!tail_len) { 1653 /* 1654 * Empty message: once the head is written, 1655 * we are done -- there is no epilogue. 1656 */ 1657 con->v2.out_state = OUT_S_FINISH_MESSAGE; 1658 return 0; 1659 } 1660 1661 encode_epilogue_secure(con, false); 1662 ret = setup_message_sgs(&sgt, msg, zerop, zerop, zerop, 1663 &con->v2.out_epil, NULL, 0, false); 1664 if (ret) 1665 goto out; 1666 1667 enc_page_cnt = calc_pages_for(0, tail_len); 1668 enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO); 1669 if (IS_ERR(enc_pages)) { 1670 ret = PTR_ERR(enc_pages); 1671 goto out; 1672 } 1673 1674 WARN_ON(con->v2.out_enc_pages || con->v2.out_enc_page_cnt); 1675 con->v2.out_enc_pages = enc_pages; 1676 con->v2.out_enc_page_cnt = enc_page_cnt; 1677 con->v2.out_enc_resid = tail_len; 1678 con->v2.out_enc_i = 0; 1679 1680 ret = sg_alloc_table_from_pages(&enc_sgt, enc_pages, enc_page_cnt, 1681 0, tail_len, GFP_NOIO); 1682 if (ret) 1683 goto out; 1684 1685 ret = gcm_crypt(con, true, sgt.sgl, enc_sgt.sgl, 1686 tail_len - CEPH_GCM_TAG_LEN); 1687 if (ret) 1688 goto out; 1689 1690 dout("%s con %p msg %p sg_cnt %d enc_page_cnt %d\n", __func__, con, 1691 msg, sgt.orig_nents, enc_page_cnt); 1692 con->v2.out_state = OUT_S_QUEUE_ENC_PAGE; 1693 1694 out: 1695 sg_free_table(&sgt); 1696 sg_free_table(&enc_sgt); 1697 return ret; 1698 } 1699 1700 static int prepare_message(struct ceph_connection *con, struct ceph_msg *msg) 1701 { 1702 int lens[] = { 1703 sizeof(struct ceph_msg_header2), 1704 front_len(msg), 1705 middle_len(msg), 1706 data_len(msg) 1707 }; 1708 struct ceph_frame_desc desc; 1709 int ret; 1710 1711 dout("%s con %p msg %p logical %d+%d+%d+%d\n", __func__, con, 1712 msg, lens[0], lens[1], lens[2], lens[3]); 1713 1714 if (con->in_seq > con->in_seq_acked) { 1715 dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con, 1716 con->in_seq_acked, con->in_seq); 1717 con->in_seq_acked = con->in_seq; 1718 } 1719 1720 reset_out_kvecs(con); 1721 init_frame_desc(&desc, FRAME_TAG_MESSAGE, lens, 4); 1722 encode_preamble(&desc, con->v2.out_buf); 1723 fill_header2(CTRL_BODY(con->v2.out_buf), &msg->hdr, 1724 con->in_seq_acked); 1725 1726 if (con_secure(con)) { 1727 ret = prepare_message_secure(con, msg); 1728 if (ret) 1729 return ret; 1730 } else { 1731 prepare_message_plain(con, msg); 1732 } 1733 1734 ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING); 1735 return 0; 1736 } 1737 1738 static int prepare_read_banner_prefix(struct ceph_connection *con) 1739 { 1740 void *buf; 1741 1742 buf = alloc_conn_buf(con, CEPH_BANNER_V2_PREFIX_LEN); 1743 if (!buf) 1744 return -ENOMEM; 1745 1746 reset_in_kvecs(con); 1747 add_in_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN); 1748 add_in_sign_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN); 1749 con->state = CEPH_CON_S_V2_BANNER_PREFIX; 1750 return 0; 1751 } 1752 1753 static int prepare_read_banner_payload(struct ceph_connection *con, 1754 int payload_len) 1755 { 1756 void *buf; 1757 1758 buf = alloc_conn_buf(con, payload_len); 1759 if (!buf) 1760 return -ENOMEM; 1761 1762 reset_in_kvecs(con); 1763 add_in_kvec(con, buf, payload_len); 1764 add_in_sign_kvec(con, buf, payload_len); 1765 con->state = CEPH_CON_S_V2_BANNER_PAYLOAD; 1766 return 0; 1767 } 1768 1769 static void prepare_read_preamble(struct ceph_connection *con) 1770 { 1771 reset_in_kvecs(con); 1772 add_in_kvec(con, con->v2.in_buf, 1773 con_secure(con) ? CEPH_PREAMBLE_SECURE_LEN : 1774 CEPH_PREAMBLE_PLAIN_LEN); 1775 con->v2.in_state = IN_S_HANDLE_PREAMBLE; 1776 } 1777 1778 static int prepare_read_control(struct ceph_connection *con) 1779 { 1780 int ctrl_len = con->v2.in_desc.fd_lens[0]; 1781 int head_len; 1782 void *buf; 1783 1784 reset_in_kvecs(con); 1785 if (con->state == CEPH_CON_S_V2_HELLO || 1786 con->state == CEPH_CON_S_V2_AUTH) { 1787 head_len = head_onwire_len(ctrl_len, false); 1788 buf = alloc_conn_buf(con, head_len); 1789 if (!buf) 1790 return -ENOMEM; 1791 1792 /* preserve preamble */ 1793 memcpy(buf, con->v2.in_buf, CEPH_PREAMBLE_LEN); 1794 1795 add_in_kvec(con, CTRL_BODY(buf), ctrl_len); 1796 add_in_kvec(con, CTRL_BODY(buf) + ctrl_len, CEPH_CRC_LEN); 1797 add_in_sign_kvec(con, buf, head_len); 1798 } else { 1799 if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) { 1800 buf = alloc_conn_buf(con, ctrl_len); 1801 if (!buf) 1802 return -ENOMEM; 1803 1804 add_in_kvec(con, buf, ctrl_len); 1805 } else { 1806 add_in_kvec(con, CTRL_BODY(con->v2.in_buf), ctrl_len); 1807 } 1808 add_in_kvec(con, con->v2.in_buf, CEPH_CRC_LEN); 1809 } 1810 con->v2.in_state = IN_S_HANDLE_CONTROL; 1811 return 0; 1812 } 1813 1814 static int prepare_read_control_remainder(struct ceph_connection *con) 1815 { 1816 int ctrl_len = con->v2.in_desc.fd_lens[0]; 1817 int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; 1818 void *buf; 1819 1820 buf = alloc_conn_buf(con, ctrl_len); 1821 if (!buf) 1822 return -ENOMEM; 1823 1824 memcpy(buf, CTRL_BODY(con->v2.in_buf), CEPH_PREAMBLE_INLINE_LEN); 1825 1826 reset_in_kvecs(con); 1827 add_in_kvec(con, buf + CEPH_PREAMBLE_INLINE_LEN, rem_len); 1828 add_in_kvec(con, con->v2.in_buf, 1829 padding_len(rem_len) + CEPH_GCM_TAG_LEN); 1830 con->v2.in_state = IN_S_HANDLE_CONTROL_REMAINDER; 1831 return 0; 1832 } 1833 1834 static int prepare_read_data(struct ceph_connection *con) 1835 { 1836 struct bio_vec bv; 1837 1838 con->in_data_crc = -1; 1839 ceph_msg_data_cursor_init(&con->v2.in_cursor, con->in_msg, 1840 data_len(con->in_msg)); 1841 1842 get_bvec_at(&con->v2.in_cursor, &bv); 1843 if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { 1844 if (unlikely(!con->bounce_page)) { 1845 con->bounce_page = alloc_page(GFP_NOIO); 1846 if (!con->bounce_page) { 1847 pr_err("failed to allocate bounce page\n"); 1848 return -ENOMEM; 1849 } 1850 } 1851 1852 bv.bv_page = con->bounce_page; 1853 bv.bv_offset = 0; 1854 } 1855 set_in_bvec(con, &bv); 1856 con->v2.in_state = IN_S_PREPARE_READ_DATA_CONT; 1857 return 0; 1858 } 1859 1860 static void prepare_read_data_cont(struct ceph_connection *con) 1861 { 1862 struct bio_vec bv; 1863 1864 if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { 1865 con->in_data_crc = crc32c(con->in_data_crc, 1866 page_address(con->bounce_page), 1867 con->v2.in_bvec.bv_len); 1868 1869 get_bvec_at(&con->v2.in_cursor, &bv); 1870 memcpy_to_page(bv.bv_page, bv.bv_offset, 1871 page_address(con->bounce_page), 1872 con->v2.in_bvec.bv_len); 1873 } else { 1874 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, 1875 con->v2.in_bvec.bv_page, 1876 con->v2.in_bvec.bv_offset, 1877 con->v2.in_bvec.bv_len); 1878 } 1879 1880 ceph_msg_data_advance(&con->v2.in_cursor, con->v2.in_bvec.bv_len); 1881 if (con->v2.in_cursor.total_resid) { 1882 get_bvec_at(&con->v2.in_cursor, &bv); 1883 if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { 1884 bv.bv_page = con->bounce_page; 1885 bv.bv_offset = 0; 1886 } 1887 set_in_bvec(con, &bv); 1888 WARN_ON(con->v2.in_state != IN_S_PREPARE_READ_DATA_CONT); 1889 return; 1890 } 1891 1892 /* 1893 * We've read all data. Prepare to read epilogue. 1894 */ 1895 reset_in_kvecs(con); 1896 add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN); 1897 con->v2.in_state = IN_S_HANDLE_EPILOGUE; 1898 } 1899 1900 static int prepare_sparse_read_cont(struct ceph_connection *con) 1901 { 1902 int ret; 1903 struct bio_vec bv; 1904 char *buf = NULL; 1905 struct ceph_msg_data_cursor *cursor = &con->v2.in_cursor; 1906 1907 WARN_ON(con->v2.in_state != IN_S_PREPARE_SPARSE_DATA_CONT); 1908 1909 if (iov_iter_is_bvec(&con->v2.in_iter)) { 1910 if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { 1911 con->in_data_crc = crc32c(con->in_data_crc, 1912 page_address(con->bounce_page), 1913 con->v2.in_bvec.bv_len); 1914 get_bvec_at(cursor, &bv); 1915 memcpy_to_page(bv.bv_page, bv.bv_offset, 1916 page_address(con->bounce_page), 1917 con->v2.in_bvec.bv_len); 1918 } else { 1919 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, 1920 con->v2.in_bvec.bv_page, 1921 con->v2.in_bvec.bv_offset, 1922 con->v2.in_bvec.bv_len); 1923 } 1924 1925 ceph_msg_data_advance(cursor, con->v2.in_bvec.bv_len); 1926 cursor->sr_resid -= con->v2.in_bvec.bv_len; 1927 dout("%s: advance by 0x%x sr_resid 0x%x\n", __func__, 1928 con->v2.in_bvec.bv_len, cursor->sr_resid); 1929 WARN_ON_ONCE(cursor->sr_resid > cursor->total_resid); 1930 if (cursor->sr_resid) { 1931 get_bvec_at(cursor, &bv); 1932 if (bv.bv_len > cursor->sr_resid) 1933 bv.bv_len = cursor->sr_resid; 1934 if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { 1935 bv.bv_page = con->bounce_page; 1936 bv.bv_offset = 0; 1937 } 1938 set_in_bvec(con, &bv); 1939 con->v2.data_len_remain -= bv.bv_len; 1940 return 0; 1941 } 1942 } else if (iov_iter_is_kvec(&con->v2.in_iter)) { 1943 /* On first call, we have no kvec so don't compute crc */ 1944 if (con->v2.in_kvec_cnt) { 1945 WARN_ON_ONCE(con->v2.in_kvec_cnt > 1); 1946 con->in_data_crc = crc32c(con->in_data_crc, 1947 con->v2.in_kvecs[0].iov_base, 1948 con->v2.in_kvecs[0].iov_len); 1949 } 1950 } else { 1951 return -EIO; 1952 } 1953 1954 /* get next extent */ 1955 ret = con->ops->sparse_read(con, cursor, &buf); 1956 if (ret <= 0) { 1957 if (ret < 0) 1958 return ret; 1959 1960 reset_in_kvecs(con); 1961 add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN); 1962 con->v2.in_state = IN_S_HANDLE_EPILOGUE; 1963 return 0; 1964 } 1965 1966 if (buf) { 1967 /* receive into buffer */ 1968 reset_in_kvecs(con); 1969 add_in_kvec(con, buf, ret); 1970 con->v2.data_len_remain -= ret; 1971 return 0; 1972 } 1973 1974 if (ret > cursor->total_resid) { 1975 pr_warn("%s: ret 0x%x total_resid 0x%zx resid 0x%zx\n", 1976 __func__, ret, cursor->total_resid, cursor->resid); 1977 return -EIO; 1978 } 1979 get_bvec_at(cursor, &bv); 1980 if (bv.bv_len > cursor->sr_resid) 1981 bv.bv_len = cursor->sr_resid; 1982 if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { 1983 if (unlikely(!con->bounce_page)) { 1984 con->bounce_page = alloc_page(GFP_NOIO); 1985 if (!con->bounce_page) { 1986 pr_err("failed to allocate bounce page\n"); 1987 return -ENOMEM; 1988 } 1989 } 1990 1991 bv.bv_page = con->bounce_page; 1992 bv.bv_offset = 0; 1993 } 1994 set_in_bvec(con, &bv); 1995 con->v2.data_len_remain -= ret; 1996 return ret; 1997 } 1998 1999 static int prepare_sparse_read_data(struct ceph_connection *con) 2000 { 2001 struct ceph_msg *msg = con->in_msg; 2002 2003 dout("%s: starting sparse read\n", __func__); 2004 2005 if (WARN_ON_ONCE(!con->ops->sparse_read)) 2006 return -EOPNOTSUPP; 2007 2008 if (!con_secure(con)) 2009 con->in_data_crc = -1; 2010 2011 ceph_msg_data_cursor_init(&con->v2.in_cursor, msg, 2012 msg->sparse_read_total); 2013 2014 reset_in_kvecs(con); 2015 con->v2.in_state = IN_S_PREPARE_SPARSE_DATA_CONT; 2016 con->v2.data_len_remain = data_len(msg); 2017 return prepare_sparse_read_cont(con); 2018 } 2019 2020 static int prepare_read_tail_plain(struct ceph_connection *con) 2021 { 2022 struct ceph_msg *msg = con->in_msg; 2023 2024 if (!front_len(msg) && !middle_len(msg)) { 2025 WARN_ON(!data_len(msg)); 2026 return prepare_read_data(con); 2027 } 2028 2029 reset_in_kvecs(con); 2030 if (front_len(msg)) { 2031 add_in_kvec(con, msg->front.iov_base, front_len(msg)); 2032 WARN_ON(msg->front.iov_len != front_len(msg)); 2033 } 2034 if (middle_len(msg)) { 2035 add_in_kvec(con, msg->middle->vec.iov_base, middle_len(msg)); 2036 WARN_ON(msg->middle->vec.iov_len != middle_len(msg)); 2037 } 2038 2039 if (data_len(msg)) { 2040 if (msg->sparse_read_total) 2041 con->v2.in_state = IN_S_PREPARE_SPARSE_DATA; 2042 else 2043 con->v2.in_state = IN_S_PREPARE_READ_DATA; 2044 } else { 2045 add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN); 2046 con->v2.in_state = IN_S_HANDLE_EPILOGUE; 2047 } 2048 return 0; 2049 } 2050 2051 static void prepare_read_enc_page(struct ceph_connection *con) 2052 { 2053 struct bio_vec bv; 2054 2055 dout("%s con %p i %d resid %d\n", __func__, con, con->v2.in_enc_i, 2056 con->v2.in_enc_resid); 2057 WARN_ON(!con->v2.in_enc_resid); 2058 2059 bvec_set_page(&bv, con->v2.in_enc_pages[con->v2.in_enc_i], 2060 min(con->v2.in_enc_resid, (int)PAGE_SIZE), 0); 2061 2062 set_in_bvec(con, &bv); 2063 con->v2.in_enc_i++; 2064 con->v2.in_enc_resid -= bv.bv_len; 2065 2066 if (con->v2.in_enc_resid) { 2067 con->v2.in_state = IN_S_PREPARE_READ_ENC_PAGE; 2068 return; 2069 } 2070 2071 /* 2072 * We are set to read the last piece of ciphertext (ending 2073 * with epilogue) + auth tag. 2074 */ 2075 WARN_ON(con->v2.in_enc_i != con->v2.in_enc_page_cnt); 2076 con->v2.in_state = IN_S_HANDLE_EPILOGUE; 2077 } 2078 2079 static int prepare_read_tail_secure(struct ceph_connection *con) 2080 { 2081 struct page **enc_pages; 2082 int enc_page_cnt; 2083 int tail_len; 2084 2085 tail_len = tail_onwire_len(con->in_msg, true); 2086 WARN_ON(!tail_len); 2087 2088 enc_page_cnt = calc_pages_for(0, tail_len); 2089 enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO); 2090 if (IS_ERR(enc_pages)) 2091 return PTR_ERR(enc_pages); 2092 2093 WARN_ON(con->v2.in_enc_pages || con->v2.in_enc_page_cnt); 2094 con->v2.in_enc_pages = enc_pages; 2095 con->v2.in_enc_page_cnt = enc_page_cnt; 2096 con->v2.in_enc_resid = tail_len; 2097 con->v2.in_enc_i = 0; 2098 2099 prepare_read_enc_page(con); 2100 return 0; 2101 } 2102 2103 static void __finish_skip(struct ceph_connection *con) 2104 { 2105 con->in_seq++; 2106 prepare_read_preamble(con); 2107 } 2108 2109 static void prepare_skip_message(struct ceph_connection *con) 2110 { 2111 struct ceph_frame_desc *desc = &con->v2.in_desc; 2112 int tail_len; 2113 2114 dout("%s con %p %d+%d+%d\n", __func__, con, desc->fd_lens[1], 2115 desc->fd_lens[2], desc->fd_lens[3]); 2116 2117 tail_len = __tail_onwire_len(desc->fd_lens[1], desc->fd_lens[2], 2118 desc->fd_lens[3], con_secure(con)); 2119 if (!tail_len) { 2120 __finish_skip(con); 2121 } else { 2122 set_in_skip(con, tail_len); 2123 con->v2.in_state = IN_S_FINISH_SKIP; 2124 } 2125 } 2126 2127 static int process_banner_prefix(struct ceph_connection *con) 2128 { 2129 int payload_len; 2130 void *p; 2131 2132 WARN_ON(con->v2.in_kvecs[0].iov_len != CEPH_BANNER_V2_PREFIX_LEN); 2133 2134 p = con->v2.in_kvecs[0].iov_base; 2135 if (memcmp(p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN)) { 2136 if (!memcmp(p, CEPH_BANNER, CEPH_BANNER_LEN)) 2137 con->error_msg = "server is speaking msgr1 protocol"; 2138 else 2139 con->error_msg = "protocol error, bad banner"; 2140 return -EINVAL; 2141 } 2142 2143 p += CEPH_BANNER_V2_LEN; 2144 payload_len = ceph_decode_16(&p); 2145 dout("%s con %p payload_len %d\n", __func__, con, payload_len); 2146 2147 return prepare_read_banner_payload(con, payload_len); 2148 } 2149 2150 static int process_banner_payload(struct ceph_connection *con) 2151 { 2152 void *end = con->v2.in_kvecs[0].iov_base + con->v2.in_kvecs[0].iov_len; 2153 u64 feat = CEPH_MSGR2_SUPPORTED_FEATURES; 2154 u64 req_feat = CEPH_MSGR2_REQUIRED_FEATURES; 2155 u64 server_feat, server_req_feat; 2156 void *p; 2157 int ret; 2158 2159 p = con->v2.in_kvecs[0].iov_base; 2160 ceph_decode_64_safe(&p, end, server_feat, bad); 2161 ceph_decode_64_safe(&p, end, server_req_feat, bad); 2162 2163 dout("%s con %p server_feat 0x%llx server_req_feat 0x%llx\n", 2164 __func__, con, server_feat, server_req_feat); 2165 2166 if (req_feat & ~server_feat) { 2167 pr_err("msgr2 feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n", 2168 server_feat, req_feat & ~server_feat); 2169 con->error_msg = "missing required protocol features"; 2170 return -EINVAL; 2171 } 2172 if (server_req_feat & ~feat) { 2173 pr_err("msgr2 feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n", 2174 feat, server_req_feat & ~feat); 2175 con->error_msg = "missing required protocol features"; 2176 return -EINVAL; 2177 } 2178 2179 /* no reset_out_kvecs() as our banner may still be pending */ 2180 ret = prepare_hello(con); 2181 if (ret) { 2182 pr_err("prepare_hello failed: %d\n", ret); 2183 return ret; 2184 } 2185 2186 con->state = CEPH_CON_S_V2_HELLO; 2187 prepare_read_preamble(con); 2188 return 0; 2189 2190 bad: 2191 pr_err("failed to decode banner payload\n"); 2192 return -EINVAL; 2193 } 2194 2195 static int process_hello(struct ceph_connection *con, void *p, void *end) 2196 { 2197 struct ceph_entity_addr *my_addr = &con->msgr->inst.addr; 2198 struct ceph_entity_addr addr_for_me; 2199 u8 entity_type; 2200 int ret; 2201 2202 if (con->state != CEPH_CON_S_V2_HELLO) { 2203 con->error_msg = "protocol error, unexpected hello"; 2204 return -EINVAL; 2205 } 2206 2207 ceph_decode_8_safe(&p, end, entity_type, bad); 2208 ret = ceph_decode_entity_addr(&p, end, &addr_for_me); 2209 if (ret) { 2210 pr_err("failed to decode addr_for_me: %d\n", ret); 2211 return ret; 2212 } 2213 2214 dout("%s con %p entity_type %d addr_for_me %s\n", __func__, con, 2215 entity_type, ceph_pr_addr(&addr_for_me)); 2216 2217 if (entity_type != con->peer_name.type) { 2218 pr_err("bad peer type, want %d, got %d\n", 2219 con->peer_name.type, entity_type); 2220 con->error_msg = "wrong peer at address"; 2221 return -EINVAL; 2222 } 2223 2224 /* 2225 * Set our address to the address our first peer (i.e. monitor) 2226 * sees that we are connecting from. If we are behind some sort 2227 * of NAT and want to be identified by some private (not NATed) 2228 * address, ip option should be used. 2229 */ 2230 if (ceph_addr_is_blank(my_addr)) { 2231 memcpy(&my_addr->in_addr, &addr_for_me.in_addr, 2232 sizeof(my_addr->in_addr)); 2233 ceph_addr_set_port(my_addr, 0); 2234 dout("%s con %p set my addr %s, as seen by peer %s\n", 2235 __func__, con, ceph_pr_addr(my_addr), 2236 ceph_pr_addr(&con->peer_addr)); 2237 } else { 2238 dout("%s con %p my addr already set %s\n", 2239 __func__, con, ceph_pr_addr(my_addr)); 2240 } 2241 2242 WARN_ON(ceph_addr_is_blank(my_addr) || ceph_addr_port(my_addr)); 2243 WARN_ON(my_addr->type != CEPH_ENTITY_ADDR_TYPE_ANY); 2244 WARN_ON(!my_addr->nonce); 2245 2246 /* no reset_out_kvecs() as our hello may still be pending */ 2247 ret = prepare_auth_request(con); 2248 if (ret) { 2249 if (ret != -EAGAIN) 2250 pr_err("prepare_auth_request failed: %d\n", ret); 2251 return ret; 2252 } 2253 2254 con->state = CEPH_CON_S_V2_AUTH; 2255 return 0; 2256 2257 bad: 2258 pr_err("failed to decode hello\n"); 2259 return -EINVAL; 2260 } 2261 2262 static int process_auth_bad_method(struct ceph_connection *con, 2263 void *p, void *end) 2264 { 2265 int allowed_protos[8], allowed_modes[8]; 2266 int allowed_proto_cnt, allowed_mode_cnt; 2267 int used_proto, result; 2268 int ret; 2269 int i; 2270 2271 if (con->state != CEPH_CON_S_V2_AUTH) { 2272 con->error_msg = "protocol error, unexpected auth_bad_method"; 2273 return -EINVAL; 2274 } 2275 2276 ceph_decode_32_safe(&p, end, used_proto, bad); 2277 ceph_decode_32_safe(&p, end, result, bad); 2278 dout("%s con %p used_proto %d result %d\n", __func__, con, used_proto, 2279 result); 2280 2281 ceph_decode_32_safe(&p, end, allowed_proto_cnt, bad); 2282 if (allowed_proto_cnt > ARRAY_SIZE(allowed_protos)) { 2283 pr_err("allowed_protos too big %d\n", allowed_proto_cnt); 2284 return -EINVAL; 2285 } 2286 for (i = 0; i < allowed_proto_cnt; i++) { 2287 ceph_decode_32_safe(&p, end, allowed_protos[i], bad); 2288 dout("%s con %p allowed_protos[%d] %d\n", __func__, con, 2289 i, allowed_protos[i]); 2290 } 2291 2292 ceph_decode_32_safe(&p, end, allowed_mode_cnt, bad); 2293 if (allowed_mode_cnt > ARRAY_SIZE(allowed_modes)) { 2294 pr_err("allowed_modes too big %d\n", allowed_mode_cnt); 2295 return -EINVAL; 2296 } 2297 for (i = 0; i < allowed_mode_cnt; i++) { 2298 ceph_decode_32_safe(&p, end, allowed_modes[i], bad); 2299 dout("%s con %p allowed_modes[%d] %d\n", __func__, con, 2300 i, allowed_modes[i]); 2301 } 2302 2303 mutex_unlock(&con->mutex); 2304 ret = con->ops->handle_auth_bad_method(con, used_proto, result, 2305 allowed_protos, 2306 allowed_proto_cnt, 2307 allowed_modes, 2308 allowed_mode_cnt); 2309 mutex_lock(&con->mutex); 2310 if (con->state != CEPH_CON_S_V2_AUTH) { 2311 dout("%s con %p state changed to %d\n", __func__, con, 2312 con->state); 2313 return -EAGAIN; 2314 } 2315 2316 dout("%s con %p handle_auth_bad_method ret %d\n", __func__, con, ret); 2317 return ret; 2318 2319 bad: 2320 pr_err("failed to decode auth_bad_method\n"); 2321 return -EINVAL; 2322 } 2323 2324 static int process_auth_reply_more(struct ceph_connection *con, 2325 void *p, void *end) 2326 { 2327 int payload_len; 2328 int ret; 2329 2330 if (con->state != CEPH_CON_S_V2_AUTH) { 2331 con->error_msg = "protocol error, unexpected auth_reply_more"; 2332 return -EINVAL; 2333 } 2334 2335 ceph_decode_32_safe(&p, end, payload_len, bad); 2336 ceph_decode_need(&p, end, payload_len, bad); 2337 2338 dout("%s con %p payload_len %d\n", __func__, con, payload_len); 2339 2340 reset_out_kvecs(con); 2341 ret = prepare_auth_request_more(con, p, payload_len); 2342 if (ret) { 2343 if (ret != -EAGAIN) 2344 pr_err("prepare_auth_request_more failed: %d\n", ret); 2345 return ret; 2346 } 2347 2348 return 0; 2349 2350 bad: 2351 pr_err("failed to decode auth_reply_more\n"); 2352 return -EINVAL; 2353 } 2354 2355 /* 2356 * Align session_key and con_secret to avoid GFP_ATOMIC allocation 2357 * inside crypto_shash_setkey() and crypto_aead_setkey() called from 2358 * setup_crypto(). __aligned(16) isn't guaranteed to work for stack 2359 * objects, so do it by hand. 2360 */ 2361 static int process_auth_done(struct ceph_connection *con, void *p, void *end) 2362 { 2363 u8 session_key_buf[CEPH_KEY_LEN + 16]; 2364 u8 con_secret_buf[CEPH_MAX_CON_SECRET_LEN + 16]; 2365 u8 *session_key = PTR_ALIGN(&session_key_buf[0], 16); 2366 u8 *con_secret = PTR_ALIGN(&con_secret_buf[0], 16); 2367 int session_key_len, con_secret_len; 2368 int payload_len; 2369 u64 global_id; 2370 int ret; 2371 2372 if (con->state != CEPH_CON_S_V2_AUTH) { 2373 con->error_msg = "protocol error, unexpected auth_done"; 2374 return -EINVAL; 2375 } 2376 2377 ceph_decode_64_safe(&p, end, global_id, bad); 2378 ceph_decode_32_safe(&p, end, con->v2.con_mode, bad); 2379 ceph_decode_32_safe(&p, end, payload_len, bad); 2380 2381 dout("%s con %p global_id %llu con_mode %d payload_len %d\n", 2382 __func__, con, global_id, con->v2.con_mode, payload_len); 2383 2384 mutex_unlock(&con->mutex); 2385 session_key_len = 0; 2386 con_secret_len = 0; 2387 ret = con->ops->handle_auth_done(con, global_id, p, payload_len, 2388 session_key, &session_key_len, 2389 con_secret, &con_secret_len); 2390 mutex_lock(&con->mutex); 2391 if (con->state != CEPH_CON_S_V2_AUTH) { 2392 dout("%s con %p state changed to %d\n", __func__, con, 2393 con->state); 2394 ret = -EAGAIN; 2395 goto out; 2396 } 2397 2398 dout("%s con %p handle_auth_done ret %d\n", __func__, con, ret); 2399 if (ret) 2400 goto out; 2401 2402 ret = setup_crypto(con, session_key, session_key_len, con_secret, 2403 con_secret_len); 2404 if (ret) 2405 goto out; 2406 2407 reset_out_kvecs(con); 2408 ret = prepare_auth_signature(con); 2409 if (ret) { 2410 pr_err("prepare_auth_signature failed: %d\n", ret); 2411 goto out; 2412 } 2413 2414 con->state = CEPH_CON_S_V2_AUTH_SIGNATURE; 2415 2416 out: 2417 memzero_explicit(session_key_buf, sizeof(session_key_buf)); 2418 memzero_explicit(con_secret_buf, sizeof(con_secret_buf)); 2419 return ret; 2420 2421 bad: 2422 pr_err("failed to decode auth_done\n"); 2423 return -EINVAL; 2424 } 2425 2426 static int process_auth_signature(struct ceph_connection *con, 2427 void *p, void *end) 2428 { 2429 u8 hmac[SHA256_DIGEST_SIZE]; 2430 int ret; 2431 2432 if (con->state != CEPH_CON_S_V2_AUTH_SIGNATURE) { 2433 con->error_msg = "protocol error, unexpected auth_signature"; 2434 return -EINVAL; 2435 } 2436 2437 ceph_hmac_sha256(con, con->v2.out_sign_kvecs, con->v2.out_sign_kvec_cnt, 2438 hmac); 2439 2440 ceph_decode_need(&p, end, SHA256_DIGEST_SIZE, bad); 2441 if (crypto_memneq(p, hmac, SHA256_DIGEST_SIZE)) { 2442 con->error_msg = "integrity error, bad auth signature"; 2443 return -EBADMSG; 2444 } 2445 2446 dout("%s con %p auth signature ok\n", __func__, con); 2447 2448 /* no reset_out_kvecs() as our auth_signature may still be pending */ 2449 if (!con->v2.server_cookie) { 2450 ret = prepare_client_ident(con); 2451 if (ret) { 2452 pr_err("prepare_client_ident failed: %d\n", ret); 2453 return ret; 2454 } 2455 2456 con->state = CEPH_CON_S_V2_SESSION_CONNECT; 2457 } else { 2458 ret = prepare_session_reconnect(con); 2459 if (ret) { 2460 pr_err("prepare_session_reconnect failed: %d\n", ret); 2461 return ret; 2462 } 2463 2464 con->state = CEPH_CON_S_V2_SESSION_RECONNECT; 2465 } 2466 2467 return 0; 2468 2469 bad: 2470 pr_err("failed to decode auth_signature\n"); 2471 return -EINVAL; 2472 } 2473 2474 static int process_server_ident(struct ceph_connection *con, 2475 void *p, void *end) 2476 { 2477 struct ceph_client *client = from_msgr(con->msgr); 2478 u64 features, required_features; 2479 struct ceph_entity_addr addr; 2480 u64 global_seq; 2481 u64 global_id; 2482 u64 cookie; 2483 u64 flags; 2484 int ret; 2485 2486 if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) { 2487 con->error_msg = "protocol error, unexpected server_ident"; 2488 return -EINVAL; 2489 } 2490 2491 ret = ceph_decode_entity_addrvec(&p, end, true, &addr); 2492 if (ret) { 2493 pr_err("failed to decode server addrs: %d\n", ret); 2494 return ret; 2495 } 2496 2497 ceph_decode_64_safe(&p, end, global_id, bad); 2498 ceph_decode_64_safe(&p, end, global_seq, bad); 2499 ceph_decode_64_safe(&p, end, features, bad); 2500 ceph_decode_64_safe(&p, end, required_features, bad); 2501 ceph_decode_64_safe(&p, end, flags, bad); 2502 ceph_decode_64_safe(&p, end, cookie, bad); 2503 2504 dout("%s con %p addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx flags 0x%llx cookie 0x%llx\n", 2505 __func__, con, ceph_pr_addr(&addr), le32_to_cpu(addr.nonce), 2506 global_id, global_seq, features, required_features, flags, cookie); 2507 2508 /* is this who we intended to talk to? */ 2509 if (memcmp(&addr, &con->peer_addr, sizeof(con->peer_addr))) { 2510 pr_err("bad peer addr/nonce, want %s/%u, got %s/%u\n", 2511 ceph_pr_addr(&con->peer_addr), 2512 le32_to_cpu(con->peer_addr.nonce), 2513 ceph_pr_addr(&addr), le32_to_cpu(addr.nonce)); 2514 con->error_msg = "wrong peer at address"; 2515 return -EINVAL; 2516 } 2517 2518 if (client->required_features & ~features) { 2519 pr_err("RADOS feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n", 2520 features, client->required_features & ~features); 2521 con->error_msg = "missing required protocol features"; 2522 return -EINVAL; 2523 } 2524 2525 /* 2526 * Both name->type and name->num are set in ceph_con_open() but 2527 * name->num may be bogus in the initial monmap. name->type is 2528 * verified in handle_hello(). 2529 */ 2530 WARN_ON(!con->peer_name.type); 2531 con->peer_name.num = cpu_to_le64(global_id); 2532 con->v2.peer_global_seq = global_seq; 2533 con->peer_features = features; 2534 WARN_ON(required_features & ~client->supported_features); 2535 con->v2.server_cookie = cookie; 2536 2537 if (flags & CEPH_MSG_CONNECT_LOSSY) { 2538 ceph_con_flag_set(con, CEPH_CON_F_LOSSYTX); 2539 WARN_ON(con->v2.server_cookie); 2540 } else { 2541 WARN_ON(!con->v2.server_cookie); 2542 } 2543 2544 clear_in_sign_kvecs(con); 2545 clear_out_sign_kvecs(con); 2546 free_conn_bufs(con); 2547 con->delay = 0; /* reset backoff memory */ 2548 2549 con->state = CEPH_CON_S_OPEN; 2550 con->v2.out_state = OUT_S_GET_NEXT; 2551 return 0; 2552 2553 bad: 2554 pr_err("failed to decode server_ident\n"); 2555 return -EINVAL; 2556 } 2557 2558 static int process_ident_missing_features(struct ceph_connection *con, 2559 void *p, void *end) 2560 { 2561 struct ceph_client *client = from_msgr(con->msgr); 2562 u64 missing_features; 2563 2564 if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) { 2565 con->error_msg = "protocol error, unexpected ident_missing_features"; 2566 return -EINVAL; 2567 } 2568 2569 ceph_decode_64_safe(&p, end, missing_features, bad); 2570 pr_err("RADOS feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n", 2571 client->supported_features, missing_features); 2572 con->error_msg = "missing required protocol features"; 2573 return -EINVAL; 2574 2575 bad: 2576 pr_err("failed to decode ident_missing_features\n"); 2577 return -EINVAL; 2578 } 2579 2580 static int process_session_reconnect_ok(struct ceph_connection *con, 2581 void *p, void *end) 2582 { 2583 u64 seq; 2584 2585 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2586 con->error_msg = "protocol error, unexpected session_reconnect_ok"; 2587 return -EINVAL; 2588 } 2589 2590 ceph_decode_64_safe(&p, end, seq, bad); 2591 2592 dout("%s con %p seq %llu\n", __func__, con, seq); 2593 ceph_con_discard_requeued(con, seq); 2594 2595 clear_in_sign_kvecs(con); 2596 clear_out_sign_kvecs(con); 2597 free_conn_bufs(con); 2598 con->delay = 0; /* reset backoff memory */ 2599 2600 con->state = CEPH_CON_S_OPEN; 2601 con->v2.out_state = OUT_S_GET_NEXT; 2602 return 0; 2603 2604 bad: 2605 pr_err("failed to decode session_reconnect_ok\n"); 2606 return -EINVAL; 2607 } 2608 2609 static int process_session_retry(struct ceph_connection *con, 2610 void *p, void *end) 2611 { 2612 u64 connect_seq; 2613 int ret; 2614 2615 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2616 con->error_msg = "protocol error, unexpected session_retry"; 2617 return -EINVAL; 2618 } 2619 2620 ceph_decode_64_safe(&p, end, connect_seq, bad); 2621 2622 dout("%s con %p connect_seq %llu\n", __func__, con, connect_seq); 2623 WARN_ON(connect_seq <= con->v2.connect_seq); 2624 con->v2.connect_seq = connect_seq + 1; 2625 2626 free_conn_bufs(con); 2627 2628 reset_out_kvecs(con); 2629 ret = prepare_session_reconnect(con); 2630 if (ret) { 2631 pr_err("prepare_session_reconnect (cseq) failed: %d\n", ret); 2632 return ret; 2633 } 2634 2635 return 0; 2636 2637 bad: 2638 pr_err("failed to decode session_retry\n"); 2639 return -EINVAL; 2640 } 2641 2642 static int process_session_retry_global(struct ceph_connection *con, 2643 void *p, void *end) 2644 { 2645 u64 global_seq; 2646 int ret; 2647 2648 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2649 con->error_msg = "protocol error, unexpected session_retry_global"; 2650 return -EINVAL; 2651 } 2652 2653 ceph_decode_64_safe(&p, end, global_seq, bad); 2654 2655 dout("%s con %p global_seq %llu\n", __func__, con, global_seq); 2656 WARN_ON(global_seq <= con->v2.global_seq); 2657 con->v2.global_seq = ceph_get_global_seq(con->msgr, global_seq); 2658 2659 free_conn_bufs(con); 2660 2661 reset_out_kvecs(con); 2662 ret = prepare_session_reconnect(con); 2663 if (ret) { 2664 pr_err("prepare_session_reconnect (gseq) failed: %d\n", ret); 2665 return ret; 2666 } 2667 2668 return 0; 2669 2670 bad: 2671 pr_err("failed to decode session_retry_global\n"); 2672 return -EINVAL; 2673 } 2674 2675 static int process_session_reset(struct ceph_connection *con, 2676 void *p, void *end) 2677 { 2678 bool full; 2679 int ret; 2680 2681 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2682 con->error_msg = "protocol error, unexpected session_reset"; 2683 return -EINVAL; 2684 } 2685 2686 ceph_decode_8_safe(&p, end, full, bad); 2687 if (!full) { 2688 con->error_msg = "protocol error, bad session_reset"; 2689 return -EINVAL; 2690 } 2691 2692 pr_info("%s%lld %s session reset\n", ENTITY_NAME(con->peer_name), 2693 ceph_pr_addr(&con->peer_addr)); 2694 ceph_con_reset_session(con); 2695 2696 mutex_unlock(&con->mutex); 2697 if (con->ops->peer_reset) 2698 con->ops->peer_reset(con); 2699 mutex_lock(&con->mutex); 2700 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2701 dout("%s con %p state changed to %d\n", __func__, con, 2702 con->state); 2703 return -EAGAIN; 2704 } 2705 2706 free_conn_bufs(con); 2707 2708 reset_out_kvecs(con); 2709 ret = prepare_client_ident(con); 2710 if (ret) { 2711 pr_err("prepare_client_ident (rst) failed: %d\n", ret); 2712 return ret; 2713 } 2714 2715 con->state = CEPH_CON_S_V2_SESSION_CONNECT; 2716 return 0; 2717 2718 bad: 2719 pr_err("failed to decode session_reset\n"); 2720 return -EINVAL; 2721 } 2722 2723 static int process_keepalive2_ack(struct ceph_connection *con, 2724 void *p, void *end) 2725 { 2726 if (con->state != CEPH_CON_S_OPEN) { 2727 con->error_msg = "protocol error, unexpected keepalive2_ack"; 2728 return -EINVAL; 2729 } 2730 2731 ceph_decode_need(&p, end, sizeof(struct ceph_timespec), bad); 2732 ceph_decode_timespec64(&con->last_keepalive_ack, p); 2733 2734 dout("%s con %p timestamp %ptSp\n", __func__, con, &con->last_keepalive_ack); 2735 2736 return 0; 2737 2738 bad: 2739 pr_err("failed to decode keepalive2_ack\n"); 2740 return -EINVAL; 2741 } 2742 2743 static int process_ack(struct ceph_connection *con, void *p, void *end) 2744 { 2745 u64 seq; 2746 2747 if (con->state != CEPH_CON_S_OPEN) { 2748 con->error_msg = "protocol error, unexpected ack"; 2749 return -EINVAL; 2750 } 2751 2752 ceph_decode_64_safe(&p, end, seq, bad); 2753 2754 dout("%s con %p seq %llu\n", __func__, con, seq); 2755 ceph_con_discard_sent(con, seq); 2756 return 0; 2757 2758 bad: 2759 pr_err("failed to decode ack\n"); 2760 return -EINVAL; 2761 } 2762 2763 static int process_control(struct ceph_connection *con, void *p, void *end) 2764 { 2765 int tag = con->v2.in_desc.fd_tag; 2766 int ret; 2767 2768 dout("%s con %p tag %d len %d\n", __func__, con, tag, (int)(end - p)); 2769 2770 switch (tag) { 2771 case FRAME_TAG_HELLO: 2772 ret = process_hello(con, p, end); 2773 break; 2774 case FRAME_TAG_AUTH_BAD_METHOD: 2775 ret = process_auth_bad_method(con, p, end); 2776 break; 2777 case FRAME_TAG_AUTH_REPLY_MORE: 2778 ret = process_auth_reply_more(con, p, end); 2779 break; 2780 case FRAME_TAG_AUTH_DONE: 2781 ret = process_auth_done(con, p, end); 2782 break; 2783 case FRAME_TAG_AUTH_SIGNATURE: 2784 ret = process_auth_signature(con, p, end); 2785 break; 2786 case FRAME_TAG_SERVER_IDENT: 2787 ret = process_server_ident(con, p, end); 2788 break; 2789 case FRAME_TAG_IDENT_MISSING_FEATURES: 2790 ret = process_ident_missing_features(con, p, end); 2791 break; 2792 case FRAME_TAG_SESSION_RECONNECT_OK: 2793 ret = process_session_reconnect_ok(con, p, end); 2794 break; 2795 case FRAME_TAG_SESSION_RETRY: 2796 ret = process_session_retry(con, p, end); 2797 break; 2798 case FRAME_TAG_SESSION_RETRY_GLOBAL: 2799 ret = process_session_retry_global(con, p, end); 2800 break; 2801 case FRAME_TAG_SESSION_RESET: 2802 ret = process_session_reset(con, p, end); 2803 break; 2804 case FRAME_TAG_KEEPALIVE2_ACK: 2805 ret = process_keepalive2_ack(con, p, end); 2806 break; 2807 case FRAME_TAG_ACK: 2808 ret = process_ack(con, p, end); 2809 break; 2810 default: 2811 pr_err("bad tag %d\n", tag); 2812 con->error_msg = "protocol error, bad tag"; 2813 return -EINVAL; 2814 } 2815 if (ret) { 2816 dout("%s con %p error %d\n", __func__, con, ret); 2817 return ret; 2818 } 2819 2820 prepare_read_preamble(con); 2821 return 0; 2822 } 2823 2824 /* 2825 * Return: 2826 * 1 - con->in_msg set, read message 2827 * 0 - skip message 2828 * <0 - error 2829 */ 2830 static int process_message_header(struct ceph_connection *con, 2831 void *p, void *end) 2832 { 2833 struct ceph_frame_desc *desc = &con->v2.in_desc; 2834 struct ceph_msg_header2 *hdr2 = p; 2835 struct ceph_msg_header hdr; 2836 int skip; 2837 int ret; 2838 u64 seq; 2839 2840 /* verify seq# */ 2841 seq = le64_to_cpu(hdr2->seq); 2842 if ((s64)seq - (s64)con->in_seq < 1) { 2843 pr_info("%s%lld %s skipping old message: seq %llu, expected %llu\n", 2844 ENTITY_NAME(con->peer_name), 2845 ceph_pr_addr(&con->peer_addr), 2846 seq, con->in_seq + 1); 2847 return 0; 2848 } 2849 if ((s64)seq - (s64)con->in_seq > 1) { 2850 pr_err("bad seq %llu, expected %llu\n", seq, con->in_seq + 1); 2851 con->error_msg = "bad message sequence # for incoming message"; 2852 return -EBADE; 2853 } 2854 2855 ceph_con_discard_sent(con, le64_to_cpu(hdr2->ack_seq)); 2856 2857 fill_header(&hdr, hdr2, desc->fd_lens[1], desc->fd_lens[2], 2858 desc->fd_lens[3], &con->peer_name); 2859 ret = ceph_con_in_msg_alloc(con, &hdr, &skip); 2860 if (ret) 2861 return ret; 2862 2863 WARN_ON(!con->in_msg ^ skip); 2864 if (skip) 2865 return 0; 2866 2867 WARN_ON(!con->in_msg); 2868 WARN_ON(con->in_msg->con != con); 2869 return 1; 2870 } 2871 2872 static int process_message(struct ceph_connection *con) 2873 { 2874 ceph_con_process_message(con); 2875 2876 /* 2877 * We could have been closed by ceph_con_close() because 2878 * ceph_con_process_message() temporarily drops con->mutex. 2879 */ 2880 if (con->state != CEPH_CON_S_OPEN) { 2881 dout("%s con %p state changed to %d\n", __func__, con, 2882 con->state); 2883 return -EAGAIN; 2884 } 2885 2886 prepare_read_preamble(con); 2887 return 0; 2888 } 2889 2890 static int __handle_control(struct ceph_connection *con, void *p) 2891 { 2892 void *end = p + con->v2.in_desc.fd_lens[0]; 2893 struct ceph_msg *msg; 2894 int ret; 2895 2896 if (con->v2.in_desc.fd_tag != FRAME_TAG_MESSAGE) 2897 return process_control(con, p, end); 2898 2899 ret = process_message_header(con, p, end); 2900 if (ret < 0) 2901 return ret; 2902 if (ret == 0) { 2903 prepare_skip_message(con); 2904 return 0; 2905 } 2906 2907 msg = con->in_msg; /* set in process_message_header() */ 2908 if (front_len(msg)) { 2909 WARN_ON(front_len(msg) > msg->front_alloc_len); 2910 msg->front.iov_len = front_len(msg); 2911 } else { 2912 msg->front.iov_len = 0; 2913 } 2914 if (middle_len(msg)) { 2915 WARN_ON(middle_len(msg) > msg->middle->alloc_len); 2916 msg->middle->vec.iov_len = middle_len(msg); 2917 } else if (msg->middle) { 2918 msg->middle->vec.iov_len = 0; 2919 } 2920 2921 if (!front_len(msg) && !middle_len(msg) && !data_len(msg)) 2922 return process_message(con); 2923 2924 if (con_secure(con)) 2925 return prepare_read_tail_secure(con); 2926 2927 return prepare_read_tail_plain(con); 2928 } 2929 2930 static int handle_preamble(struct ceph_connection *con) 2931 { 2932 struct ceph_frame_desc *desc = &con->v2.in_desc; 2933 int ret; 2934 2935 if (con_secure(con)) { 2936 ret = decrypt_preamble(con); 2937 if (ret) { 2938 if (ret == -EBADMSG) 2939 con->error_msg = "integrity error, bad preamble auth tag"; 2940 return ret; 2941 } 2942 } 2943 2944 ret = decode_preamble(con->v2.in_buf, desc); 2945 if (ret) { 2946 if (ret == -EBADMSG) 2947 con->error_msg = "integrity error, bad crc"; 2948 else 2949 con->error_msg = "protocol error, bad preamble"; 2950 return ret; 2951 } 2952 2953 dout("%s con %p tag %d seg_cnt %d %d+%d+%d+%d\n", __func__, 2954 con, desc->fd_tag, desc->fd_seg_cnt, desc->fd_lens[0], 2955 desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3]); 2956 2957 if (!con_secure(con)) 2958 return prepare_read_control(con); 2959 2960 if (desc->fd_lens[0] > CEPH_PREAMBLE_INLINE_LEN) 2961 return prepare_read_control_remainder(con); 2962 2963 return __handle_control(con, CTRL_BODY(con->v2.in_buf)); 2964 } 2965 2966 static int handle_control(struct ceph_connection *con) 2967 { 2968 int ctrl_len = con->v2.in_desc.fd_lens[0]; 2969 void *buf; 2970 int ret; 2971 2972 WARN_ON(con_secure(con)); 2973 2974 ret = verify_control_crc(con); 2975 if (ret) { 2976 con->error_msg = "integrity error, bad crc"; 2977 return ret; 2978 } 2979 2980 if (con->state == CEPH_CON_S_V2_AUTH) { 2981 buf = alloc_conn_buf(con, ctrl_len); 2982 if (!buf) 2983 return -ENOMEM; 2984 2985 memcpy(buf, con->v2.in_kvecs[0].iov_base, ctrl_len); 2986 return __handle_control(con, buf); 2987 } 2988 2989 return __handle_control(con, con->v2.in_kvecs[0].iov_base); 2990 } 2991 2992 static int handle_control_remainder(struct ceph_connection *con) 2993 { 2994 int ret; 2995 2996 WARN_ON(!con_secure(con)); 2997 2998 ret = decrypt_control_remainder(con); 2999 if (ret) { 3000 if (ret == -EBADMSG) 3001 con->error_msg = "integrity error, bad control remainder auth tag"; 3002 return ret; 3003 } 3004 3005 return __handle_control(con, con->v2.in_kvecs[0].iov_base - 3006 CEPH_PREAMBLE_INLINE_LEN); 3007 } 3008 3009 static int handle_epilogue(struct ceph_connection *con) 3010 { 3011 u32 front_crc, middle_crc, data_crc; 3012 int ret; 3013 3014 if (con_secure(con)) { 3015 ret = decrypt_tail(con); 3016 if (ret) { 3017 if (ret == -EBADMSG) 3018 con->error_msg = "integrity error, bad epilogue auth tag"; 3019 return ret; 3020 } 3021 3022 /* just late_status */ 3023 ret = decode_epilogue(con->v2.in_buf, NULL, NULL, NULL); 3024 if (ret) { 3025 con->error_msg = "protocol error, bad epilogue"; 3026 return ret; 3027 } 3028 } else { 3029 ret = decode_epilogue(con->v2.in_buf, &front_crc, 3030 &middle_crc, &data_crc); 3031 if (ret) { 3032 con->error_msg = "protocol error, bad epilogue"; 3033 return ret; 3034 } 3035 3036 ret = verify_epilogue_crcs(con, front_crc, middle_crc, 3037 data_crc); 3038 if (ret) { 3039 con->error_msg = "integrity error, bad crc"; 3040 return ret; 3041 } 3042 } 3043 3044 return process_message(con); 3045 } 3046 3047 static void finish_skip(struct ceph_connection *con) 3048 { 3049 dout("%s con %p\n", __func__, con); 3050 3051 if (con_secure(con)) 3052 gcm_inc_nonce(&con->v2.in_gcm_nonce); 3053 3054 __finish_skip(con); 3055 } 3056 3057 static int populate_in_iter(struct ceph_connection *con) 3058 { 3059 int ret; 3060 3061 dout("%s con %p state %d in_state %d\n", __func__, con, con->state, 3062 con->v2.in_state); 3063 WARN_ON(iov_iter_count(&con->v2.in_iter)); 3064 3065 if (con->state == CEPH_CON_S_V2_BANNER_PREFIX) { 3066 ret = process_banner_prefix(con); 3067 } else if (con->state == CEPH_CON_S_V2_BANNER_PAYLOAD) { 3068 ret = process_banner_payload(con); 3069 } else if ((con->state >= CEPH_CON_S_V2_HELLO && 3070 con->state <= CEPH_CON_S_V2_SESSION_RECONNECT) || 3071 con->state == CEPH_CON_S_OPEN) { 3072 switch (con->v2.in_state) { 3073 case IN_S_HANDLE_PREAMBLE: 3074 ret = handle_preamble(con); 3075 break; 3076 case IN_S_HANDLE_CONTROL: 3077 ret = handle_control(con); 3078 break; 3079 case IN_S_HANDLE_CONTROL_REMAINDER: 3080 ret = handle_control_remainder(con); 3081 break; 3082 case IN_S_PREPARE_READ_DATA: 3083 ret = prepare_read_data(con); 3084 break; 3085 case IN_S_PREPARE_READ_DATA_CONT: 3086 prepare_read_data_cont(con); 3087 ret = 0; 3088 break; 3089 case IN_S_PREPARE_READ_ENC_PAGE: 3090 prepare_read_enc_page(con); 3091 ret = 0; 3092 break; 3093 case IN_S_PREPARE_SPARSE_DATA: 3094 ret = prepare_sparse_read_data(con); 3095 break; 3096 case IN_S_PREPARE_SPARSE_DATA_CONT: 3097 ret = prepare_sparse_read_cont(con); 3098 break; 3099 case IN_S_HANDLE_EPILOGUE: 3100 ret = handle_epilogue(con); 3101 break; 3102 case IN_S_FINISH_SKIP: 3103 finish_skip(con); 3104 ret = 0; 3105 break; 3106 default: 3107 WARN(1, "bad in_state %d", con->v2.in_state); 3108 return -EINVAL; 3109 } 3110 } else { 3111 WARN(1, "bad state %d", con->state); 3112 return -EINVAL; 3113 } 3114 if (ret) { 3115 dout("%s con %p error %d\n", __func__, con, ret); 3116 return ret; 3117 } 3118 3119 if (WARN_ON(!iov_iter_count(&con->v2.in_iter))) 3120 return -ENODATA; 3121 dout("%s con %p populated %zu\n", __func__, con, 3122 iov_iter_count(&con->v2.in_iter)); 3123 return 1; 3124 } 3125 3126 int ceph_con_v2_try_read(struct ceph_connection *con) 3127 { 3128 int ret; 3129 3130 dout("%s con %p state %d need %zu\n", __func__, con, con->state, 3131 iov_iter_count(&con->v2.in_iter)); 3132 3133 if (con->state == CEPH_CON_S_PREOPEN) 3134 return 0; 3135 3136 /* 3137 * We should always have something pending here. If not, 3138 * avoid calling populate_in_iter() as if we read something 3139 * (ceph_tcp_recv() would immediately return 1). 3140 */ 3141 if (WARN_ON(!iov_iter_count(&con->v2.in_iter))) 3142 return -ENODATA; 3143 3144 for (;;) { 3145 ret = ceph_tcp_recv(con); 3146 if (ret <= 0) 3147 return ret; 3148 3149 ret = populate_in_iter(con); 3150 if (ret <= 0) { 3151 if (ret && ret != -EAGAIN && !con->error_msg) 3152 con->error_msg = "read processing error"; 3153 return ret; 3154 } 3155 } 3156 } 3157 3158 static void queue_data(struct ceph_connection *con, struct ceph_msg *msg) 3159 { 3160 struct bio_vec bv; 3161 3162 con->v2.out_epil.data_crc = -1; 3163 ceph_msg_data_cursor_init(&con->v2.out_cursor, msg, 3164 data_len(msg)); 3165 3166 get_bvec_at(&con->v2.out_cursor, &bv); 3167 set_out_bvec(con, &bv, true); 3168 con->v2.out_state = OUT_S_QUEUE_DATA_CONT; 3169 } 3170 3171 static void queue_data_cont(struct ceph_connection *con, struct ceph_msg *msg) 3172 { 3173 struct bio_vec bv; 3174 3175 con->v2.out_epil.data_crc = ceph_crc32c_page( 3176 con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page, 3177 con->v2.out_bvec.bv_offset, con->v2.out_bvec.bv_len); 3178 3179 ceph_msg_data_advance(&con->v2.out_cursor, con->v2.out_bvec.bv_len); 3180 if (con->v2.out_cursor.total_resid) { 3181 get_bvec_at(&con->v2.out_cursor, &bv); 3182 set_out_bvec(con, &bv, true); 3183 WARN_ON(con->v2.out_state != OUT_S_QUEUE_DATA_CONT); 3184 return; 3185 } 3186 3187 /* 3188 * We've written all data. Queue epilogue. Once it's written, 3189 * we are done. 3190 */ 3191 reset_out_kvecs(con); 3192 prepare_epilogue_plain(con, msg, false); 3193 con->v2.out_state = OUT_S_FINISH_MESSAGE; 3194 } 3195 3196 static void queue_enc_page(struct ceph_connection *con) 3197 { 3198 struct bio_vec bv; 3199 3200 dout("%s con %p i %d resid %d\n", __func__, con, con->v2.out_enc_i, 3201 con->v2.out_enc_resid); 3202 WARN_ON(!con->v2.out_enc_resid); 3203 3204 bvec_set_page(&bv, con->v2.out_enc_pages[con->v2.out_enc_i], 3205 min(con->v2.out_enc_resid, (int)PAGE_SIZE), 0); 3206 3207 set_out_bvec(con, &bv, false); 3208 con->v2.out_enc_i++; 3209 con->v2.out_enc_resid -= bv.bv_len; 3210 3211 if (con->v2.out_enc_resid) { 3212 WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE); 3213 return; 3214 } 3215 3216 /* 3217 * We've queued the last piece of ciphertext (ending with 3218 * epilogue) + auth tag. Once it's written, we are done. 3219 */ 3220 WARN_ON(con->v2.out_enc_i != con->v2.out_enc_page_cnt); 3221 con->v2.out_state = OUT_S_FINISH_MESSAGE; 3222 } 3223 3224 static void queue_zeros(struct ceph_connection *con, struct ceph_msg *msg) 3225 { 3226 dout("%s con %p out_zero %d\n", __func__, con, con->v2.out_zero); 3227 3228 if (con->v2.out_zero) { 3229 set_out_bvec_zero(con); 3230 con->v2.out_zero -= con->v2.out_bvec.bv_len; 3231 con->v2.out_state = OUT_S_QUEUE_ZEROS; 3232 return; 3233 } 3234 3235 /* 3236 * We've zero-filled everything up to epilogue. Queue epilogue 3237 * with late_status set to ABORTED and crcs adjusted for zeros. 3238 * Once it's written, we are done patching up for the revoke. 3239 */ 3240 reset_out_kvecs(con); 3241 prepare_epilogue_plain(con, msg, true); 3242 con->v2.out_state = OUT_S_FINISH_MESSAGE; 3243 } 3244 3245 static void finish_message(struct ceph_connection *con) 3246 { 3247 dout("%s con %p msg %p\n", __func__, con, con->out_msg); 3248 3249 /* we end up here both plain and secure modes */ 3250 if (con->v2.out_enc_pages) { 3251 WARN_ON(!con->v2.out_enc_page_cnt); 3252 ceph_release_page_vector(con->v2.out_enc_pages, 3253 con->v2.out_enc_page_cnt); 3254 con->v2.out_enc_pages = NULL; 3255 con->v2.out_enc_page_cnt = 0; 3256 } 3257 /* message may have been revoked */ 3258 if (con->out_msg) { 3259 ceph_msg_put(con->out_msg); 3260 con->out_msg = NULL; 3261 } 3262 3263 con->v2.out_state = OUT_S_GET_NEXT; 3264 } 3265 3266 static int populate_out_iter(struct ceph_connection *con) 3267 { 3268 struct ceph_msg *msg; 3269 int ret; 3270 3271 dout("%s con %p state %d out_state %d\n", __func__, con, con->state, 3272 con->v2.out_state); 3273 WARN_ON(iov_iter_count(&con->v2.out_iter)); 3274 3275 if (con->state != CEPH_CON_S_OPEN) { 3276 WARN_ON(con->state < CEPH_CON_S_V2_BANNER_PREFIX || 3277 con->state > CEPH_CON_S_V2_SESSION_RECONNECT); 3278 goto nothing_pending; 3279 } 3280 3281 switch (con->v2.out_state) { 3282 case OUT_S_QUEUE_DATA: 3283 WARN_ON(!con->out_msg); 3284 queue_data(con, con->out_msg); 3285 goto populated; 3286 case OUT_S_QUEUE_DATA_CONT: 3287 WARN_ON(!con->out_msg); 3288 queue_data_cont(con, con->out_msg); 3289 goto populated; 3290 case OUT_S_QUEUE_ENC_PAGE: 3291 queue_enc_page(con); 3292 goto populated; 3293 case OUT_S_QUEUE_ZEROS: 3294 WARN_ON(con->out_msg); /* revoked */ 3295 queue_zeros(con, con->out_msg); 3296 goto populated; 3297 case OUT_S_FINISH_MESSAGE: 3298 finish_message(con); 3299 break; 3300 case OUT_S_GET_NEXT: 3301 break; 3302 default: 3303 WARN(1, "bad out_state %d", con->v2.out_state); 3304 return -EINVAL; 3305 } 3306 3307 WARN_ON(con->v2.out_state != OUT_S_GET_NEXT); 3308 if (ceph_con_flag_test_and_clear(con, CEPH_CON_F_KEEPALIVE_PENDING)) { 3309 ret = prepare_keepalive2(con); 3310 if (ret) { 3311 pr_err("prepare_keepalive2 failed: %d\n", ret); 3312 return ret; 3313 } 3314 } else if ((msg = ceph_con_get_out_msg(con)) != NULL) { 3315 ret = prepare_message(con, msg); 3316 if (ret) { 3317 pr_err("prepare_message failed: %d\n", ret); 3318 return ret; 3319 } 3320 } else if (con->in_seq > con->in_seq_acked) { 3321 ret = prepare_ack(con); 3322 if (ret) { 3323 pr_err("prepare_ack failed: %d\n", ret); 3324 return ret; 3325 } 3326 } else { 3327 goto nothing_pending; 3328 } 3329 3330 populated: 3331 if (WARN_ON(!iov_iter_count(&con->v2.out_iter))) 3332 return -ENODATA; 3333 dout("%s con %p populated %zu\n", __func__, con, 3334 iov_iter_count(&con->v2.out_iter)); 3335 return 1; 3336 3337 nothing_pending: 3338 WARN_ON(iov_iter_count(&con->v2.out_iter)); 3339 dout("%s con %p nothing pending\n", __func__, con); 3340 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); 3341 return 0; 3342 } 3343 3344 int ceph_con_v2_try_write(struct ceph_connection *con) 3345 { 3346 int ret; 3347 3348 dout("%s con %p state %d have %zu\n", __func__, con, con->state, 3349 iov_iter_count(&con->v2.out_iter)); 3350 3351 /* open the socket first? */ 3352 if (con->state == CEPH_CON_S_PREOPEN) { 3353 WARN_ON(con->peer_addr.type != CEPH_ENTITY_ADDR_TYPE_MSGR2); 3354 3355 /* 3356 * Always bump global_seq. Bump connect_seq only if 3357 * there is a session (i.e. we are reconnecting and will 3358 * send session_reconnect instead of client_ident). 3359 */ 3360 con->v2.global_seq = ceph_get_global_seq(con->msgr, 0); 3361 if (con->v2.server_cookie) 3362 con->v2.connect_seq++; 3363 3364 ret = prepare_read_banner_prefix(con); 3365 if (ret) { 3366 pr_err("prepare_read_banner_prefix failed: %d\n", ret); 3367 con->error_msg = "connect error"; 3368 return ret; 3369 } 3370 3371 reset_out_kvecs(con); 3372 ret = prepare_banner(con); 3373 if (ret) { 3374 pr_err("prepare_banner failed: %d\n", ret); 3375 con->error_msg = "connect error"; 3376 return ret; 3377 } 3378 3379 ret = ceph_tcp_connect(con); 3380 if (ret) { 3381 pr_err("ceph_tcp_connect failed: %d\n", ret); 3382 con->error_msg = "connect error"; 3383 return ret; 3384 } 3385 } 3386 3387 if (!iov_iter_count(&con->v2.out_iter)) { 3388 ret = populate_out_iter(con); 3389 if (ret <= 0) { 3390 if (ret && ret != -EAGAIN && !con->error_msg) 3391 con->error_msg = "write processing error"; 3392 return ret; 3393 } 3394 } 3395 3396 tcp_sock_set_cork(con->sock->sk, true); 3397 for (;;) { 3398 ret = ceph_tcp_send(con); 3399 if (ret <= 0) 3400 break; 3401 3402 ret = populate_out_iter(con); 3403 if (ret <= 0) { 3404 if (ret && ret != -EAGAIN && !con->error_msg) 3405 con->error_msg = "write processing error"; 3406 break; 3407 } 3408 } 3409 3410 tcp_sock_set_cork(con->sock->sk, false); 3411 return ret; 3412 } 3413 3414 static u32 crc32c_zeros(u32 crc, int zero_len) 3415 { 3416 int len; 3417 3418 while (zero_len) { 3419 len = min(zero_len, (int)PAGE_SIZE); 3420 crc = crc32c(crc, page_address(ceph_zero_page), len); 3421 zero_len -= len; 3422 } 3423 3424 return crc; 3425 } 3426 3427 static void prepare_zero_front(struct ceph_connection *con, 3428 struct ceph_msg *msg, int resid) 3429 { 3430 int sent; 3431 3432 WARN_ON(!resid || resid > front_len(msg)); 3433 sent = front_len(msg) - resid; 3434 dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid); 3435 3436 if (sent) { 3437 con->v2.out_epil.front_crc = 3438 crc32c(-1, msg->front.iov_base, sent); 3439 con->v2.out_epil.front_crc = 3440 crc32c_zeros(con->v2.out_epil.front_crc, resid); 3441 } else { 3442 con->v2.out_epil.front_crc = crc32c_zeros(-1, resid); 3443 } 3444 3445 con->v2.out_iter.count -= resid; 3446 out_zero_add(con, resid); 3447 } 3448 3449 static void prepare_zero_middle(struct ceph_connection *con, 3450 struct ceph_msg *msg, int resid) 3451 { 3452 int sent; 3453 3454 WARN_ON(!resid || resid > middle_len(msg)); 3455 sent = middle_len(msg) - resid; 3456 dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid); 3457 3458 if (sent) { 3459 con->v2.out_epil.middle_crc = 3460 crc32c(-1, msg->middle->vec.iov_base, sent); 3461 con->v2.out_epil.middle_crc = 3462 crc32c_zeros(con->v2.out_epil.middle_crc, resid); 3463 } else { 3464 con->v2.out_epil.middle_crc = crc32c_zeros(-1, resid); 3465 } 3466 3467 con->v2.out_iter.count -= resid; 3468 out_zero_add(con, resid); 3469 } 3470 3471 static void prepare_zero_data(struct ceph_connection *con, 3472 struct ceph_msg *msg) 3473 { 3474 dout("%s con %p\n", __func__, con); 3475 con->v2.out_epil.data_crc = crc32c_zeros(-1, data_len(msg)); 3476 out_zero_add(con, data_len(msg)); 3477 } 3478 3479 static void revoke_at_queue_data(struct ceph_connection *con, 3480 struct ceph_msg *msg) 3481 { 3482 int boundary; 3483 int resid; 3484 3485 WARN_ON(!data_len(msg)); 3486 WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter)); 3487 resid = iov_iter_count(&con->v2.out_iter); 3488 3489 boundary = front_len(msg) + middle_len(msg); 3490 if (resid > boundary) { 3491 resid -= boundary; 3492 WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN); 3493 dout("%s con %p was sending head\n", __func__, con); 3494 if (front_len(msg)) 3495 prepare_zero_front(con, msg, front_len(msg)); 3496 if (middle_len(msg)) 3497 prepare_zero_middle(con, msg, middle_len(msg)); 3498 prepare_zero_data(con, msg); 3499 WARN_ON(iov_iter_count(&con->v2.out_iter) != resid); 3500 con->v2.out_state = OUT_S_QUEUE_ZEROS; 3501 return; 3502 } 3503 3504 boundary = middle_len(msg); 3505 if (resid > boundary) { 3506 resid -= boundary; 3507 dout("%s con %p was sending front\n", __func__, con); 3508 prepare_zero_front(con, msg, resid); 3509 if (middle_len(msg)) 3510 prepare_zero_middle(con, msg, middle_len(msg)); 3511 prepare_zero_data(con, msg); 3512 queue_zeros(con, msg); 3513 return; 3514 } 3515 3516 WARN_ON(!resid); 3517 dout("%s con %p was sending middle\n", __func__, con); 3518 prepare_zero_middle(con, msg, resid); 3519 prepare_zero_data(con, msg); 3520 queue_zeros(con, msg); 3521 } 3522 3523 static void revoke_at_queue_data_cont(struct ceph_connection *con, 3524 struct ceph_msg *msg) 3525 { 3526 int sent, resid; /* current piece of data */ 3527 3528 WARN_ON(!data_len(msg)); 3529 WARN_ON(!iov_iter_is_bvec(&con->v2.out_iter)); 3530 resid = iov_iter_count(&con->v2.out_iter); 3531 WARN_ON(!resid || resid > con->v2.out_bvec.bv_len); 3532 sent = con->v2.out_bvec.bv_len - resid; 3533 dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid); 3534 3535 if (sent) { 3536 con->v2.out_epil.data_crc = ceph_crc32c_page( 3537 con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page, 3538 con->v2.out_bvec.bv_offset, sent); 3539 ceph_msg_data_advance(&con->v2.out_cursor, sent); 3540 } 3541 WARN_ON(resid > con->v2.out_cursor.total_resid); 3542 con->v2.out_epil.data_crc = crc32c_zeros(con->v2.out_epil.data_crc, 3543 con->v2.out_cursor.total_resid); 3544 3545 con->v2.out_iter.count -= resid; 3546 out_zero_add(con, con->v2.out_cursor.total_resid); 3547 queue_zeros(con, msg); 3548 } 3549 3550 static void revoke_at_finish_message(struct ceph_connection *con, 3551 struct ceph_msg *msg) 3552 { 3553 int boundary; 3554 int resid; 3555 3556 WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter)); 3557 resid = iov_iter_count(&con->v2.out_iter); 3558 3559 if (!front_len(msg) && !middle_len(msg) && 3560 !data_len(msg)) { 3561 WARN_ON(!resid || resid > MESSAGE_HEAD_PLAIN_LEN); 3562 dout("%s con %p was sending head (empty message) - noop\n", 3563 __func__, con); 3564 return; 3565 } 3566 3567 boundary = front_len(msg) + middle_len(msg) + 3568 CEPH_EPILOGUE_PLAIN_LEN; 3569 if (resid > boundary) { 3570 resid -= boundary; 3571 WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN); 3572 dout("%s con %p was sending head\n", __func__, con); 3573 if (front_len(msg)) 3574 prepare_zero_front(con, msg, front_len(msg)); 3575 if (middle_len(msg)) 3576 prepare_zero_middle(con, msg, middle_len(msg)); 3577 con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN; 3578 WARN_ON(iov_iter_count(&con->v2.out_iter) != resid); 3579 con->v2.out_state = OUT_S_QUEUE_ZEROS; 3580 return; 3581 } 3582 3583 boundary = middle_len(msg) + CEPH_EPILOGUE_PLAIN_LEN; 3584 if (resid > boundary) { 3585 resid -= boundary; 3586 dout("%s con %p was sending front\n", __func__, con); 3587 prepare_zero_front(con, msg, resid); 3588 if (middle_len(msg)) 3589 prepare_zero_middle(con, msg, middle_len(msg)); 3590 con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN; 3591 queue_zeros(con, msg); 3592 return; 3593 } 3594 3595 boundary = CEPH_EPILOGUE_PLAIN_LEN; 3596 if (resid > boundary) { 3597 resid -= boundary; 3598 dout("%s con %p was sending middle\n", __func__, con); 3599 prepare_zero_middle(con, msg, resid); 3600 con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN; 3601 queue_zeros(con, msg); 3602 return; 3603 } 3604 3605 WARN_ON(!resid); 3606 dout("%s con %p was sending epilogue - noop\n", __func__, con); 3607 } 3608 3609 void ceph_con_v2_revoke(struct ceph_connection *con, struct ceph_msg *msg) 3610 { 3611 WARN_ON(con->v2.out_zero); 3612 3613 if (con_secure(con)) { 3614 WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE && 3615 con->v2.out_state != OUT_S_FINISH_MESSAGE); 3616 dout("%s con %p secure - noop\n", __func__, con); 3617 return; 3618 } 3619 3620 switch (con->v2.out_state) { 3621 case OUT_S_QUEUE_DATA: 3622 revoke_at_queue_data(con, msg); 3623 break; 3624 case OUT_S_QUEUE_DATA_CONT: 3625 revoke_at_queue_data_cont(con, msg); 3626 break; 3627 case OUT_S_FINISH_MESSAGE: 3628 revoke_at_finish_message(con, msg); 3629 break; 3630 default: 3631 WARN(1, "bad out_state %d", con->v2.out_state); 3632 break; 3633 } 3634 } 3635 3636 static void revoke_at_prepare_read_data(struct ceph_connection *con) 3637 { 3638 int remaining; 3639 int resid; 3640 3641 WARN_ON(con_secure(con)); 3642 WARN_ON(!data_len(con->in_msg)); 3643 WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter)); 3644 resid = iov_iter_count(&con->v2.in_iter); 3645 WARN_ON(!resid); 3646 3647 remaining = data_len(con->in_msg) + CEPH_EPILOGUE_PLAIN_LEN; 3648 dout("%s con %p resid %d remaining %d\n", __func__, con, resid, 3649 remaining); 3650 con->v2.in_iter.count -= resid; 3651 set_in_skip(con, resid + remaining); 3652 con->v2.in_state = IN_S_FINISH_SKIP; 3653 } 3654 3655 static void revoke_at_prepare_read_data_cont(struct ceph_connection *con) 3656 { 3657 int recved, resid; /* current piece of data */ 3658 int remaining; 3659 3660 WARN_ON(con_secure(con)); 3661 WARN_ON(!data_len(con->in_msg)); 3662 WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter)); 3663 resid = iov_iter_count(&con->v2.in_iter); 3664 WARN_ON(!resid || resid > con->v2.in_bvec.bv_len); 3665 recved = con->v2.in_bvec.bv_len - resid; 3666 dout("%s con %p recved %d resid %d\n", __func__, con, recved, resid); 3667 3668 if (recved) 3669 ceph_msg_data_advance(&con->v2.in_cursor, recved); 3670 WARN_ON(resid > con->v2.in_cursor.total_resid); 3671 3672 remaining = CEPH_EPILOGUE_PLAIN_LEN; 3673 dout("%s con %p total_resid %zu remaining %d\n", __func__, con, 3674 con->v2.in_cursor.total_resid, remaining); 3675 con->v2.in_iter.count -= resid; 3676 set_in_skip(con, con->v2.in_cursor.total_resid + remaining); 3677 con->v2.in_state = IN_S_FINISH_SKIP; 3678 } 3679 3680 static void revoke_at_prepare_read_enc_page(struct ceph_connection *con) 3681 { 3682 int resid; /* current enc page (not necessarily data) */ 3683 3684 WARN_ON(!con_secure(con)); 3685 WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter)); 3686 resid = iov_iter_count(&con->v2.in_iter); 3687 WARN_ON(!resid || resid > con->v2.in_bvec.bv_len); 3688 3689 dout("%s con %p resid %d enc_resid %d\n", __func__, con, resid, 3690 con->v2.in_enc_resid); 3691 con->v2.in_iter.count -= resid; 3692 set_in_skip(con, resid + con->v2.in_enc_resid); 3693 con->v2.in_state = IN_S_FINISH_SKIP; 3694 } 3695 3696 static void revoke_at_prepare_sparse_data(struct ceph_connection *con) 3697 { 3698 int resid; /* current piece of data */ 3699 int remaining; 3700 3701 WARN_ON(con_secure(con)); 3702 WARN_ON(!data_len(con->in_msg)); 3703 WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter)); 3704 resid = iov_iter_count(&con->v2.in_iter); 3705 dout("%s con %p resid %d\n", __func__, con, resid); 3706 3707 remaining = CEPH_EPILOGUE_PLAIN_LEN + con->v2.data_len_remain; 3708 con->v2.in_iter.count -= resid; 3709 set_in_skip(con, resid + remaining); 3710 con->v2.in_state = IN_S_FINISH_SKIP; 3711 } 3712 3713 static void revoke_at_handle_epilogue(struct ceph_connection *con) 3714 { 3715 int resid; 3716 3717 resid = iov_iter_count(&con->v2.in_iter); 3718 WARN_ON(!resid); 3719 3720 dout("%s con %p resid %d\n", __func__, con, resid); 3721 con->v2.in_iter.count -= resid; 3722 set_in_skip(con, resid); 3723 con->v2.in_state = IN_S_FINISH_SKIP; 3724 } 3725 3726 void ceph_con_v2_revoke_incoming(struct ceph_connection *con) 3727 { 3728 switch (con->v2.in_state) { 3729 case IN_S_PREPARE_SPARSE_DATA: 3730 case IN_S_PREPARE_READ_DATA: 3731 revoke_at_prepare_read_data(con); 3732 break; 3733 case IN_S_PREPARE_READ_DATA_CONT: 3734 revoke_at_prepare_read_data_cont(con); 3735 break; 3736 case IN_S_PREPARE_READ_ENC_PAGE: 3737 revoke_at_prepare_read_enc_page(con); 3738 break; 3739 case IN_S_PREPARE_SPARSE_DATA_CONT: 3740 revoke_at_prepare_sparse_data(con); 3741 break; 3742 case IN_S_HANDLE_EPILOGUE: 3743 revoke_at_handle_epilogue(con); 3744 break; 3745 default: 3746 WARN(1, "bad in_state %d", con->v2.in_state); 3747 break; 3748 } 3749 } 3750 3751 bool ceph_con_v2_opened(struct ceph_connection *con) 3752 { 3753 return con->v2.peer_global_seq; 3754 } 3755 3756 void ceph_con_v2_reset_session(struct ceph_connection *con) 3757 { 3758 con->v2.client_cookie = 0; 3759 con->v2.server_cookie = 0; 3760 con->v2.global_seq = 0; 3761 con->v2.connect_seq = 0; 3762 con->v2.peer_global_seq = 0; 3763 } 3764 3765 void ceph_con_v2_reset_protocol(struct ceph_connection *con) 3766 { 3767 iov_iter_truncate(&con->v2.in_iter, 0); 3768 iov_iter_truncate(&con->v2.out_iter, 0); 3769 con->v2.out_zero = 0; 3770 3771 clear_in_sign_kvecs(con); 3772 clear_out_sign_kvecs(con); 3773 free_conn_bufs(con); 3774 3775 if (con->v2.in_enc_pages) { 3776 WARN_ON(!con->v2.in_enc_page_cnt); 3777 ceph_release_page_vector(con->v2.in_enc_pages, 3778 con->v2.in_enc_page_cnt); 3779 con->v2.in_enc_pages = NULL; 3780 con->v2.in_enc_page_cnt = 0; 3781 } 3782 if (con->v2.out_enc_pages) { 3783 WARN_ON(!con->v2.out_enc_page_cnt); 3784 ceph_release_page_vector(con->v2.out_enc_pages, 3785 con->v2.out_enc_page_cnt); 3786 con->v2.out_enc_pages = NULL; 3787 con->v2.out_enc_page_cnt = 0; 3788 } 3789 3790 con->v2.con_mode = CEPH_CON_MODE_UNKNOWN; 3791 memzero_explicit(&con->v2.in_gcm_nonce, CEPH_GCM_IV_LEN); 3792 memzero_explicit(&con->v2.out_gcm_nonce, CEPH_GCM_IV_LEN); 3793 3794 memzero_explicit(&con->v2.hmac_key, sizeof(con->v2.hmac_key)); 3795 con->v2.hmac_key_set = false; 3796 if (con->v2.gcm_req) { 3797 aead_request_free(con->v2.gcm_req); 3798 con->v2.gcm_req = NULL; 3799 } 3800 if (con->v2.gcm_tfm) { 3801 crypto_free_aead(con->v2.gcm_tfm); 3802 con->v2.gcm_tfm = NULL; 3803 } 3804 } 3805