1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Ceph msgr2 protocol implementation 4 * 5 * Copyright (C) 2020 Ilya Dryomov <idryomov@gmail.com> 6 */ 7 8 #include <linux/ceph/ceph_debug.h> 9 10 #include <crypto/aead.h> 11 #include <crypto/hash.h> 12 #include <crypto/sha2.h> 13 #include <crypto/utils.h> 14 #include <linux/bvec.h> 15 #include <linux/crc32c.h> 16 #include <linux/net.h> 17 #include <linux/scatterlist.h> 18 #include <linux/socket.h> 19 #include <linux/sched/mm.h> 20 #include <net/sock.h> 21 #include <net/tcp.h> 22 23 #include <linux/ceph/ceph_features.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/libceph.h> 26 #include <linux/ceph/messenger.h> 27 28 #include "crypto.h" /* for CEPH_KEY_LEN and CEPH_MAX_CON_SECRET_LEN */ 29 30 #define FRAME_TAG_HELLO 1 31 #define FRAME_TAG_AUTH_REQUEST 2 32 #define FRAME_TAG_AUTH_BAD_METHOD 3 33 #define FRAME_TAG_AUTH_REPLY_MORE 4 34 #define FRAME_TAG_AUTH_REQUEST_MORE 5 35 #define FRAME_TAG_AUTH_DONE 6 36 #define FRAME_TAG_AUTH_SIGNATURE 7 37 #define FRAME_TAG_CLIENT_IDENT 8 38 #define FRAME_TAG_SERVER_IDENT 9 39 #define FRAME_TAG_IDENT_MISSING_FEATURES 10 40 #define FRAME_TAG_SESSION_RECONNECT 11 41 #define FRAME_TAG_SESSION_RESET 12 42 #define FRAME_TAG_SESSION_RETRY 13 43 #define FRAME_TAG_SESSION_RETRY_GLOBAL 14 44 #define FRAME_TAG_SESSION_RECONNECT_OK 15 45 #define FRAME_TAG_WAIT 16 46 #define FRAME_TAG_MESSAGE 17 47 #define FRAME_TAG_KEEPALIVE2 18 48 #define FRAME_TAG_KEEPALIVE2_ACK 19 49 #define FRAME_TAG_ACK 20 50 51 #define FRAME_LATE_STATUS_ABORTED 0x1 52 #define FRAME_LATE_STATUS_COMPLETE 0xe 53 #define FRAME_LATE_STATUS_ABORTED_MASK 0xf 54 55 #define IN_S_HANDLE_PREAMBLE 1 56 #define IN_S_HANDLE_CONTROL 2 57 #define IN_S_HANDLE_CONTROL_REMAINDER 3 58 #define IN_S_PREPARE_READ_DATA 4 59 #define IN_S_PREPARE_READ_DATA_CONT 5 60 #define IN_S_PREPARE_READ_ENC_PAGE 6 61 #define IN_S_PREPARE_SPARSE_DATA 7 62 #define IN_S_PREPARE_SPARSE_DATA_CONT 8 63 #define IN_S_HANDLE_EPILOGUE 9 64 #define IN_S_FINISH_SKIP 10 65 66 #define OUT_S_QUEUE_DATA 1 67 #define OUT_S_QUEUE_DATA_CONT 2 68 #define OUT_S_QUEUE_ENC_PAGE 3 69 #define OUT_S_QUEUE_ZEROS 4 70 #define OUT_S_FINISH_MESSAGE 5 71 #define OUT_S_GET_NEXT 6 72 73 #define CTRL_BODY(p) ((void *)(p) + CEPH_PREAMBLE_LEN) 74 #define FRONT_PAD(p) ((void *)(p) + CEPH_EPILOGUE_SECURE_LEN) 75 #define MIDDLE_PAD(p) (FRONT_PAD(p) + CEPH_GCM_BLOCK_LEN) 76 #define DATA_PAD(p) (MIDDLE_PAD(p) + CEPH_GCM_BLOCK_LEN) 77 78 #define CEPH_MSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL) 79 80 static int do_recvmsg(struct socket *sock, struct iov_iter *it) 81 { 82 struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS }; 83 int ret; 84 85 msg.msg_iter = *it; 86 while (iov_iter_count(it)) { 87 ret = sock_recvmsg(sock, &msg, msg.msg_flags); 88 if (ret <= 0) { 89 if (ret == -EAGAIN) 90 ret = 0; 91 return ret; 92 } 93 94 iov_iter_advance(it, ret); 95 } 96 97 WARN_ON(msg_data_left(&msg)); 98 return 1; 99 } 100 101 /* 102 * Read as much as possible. 103 * 104 * Return: 105 * 1 - done, nothing (else) to read 106 * 0 - socket is empty, need to wait 107 * <0 - error 108 */ 109 static int ceph_tcp_recv(struct ceph_connection *con) 110 { 111 int ret; 112 113 dout("%s con %p %s %zu\n", __func__, con, 114 iov_iter_is_discard(&con->v2.in_iter) ? "discard" : "need", 115 iov_iter_count(&con->v2.in_iter)); 116 ret = do_recvmsg(con->sock, &con->v2.in_iter); 117 dout("%s con %p ret %d left %zu\n", __func__, con, ret, 118 iov_iter_count(&con->v2.in_iter)); 119 return ret; 120 } 121 122 static int do_sendmsg(struct socket *sock, struct iov_iter *it) 123 { 124 struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS }; 125 int ret; 126 127 msg.msg_iter = *it; 128 while (iov_iter_count(it)) { 129 ret = sock_sendmsg(sock, &msg); 130 if (ret <= 0) { 131 if (ret == -EAGAIN) 132 ret = 0; 133 return ret; 134 } 135 136 iov_iter_advance(it, ret); 137 } 138 139 WARN_ON(msg_data_left(&msg)); 140 return 1; 141 } 142 143 static int do_try_sendpage(struct socket *sock, struct iov_iter *it) 144 { 145 struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS }; 146 struct bio_vec bv; 147 int ret; 148 149 if (WARN_ON(!iov_iter_is_bvec(it))) 150 return -EINVAL; 151 152 while (iov_iter_count(it)) { 153 /* iov_iter_iovec() for ITER_BVEC */ 154 bvec_set_page(&bv, it->bvec->bv_page, 155 min(iov_iter_count(it), 156 it->bvec->bv_len - it->iov_offset), 157 it->bvec->bv_offset + it->iov_offset); 158 159 /* 160 * MSG_SPLICE_PAGES cannot properly handle pages with 161 * page_count == 0, we need to fall back to sendmsg if 162 * that's the case. 163 * 164 * Same goes for slab pages: skb_can_coalesce() allows 165 * coalescing neighboring slab objects into a single frag 166 * which triggers one of hardened usercopy checks. 167 */ 168 if (sendpage_ok(bv.bv_page)) 169 msg.msg_flags |= MSG_SPLICE_PAGES; 170 else 171 msg.msg_flags &= ~MSG_SPLICE_PAGES; 172 173 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bv, 1, bv.bv_len); 174 ret = sock_sendmsg(sock, &msg); 175 if (ret <= 0) { 176 if (ret == -EAGAIN) 177 ret = 0; 178 return ret; 179 } 180 181 iov_iter_advance(it, ret); 182 } 183 184 return 1; 185 } 186 187 /* 188 * Write as much as possible. The socket is expected to be corked, 189 * so we don't bother with MSG_MORE here. 190 * 191 * Return: 192 * 1 - done, nothing (else) to write 193 * 0 - socket is full, need to wait 194 * <0 - error 195 */ 196 static int ceph_tcp_send(struct ceph_connection *con) 197 { 198 int ret; 199 200 dout("%s con %p have %zu try_sendpage %d\n", __func__, con, 201 iov_iter_count(&con->v2.out_iter), con->v2.out_iter_sendpage); 202 if (con->v2.out_iter_sendpage) 203 ret = do_try_sendpage(con->sock, &con->v2.out_iter); 204 else 205 ret = do_sendmsg(con->sock, &con->v2.out_iter); 206 dout("%s con %p ret %d left %zu\n", __func__, con, ret, 207 iov_iter_count(&con->v2.out_iter)); 208 return ret; 209 } 210 211 static void add_in_kvec(struct ceph_connection *con, void *buf, int len) 212 { 213 BUG_ON(con->v2.in_kvec_cnt >= ARRAY_SIZE(con->v2.in_kvecs)); 214 WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter)); 215 216 con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_base = buf; 217 con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_len = len; 218 con->v2.in_kvec_cnt++; 219 220 con->v2.in_iter.nr_segs++; 221 con->v2.in_iter.count += len; 222 } 223 224 static void reset_in_kvecs(struct ceph_connection *con) 225 { 226 WARN_ON(iov_iter_count(&con->v2.in_iter)); 227 228 con->v2.in_kvec_cnt = 0; 229 iov_iter_kvec(&con->v2.in_iter, ITER_DEST, con->v2.in_kvecs, 0, 0); 230 } 231 232 static void set_in_bvec(struct ceph_connection *con, const struct bio_vec *bv) 233 { 234 WARN_ON(iov_iter_count(&con->v2.in_iter)); 235 236 con->v2.in_bvec = *bv; 237 iov_iter_bvec(&con->v2.in_iter, ITER_DEST, &con->v2.in_bvec, 1, bv->bv_len); 238 } 239 240 static void set_in_skip(struct ceph_connection *con, int len) 241 { 242 WARN_ON(iov_iter_count(&con->v2.in_iter)); 243 244 dout("%s con %p len %d\n", __func__, con, len); 245 iov_iter_discard(&con->v2.in_iter, ITER_DEST, len); 246 } 247 248 static void add_out_kvec(struct ceph_connection *con, void *buf, int len) 249 { 250 BUG_ON(con->v2.out_kvec_cnt >= ARRAY_SIZE(con->v2.out_kvecs)); 251 WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter)); 252 WARN_ON(con->v2.out_zero); 253 254 con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_base = buf; 255 con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_len = len; 256 con->v2.out_kvec_cnt++; 257 258 con->v2.out_iter.nr_segs++; 259 con->v2.out_iter.count += len; 260 } 261 262 static void reset_out_kvecs(struct ceph_connection *con) 263 { 264 WARN_ON(iov_iter_count(&con->v2.out_iter)); 265 WARN_ON(con->v2.out_zero); 266 267 con->v2.out_kvec_cnt = 0; 268 269 iov_iter_kvec(&con->v2.out_iter, ITER_SOURCE, con->v2.out_kvecs, 0, 0); 270 con->v2.out_iter_sendpage = false; 271 } 272 273 static void set_out_bvec(struct ceph_connection *con, const struct bio_vec *bv, 274 bool zerocopy) 275 { 276 WARN_ON(iov_iter_count(&con->v2.out_iter)); 277 WARN_ON(con->v2.out_zero); 278 279 con->v2.out_bvec = *bv; 280 con->v2.out_iter_sendpage = zerocopy; 281 iov_iter_bvec(&con->v2.out_iter, ITER_SOURCE, &con->v2.out_bvec, 1, 282 con->v2.out_bvec.bv_len); 283 } 284 285 static void set_out_bvec_zero(struct ceph_connection *con) 286 { 287 WARN_ON(iov_iter_count(&con->v2.out_iter)); 288 WARN_ON(!con->v2.out_zero); 289 290 bvec_set_page(&con->v2.out_bvec, ceph_zero_page, 291 min(con->v2.out_zero, (int)PAGE_SIZE), 0); 292 con->v2.out_iter_sendpage = true; 293 iov_iter_bvec(&con->v2.out_iter, ITER_SOURCE, &con->v2.out_bvec, 1, 294 con->v2.out_bvec.bv_len); 295 } 296 297 static void out_zero_add(struct ceph_connection *con, int len) 298 { 299 dout("%s con %p len %d\n", __func__, con, len); 300 con->v2.out_zero += len; 301 } 302 303 static void *alloc_conn_buf(struct ceph_connection *con, int len) 304 { 305 void *buf; 306 307 dout("%s con %p len %d\n", __func__, con, len); 308 309 if (WARN_ON(con->v2.conn_buf_cnt >= ARRAY_SIZE(con->v2.conn_bufs))) 310 return NULL; 311 312 buf = kvmalloc(len, GFP_NOIO); 313 if (!buf) 314 return NULL; 315 316 con->v2.conn_bufs[con->v2.conn_buf_cnt++] = buf; 317 return buf; 318 } 319 320 static void free_conn_bufs(struct ceph_connection *con) 321 { 322 while (con->v2.conn_buf_cnt) 323 kvfree(con->v2.conn_bufs[--con->v2.conn_buf_cnt]); 324 } 325 326 static void add_in_sign_kvec(struct ceph_connection *con, void *buf, int len) 327 { 328 BUG_ON(con->v2.in_sign_kvec_cnt >= ARRAY_SIZE(con->v2.in_sign_kvecs)); 329 330 con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_base = buf; 331 con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_len = len; 332 con->v2.in_sign_kvec_cnt++; 333 } 334 335 static void clear_in_sign_kvecs(struct ceph_connection *con) 336 { 337 con->v2.in_sign_kvec_cnt = 0; 338 } 339 340 static void add_out_sign_kvec(struct ceph_connection *con, void *buf, int len) 341 { 342 BUG_ON(con->v2.out_sign_kvec_cnt >= ARRAY_SIZE(con->v2.out_sign_kvecs)); 343 344 con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_base = buf; 345 con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_len = len; 346 con->v2.out_sign_kvec_cnt++; 347 } 348 349 static void clear_out_sign_kvecs(struct ceph_connection *con) 350 { 351 con->v2.out_sign_kvec_cnt = 0; 352 } 353 354 static bool con_secure(struct ceph_connection *con) 355 { 356 return con->v2.con_mode == CEPH_CON_MODE_SECURE; 357 } 358 359 static int front_len(const struct ceph_msg *msg) 360 { 361 return le32_to_cpu(msg->hdr.front_len); 362 } 363 364 static int middle_len(const struct ceph_msg *msg) 365 { 366 return le32_to_cpu(msg->hdr.middle_len); 367 } 368 369 static int data_len(const struct ceph_msg *msg) 370 { 371 return le32_to_cpu(msg->hdr.data_len); 372 } 373 374 static bool need_padding(int len) 375 { 376 return !IS_ALIGNED(len, CEPH_GCM_BLOCK_LEN); 377 } 378 379 static int padded_len(int len) 380 { 381 return ALIGN(len, CEPH_GCM_BLOCK_LEN); 382 } 383 384 static int padding_len(int len) 385 { 386 return padded_len(len) - len; 387 } 388 389 /* preamble + control segment */ 390 static int head_onwire_len(int ctrl_len, bool secure) 391 { 392 int head_len; 393 int rem_len; 394 395 BUG_ON(ctrl_len < 0 || ctrl_len > CEPH_MSG_MAX_CONTROL_LEN); 396 397 if (secure) { 398 head_len = CEPH_PREAMBLE_SECURE_LEN; 399 if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) { 400 rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; 401 head_len += padded_len(rem_len) + CEPH_GCM_TAG_LEN; 402 } 403 } else { 404 head_len = CEPH_PREAMBLE_PLAIN_LEN; 405 if (ctrl_len) 406 head_len += ctrl_len + CEPH_CRC_LEN; 407 } 408 return head_len; 409 } 410 411 /* front, middle and data segments + epilogue */ 412 static int __tail_onwire_len(int front_len, int middle_len, int data_len, 413 bool secure) 414 { 415 BUG_ON(front_len < 0 || front_len > CEPH_MSG_MAX_FRONT_LEN || 416 middle_len < 0 || middle_len > CEPH_MSG_MAX_MIDDLE_LEN || 417 data_len < 0 || data_len > CEPH_MSG_MAX_DATA_LEN); 418 419 if (!front_len && !middle_len && !data_len) 420 return 0; 421 422 if (!secure) 423 return front_len + middle_len + data_len + 424 CEPH_EPILOGUE_PLAIN_LEN; 425 426 return padded_len(front_len) + padded_len(middle_len) + 427 padded_len(data_len) + CEPH_EPILOGUE_SECURE_LEN; 428 } 429 430 static int tail_onwire_len(const struct ceph_msg *msg, bool secure) 431 { 432 return __tail_onwire_len(front_len(msg), middle_len(msg), 433 data_len(msg), secure); 434 } 435 436 /* head_onwire_len(sizeof(struct ceph_msg_header2), false) */ 437 #define MESSAGE_HEAD_PLAIN_LEN (CEPH_PREAMBLE_PLAIN_LEN + \ 438 sizeof(struct ceph_msg_header2) + \ 439 CEPH_CRC_LEN) 440 441 static const int frame_aligns[] = { 442 sizeof(void *), 443 sizeof(void *), 444 sizeof(void *), 445 PAGE_SIZE 446 }; 447 448 /* 449 * Discards trailing empty segments, unless there is just one segment. 450 * A frame always has at least one (possibly empty) segment. 451 */ 452 static int calc_segment_count(const int *lens, int len_cnt) 453 { 454 int i; 455 456 for (i = len_cnt - 1; i >= 0; i--) { 457 if (lens[i]) 458 return i + 1; 459 } 460 461 return 1; 462 } 463 464 static void init_frame_desc(struct ceph_frame_desc *desc, int tag, 465 const int *lens, int len_cnt) 466 { 467 int i; 468 469 memset(desc, 0, sizeof(*desc)); 470 471 desc->fd_tag = tag; 472 desc->fd_seg_cnt = calc_segment_count(lens, len_cnt); 473 BUG_ON(desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT); 474 for (i = 0; i < desc->fd_seg_cnt; i++) { 475 desc->fd_lens[i] = lens[i]; 476 desc->fd_aligns[i] = frame_aligns[i]; 477 } 478 } 479 480 /* 481 * Preamble crc covers everything up to itself (28 bytes) and 482 * is calculated and verified irrespective of the connection mode 483 * (i.e. even if the frame is encrypted). 484 */ 485 static void encode_preamble(const struct ceph_frame_desc *desc, void *p) 486 { 487 void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN; 488 void *start = p; 489 int i; 490 491 memset(p, 0, CEPH_PREAMBLE_LEN); 492 493 ceph_encode_8(&p, desc->fd_tag); 494 ceph_encode_8(&p, desc->fd_seg_cnt); 495 for (i = 0; i < desc->fd_seg_cnt; i++) { 496 ceph_encode_32(&p, desc->fd_lens[i]); 497 ceph_encode_16(&p, desc->fd_aligns[i]); 498 } 499 500 put_unaligned_le32(crc32c(0, start, crcp - start), crcp); 501 } 502 503 static int decode_preamble(void *p, struct ceph_frame_desc *desc) 504 { 505 void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN; 506 u32 crc, expected_crc; 507 int i; 508 509 crc = crc32c(0, p, crcp - p); 510 expected_crc = get_unaligned_le32(crcp); 511 if (crc != expected_crc) { 512 pr_err("bad preamble crc, calculated %u, expected %u\n", 513 crc, expected_crc); 514 return -EBADMSG; 515 } 516 517 memset(desc, 0, sizeof(*desc)); 518 519 desc->fd_tag = ceph_decode_8(&p); 520 desc->fd_seg_cnt = ceph_decode_8(&p); 521 if (desc->fd_seg_cnt < 1 || 522 desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT) { 523 pr_err("bad segment count %d\n", desc->fd_seg_cnt); 524 return -EINVAL; 525 } 526 for (i = 0; i < desc->fd_seg_cnt; i++) { 527 desc->fd_lens[i] = ceph_decode_32(&p); 528 desc->fd_aligns[i] = ceph_decode_16(&p); 529 } 530 531 if (desc->fd_lens[0] < 0 || 532 desc->fd_lens[0] > CEPH_MSG_MAX_CONTROL_LEN) { 533 pr_err("bad control segment length %d\n", desc->fd_lens[0]); 534 return -EINVAL; 535 } 536 if (desc->fd_lens[1] < 0 || 537 desc->fd_lens[1] > CEPH_MSG_MAX_FRONT_LEN) { 538 pr_err("bad front segment length %d\n", desc->fd_lens[1]); 539 return -EINVAL; 540 } 541 if (desc->fd_lens[2] < 0 || 542 desc->fd_lens[2] > CEPH_MSG_MAX_MIDDLE_LEN) { 543 pr_err("bad middle segment length %d\n", desc->fd_lens[2]); 544 return -EINVAL; 545 } 546 if (desc->fd_lens[3] < 0 || 547 desc->fd_lens[3] > CEPH_MSG_MAX_DATA_LEN) { 548 pr_err("bad data segment length %d\n", desc->fd_lens[3]); 549 return -EINVAL; 550 } 551 552 /* 553 * This would fire for FRAME_TAG_WAIT (it has one empty 554 * segment), but we should never get it as client. 555 */ 556 if (!desc->fd_lens[desc->fd_seg_cnt - 1]) { 557 pr_err("last segment empty, segment count %d\n", 558 desc->fd_seg_cnt); 559 return -EINVAL; 560 } 561 562 return 0; 563 } 564 565 static void encode_epilogue_plain(struct ceph_connection *con, bool aborted) 566 { 567 con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED : 568 FRAME_LATE_STATUS_COMPLETE; 569 cpu_to_le32s(&con->v2.out_epil.front_crc); 570 cpu_to_le32s(&con->v2.out_epil.middle_crc); 571 cpu_to_le32s(&con->v2.out_epil.data_crc); 572 } 573 574 static void encode_epilogue_secure(struct ceph_connection *con, bool aborted) 575 { 576 memset(&con->v2.out_epil, 0, sizeof(con->v2.out_epil)); 577 con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED : 578 FRAME_LATE_STATUS_COMPLETE; 579 } 580 581 static int decode_epilogue(void *p, u32 *front_crc, u32 *middle_crc, 582 u32 *data_crc) 583 { 584 u8 late_status; 585 586 late_status = ceph_decode_8(&p); 587 if ((late_status & FRAME_LATE_STATUS_ABORTED_MASK) != 588 FRAME_LATE_STATUS_COMPLETE) { 589 /* we should never get an aborted message as client */ 590 pr_err("bad late_status 0x%x\n", late_status); 591 return -EINVAL; 592 } 593 594 if (front_crc && middle_crc && data_crc) { 595 *front_crc = ceph_decode_32(&p); 596 *middle_crc = ceph_decode_32(&p); 597 *data_crc = ceph_decode_32(&p); 598 } 599 600 return 0; 601 } 602 603 static void fill_header(struct ceph_msg_header *hdr, 604 const struct ceph_msg_header2 *hdr2, 605 int front_len, int middle_len, int data_len, 606 const struct ceph_entity_name *peer_name) 607 { 608 hdr->seq = hdr2->seq; 609 hdr->tid = hdr2->tid; 610 hdr->type = hdr2->type; 611 hdr->priority = hdr2->priority; 612 hdr->version = hdr2->version; 613 hdr->front_len = cpu_to_le32(front_len); 614 hdr->middle_len = cpu_to_le32(middle_len); 615 hdr->data_len = cpu_to_le32(data_len); 616 hdr->data_off = hdr2->data_off; 617 hdr->src = *peer_name; 618 hdr->compat_version = hdr2->compat_version; 619 hdr->reserved = 0; 620 hdr->crc = 0; 621 } 622 623 static void fill_header2(struct ceph_msg_header2 *hdr2, 624 const struct ceph_msg_header *hdr, u64 ack_seq) 625 { 626 hdr2->seq = hdr->seq; 627 hdr2->tid = hdr->tid; 628 hdr2->type = hdr->type; 629 hdr2->priority = hdr->priority; 630 hdr2->version = hdr->version; 631 hdr2->data_pre_padding_len = 0; 632 hdr2->data_off = hdr->data_off; 633 hdr2->ack_seq = cpu_to_le64(ack_seq); 634 hdr2->flags = 0; 635 hdr2->compat_version = hdr->compat_version; 636 hdr2->reserved = 0; 637 } 638 639 static int verify_control_crc(struct ceph_connection *con) 640 { 641 int ctrl_len = con->v2.in_desc.fd_lens[0]; 642 u32 crc, expected_crc; 643 644 WARN_ON(con->v2.in_kvecs[0].iov_len != ctrl_len); 645 WARN_ON(con->v2.in_kvecs[1].iov_len != CEPH_CRC_LEN); 646 647 crc = crc32c(-1, con->v2.in_kvecs[0].iov_base, ctrl_len); 648 expected_crc = get_unaligned_le32(con->v2.in_kvecs[1].iov_base); 649 if (crc != expected_crc) { 650 pr_err("bad control crc, calculated %u, expected %u\n", 651 crc, expected_crc); 652 return -EBADMSG; 653 } 654 655 return 0; 656 } 657 658 static int verify_epilogue_crcs(struct ceph_connection *con, u32 front_crc, 659 u32 middle_crc, u32 data_crc) 660 { 661 if (front_len(con->in_msg)) { 662 con->in_front_crc = crc32c(-1, con->in_msg->front.iov_base, 663 front_len(con->in_msg)); 664 } else { 665 WARN_ON(!middle_len(con->in_msg) && !data_len(con->in_msg)); 666 con->in_front_crc = -1; 667 } 668 669 if (middle_len(con->in_msg)) 670 con->in_middle_crc = crc32c(-1, 671 con->in_msg->middle->vec.iov_base, 672 middle_len(con->in_msg)); 673 else if (data_len(con->in_msg)) 674 con->in_middle_crc = -1; 675 else 676 con->in_middle_crc = 0; 677 678 if (!data_len(con->in_msg)) 679 con->in_data_crc = 0; 680 681 dout("%s con %p msg %p crcs %u %u %u\n", __func__, con, con->in_msg, 682 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 683 684 if (con->in_front_crc != front_crc) { 685 pr_err("bad front crc, calculated %u, expected %u\n", 686 con->in_front_crc, front_crc); 687 return -EBADMSG; 688 } 689 if (con->in_middle_crc != middle_crc) { 690 pr_err("bad middle crc, calculated %u, expected %u\n", 691 con->in_middle_crc, middle_crc); 692 return -EBADMSG; 693 } 694 if (con->in_data_crc != data_crc) { 695 pr_err("bad data crc, calculated %u, expected %u\n", 696 con->in_data_crc, data_crc); 697 return -EBADMSG; 698 } 699 700 return 0; 701 } 702 703 static int setup_crypto(struct ceph_connection *con, 704 const u8 *session_key, int session_key_len, 705 const u8 *con_secret, int con_secret_len) 706 { 707 unsigned int noio_flag; 708 int ret; 709 710 dout("%s con %p con_mode %d session_key_len %d con_secret_len %d\n", 711 __func__, con, con->v2.con_mode, session_key_len, con_secret_len); 712 WARN_ON(con->v2.hmac_key_set || con->v2.gcm_tfm || con->v2.gcm_req); 713 714 if (con->v2.con_mode != CEPH_CON_MODE_CRC && 715 con->v2.con_mode != CEPH_CON_MODE_SECURE) { 716 pr_err("bad con_mode %d\n", con->v2.con_mode); 717 return -EINVAL; 718 } 719 720 if (!session_key_len) { 721 WARN_ON(con->v2.con_mode != CEPH_CON_MODE_CRC); 722 WARN_ON(con_secret_len); 723 return 0; /* auth_none */ 724 } 725 726 hmac_sha256_preparekey(&con->v2.hmac_key, session_key, session_key_len); 727 con->v2.hmac_key_set = true; 728 729 if (con->v2.con_mode == CEPH_CON_MODE_CRC) { 730 WARN_ON(con_secret_len); 731 return 0; /* auth_x, plain mode */ 732 } 733 734 if (con_secret_len < CEPH_GCM_KEY_LEN + 2 * CEPH_GCM_IV_LEN) { 735 pr_err("con_secret too small %d\n", con_secret_len); 736 return -EINVAL; 737 } 738 739 noio_flag = memalloc_noio_save(); 740 con->v2.gcm_tfm = crypto_alloc_aead("gcm(aes)", 0, 0); 741 memalloc_noio_restore(noio_flag); 742 if (IS_ERR(con->v2.gcm_tfm)) { 743 ret = PTR_ERR(con->v2.gcm_tfm); 744 con->v2.gcm_tfm = NULL; 745 pr_err("failed to allocate gcm tfm context: %d\n", ret); 746 return ret; 747 } 748 749 WARN_ON((unsigned long)con_secret & 750 crypto_aead_alignmask(con->v2.gcm_tfm)); 751 ret = crypto_aead_setkey(con->v2.gcm_tfm, con_secret, CEPH_GCM_KEY_LEN); 752 if (ret) { 753 pr_err("failed to set gcm key: %d\n", ret); 754 return ret; 755 } 756 757 WARN_ON(crypto_aead_ivsize(con->v2.gcm_tfm) != CEPH_GCM_IV_LEN); 758 ret = crypto_aead_setauthsize(con->v2.gcm_tfm, CEPH_GCM_TAG_LEN); 759 if (ret) { 760 pr_err("failed to set gcm tag size: %d\n", ret); 761 return ret; 762 } 763 764 con->v2.gcm_req = aead_request_alloc(con->v2.gcm_tfm, GFP_NOIO); 765 if (!con->v2.gcm_req) { 766 pr_err("failed to allocate gcm request\n"); 767 return -ENOMEM; 768 } 769 770 crypto_init_wait(&con->v2.gcm_wait); 771 aead_request_set_callback(con->v2.gcm_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 772 crypto_req_done, &con->v2.gcm_wait); 773 774 memcpy(&con->v2.in_gcm_nonce, con_secret + CEPH_GCM_KEY_LEN, 775 CEPH_GCM_IV_LEN); 776 memcpy(&con->v2.out_gcm_nonce, 777 con_secret + CEPH_GCM_KEY_LEN + CEPH_GCM_IV_LEN, 778 CEPH_GCM_IV_LEN); 779 return 0; /* auth_x, secure mode */ 780 } 781 782 static void ceph_hmac_sha256(struct ceph_connection *con, 783 const struct kvec *kvecs, int kvec_cnt, 784 u8 hmac[SHA256_DIGEST_SIZE]) 785 { 786 struct hmac_sha256_ctx ctx; 787 int i; 788 789 dout("%s con %p hmac_key_set %d kvec_cnt %d\n", __func__, con, 790 con->v2.hmac_key_set, kvec_cnt); 791 792 if (!con->v2.hmac_key_set) { 793 memset(hmac, 0, SHA256_DIGEST_SIZE); 794 return; /* auth_none */ 795 } 796 797 /* auth_x, both plain and secure modes */ 798 hmac_sha256_init(&ctx, &con->v2.hmac_key); 799 for (i = 0; i < kvec_cnt; i++) 800 hmac_sha256_update(&ctx, kvecs[i].iov_base, kvecs[i].iov_len); 801 hmac_sha256_final(&ctx, hmac); 802 } 803 804 static void gcm_inc_nonce(struct ceph_gcm_nonce *nonce) 805 { 806 u64 counter; 807 808 counter = le64_to_cpu(nonce->counter); 809 nonce->counter = cpu_to_le64(counter + 1); 810 } 811 812 static int gcm_crypt(struct ceph_connection *con, bool encrypt, 813 struct scatterlist *src, struct scatterlist *dst, 814 int src_len) 815 { 816 struct ceph_gcm_nonce *nonce; 817 int ret; 818 819 nonce = encrypt ? &con->v2.out_gcm_nonce : &con->v2.in_gcm_nonce; 820 821 aead_request_set_ad(con->v2.gcm_req, 0); /* no AAD */ 822 aead_request_set_crypt(con->v2.gcm_req, src, dst, src_len, (u8 *)nonce); 823 ret = crypto_wait_req(encrypt ? crypto_aead_encrypt(con->v2.gcm_req) : 824 crypto_aead_decrypt(con->v2.gcm_req), 825 &con->v2.gcm_wait); 826 if (ret) 827 return ret; 828 829 gcm_inc_nonce(nonce); 830 return 0; 831 } 832 833 static void get_bvec_at(struct ceph_msg_data_cursor *cursor, 834 struct bio_vec *bv) 835 { 836 struct page *page; 837 size_t off, len; 838 839 WARN_ON(!cursor->total_resid); 840 841 /* skip zero-length data items */ 842 while (!cursor->resid) 843 ceph_msg_data_advance(cursor, 0); 844 845 /* get a piece of data, cursor isn't advanced */ 846 page = ceph_msg_data_next(cursor, &off, &len); 847 bvec_set_page(bv, page, len, off); 848 } 849 850 static int calc_sg_cnt(void *buf, int buf_len) 851 { 852 int sg_cnt; 853 854 if (!buf_len) 855 return 0; 856 857 sg_cnt = need_padding(buf_len) ? 1 : 0; 858 if (is_vmalloc_addr(buf)) { 859 WARN_ON(offset_in_page(buf)); 860 sg_cnt += PAGE_ALIGN(buf_len) >> PAGE_SHIFT; 861 } else { 862 sg_cnt++; 863 } 864 865 return sg_cnt; 866 } 867 868 static int calc_sg_cnt_cursor(struct ceph_msg_data_cursor *cursor) 869 { 870 int data_len = cursor->total_resid; 871 struct bio_vec bv; 872 int sg_cnt; 873 874 if (!data_len) 875 return 0; 876 877 sg_cnt = need_padding(data_len) ? 1 : 0; 878 do { 879 get_bvec_at(cursor, &bv); 880 sg_cnt++; 881 882 ceph_msg_data_advance(cursor, bv.bv_len); 883 } while (cursor->total_resid); 884 885 return sg_cnt; 886 } 887 888 static void init_sgs(struct scatterlist **sg, void *buf, int buf_len, u8 *pad) 889 { 890 void *end = buf + buf_len; 891 struct page *page; 892 int len; 893 void *p; 894 895 if (!buf_len) 896 return; 897 898 if (is_vmalloc_addr(buf)) { 899 p = buf; 900 do { 901 page = vmalloc_to_page(p); 902 len = min_t(int, end - p, PAGE_SIZE); 903 WARN_ON(!page || !len || offset_in_page(p)); 904 sg_set_page(*sg, page, len, 0); 905 *sg = sg_next(*sg); 906 p += len; 907 } while (p != end); 908 } else { 909 sg_set_buf(*sg, buf, buf_len); 910 *sg = sg_next(*sg); 911 } 912 913 if (need_padding(buf_len)) { 914 sg_set_buf(*sg, pad, padding_len(buf_len)); 915 *sg = sg_next(*sg); 916 } 917 } 918 919 static void init_sgs_cursor(struct scatterlist **sg, 920 struct ceph_msg_data_cursor *cursor, u8 *pad) 921 { 922 int data_len = cursor->total_resid; 923 struct bio_vec bv; 924 925 if (!data_len) 926 return; 927 928 do { 929 get_bvec_at(cursor, &bv); 930 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 931 *sg = sg_next(*sg); 932 933 ceph_msg_data_advance(cursor, bv.bv_len); 934 } while (cursor->total_resid); 935 936 if (need_padding(data_len)) { 937 sg_set_buf(*sg, pad, padding_len(data_len)); 938 *sg = sg_next(*sg); 939 } 940 } 941 942 /** 943 * init_sgs_pages: set up scatterlist on an array of page pointers 944 * @sg: scatterlist to populate 945 * @pages: pointer to page array 946 * @dpos: position in the array to start (bytes) 947 * @dlen: len to add to sg (bytes) 948 * @pad: pointer to pad destination (if any) 949 * 950 * Populate the scatterlist from the page array, starting at an arbitrary 951 * byte in the array and running for a specified length. 952 */ 953 static void init_sgs_pages(struct scatterlist **sg, struct page **pages, 954 int dpos, int dlen, u8 *pad) 955 { 956 int idx = dpos >> PAGE_SHIFT; 957 int off = offset_in_page(dpos); 958 int resid = dlen; 959 960 do { 961 int len = min(resid, (int)PAGE_SIZE - off); 962 963 sg_set_page(*sg, pages[idx], len, off); 964 *sg = sg_next(*sg); 965 off = 0; 966 ++idx; 967 resid -= len; 968 } while (resid); 969 970 if (need_padding(dlen)) { 971 sg_set_buf(*sg, pad, padding_len(dlen)); 972 *sg = sg_next(*sg); 973 } 974 } 975 976 static int setup_message_sgs(struct sg_table *sgt, struct ceph_msg *msg, 977 u8 *front_pad, u8 *middle_pad, u8 *data_pad, 978 void *epilogue, struct page **pages, int dpos, 979 bool add_tag) 980 { 981 struct ceph_msg_data_cursor cursor; 982 struct scatterlist *cur_sg; 983 int dlen = data_len(msg); 984 int sg_cnt; 985 int ret; 986 987 if (!front_len(msg) && !middle_len(msg) && !data_len(msg)) 988 return 0; 989 990 sg_cnt = 1; /* epilogue + [auth tag] */ 991 if (front_len(msg)) 992 sg_cnt += calc_sg_cnt(msg->front.iov_base, 993 front_len(msg)); 994 if (middle_len(msg)) 995 sg_cnt += calc_sg_cnt(msg->middle->vec.iov_base, 996 middle_len(msg)); 997 if (dlen) { 998 if (pages) { 999 sg_cnt += calc_pages_for(dpos, dlen); 1000 if (need_padding(dlen)) 1001 sg_cnt++; 1002 } else { 1003 ceph_msg_data_cursor_init(&cursor, msg, dlen); 1004 sg_cnt += calc_sg_cnt_cursor(&cursor); 1005 } 1006 } 1007 1008 ret = sg_alloc_table(sgt, sg_cnt, GFP_NOIO); 1009 if (ret) 1010 return ret; 1011 1012 cur_sg = sgt->sgl; 1013 if (front_len(msg)) 1014 init_sgs(&cur_sg, msg->front.iov_base, front_len(msg), 1015 front_pad); 1016 if (middle_len(msg)) 1017 init_sgs(&cur_sg, msg->middle->vec.iov_base, middle_len(msg), 1018 middle_pad); 1019 if (dlen) { 1020 if (pages) { 1021 init_sgs_pages(&cur_sg, pages, dpos, dlen, data_pad); 1022 } else { 1023 ceph_msg_data_cursor_init(&cursor, msg, dlen); 1024 init_sgs_cursor(&cur_sg, &cursor, data_pad); 1025 } 1026 } 1027 1028 WARN_ON(!sg_is_last(cur_sg)); 1029 sg_set_buf(cur_sg, epilogue, 1030 CEPH_GCM_BLOCK_LEN + (add_tag ? CEPH_GCM_TAG_LEN : 0)); 1031 return 0; 1032 } 1033 1034 static int decrypt_preamble(struct ceph_connection *con) 1035 { 1036 struct scatterlist sg; 1037 1038 sg_init_one(&sg, con->v2.in_buf, CEPH_PREAMBLE_SECURE_LEN); 1039 return gcm_crypt(con, false, &sg, &sg, CEPH_PREAMBLE_SECURE_LEN); 1040 } 1041 1042 static int decrypt_control_remainder(struct ceph_connection *con) 1043 { 1044 int ctrl_len = con->v2.in_desc.fd_lens[0]; 1045 int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; 1046 int pt_len = padding_len(rem_len) + CEPH_GCM_TAG_LEN; 1047 struct scatterlist sgs[2]; 1048 1049 WARN_ON(con->v2.in_kvecs[0].iov_len != rem_len); 1050 WARN_ON(con->v2.in_kvecs[1].iov_len != pt_len); 1051 1052 sg_init_table(sgs, 2); 1053 sg_set_buf(&sgs[0], con->v2.in_kvecs[0].iov_base, rem_len); 1054 sg_set_buf(&sgs[1], con->v2.in_buf, pt_len); 1055 1056 return gcm_crypt(con, false, sgs, sgs, 1057 padded_len(rem_len) + CEPH_GCM_TAG_LEN); 1058 } 1059 1060 /* Process sparse read data that lives in a buffer */ 1061 static int process_v2_sparse_read(struct ceph_connection *con, 1062 struct page **pages, int spos) 1063 { 1064 struct ceph_msg_data_cursor cursor; 1065 int ret; 1066 1067 ceph_msg_data_cursor_init(&cursor, con->in_msg, 1068 con->in_msg->sparse_read_total); 1069 1070 for (;;) { 1071 char *buf = NULL; 1072 1073 ret = con->ops->sparse_read(con, &cursor, &buf); 1074 if (ret <= 0) 1075 return ret; 1076 1077 dout("%s: sparse_read return %x buf %p\n", __func__, ret, buf); 1078 1079 do { 1080 int idx = spos >> PAGE_SHIFT; 1081 int soff = offset_in_page(spos); 1082 struct page *spage = con->v2.in_enc_pages[idx]; 1083 int len = min_t(int, ret, PAGE_SIZE - soff); 1084 1085 if (buf) { 1086 memcpy_from_page(buf, spage, soff, len); 1087 buf += len; 1088 } else { 1089 struct bio_vec bv; 1090 1091 get_bvec_at(&cursor, &bv); 1092 len = min_t(int, len, bv.bv_len); 1093 memcpy_page(bv.bv_page, bv.bv_offset, 1094 spage, soff, len); 1095 ceph_msg_data_advance(&cursor, len); 1096 } 1097 spos += len; 1098 ret -= len; 1099 } while (ret); 1100 } 1101 } 1102 1103 static int decrypt_tail(struct ceph_connection *con) 1104 { 1105 struct sg_table enc_sgt = {}; 1106 struct sg_table sgt = {}; 1107 struct page **pages = NULL; 1108 bool sparse = !!con->in_msg->sparse_read_total; 1109 int dpos = 0; 1110 int tail_len; 1111 int ret; 1112 1113 tail_len = tail_onwire_len(con->in_msg, true); 1114 ret = sg_alloc_table_from_pages(&enc_sgt, con->v2.in_enc_pages, 1115 con->v2.in_enc_page_cnt, 0, tail_len, 1116 GFP_NOIO); 1117 if (ret) 1118 goto out; 1119 1120 if (sparse) { 1121 dpos = padded_len(front_len(con->in_msg) + padded_len(middle_len(con->in_msg))); 1122 pages = con->v2.in_enc_pages; 1123 } 1124 1125 ret = setup_message_sgs(&sgt, con->in_msg, FRONT_PAD(con->v2.in_buf), 1126 MIDDLE_PAD(con->v2.in_buf), DATA_PAD(con->v2.in_buf), 1127 con->v2.in_buf, pages, dpos, true); 1128 if (ret) 1129 goto out; 1130 1131 dout("%s con %p msg %p enc_page_cnt %d sg_cnt %d\n", __func__, con, 1132 con->in_msg, con->v2.in_enc_page_cnt, sgt.orig_nents); 1133 ret = gcm_crypt(con, false, enc_sgt.sgl, sgt.sgl, tail_len); 1134 if (ret) 1135 goto out; 1136 1137 if (sparse && data_len(con->in_msg)) { 1138 ret = process_v2_sparse_read(con, con->v2.in_enc_pages, dpos); 1139 if (ret) 1140 goto out; 1141 } 1142 1143 WARN_ON(!con->v2.in_enc_page_cnt); 1144 ceph_release_page_vector(con->v2.in_enc_pages, 1145 con->v2.in_enc_page_cnt); 1146 con->v2.in_enc_pages = NULL; 1147 con->v2.in_enc_page_cnt = 0; 1148 1149 out: 1150 sg_free_table(&sgt); 1151 sg_free_table(&enc_sgt); 1152 return ret; 1153 } 1154 1155 static int prepare_banner(struct ceph_connection *con) 1156 { 1157 int buf_len = CEPH_BANNER_V2_LEN + 2 + 8 + 8; 1158 void *buf, *p; 1159 1160 buf = alloc_conn_buf(con, buf_len); 1161 if (!buf) 1162 return -ENOMEM; 1163 1164 p = buf; 1165 ceph_encode_copy(&p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN); 1166 ceph_encode_16(&p, sizeof(u64) + sizeof(u64)); 1167 ceph_encode_64(&p, CEPH_MSGR2_SUPPORTED_FEATURES); 1168 ceph_encode_64(&p, CEPH_MSGR2_REQUIRED_FEATURES); 1169 WARN_ON(p != buf + buf_len); 1170 1171 add_out_kvec(con, buf, buf_len); 1172 add_out_sign_kvec(con, buf, buf_len); 1173 ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING); 1174 return 0; 1175 } 1176 1177 /* 1178 * base: 1179 * preamble 1180 * control body (ctrl_len bytes) 1181 * space for control crc 1182 * 1183 * extdata (optional): 1184 * control body (extdata_len bytes) 1185 * 1186 * Compute control crc and gather base and extdata into: 1187 * 1188 * preamble 1189 * control body (ctrl_len + extdata_len bytes) 1190 * control crc 1191 * 1192 * Preamble should already be encoded at the start of base. 1193 */ 1194 static void prepare_head_plain(struct ceph_connection *con, void *base, 1195 int ctrl_len, void *extdata, int extdata_len, 1196 bool to_be_signed) 1197 { 1198 int base_len = CEPH_PREAMBLE_LEN + ctrl_len + CEPH_CRC_LEN; 1199 void *crcp = base + base_len - CEPH_CRC_LEN; 1200 u32 crc; 1201 1202 crc = crc32c(-1, CTRL_BODY(base), ctrl_len); 1203 if (extdata_len) 1204 crc = crc32c(crc, extdata, extdata_len); 1205 put_unaligned_le32(crc, crcp); 1206 1207 if (!extdata_len) { 1208 add_out_kvec(con, base, base_len); 1209 if (to_be_signed) 1210 add_out_sign_kvec(con, base, base_len); 1211 return; 1212 } 1213 1214 add_out_kvec(con, base, crcp - base); 1215 add_out_kvec(con, extdata, extdata_len); 1216 add_out_kvec(con, crcp, CEPH_CRC_LEN); 1217 if (to_be_signed) { 1218 add_out_sign_kvec(con, base, crcp - base); 1219 add_out_sign_kvec(con, extdata, extdata_len); 1220 add_out_sign_kvec(con, crcp, CEPH_CRC_LEN); 1221 } 1222 } 1223 1224 static int prepare_head_secure_small(struct ceph_connection *con, 1225 void *base, int ctrl_len) 1226 { 1227 struct scatterlist sg; 1228 int ret; 1229 1230 /* inline buffer padding? */ 1231 if (ctrl_len < CEPH_PREAMBLE_INLINE_LEN) 1232 memset(CTRL_BODY(base) + ctrl_len, 0, 1233 CEPH_PREAMBLE_INLINE_LEN - ctrl_len); 1234 1235 sg_init_one(&sg, base, CEPH_PREAMBLE_SECURE_LEN); 1236 ret = gcm_crypt(con, true, &sg, &sg, 1237 CEPH_PREAMBLE_SECURE_LEN - CEPH_GCM_TAG_LEN); 1238 if (ret) 1239 return ret; 1240 1241 add_out_kvec(con, base, CEPH_PREAMBLE_SECURE_LEN); 1242 return 0; 1243 } 1244 1245 /* 1246 * base: 1247 * preamble 1248 * control body (ctrl_len bytes) 1249 * space for padding, if needed 1250 * space for control remainder auth tag 1251 * space for preamble auth tag 1252 * 1253 * Encrypt preamble and the inline portion, then encrypt the remainder 1254 * and gather into: 1255 * 1256 * preamble 1257 * control body (48 bytes) 1258 * preamble auth tag 1259 * control body (ctrl_len - 48 bytes) 1260 * zero padding, if needed 1261 * control remainder auth tag 1262 * 1263 * Preamble should already be encoded at the start of base. 1264 */ 1265 static int prepare_head_secure_big(struct ceph_connection *con, 1266 void *base, int ctrl_len) 1267 { 1268 int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; 1269 void *rem = CTRL_BODY(base) + CEPH_PREAMBLE_INLINE_LEN; 1270 void *rem_tag = rem + padded_len(rem_len); 1271 void *pmbl_tag = rem_tag + CEPH_GCM_TAG_LEN; 1272 struct scatterlist sgs[2]; 1273 int ret; 1274 1275 sg_init_table(sgs, 2); 1276 sg_set_buf(&sgs[0], base, rem - base); 1277 sg_set_buf(&sgs[1], pmbl_tag, CEPH_GCM_TAG_LEN); 1278 ret = gcm_crypt(con, true, sgs, sgs, rem - base); 1279 if (ret) 1280 return ret; 1281 1282 /* control remainder padding? */ 1283 if (need_padding(rem_len)) 1284 memset(rem + rem_len, 0, padding_len(rem_len)); 1285 1286 sg_init_one(&sgs[0], rem, pmbl_tag - rem); 1287 ret = gcm_crypt(con, true, sgs, sgs, rem_tag - rem); 1288 if (ret) 1289 return ret; 1290 1291 add_out_kvec(con, base, rem - base); 1292 add_out_kvec(con, pmbl_tag, CEPH_GCM_TAG_LEN); 1293 add_out_kvec(con, rem, pmbl_tag - rem); 1294 return 0; 1295 } 1296 1297 static int __prepare_control(struct ceph_connection *con, int tag, 1298 void *base, int ctrl_len, void *extdata, 1299 int extdata_len, bool to_be_signed) 1300 { 1301 int total_len = ctrl_len + extdata_len; 1302 struct ceph_frame_desc desc; 1303 int ret; 1304 1305 dout("%s con %p tag %d len %d (%d+%d)\n", __func__, con, tag, 1306 total_len, ctrl_len, extdata_len); 1307 1308 /* extdata may be vmalloc'ed but not base */ 1309 if (WARN_ON(is_vmalloc_addr(base) || !ctrl_len)) 1310 return -EINVAL; 1311 1312 init_frame_desc(&desc, tag, &total_len, 1); 1313 encode_preamble(&desc, base); 1314 1315 if (con_secure(con)) { 1316 if (WARN_ON(extdata_len || to_be_signed)) 1317 return -EINVAL; 1318 1319 if (ctrl_len <= CEPH_PREAMBLE_INLINE_LEN) 1320 /* fully inlined, inline buffer may need padding */ 1321 ret = prepare_head_secure_small(con, base, ctrl_len); 1322 else 1323 /* partially inlined, inline buffer is full */ 1324 ret = prepare_head_secure_big(con, base, ctrl_len); 1325 if (ret) 1326 return ret; 1327 } else { 1328 prepare_head_plain(con, base, ctrl_len, extdata, extdata_len, 1329 to_be_signed); 1330 } 1331 1332 ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING); 1333 return 0; 1334 } 1335 1336 static int prepare_control(struct ceph_connection *con, int tag, 1337 void *base, int ctrl_len) 1338 { 1339 return __prepare_control(con, tag, base, ctrl_len, NULL, 0, false); 1340 } 1341 1342 static int prepare_hello(struct ceph_connection *con) 1343 { 1344 void *buf, *p; 1345 int ctrl_len; 1346 1347 ctrl_len = 1 + ceph_entity_addr_encoding_len(&con->peer_addr); 1348 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false)); 1349 if (!buf) 1350 return -ENOMEM; 1351 1352 p = CTRL_BODY(buf); 1353 ceph_encode_8(&p, CEPH_ENTITY_TYPE_CLIENT); 1354 ceph_encode_entity_addr(&p, &con->peer_addr); 1355 WARN_ON(p != CTRL_BODY(buf) + ctrl_len); 1356 1357 return __prepare_control(con, FRAME_TAG_HELLO, buf, ctrl_len, 1358 NULL, 0, true); 1359 } 1360 1361 /* so that head_onwire_len(AUTH_BUF_LEN, false) is 512 */ 1362 #define AUTH_BUF_LEN (512 - CEPH_CRC_LEN - CEPH_PREAMBLE_PLAIN_LEN) 1363 1364 static int prepare_auth_request(struct ceph_connection *con) 1365 { 1366 void *authorizer, *authorizer_copy; 1367 int ctrl_len, authorizer_len; 1368 void *buf; 1369 int ret; 1370 1371 ctrl_len = AUTH_BUF_LEN; 1372 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false)); 1373 if (!buf) 1374 return -ENOMEM; 1375 1376 mutex_unlock(&con->mutex); 1377 ret = con->ops->get_auth_request(con, CTRL_BODY(buf), &ctrl_len, 1378 &authorizer, &authorizer_len); 1379 mutex_lock(&con->mutex); 1380 if (con->state != CEPH_CON_S_V2_HELLO) { 1381 dout("%s con %p state changed to %d\n", __func__, con, 1382 con->state); 1383 return -EAGAIN; 1384 } 1385 1386 dout("%s con %p get_auth_request ret %d\n", __func__, con, ret); 1387 if (ret) 1388 return ret; 1389 1390 authorizer_copy = alloc_conn_buf(con, authorizer_len); 1391 if (!authorizer_copy) 1392 return -ENOMEM; 1393 1394 memcpy(authorizer_copy, authorizer, authorizer_len); 1395 1396 return __prepare_control(con, FRAME_TAG_AUTH_REQUEST, buf, ctrl_len, 1397 authorizer_copy, authorizer_len, true); 1398 } 1399 1400 static int prepare_auth_request_more(struct ceph_connection *con, 1401 void *reply, int reply_len) 1402 { 1403 int ctrl_len, authorizer_len; 1404 void *authorizer; 1405 void *buf; 1406 int ret; 1407 1408 ctrl_len = AUTH_BUF_LEN; 1409 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false)); 1410 if (!buf) 1411 return -ENOMEM; 1412 1413 mutex_unlock(&con->mutex); 1414 ret = con->ops->handle_auth_reply_more(con, reply, reply_len, 1415 CTRL_BODY(buf), &ctrl_len, 1416 &authorizer, &authorizer_len); 1417 mutex_lock(&con->mutex); 1418 if (con->state != CEPH_CON_S_V2_AUTH) { 1419 dout("%s con %p state changed to %d\n", __func__, con, 1420 con->state); 1421 return -EAGAIN; 1422 } 1423 1424 dout("%s con %p handle_auth_reply_more ret %d\n", __func__, con, ret); 1425 if (ret) 1426 return ret; 1427 1428 return __prepare_control(con, FRAME_TAG_AUTH_REQUEST_MORE, buf, 1429 ctrl_len, authorizer, authorizer_len, true); 1430 } 1431 1432 static int prepare_auth_signature(struct ceph_connection *con) 1433 { 1434 void *buf; 1435 1436 buf = alloc_conn_buf(con, head_onwire_len(SHA256_DIGEST_SIZE, 1437 con_secure(con))); 1438 if (!buf) 1439 return -ENOMEM; 1440 1441 ceph_hmac_sha256(con, con->v2.in_sign_kvecs, con->v2.in_sign_kvec_cnt, 1442 CTRL_BODY(buf)); 1443 1444 return prepare_control(con, FRAME_TAG_AUTH_SIGNATURE, buf, 1445 SHA256_DIGEST_SIZE); 1446 } 1447 1448 static int prepare_client_ident(struct ceph_connection *con) 1449 { 1450 struct ceph_entity_addr *my_addr = &con->msgr->inst.addr; 1451 struct ceph_client *client = from_msgr(con->msgr); 1452 u64 global_id = ceph_client_gid(client); 1453 void *buf, *p; 1454 int ctrl_len; 1455 1456 WARN_ON(con->v2.server_cookie); 1457 WARN_ON(con->v2.connect_seq); 1458 WARN_ON(con->v2.peer_global_seq); 1459 1460 if (!con->v2.client_cookie) { 1461 do { 1462 get_random_bytes(&con->v2.client_cookie, 1463 sizeof(con->v2.client_cookie)); 1464 } while (!con->v2.client_cookie); 1465 dout("%s con %p generated cookie 0x%llx\n", __func__, con, 1466 con->v2.client_cookie); 1467 } else { 1468 dout("%s con %p cookie already set 0x%llx\n", __func__, con, 1469 con->v2.client_cookie); 1470 } 1471 1472 dout("%s con %p my_addr %s/%u peer_addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx cookie 0x%llx\n", 1473 __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce), 1474 ceph_pr_addr(&con->peer_addr), le32_to_cpu(con->peer_addr.nonce), 1475 global_id, con->v2.global_seq, client->supported_features, 1476 client->required_features, con->v2.client_cookie); 1477 1478 ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 1479 ceph_entity_addr_encoding_len(&con->peer_addr) + 6 * 8; 1480 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con))); 1481 if (!buf) 1482 return -ENOMEM; 1483 1484 p = CTRL_BODY(buf); 1485 ceph_encode_8(&p, 2); /* addrvec marker */ 1486 ceph_encode_32(&p, 1); /* addr_cnt */ 1487 ceph_encode_entity_addr(&p, my_addr); 1488 ceph_encode_entity_addr(&p, &con->peer_addr); 1489 ceph_encode_64(&p, global_id); 1490 ceph_encode_64(&p, con->v2.global_seq); 1491 ceph_encode_64(&p, client->supported_features); 1492 ceph_encode_64(&p, client->required_features); 1493 ceph_encode_64(&p, 0); /* flags */ 1494 ceph_encode_64(&p, con->v2.client_cookie); 1495 WARN_ON(p != CTRL_BODY(buf) + ctrl_len); 1496 1497 return prepare_control(con, FRAME_TAG_CLIENT_IDENT, buf, ctrl_len); 1498 } 1499 1500 static int prepare_session_reconnect(struct ceph_connection *con) 1501 { 1502 struct ceph_entity_addr *my_addr = &con->msgr->inst.addr; 1503 void *buf, *p; 1504 int ctrl_len; 1505 1506 WARN_ON(!con->v2.client_cookie); 1507 WARN_ON(!con->v2.server_cookie); 1508 WARN_ON(!con->v2.connect_seq); 1509 WARN_ON(!con->v2.peer_global_seq); 1510 1511 dout("%s con %p my_addr %s/%u client_cookie 0x%llx server_cookie 0x%llx global_seq %llu connect_seq %llu in_seq %llu\n", 1512 __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce), 1513 con->v2.client_cookie, con->v2.server_cookie, con->v2.global_seq, 1514 con->v2.connect_seq, con->in_seq); 1515 1516 ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 5 * 8; 1517 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con))); 1518 if (!buf) 1519 return -ENOMEM; 1520 1521 p = CTRL_BODY(buf); 1522 ceph_encode_8(&p, 2); /* entity_addrvec_t marker */ 1523 ceph_encode_32(&p, 1); /* my_addrs len */ 1524 ceph_encode_entity_addr(&p, my_addr); 1525 ceph_encode_64(&p, con->v2.client_cookie); 1526 ceph_encode_64(&p, con->v2.server_cookie); 1527 ceph_encode_64(&p, con->v2.global_seq); 1528 ceph_encode_64(&p, con->v2.connect_seq); 1529 ceph_encode_64(&p, con->in_seq); 1530 WARN_ON(p != CTRL_BODY(buf) + ctrl_len); 1531 1532 return prepare_control(con, FRAME_TAG_SESSION_RECONNECT, buf, ctrl_len); 1533 } 1534 1535 static int prepare_keepalive2(struct ceph_connection *con) 1536 { 1537 struct ceph_timespec *ts = CTRL_BODY(con->v2.out_buf); 1538 struct timespec64 now; 1539 1540 ktime_get_real_ts64(&now); 1541 dout("%s con %p timestamp %lld.%09ld\n", __func__, con, now.tv_sec, 1542 now.tv_nsec); 1543 1544 ceph_encode_timespec64(ts, &now); 1545 1546 reset_out_kvecs(con); 1547 return prepare_control(con, FRAME_TAG_KEEPALIVE2, con->v2.out_buf, 1548 sizeof(struct ceph_timespec)); 1549 } 1550 1551 static int prepare_ack(struct ceph_connection *con) 1552 { 1553 void *p; 1554 1555 dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con, 1556 con->in_seq_acked, con->in_seq); 1557 con->in_seq_acked = con->in_seq; 1558 1559 p = CTRL_BODY(con->v2.out_buf); 1560 ceph_encode_64(&p, con->in_seq_acked); 1561 1562 reset_out_kvecs(con); 1563 return prepare_control(con, FRAME_TAG_ACK, con->v2.out_buf, 8); 1564 } 1565 1566 static void prepare_epilogue_plain(struct ceph_connection *con, 1567 struct ceph_msg *msg, bool aborted) 1568 { 1569 dout("%s con %p msg %p aborted %d crcs %u %u %u\n", __func__, con, 1570 msg, aborted, con->v2.out_epil.front_crc, 1571 con->v2.out_epil.middle_crc, con->v2.out_epil.data_crc); 1572 1573 encode_epilogue_plain(con, aborted); 1574 add_out_kvec(con, &con->v2.out_epil, CEPH_EPILOGUE_PLAIN_LEN); 1575 } 1576 1577 /* 1578 * For "used" empty segments, crc is -1. For unused (trailing) 1579 * segments, crc is 0. 1580 */ 1581 static void prepare_message_plain(struct ceph_connection *con, 1582 struct ceph_msg *msg) 1583 { 1584 prepare_head_plain(con, con->v2.out_buf, 1585 sizeof(struct ceph_msg_header2), NULL, 0, false); 1586 1587 if (!front_len(msg) && !middle_len(msg)) { 1588 if (!data_len(msg)) { 1589 /* 1590 * Empty message: once the head is written, 1591 * we are done -- there is no epilogue. 1592 */ 1593 con->v2.out_state = OUT_S_FINISH_MESSAGE; 1594 return; 1595 } 1596 1597 con->v2.out_epil.front_crc = -1; 1598 con->v2.out_epil.middle_crc = -1; 1599 con->v2.out_state = OUT_S_QUEUE_DATA; 1600 return; 1601 } 1602 1603 if (front_len(msg)) { 1604 con->v2.out_epil.front_crc = crc32c(-1, msg->front.iov_base, 1605 front_len(msg)); 1606 add_out_kvec(con, msg->front.iov_base, front_len(msg)); 1607 } else { 1608 /* middle (at least) is there, checked above */ 1609 con->v2.out_epil.front_crc = -1; 1610 } 1611 1612 if (middle_len(msg)) { 1613 con->v2.out_epil.middle_crc = 1614 crc32c(-1, msg->middle->vec.iov_base, middle_len(msg)); 1615 add_out_kvec(con, msg->middle->vec.iov_base, middle_len(msg)); 1616 } else { 1617 con->v2.out_epil.middle_crc = data_len(msg) ? -1 : 0; 1618 } 1619 1620 if (data_len(msg)) { 1621 con->v2.out_state = OUT_S_QUEUE_DATA; 1622 } else { 1623 con->v2.out_epil.data_crc = 0; 1624 prepare_epilogue_plain(con, msg, false); 1625 con->v2.out_state = OUT_S_FINISH_MESSAGE; 1626 } 1627 } 1628 1629 /* 1630 * Unfortunately the kernel crypto API doesn't support streaming 1631 * (piecewise) operation for AEAD algorithms, so we can't get away 1632 * with a fixed size buffer and a couple sgs. Instead, we have to 1633 * allocate pages for the entire tail of the message (currently up 1634 * to ~32M) and two sgs arrays (up to ~256K each)... 1635 */ 1636 static int prepare_message_secure(struct ceph_connection *con, 1637 struct ceph_msg *msg) 1638 { 1639 void *zerop = page_address(ceph_zero_page); 1640 struct sg_table enc_sgt = {}; 1641 struct sg_table sgt = {}; 1642 struct page **enc_pages; 1643 int enc_page_cnt; 1644 int tail_len; 1645 int ret; 1646 1647 ret = prepare_head_secure_small(con, con->v2.out_buf, 1648 sizeof(struct ceph_msg_header2)); 1649 if (ret) 1650 return ret; 1651 1652 tail_len = tail_onwire_len(msg, true); 1653 if (!tail_len) { 1654 /* 1655 * Empty message: once the head is written, 1656 * we are done -- there is no epilogue. 1657 */ 1658 con->v2.out_state = OUT_S_FINISH_MESSAGE; 1659 return 0; 1660 } 1661 1662 encode_epilogue_secure(con, false); 1663 ret = setup_message_sgs(&sgt, msg, zerop, zerop, zerop, 1664 &con->v2.out_epil, NULL, 0, false); 1665 if (ret) 1666 goto out; 1667 1668 enc_page_cnt = calc_pages_for(0, tail_len); 1669 enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO); 1670 if (IS_ERR(enc_pages)) { 1671 ret = PTR_ERR(enc_pages); 1672 goto out; 1673 } 1674 1675 WARN_ON(con->v2.out_enc_pages || con->v2.out_enc_page_cnt); 1676 con->v2.out_enc_pages = enc_pages; 1677 con->v2.out_enc_page_cnt = enc_page_cnt; 1678 con->v2.out_enc_resid = tail_len; 1679 con->v2.out_enc_i = 0; 1680 1681 ret = sg_alloc_table_from_pages(&enc_sgt, enc_pages, enc_page_cnt, 1682 0, tail_len, GFP_NOIO); 1683 if (ret) 1684 goto out; 1685 1686 ret = gcm_crypt(con, true, sgt.sgl, enc_sgt.sgl, 1687 tail_len - CEPH_GCM_TAG_LEN); 1688 if (ret) 1689 goto out; 1690 1691 dout("%s con %p msg %p sg_cnt %d enc_page_cnt %d\n", __func__, con, 1692 msg, sgt.orig_nents, enc_page_cnt); 1693 con->v2.out_state = OUT_S_QUEUE_ENC_PAGE; 1694 1695 out: 1696 sg_free_table(&sgt); 1697 sg_free_table(&enc_sgt); 1698 return ret; 1699 } 1700 1701 static int prepare_message(struct ceph_connection *con, struct ceph_msg *msg) 1702 { 1703 int lens[] = { 1704 sizeof(struct ceph_msg_header2), 1705 front_len(msg), 1706 middle_len(msg), 1707 data_len(msg) 1708 }; 1709 struct ceph_frame_desc desc; 1710 int ret; 1711 1712 dout("%s con %p msg %p logical %d+%d+%d+%d\n", __func__, con, 1713 msg, lens[0], lens[1], lens[2], lens[3]); 1714 1715 if (con->in_seq > con->in_seq_acked) { 1716 dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con, 1717 con->in_seq_acked, con->in_seq); 1718 con->in_seq_acked = con->in_seq; 1719 } 1720 1721 reset_out_kvecs(con); 1722 init_frame_desc(&desc, FRAME_TAG_MESSAGE, lens, 4); 1723 encode_preamble(&desc, con->v2.out_buf); 1724 fill_header2(CTRL_BODY(con->v2.out_buf), &msg->hdr, 1725 con->in_seq_acked); 1726 1727 if (con_secure(con)) { 1728 ret = prepare_message_secure(con, msg); 1729 if (ret) 1730 return ret; 1731 } else { 1732 prepare_message_plain(con, msg); 1733 } 1734 1735 ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING); 1736 return 0; 1737 } 1738 1739 static int prepare_read_banner_prefix(struct ceph_connection *con) 1740 { 1741 void *buf; 1742 1743 buf = alloc_conn_buf(con, CEPH_BANNER_V2_PREFIX_LEN); 1744 if (!buf) 1745 return -ENOMEM; 1746 1747 reset_in_kvecs(con); 1748 add_in_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN); 1749 add_in_sign_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN); 1750 con->state = CEPH_CON_S_V2_BANNER_PREFIX; 1751 return 0; 1752 } 1753 1754 static int prepare_read_banner_payload(struct ceph_connection *con, 1755 int payload_len) 1756 { 1757 void *buf; 1758 1759 buf = alloc_conn_buf(con, payload_len); 1760 if (!buf) 1761 return -ENOMEM; 1762 1763 reset_in_kvecs(con); 1764 add_in_kvec(con, buf, payload_len); 1765 add_in_sign_kvec(con, buf, payload_len); 1766 con->state = CEPH_CON_S_V2_BANNER_PAYLOAD; 1767 return 0; 1768 } 1769 1770 static void prepare_read_preamble(struct ceph_connection *con) 1771 { 1772 reset_in_kvecs(con); 1773 add_in_kvec(con, con->v2.in_buf, 1774 con_secure(con) ? CEPH_PREAMBLE_SECURE_LEN : 1775 CEPH_PREAMBLE_PLAIN_LEN); 1776 con->v2.in_state = IN_S_HANDLE_PREAMBLE; 1777 } 1778 1779 static int prepare_read_control(struct ceph_connection *con) 1780 { 1781 int ctrl_len = con->v2.in_desc.fd_lens[0]; 1782 int head_len; 1783 void *buf; 1784 1785 reset_in_kvecs(con); 1786 if (con->state == CEPH_CON_S_V2_HELLO || 1787 con->state == CEPH_CON_S_V2_AUTH) { 1788 head_len = head_onwire_len(ctrl_len, false); 1789 buf = alloc_conn_buf(con, head_len); 1790 if (!buf) 1791 return -ENOMEM; 1792 1793 /* preserve preamble */ 1794 memcpy(buf, con->v2.in_buf, CEPH_PREAMBLE_LEN); 1795 1796 add_in_kvec(con, CTRL_BODY(buf), ctrl_len); 1797 add_in_kvec(con, CTRL_BODY(buf) + ctrl_len, CEPH_CRC_LEN); 1798 add_in_sign_kvec(con, buf, head_len); 1799 } else { 1800 if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) { 1801 buf = alloc_conn_buf(con, ctrl_len); 1802 if (!buf) 1803 return -ENOMEM; 1804 1805 add_in_kvec(con, buf, ctrl_len); 1806 } else { 1807 add_in_kvec(con, CTRL_BODY(con->v2.in_buf), ctrl_len); 1808 } 1809 add_in_kvec(con, con->v2.in_buf, CEPH_CRC_LEN); 1810 } 1811 con->v2.in_state = IN_S_HANDLE_CONTROL; 1812 return 0; 1813 } 1814 1815 static int prepare_read_control_remainder(struct ceph_connection *con) 1816 { 1817 int ctrl_len = con->v2.in_desc.fd_lens[0]; 1818 int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; 1819 void *buf; 1820 1821 buf = alloc_conn_buf(con, ctrl_len); 1822 if (!buf) 1823 return -ENOMEM; 1824 1825 memcpy(buf, CTRL_BODY(con->v2.in_buf), CEPH_PREAMBLE_INLINE_LEN); 1826 1827 reset_in_kvecs(con); 1828 add_in_kvec(con, buf + CEPH_PREAMBLE_INLINE_LEN, rem_len); 1829 add_in_kvec(con, con->v2.in_buf, 1830 padding_len(rem_len) + CEPH_GCM_TAG_LEN); 1831 con->v2.in_state = IN_S_HANDLE_CONTROL_REMAINDER; 1832 return 0; 1833 } 1834 1835 static int prepare_read_data(struct ceph_connection *con) 1836 { 1837 struct bio_vec bv; 1838 1839 con->in_data_crc = -1; 1840 ceph_msg_data_cursor_init(&con->v2.in_cursor, con->in_msg, 1841 data_len(con->in_msg)); 1842 1843 get_bvec_at(&con->v2.in_cursor, &bv); 1844 if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { 1845 if (unlikely(!con->bounce_page)) { 1846 con->bounce_page = alloc_page(GFP_NOIO); 1847 if (!con->bounce_page) { 1848 pr_err("failed to allocate bounce page\n"); 1849 return -ENOMEM; 1850 } 1851 } 1852 1853 bv.bv_page = con->bounce_page; 1854 bv.bv_offset = 0; 1855 } 1856 set_in_bvec(con, &bv); 1857 con->v2.in_state = IN_S_PREPARE_READ_DATA_CONT; 1858 return 0; 1859 } 1860 1861 static void prepare_read_data_cont(struct ceph_connection *con) 1862 { 1863 struct bio_vec bv; 1864 1865 if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { 1866 con->in_data_crc = crc32c(con->in_data_crc, 1867 page_address(con->bounce_page), 1868 con->v2.in_bvec.bv_len); 1869 1870 get_bvec_at(&con->v2.in_cursor, &bv); 1871 memcpy_to_page(bv.bv_page, bv.bv_offset, 1872 page_address(con->bounce_page), 1873 con->v2.in_bvec.bv_len); 1874 } else { 1875 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, 1876 con->v2.in_bvec.bv_page, 1877 con->v2.in_bvec.bv_offset, 1878 con->v2.in_bvec.bv_len); 1879 } 1880 1881 ceph_msg_data_advance(&con->v2.in_cursor, con->v2.in_bvec.bv_len); 1882 if (con->v2.in_cursor.total_resid) { 1883 get_bvec_at(&con->v2.in_cursor, &bv); 1884 if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { 1885 bv.bv_page = con->bounce_page; 1886 bv.bv_offset = 0; 1887 } 1888 set_in_bvec(con, &bv); 1889 WARN_ON(con->v2.in_state != IN_S_PREPARE_READ_DATA_CONT); 1890 return; 1891 } 1892 1893 /* 1894 * We've read all data. Prepare to read epilogue. 1895 */ 1896 reset_in_kvecs(con); 1897 add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN); 1898 con->v2.in_state = IN_S_HANDLE_EPILOGUE; 1899 } 1900 1901 static int prepare_sparse_read_cont(struct ceph_connection *con) 1902 { 1903 int ret; 1904 struct bio_vec bv; 1905 char *buf = NULL; 1906 struct ceph_msg_data_cursor *cursor = &con->v2.in_cursor; 1907 1908 WARN_ON(con->v2.in_state != IN_S_PREPARE_SPARSE_DATA_CONT); 1909 1910 if (iov_iter_is_bvec(&con->v2.in_iter)) { 1911 if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { 1912 con->in_data_crc = crc32c(con->in_data_crc, 1913 page_address(con->bounce_page), 1914 con->v2.in_bvec.bv_len); 1915 get_bvec_at(cursor, &bv); 1916 memcpy_to_page(bv.bv_page, bv.bv_offset, 1917 page_address(con->bounce_page), 1918 con->v2.in_bvec.bv_len); 1919 } else { 1920 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, 1921 con->v2.in_bvec.bv_page, 1922 con->v2.in_bvec.bv_offset, 1923 con->v2.in_bvec.bv_len); 1924 } 1925 1926 ceph_msg_data_advance(cursor, con->v2.in_bvec.bv_len); 1927 cursor->sr_resid -= con->v2.in_bvec.bv_len; 1928 dout("%s: advance by 0x%x sr_resid 0x%x\n", __func__, 1929 con->v2.in_bvec.bv_len, cursor->sr_resid); 1930 WARN_ON_ONCE(cursor->sr_resid > cursor->total_resid); 1931 if (cursor->sr_resid) { 1932 get_bvec_at(cursor, &bv); 1933 if (bv.bv_len > cursor->sr_resid) 1934 bv.bv_len = cursor->sr_resid; 1935 if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { 1936 bv.bv_page = con->bounce_page; 1937 bv.bv_offset = 0; 1938 } 1939 set_in_bvec(con, &bv); 1940 con->v2.data_len_remain -= bv.bv_len; 1941 return 0; 1942 } 1943 } else if (iov_iter_is_kvec(&con->v2.in_iter)) { 1944 /* On first call, we have no kvec so don't compute crc */ 1945 if (con->v2.in_kvec_cnt) { 1946 WARN_ON_ONCE(con->v2.in_kvec_cnt > 1); 1947 con->in_data_crc = crc32c(con->in_data_crc, 1948 con->v2.in_kvecs[0].iov_base, 1949 con->v2.in_kvecs[0].iov_len); 1950 } 1951 } else { 1952 return -EIO; 1953 } 1954 1955 /* get next extent */ 1956 ret = con->ops->sparse_read(con, cursor, &buf); 1957 if (ret <= 0) { 1958 if (ret < 0) 1959 return ret; 1960 1961 reset_in_kvecs(con); 1962 add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN); 1963 con->v2.in_state = IN_S_HANDLE_EPILOGUE; 1964 return 0; 1965 } 1966 1967 if (buf) { 1968 /* receive into buffer */ 1969 reset_in_kvecs(con); 1970 add_in_kvec(con, buf, ret); 1971 con->v2.data_len_remain -= ret; 1972 return 0; 1973 } 1974 1975 if (ret > cursor->total_resid) { 1976 pr_warn("%s: ret 0x%x total_resid 0x%zx resid 0x%zx\n", 1977 __func__, ret, cursor->total_resid, cursor->resid); 1978 return -EIO; 1979 } 1980 get_bvec_at(cursor, &bv); 1981 if (bv.bv_len > cursor->sr_resid) 1982 bv.bv_len = cursor->sr_resid; 1983 if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) { 1984 if (unlikely(!con->bounce_page)) { 1985 con->bounce_page = alloc_page(GFP_NOIO); 1986 if (!con->bounce_page) { 1987 pr_err("failed to allocate bounce page\n"); 1988 return -ENOMEM; 1989 } 1990 } 1991 1992 bv.bv_page = con->bounce_page; 1993 bv.bv_offset = 0; 1994 } 1995 set_in_bvec(con, &bv); 1996 con->v2.data_len_remain -= ret; 1997 return ret; 1998 } 1999 2000 static int prepare_sparse_read_data(struct ceph_connection *con) 2001 { 2002 struct ceph_msg *msg = con->in_msg; 2003 2004 dout("%s: starting sparse read\n", __func__); 2005 2006 if (WARN_ON_ONCE(!con->ops->sparse_read)) 2007 return -EOPNOTSUPP; 2008 2009 if (!con_secure(con)) 2010 con->in_data_crc = -1; 2011 2012 ceph_msg_data_cursor_init(&con->v2.in_cursor, msg, 2013 msg->sparse_read_total); 2014 2015 reset_in_kvecs(con); 2016 con->v2.in_state = IN_S_PREPARE_SPARSE_DATA_CONT; 2017 con->v2.data_len_remain = data_len(msg); 2018 return prepare_sparse_read_cont(con); 2019 } 2020 2021 static int prepare_read_tail_plain(struct ceph_connection *con) 2022 { 2023 struct ceph_msg *msg = con->in_msg; 2024 2025 if (!front_len(msg) && !middle_len(msg)) { 2026 WARN_ON(!data_len(msg)); 2027 return prepare_read_data(con); 2028 } 2029 2030 reset_in_kvecs(con); 2031 if (front_len(msg)) { 2032 add_in_kvec(con, msg->front.iov_base, front_len(msg)); 2033 WARN_ON(msg->front.iov_len != front_len(msg)); 2034 } 2035 if (middle_len(msg)) { 2036 add_in_kvec(con, msg->middle->vec.iov_base, middle_len(msg)); 2037 WARN_ON(msg->middle->vec.iov_len != middle_len(msg)); 2038 } 2039 2040 if (data_len(msg)) { 2041 if (msg->sparse_read_total) 2042 con->v2.in_state = IN_S_PREPARE_SPARSE_DATA; 2043 else 2044 con->v2.in_state = IN_S_PREPARE_READ_DATA; 2045 } else { 2046 add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN); 2047 con->v2.in_state = IN_S_HANDLE_EPILOGUE; 2048 } 2049 return 0; 2050 } 2051 2052 static void prepare_read_enc_page(struct ceph_connection *con) 2053 { 2054 struct bio_vec bv; 2055 2056 dout("%s con %p i %d resid %d\n", __func__, con, con->v2.in_enc_i, 2057 con->v2.in_enc_resid); 2058 WARN_ON(!con->v2.in_enc_resid); 2059 2060 bvec_set_page(&bv, con->v2.in_enc_pages[con->v2.in_enc_i], 2061 min(con->v2.in_enc_resid, (int)PAGE_SIZE), 0); 2062 2063 set_in_bvec(con, &bv); 2064 con->v2.in_enc_i++; 2065 con->v2.in_enc_resid -= bv.bv_len; 2066 2067 if (con->v2.in_enc_resid) { 2068 con->v2.in_state = IN_S_PREPARE_READ_ENC_PAGE; 2069 return; 2070 } 2071 2072 /* 2073 * We are set to read the last piece of ciphertext (ending 2074 * with epilogue) + auth tag. 2075 */ 2076 WARN_ON(con->v2.in_enc_i != con->v2.in_enc_page_cnt); 2077 con->v2.in_state = IN_S_HANDLE_EPILOGUE; 2078 } 2079 2080 static int prepare_read_tail_secure(struct ceph_connection *con) 2081 { 2082 struct page **enc_pages; 2083 int enc_page_cnt; 2084 int tail_len; 2085 2086 tail_len = tail_onwire_len(con->in_msg, true); 2087 WARN_ON(!tail_len); 2088 2089 enc_page_cnt = calc_pages_for(0, tail_len); 2090 enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO); 2091 if (IS_ERR(enc_pages)) 2092 return PTR_ERR(enc_pages); 2093 2094 WARN_ON(con->v2.in_enc_pages || con->v2.in_enc_page_cnt); 2095 con->v2.in_enc_pages = enc_pages; 2096 con->v2.in_enc_page_cnt = enc_page_cnt; 2097 con->v2.in_enc_resid = tail_len; 2098 con->v2.in_enc_i = 0; 2099 2100 prepare_read_enc_page(con); 2101 return 0; 2102 } 2103 2104 static void __finish_skip(struct ceph_connection *con) 2105 { 2106 con->in_seq++; 2107 prepare_read_preamble(con); 2108 } 2109 2110 static void prepare_skip_message(struct ceph_connection *con) 2111 { 2112 struct ceph_frame_desc *desc = &con->v2.in_desc; 2113 int tail_len; 2114 2115 dout("%s con %p %d+%d+%d\n", __func__, con, desc->fd_lens[1], 2116 desc->fd_lens[2], desc->fd_lens[3]); 2117 2118 tail_len = __tail_onwire_len(desc->fd_lens[1], desc->fd_lens[2], 2119 desc->fd_lens[3], con_secure(con)); 2120 if (!tail_len) { 2121 __finish_skip(con); 2122 } else { 2123 set_in_skip(con, tail_len); 2124 con->v2.in_state = IN_S_FINISH_SKIP; 2125 } 2126 } 2127 2128 static int process_banner_prefix(struct ceph_connection *con) 2129 { 2130 int payload_len; 2131 void *p; 2132 2133 WARN_ON(con->v2.in_kvecs[0].iov_len != CEPH_BANNER_V2_PREFIX_LEN); 2134 2135 p = con->v2.in_kvecs[0].iov_base; 2136 if (memcmp(p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN)) { 2137 if (!memcmp(p, CEPH_BANNER, CEPH_BANNER_LEN)) 2138 con->error_msg = "server is speaking msgr1 protocol"; 2139 else 2140 con->error_msg = "protocol error, bad banner"; 2141 return -EINVAL; 2142 } 2143 2144 p += CEPH_BANNER_V2_LEN; 2145 payload_len = ceph_decode_16(&p); 2146 dout("%s con %p payload_len %d\n", __func__, con, payload_len); 2147 2148 return prepare_read_banner_payload(con, payload_len); 2149 } 2150 2151 static int process_banner_payload(struct ceph_connection *con) 2152 { 2153 void *end = con->v2.in_kvecs[0].iov_base + con->v2.in_kvecs[0].iov_len; 2154 u64 feat = CEPH_MSGR2_SUPPORTED_FEATURES; 2155 u64 req_feat = CEPH_MSGR2_REQUIRED_FEATURES; 2156 u64 server_feat, server_req_feat; 2157 void *p; 2158 int ret; 2159 2160 p = con->v2.in_kvecs[0].iov_base; 2161 ceph_decode_64_safe(&p, end, server_feat, bad); 2162 ceph_decode_64_safe(&p, end, server_req_feat, bad); 2163 2164 dout("%s con %p server_feat 0x%llx server_req_feat 0x%llx\n", 2165 __func__, con, server_feat, server_req_feat); 2166 2167 if (req_feat & ~server_feat) { 2168 pr_err("msgr2 feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n", 2169 server_feat, req_feat & ~server_feat); 2170 con->error_msg = "missing required protocol features"; 2171 return -EINVAL; 2172 } 2173 if (server_req_feat & ~feat) { 2174 pr_err("msgr2 feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n", 2175 feat, server_req_feat & ~feat); 2176 con->error_msg = "missing required protocol features"; 2177 return -EINVAL; 2178 } 2179 2180 /* no reset_out_kvecs() as our banner may still be pending */ 2181 ret = prepare_hello(con); 2182 if (ret) { 2183 pr_err("prepare_hello failed: %d\n", ret); 2184 return ret; 2185 } 2186 2187 con->state = CEPH_CON_S_V2_HELLO; 2188 prepare_read_preamble(con); 2189 return 0; 2190 2191 bad: 2192 pr_err("failed to decode banner payload\n"); 2193 return -EINVAL; 2194 } 2195 2196 static int process_hello(struct ceph_connection *con, void *p, void *end) 2197 { 2198 struct ceph_entity_addr *my_addr = &con->msgr->inst.addr; 2199 struct ceph_entity_addr addr_for_me; 2200 u8 entity_type; 2201 int ret; 2202 2203 if (con->state != CEPH_CON_S_V2_HELLO) { 2204 con->error_msg = "protocol error, unexpected hello"; 2205 return -EINVAL; 2206 } 2207 2208 ceph_decode_8_safe(&p, end, entity_type, bad); 2209 ret = ceph_decode_entity_addr(&p, end, &addr_for_me); 2210 if (ret) { 2211 pr_err("failed to decode addr_for_me: %d\n", ret); 2212 return ret; 2213 } 2214 2215 dout("%s con %p entity_type %d addr_for_me %s\n", __func__, con, 2216 entity_type, ceph_pr_addr(&addr_for_me)); 2217 2218 if (entity_type != con->peer_name.type) { 2219 pr_err("bad peer type, want %d, got %d\n", 2220 con->peer_name.type, entity_type); 2221 con->error_msg = "wrong peer at address"; 2222 return -EINVAL; 2223 } 2224 2225 /* 2226 * Set our address to the address our first peer (i.e. monitor) 2227 * sees that we are connecting from. If we are behind some sort 2228 * of NAT and want to be identified by some private (not NATed) 2229 * address, ip option should be used. 2230 */ 2231 if (ceph_addr_is_blank(my_addr)) { 2232 memcpy(&my_addr->in_addr, &addr_for_me.in_addr, 2233 sizeof(my_addr->in_addr)); 2234 ceph_addr_set_port(my_addr, 0); 2235 dout("%s con %p set my addr %s, as seen by peer %s\n", 2236 __func__, con, ceph_pr_addr(my_addr), 2237 ceph_pr_addr(&con->peer_addr)); 2238 } else { 2239 dout("%s con %p my addr already set %s\n", 2240 __func__, con, ceph_pr_addr(my_addr)); 2241 } 2242 2243 WARN_ON(ceph_addr_is_blank(my_addr) || ceph_addr_port(my_addr)); 2244 WARN_ON(my_addr->type != CEPH_ENTITY_ADDR_TYPE_ANY); 2245 WARN_ON(!my_addr->nonce); 2246 2247 /* no reset_out_kvecs() as our hello may still be pending */ 2248 ret = prepare_auth_request(con); 2249 if (ret) { 2250 if (ret != -EAGAIN) 2251 pr_err("prepare_auth_request failed: %d\n", ret); 2252 return ret; 2253 } 2254 2255 con->state = CEPH_CON_S_V2_AUTH; 2256 return 0; 2257 2258 bad: 2259 pr_err("failed to decode hello\n"); 2260 return -EINVAL; 2261 } 2262 2263 static int process_auth_bad_method(struct ceph_connection *con, 2264 void *p, void *end) 2265 { 2266 int allowed_protos[8], allowed_modes[8]; 2267 int allowed_proto_cnt, allowed_mode_cnt; 2268 int used_proto, result; 2269 int ret; 2270 int i; 2271 2272 if (con->state != CEPH_CON_S_V2_AUTH) { 2273 con->error_msg = "protocol error, unexpected auth_bad_method"; 2274 return -EINVAL; 2275 } 2276 2277 ceph_decode_32_safe(&p, end, used_proto, bad); 2278 ceph_decode_32_safe(&p, end, result, bad); 2279 dout("%s con %p used_proto %d result %d\n", __func__, con, used_proto, 2280 result); 2281 2282 ceph_decode_32_safe(&p, end, allowed_proto_cnt, bad); 2283 if (allowed_proto_cnt > ARRAY_SIZE(allowed_protos)) { 2284 pr_err("allowed_protos too big %d\n", allowed_proto_cnt); 2285 return -EINVAL; 2286 } 2287 for (i = 0; i < allowed_proto_cnt; i++) { 2288 ceph_decode_32_safe(&p, end, allowed_protos[i], bad); 2289 dout("%s con %p allowed_protos[%d] %d\n", __func__, con, 2290 i, allowed_protos[i]); 2291 } 2292 2293 ceph_decode_32_safe(&p, end, allowed_mode_cnt, bad); 2294 if (allowed_mode_cnt > ARRAY_SIZE(allowed_modes)) { 2295 pr_err("allowed_modes too big %d\n", allowed_mode_cnt); 2296 return -EINVAL; 2297 } 2298 for (i = 0; i < allowed_mode_cnt; i++) { 2299 ceph_decode_32_safe(&p, end, allowed_modes[i], bad); 2300 dout("%s con %p allowed_modes[%d] %d\n", __func__, con, 2301 i, allowed_modes[i]); 2302 } 2303 2304 mutex_unlock(&con->mutex); 2305 ret = con->ops->handle_auth_bad_method(con, used_proto, result, 2306 allowed_protos, 2307 allowed_proto_cnt, 2308 allowed_modes, 2309 allowed_mode_cnt); 2310 mutex_lock(&con->mutex); 2311 if (con->state != CEPH_CON_S_V2_AUTH) { 2312 dout("%s con %p state changed to %d\n", __func__, con, 2313 con->state); 2314 return -EAGAIN; 2315 } 2316 2317 dout("%s con %p handle_auth_bad_method ret %d\n", __func__, con, ret); 2318 return ret; 2319 2320 bad: 2321 pr_err("failed to decode auth_bad_method\n"); 2322 return -EINVAL; 2323 } 2324 2325 static int process_auth_reply_more(struct ceph_connection *con, 2326 void *p, void *end) 2327 { 2328 int payload_len; 2329 int ret; 2330 2331 if (con->state != CEPH_CON_S_V2_AUTH) { 2332 con->error_msg = "protocol error, unexpected auth_reply_more"; 2333 return -EINVAL; 2334 } 2335 2336 ceph_decode_32_safe(&p, end, payload_len, bad); 2337 ceph_decode_need(&p, end, payload_len, bad); 2338 2339 dout("%s con %p payload_len %d\n", __func__, con, payload_len); 2340 2341 reset_out_kvecs(con); 2342 ret = prepare_auth_request_more(con, p, payload_len); 2343 if (ret) { 2344 if (ret != -EAGAIN) 2345 pr_err("prepare_auth_request_more failed: %d\n", ret); 2346 return ret; 2347 } 2348 2349 return 0; 2350 2351 bad: 2352 pr_err("failed to decode auth_reply_more\n"); 2353 return -EINVAL; 2354 } 2355 2356 /* 2357 * Align session_key and con_secret to avoid GFP_ATOMIC allocation 2358 * inside crypto_shash_setkey() and crypto_aead_setkey() called from 2359 * setup_crypto(). __aligned(16) isn't guaranteed to work for stack 2360 * objects, so do it by hand. 2361 */ 2362 static int process_auth_done(struct ceph_connection *con, void *p, void *end) 2363 { 2364 u8 session_key_buf[CEPH_KEY_LEN + 16]; 2365 u8 con_secret_buf[CEPH_MAX_CON_SECRET_LEN + 16]; 2366 u8 *session_key = PTR_ALIGN(&session_key_buf[0], 16); 2367 u8 *con_secret = PTR_ALIGN(&con_secret_buf[0], 16); 2368 int session_key_len, con_secret_len; 2369 int payload_len; 2370 u64 global_id; 2371 int ret; 2372 2373 if (con->state != CEPH_CON_S_V2_AUTH) { 2374 con->error_msg = "protocol error, unexpected auth_done"; 2375 return -EINVAL; 2376 } 2377 2378 ceph_decode_64_safe(&p, end, global_id, bad); 2379 ceph_decode_32_safe(&p, end, con->v2.con_mode, bad); 2380 ceph_decode_32_safe(&p, end, payload_len, bad); 2381 2382 dout("%s con %p global_id %llu con_mode %d payload_len %d\n", 2383 __func__, con, global_id, con->v2.con_mode, payload_len); 2384 2385 mutex_unlock(&con->mutex); 2386 session_key_len = 0; 2387 con_secret_len = 0; 2388 ret = con->ops->handle_auth_done(con, global_id, p, payload_len, 2389 session_key, &session_key_len, 2390 con_secret, &con_secret_len); 2391 mutex_lock(&con->mutex); 2392 if (con->state != CEPH_CON_S_V2_AUTH) { 2393 dout("%s con %p state changed to %d\n", __func__, con, 2394 con->state); 2395 ret = -EAGAIN; 2396 goto out; 2397 } 2398 2399 dout("%s con %p handle_auth_done ret %d\n", __func__, con, ret); 2400 if (ret) 2401 goto out; 2402 2403 ret = setup_crypto(con, session_key, session_key_len, con_secret, 2404 con_secret_len); 2405 if (ret) 2406 goto out; 2407 2408 reset_out_kvecs(con); 2409 ret = prepare_auth_signature(con); 2410 if (ret) { 2411 pr_err("prepare_auth_signature failed: %d\n", ret); 2412 goto out; 2413 } 2414 2415 con->state = CEPH_CON_S_V2_AUTH_SIGNATURE; 2416 2417 out: 2418 memzero_explicit(session_key_buf, sizeof(session_key_buf)); 2419 memzero_explicit(con_secret_buf, sizeof(con_secret_buf)); 2420 return ret; 2421 2422 bad: 2423 pr_err("failed to decode auth_done\n"); 2424 return -EINVAL; 2425 } 2426 2427 static int process_auth_signature(struct ceph_connection *con, 2428 void *p, void *end) 2429 { 2430 u8 hmac[SHA256_DIGEST_SIZE]; 2431 int ret; 2432 2433 if (con->state != CEPH_CON_S_V2_AUTH_SIGNATURE) { 2434 con->error_msg = "protocol error, unexpected auth_signature"; 2435 return -EINVAL; 2436 } 2437 2438 ceph_hmac_sha256(con, con->v2.out_sign_kvecs, con->v2.out_sign_kvec_cnt, 2439 hmac); 2440 2441 ceph_decode_need(&p, end, SHA256_DIGEST_SIZE, bad); 2442 if (crypto_memneq(p, hmac, SHA256_DIGEST_SIZE)) { 2443 con->error_msg = "integrity error, bad auth signature"; 2444 return -EBADMSG; 2445 } 2446 2447 dout("%s con %p auth signature ok\n", __func__, con); 2448 2449 /* no reset_out_kvecs() as our auth_signature may still be pending */ 2450 if (!con->v2.server_cookie) { 2451 ret = prepare_client_ident(con); 2452 if (ret) { 2453 pr_err("prepare_client_ident failed: %d\n", ret); 2454 return ret; 2455 } 2456 2457 con->state = CEPH_CON_S_V2_SESSION_CONNECT; 2458 } else { 2459 ret = prepare_session_reconnect(con); 2460 if (ret) { 2461 pr_err("prepare_session_reconnect failed: %d\n", ret); 2462 return ret; 2463 } 2464 2465 con->state = CEPH_CON_S_V2_SESSION_RECONNECT; 2466 } 2467 2468 return 0; 2469 2470 bad: 2471 pr_err("failed to decode auth_signature\n"); 2472 return -EINVAL; 2473 } 2474 2475 static int process_server_ident(struct ceph_connection *con, 2476 void *p, void *end) 2477 { 2478 struct ceph_client *client = from_msgr(con->msgr); 2479 u64 features, required_features; 2480 struct ceph_entity_addr addr; 2481 u64 global_seq; 2482 u64 global_id; 2483 u64 cookie; 2484 u64 flags; 2485 int ret; 2486 2487 if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) { 2488 con->error_msg = "protocol error, unexpected server_ident"; 2489 return -EINVAL; 2490 } 2491 2492 ret = ceph_decode_entity_addrvec(&p, end, true, &addr); 2493 if (ret) { 2494 pr_err("failed to decode server addrs: %d\n", ret); 2495 return ret; 2496 } 2497 2498 ceph_decode_64_safe(&p, end, global_id, bad); 2499 ceph_decode_64_safe(&p, end, global_seq, bad); 2500 ceph_decode_64_safe(&p, end, features, bad); 2501 ceph_decode_64_safe(&p, end, required_features, bad); 2502 ceph_decode_64_safe(&p, end, flags, bad); 2503 ceph_decode_64_safe(&p, end, cookie, bad); 2504 2505 dout("%s con %p addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx flags 0x%llx cookie 0x%llx\n", 2506 __func__, con, ceph_pr_addr(&addr), le32_to_cpu(addr.nonce), 2507 global_id, global_seq, features, required_features, flags, cookie); 2508 2509 /* is this who we intended to talk to? */ 2510 if (memcmp(&addr, &con->peer_addr, sizeof(con->peer_addr))) { 2511 pr_err("bad peer addr/nonce, want %s/%u, got %s/%u\n", 2512 ceph_pr_addr(&con->peer_addr), 2513 le32_to_cpu(con->peer_addr.nonce), 2514 ceph_pr_addr(&addr), le32_to_cpu(addr.nonce)); 2515 con->error_msg = "wrong peer at address"; 2516 return -EINVAL; 2517 } 2518 2519 if (client->required_features & ~features) { 2520 pr_err("RADOS feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n", 2521 features, client->required_features & ~features); 2522 con->error_msg = "missing required protocol features"; 2523 return -EINVAL; 2524 } 2525 2526 /* 2527 * Both name->type and name->num are set in ceph_con_open() but 2528 * name->num may be bogus in the initial monmap. name->type is 2529 * verified in handle_hello(). 2530 */ 2531 WARN_ON(!con->peer_name.type); 2532 con->peer_name.num = cpu_to_le64(global_id); 2533 con->v2.peer_global_seq = global_seq; 2534 con->peer_features = features; 2535 WARN_ON(required_features & ~client->supported_features); 2536 con->v2.server_cookie = cookie; 2537 2538 if (flags & CEPH_MSG_CONNECT_LOSSY) { 2539 ceph_con_flag_set(con, CEPH_CON_F_LOSSYTX); 2540 WARN_ON(con->v2.server_cookie); 2541 } else { 2542 WARN_ON(!con->v2.server_cookie); 2543 } 2544 2545 clear_in_sign_kvecs(con); 2546 clear_out_sign_kvecs(con); 2547 free_conn_bufs(con); 2548 con->delay = 0; /* reset backoff memory */ 2549 2550 con->state = CEPH_CON_S_OPEN; 2551 con->v2.out_state = OUT_S_GET_NEXT; 2552 return 0; 2553 2554 bad: 2555 pr_err("failed to decode server_ident\n"); 2556 return -EINVAL; 2557 } 2558 2559 static int process_ident_missing_features(struct ceph_connection *con, 2560 void *p, void *end) 2561 { 2562 struct ceph_client *client = from_msgr(con->msgr); 2563 u64 missing_features; 2564 2565 if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) { 2566 con->error_msg = "protocol error, unexpected ident_missing_features"; 2567 return -EINVAL; 2568 } 2569 2570 ceph_decode_64_safe(&p, end, missing_features, bad); 2571 pr_err("RADOS feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n", 2572 client->supported_features, missing_features); 2573 con->error_msg = "missing required protocol features"; 2574 return -EINVAL; 2575 2576 bad: 2577 pr_err("failed to decode ident_missing_features\n"); 2578 return -EINVAL; 2579 } 2580 2581 static int process_session_reconnect_ok(struct ceph_connection *con, 2582 void *p, void *end) 2583 { 2584 u64 seq; 2585 2586 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2587 con->error_msg = "protocol error, unexpected session_reconnect_ok"; 2588 return -EINVAL; 2589 } 2590 2591 ceph_decode_64_safe(&p, end, seq, bad); 2592 2593 dout("%s con %p seq %llu\n", __func__, con, seq); 2594 ceph_con_discard_requeued(con, seq); 2595 2596 clear_in_sign_kvecs(con); 2597 clear_out_sign_kvecs(con); 2598 free_conn_bufs(con); 2599 con->delay = 0; /* reset backoff memory */ 2600 2601 con->state = CEPH_CON_S_OPEN; 2602 con->v2.out_state = OUT_S_GET_NEXT; 2603 return 0; 2604 2605 bad: 2606 pr_err("failed to decode session_reconnect_ok\n"); 2607 return -EINVAL; 2608 } 2609 2610 static int process_session_retry(struct ceph_connection *con, 2611 void *p, void *end) 2612 { 2613 u64 connect_seq; 2614 int ret; 2615 2616 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2617 con->error_msg = "protocol error, unexpected session_retry"; 2618 return -EINVAL; 2619 } 2620 2621 ceph_decode_64_safe(&p, end, connect_seq, bad); 2622 2623 dout("%s con %p connect_seq %llu\n", __func__, con, connect_seq); 2624 WARN_ON(connect_seq <= con->v2.connect_seq); 2625 con->v2.connect_seq = connect_seq + 1; 2626 2627 free_conn_bufs(con); 2628 2629 reset_out_kvecs(con); 2630 ret = prepare_session_reconnect(con); 2631 if (ret) { 2632 pr_err("prepare_session_reconnect (cseq) failed: %d\n", ret); 2633 return ret; 2634 } 2635 2636 return 0; 2637 2638 bad: 2639 pr_err("failed to decode session_retry\n"); 2640 return -EINVAL; 2641 } 2642 2643 static int process_session_retry_global(struct ceph_connection *con, 2644 void *p, void *end) 2645 { 2646 u64 global_seq; 2647 int ret; 2648 2649 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2650 con->error_msg = "protocol error, unexpected session_retry_global"; 2651 return -EINVAL; 2652 } 2653 2654 ceph_decode_64_safe(&p, end, global_seq, bad); 2655 2656 dout("%s con %p global_seq %llu\n", __func__, con, global_seq); 2657 WARN_ON(global_seq <= con->v2.global_seq); 2658 con->v2.global_seq = ceph_get_global_seq(con->msgr, global_seq); 2659 2660 free_conn_bufs(con); 2661 2662 reset_out_kvecs(con); 2663 ret = prepare_session_reconnect(con); 2664 if (ret) { 2665 pr_err("prepare_session_reconnect (gseq) failed: %d\n", ret); 2666 return ret; 2667 } 2668 2669 return 0; 2670 2671 bad: 2672 pr_err("failed to decode session_retry_global\n"); 2673 return -EINVAL; 2674 } 2675 2676 static int process_session_reset(struct ceph_connection *con, 2677 void *p, void *end) 2678 { 2679 bool full; 2680 int ret; 2681 2682 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2683 con->error_msg = "protocol error, unexpected session_reset"; 2684 return -EINVAL; 2685 } 2686 2687 ceph_decode_8_safe(&p, end, full, bad); 2688 if (!full) { 2689 con->error_msg = "protocol error, bad session_reset"; 2690 return -EINVAL; 2691 } 2692 2693 pr_info("%s%lld %s session reset\n", ENTITY_NAME(con->peer_name), 2694 ceph_pr_addr(&con->peer_addr)); 2695 ceph_con_reset_session(con); 2696 2697 mutex_unlock(&con->mutex); 2698 if (con->ops->peer_reset) 2699 con->ops->peer_reset(con); 2700 mutex_lock(&con->mutex); 2701 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2702 dout("%s con %p state changed to %d\n", __func__, con, 2703 con->state); 2704 return -EAGAIN; 2705 } 2706 2707 free_conn_bufs(con); 2708 2709 reset_out_kvecs(con); 2710 ret = prepare_client_ident(con); 2711 if (ret) { 2712 pr_err("prepare_client_ident (rst) failed: %d\n", ret); 2713 return ret; 2714 } 2715 2716 con->state = CEPH_CON_S_V2_SESSION_CONNECT; 2717 return 0; 2718 2719 bad: 2720 pr_err("failed to decode session_reset\n"); 2721 return -EINVAL; 2722 } 2723 2724 static int process_keepalive2_ack(struct ceph_connection *con, 2725 void *p, void *end) 2726 { 2727 if (con->state != CEPH_CON_S_OPEN) { 2728 con->error_msg = "protocol error, unexpected keepalive2_ack"; 2729 return -EINVAL; 2730 } 2731 2732 ceph_decode_need(&p, end, sizeof(struct ceph_timespec), bad); 2733 ceph_decode_timespec64(&con->last_keepalive_ack, p); 2734 2735 dout("%s con %p timestamp %lld.%09ld\n", __func__, con, 2736 con->last_keepalive_ack.tv_sec, con->last_keepalive_ack.tv_nsec); 2737 2738 return 0; 2739 2740 bad: 2741 pr_err("failed to decode keepalive2_ack\n"); 2742 return -EINVAL; 2743 } 2744 2745 static int process_ack(struct ceph_connection *con, void *p, void *end) 2746 { 2747 u64 seq; 2748 2749 if (con->state != CEPH_CON_S_OPEN) { 2750 con->error_msg = "protocol error, unexpected ack"; 2751 return -EINVAL; 2752 } 2753 2754 ceph_decode_64_safe(&p, end, seq, bad); 2755 2756 dout("%s con %p seq %llu\n", __func__, con, seq); 2757 ceph_con_discard_sent(con, seq); 2758 return 0; 2759 2760 bad: 2761 pr_err("failed to decode ack\n"); 2762 return -EINVAL; 2763 } 2764 2765 static int process_control(struct ceph_connection *con, void *p, void *end) 2766 { 2767 int tag = con->v2.in_desc.fd_tag; 2768 int ret; 2769 2770 dout("%s con %p tag %d len %d\n", __func__, con, tag, (int)(end - p)); 2771 2772 switch (tag) { 2773 case FRAME_TAG_HELLO: 2774 ret = process_hello(con, p, end); 2775 break; 2776 case FRAME_TAG_AUTH_BAD_METHOD: 2777 ret = process_auth_bad_method(con, p, end); 2778 break; 2779 case FRAME_TAG_AUTH_REPLY_MORE: 2780 ret = process_auth_reply_more(con, p, end); 2781 break; 2782 case FRAME_TAG_AUTH_DONE: 2783 ret = process_auth_done(con, p, end); 2784 break; 2785 case FRAME_TAG_AUTH_SIGNATURE: 2786 ret = process_auth_signature(con, p, end); 2787 break; 2788 case FRAME_TAG_SERVER_IDENT: 2789 ret = process_server_ident(con, p, end); 2790 break; 2791 case FRAME_TAG_IDENT_MISSING_FEATURES: 2792 ret = process_ident_missing_features(con, p, end); 2793 break; 2794 case FRAME_TAG_SESSION_RECONNECT_OK: 2795 ret = process_session_reconnect_ok(con, p, end); 2796 break; 2797 case FRAME_TAG_SESSION_RETRY: 2798 ret = process_session_retry(con, p, end); 2799 break; 2800 case FRAME_TAG_SESSION_RETRY_GLOBAL: 2801 ret = process_session_retry_global(con, p, end); 2802 break; 2803 case FRAME_TAG_SESSION_RESET: 2804 ret = process_session_reset(con, p, end); 2805 break; 2806 case FRAME_TAG_KEEPALIVE2_ACK: 2807 ret = process_keepalive2_ack(con, p, end); 2808 break; 2809 case FRAME_TAG_ACK: 2810 ret = process_ack(con, p, end); 2811 break; 2812 default: 2813 pr_err("bad tag %d\n", tag); 2814 con->error_msg = "protocol error, bad tag"; 2815 return -EINVAL; 2816 } 2817 if (ret) { 2818 dout("%s con %p error %d\n", __func__, con, ret); 2819 return ret; 2820 } 2821 2822 prepare_read_preamble(con); 2823 return 0; 2824 } 2825 2826 /* 2827 * Return: 2828 * 1 - con->in_msg set, read message 2829 * 0 - skip message 2830 * <0 - error 2831 */ 2832 static int process_message_header(struct ceph_connection *con, 2833 void *p, void *end) 2834 { 2835 struct ceph_frame_desc *desc = &con->v2.in_desc; 2836 struct ceph_msg_header2 *hdr2 = p; 2837 struct ceph_msg_header hdr; 2838 int skip; 2839 int ret; 2840 u64 seq; 2841 2842 /* verify seq# */ 2843 seq = le64_to_cpu(hdr2->seq); 2844 if ((s64)seq - (s64)con->in_seq < 1) { 2845 pr_info("%s%lld %s skipping old message: seq %llu, expected %llu\n", 2846 ENTITY_NAME(con->peer_name), 2847 ceph_pr_addr(&con->peer_addr), 2848 seq, con->in_seq + 1); 2849 return 0; 2850 } 2851 if ((s64)seq - (s64)con->in_seq > 1) { 2852 pr_err("bad seq %llu, expected %llu\n", seq, con->in_seq + 1); 2853 con->error_msg = "bad message sequence # for incoming message"; 2854 return -EBADE; 2855 } 2856 2857 ceph_con_discard_sent(con, le64_to_cpu(hdr2->ack_seq)); 2858 2859 fill_header(&hdr, hdr2, desc->fd_lens[1], desc->fd_lens[2], 2860 desc->fd_lens[3], &con->peer_name); 2861 ret = ceph_con_in_msg_alloc(con, &hdr, &skip); 2862 if (ret) 2863 return ret; 2864 2865 WARN_ON(!con->in_msg ^ skip); 2866 if (skip) 2867 return 0; 2868 2869 WARN_ON(!con->in_msg); 2870 WARN_ON(con->in_msg->con != con); 2871 return 1; 2872 } 2873 2874 static int process_message(struct ceph_connection *con) 2875 { 2876 ceph_con_process_message(con); 2877 2878 /* 2879 * We could have been closed by ceph_con_close() because 2880 * ceph_con_process_message() temporarily drops con->mutex. 2881 */ 2882 if (con->state != CEPH_CON_S_OPEN) { 2883 dout("%s con %p state changed to %d\n", __func__, con, 2884 con->state); 2885 return -EAGAIN; 2886 } 2887 2888 prepare_read_preamble(con); 2889 return 0; 2890 } 2891 2892 static int __handle_control(struct ceph_connection *con, void *p) 2893 { 2894 void *end = p + con->v2.in_desc.fd_lens[0]; 2895 struct ceph_msg *msg; 2896 int ret; 2897 2898 if (con->v2.in_desc.fd_tag != FRAME_TAG_MESSAGE) 2899 return process_control(con, p, end); 2900 2901 ret = process_message_header(con, p, end); 2902 if (ret < 0) 2903 return ret; 2904 if (ret == 0) { 2905 prepare_skip_message(con); 2906 return 0; 2907 } 2908 2909 msg = con->in_msg; /* set in process_message_header() */ 2910 if (front_len(msg)) { 2911 WARN_ON(front_len(msg) > msg->front_alloc_len); 2912 msg->front.iov_len = front_len(msg); 2913 } else { 2914 msg->front.iov_len = 0; 2915 } 2916 if (middle_len(msg)) { 2917 WARN_ON(middle_len(msg) > msg->middle->alloc_len); 2918 msg->middle->vec.iov_len = middle_len(msg); 2919 } else if (msg->middle) { 2920 msg->middle->vec.iov_len = 0; 2921 } 2922 2923 if (!front_len(msg) && !middle_len(msg) && !data_len(msg)) 2924 return process_message(con); 2925 2926 if (con_secure(con)) 2927 return prepare_read_tail_secure(con); 2928 2929 return prepare_read_tail_plain(con); 2930 } 2931 2932 static int handle_preamble(struct ceph_connection *con) 2933 { 2934 struct ceph_frame_desc *desc = &con->v2.in_desc; 2935 int ret; 2936 2937 if (con_secure(con)) { 2938 ret = decrypt_preamble(con); 2939 if (ret) { 2940 if (ret == -EBADMSG) 2941 con->error_msg = "integrity error, bad preamble auth tag"; 2942 return ret; 2943 } 2944 } 2945 2946 ret = decode_preamble(con->v2.in_buf, desc); 2947 if (ret) { 2948 if (ret == -EBADMSG) 2949 con->error_msg = "integrity error, bad crc"; 2950 else 2951 con->error_msg = "protocol error, bad preamble"; 2952 return ret; 2953 } 2954 2955 dout("%s con %p tag %d seg_cnt %d %d+%d+%d+%d\n", __func__, 2956 con, desc->fd_tag, desc->fd_seg_cnt, desc->fd_lens[0], 2957 desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3]); 2958 2959 if (!con_secure(con)) 2960 return prepare_read_control(con); 2961 2962 if (desc->fd_lens[0] > CEPH_PREAMBLE_INLINE_LEN) 2963 return prepare_read_control_remainder(con); 2964 2965 return __handle_control(con, CTRL_BODY(con->v2.in_buf)); 2966 } 2967 2968 static int handle_control(struct ceph_connection *con) 2969 { 2970 int ctrl_len = con->v2.in_desc.fd_lens[0]; 2971 void *buf; 2972 int ret; 2973 2974 WARN_ON(con_secure(con)); 2975 2976 ret = verify_control_crc(con); 2977 if (ret) { 2978 con->error_msg = "integrity error, bad crc"; 2979 return ret; 2980 } 2981 2982 if (con->state == CEPH_CON_S_V2_AUTH) { 2983 buf = alloc_conn_buf(con, ctrl_len); 2984 if (!buf) 2985 return -ENOMEM; 2986 2987 memcpy(buf, con->v2.in_kvecs[0].iov_base, ctrl_len); 2988 return __handle_control(con, buf); 2989 } 2990 2991 return __handle_control(con, con->v2.in_kvecs[0].iov_base); 2992 } 2993 2994 static int handle_control_remainder(struct ceph_connection *con) 2995 { 2996 int ret; 2997 2998 WARN_ON(!con_secure(con)); 2999 3000 ret = decrypt_control_remainder(con); 3001 if (ret) { 3002 if (ret == -EBADMSG) 3003 con->error_msg = "integrity error, bad control remainder auth tag"; 3004 return ret; 3005 } 3006 3007 return __handle_control(con, con->v2.in_kvecs[0].iov_base - 3008 CEPH_PREAMBLE_INLINE_LEN); 3009 } 3010 3011 static int handle_epilogue(struct ceph_connection *con) 3012 { 3013 u32 front_crc, middle_crc, data_crc; 3014 int ret; 3015 3016 if (con_secure(con)) { 3017 ret = decrypt_tail(con); 3018 if (ret) { 3019 if (ret == -EBADMSG) 3020 con->error_msg = "integrity error, bad epilogue auth tag"; 3021 return ret; 3022 } 3023 3024 /* just late_status */ 3025 ret = decode_epilogue(con->v2.in_buf, NULL, NULL, NULL); 3026 if (ret) { 3027 con->error_msg = "protocol error, bad epilogue"; 3028 return ret; 3029 } 3030 } else { 3031 ret = decode_epilogue(con->v2.in_buf, &front_crc, 3032 &middle_crc, &data_crc); 3033 if (ret) { 3034 con->error_msg = "protocol error, bad epilogue"; 3035 return ret; 3036 } 3037 3038 ret = verify_epilogue_crcs(con, front_crc, middle_crc, 3039 data_crc); 3040 if (ret) { 3041 con->error_msg = "integrity error, bad crc"; 3042 return ret; 3043 } 3044 } 3045 3046 return process_message(con); 3047 } 3048 3049 static void finish_skip(struct ceph_connection *con) 3050 { 3051 dout("%s con %p\n", __func__, con); 3052 3053 if (con_secure(con)) 3054 gcm_inc_nonce(&con->v2.in_gcm_nonce); 3055 3056 __finish_skip(con); 3057 } 3058 3059 static int populate_in_iter(struct ceph_connection *con) 3060 { 3061 int ret; 3062 3063 dout("%s con %p state %d in_state %d\n", __func__, con, con->state, 3064 con->v2.in_state); 3065 WARN_ON(iov_iter_count(&con->v2.in_iter)); 3066 3067 if (con->state == CEPH_CON_S_V2_BANNER_PREFIX) { 3068 ret = process_banner_prefix(con); 3069 } else if (con->state == CEPH_CON_S_V2_BANNER_PAYLOAD) { 3070 ret = process_banner_payload(con); 3071 } else if ((con->state >= CEPH_CON_S_V2_HELLO && 3072 con->state <= CEPH_CON_S_V2_SESSION_RECONNECT) || 3073 con->state == CEPH_CON_S_OPEN) { 3074 switch (con->v2.in_state) { 3075 case IN_S_HANDLE_PREAMBLE: 3076 ret = handle_preamble(con); 3077 break; 3078 case IN_S_HANDLE_CONTROL: 3079 ret = handle_control(con); 3080 break; 3081 case IN_S_HANDLE_CONTROL_REMAINDER: 3082 ret = handle_control_remainder(con); 3083 break; 3084 case IN_S_PREPARE_READ_DATA: 3085 ret = prepare_read_data(con); 3086 break; 3087 case IN_S_PREPARE_READ_DATA_CONT: 3088 prepare_read_data_cont(con); 3089 ret = 0; 3090 break; 3091 case IN_S_PREPARE_READ_ENC_PAGE: 3092 prepare_read_enc_page(con); 3093 ret = 0; 3094 break; 3095 case IN_S_PREPARE_SPARSE_DATA: 3096 ret = prepare_sparse_read_data(con); 3097 break; 3098 case IN_S_PREPARE_SPARSE_DATA_CONT: 3099 ret = prepare_sparse_read_cont(con); 3100 break; 3101 case IN_S_HANDLE_EPILOGUE: 3102 ret = handle_epilogue(con); 3103 break; 3104 case IN_S_FINISH_SKIP: 3105 finish_skip(con); 3106 ret = 0; 3107 break; 3108 default: 3109 WARN(1, "bad in_state %d", con->v2.in_state); 3110 return -EINVAL; 3111 } 3112 } else { 3113 WARN(1, "bad state %d", con->state); 3114 return -EINVAL; 3115 } 3116 if (ret) { 3117 dout("%s con %p error %d\n", __func__, con, ret); 3118 return ret; 3119 } 3120 3121 if (WARN_ON(!iov_iter_count(&con->v2.in_iter))) 3122 return -ENODATA; 3123 dout("%s con %p populated %zu\n", __func__, con, 3124 iov_iter_count(&con->v2.in_iter)); 3125 return 1; 3126 } 3127 3128 int ceph_con_v2_try_read(struct ceph_connection *con) 3129 { 3130 int ret; 3131 3132 dout("%s con %p state %d need %zu\n", __func__, con, con->state, 3133 iov_iter_count(&con->v2.in_iter)); 3134 3135 if (con->state == CEPH_CON_S_PREOPEN) 3136 return 0; 3137 3138 /* 3139 * We should always have something pending here. If not, 3140 * avoid calling populate_in_iter() as if we read something 3141 * (ceph_tcp_recv() would immediately return 1). 3142 */ 3143 if (WARN_ON(!iov_iter_count(&con->v2.in_iter))) 3144 return -ENODATA; 3145 3146 for (;;) { 3147 ret = ceph_tcp_recv(con); 3148 if (ret <= 0) 3149 return ret; 3150 3151 ret = populate_in_iter(con); 3152 if (ret <= 0) { 3153 if (ret && ret != -EAGAIN && !con->error_msg) 3154 con->error_msg = "read processing error"; 3155 return ret; 3156 } 3157 } 3158 } 3159 3160 static void queue_data(struct ceph_connection *con, struct ceph_msg *msg) 3161 { 3162 struct bio_vec bv; 3163 3164 con->v2.out_epil.data_crc = -1; 3165 ceph_msg_data_cursor_init(&con->v2.out_cursor, msg, 3166 data_len(msg)); 3167 3168 get_bvec_at(&con->v2.out_cursor, &bv); 3169 set_out_bvec(con, &bv, true); 3170 con->v2.out_state = OUT_S_QUEUE_DATA_CONT; 3171 } 3172 3173 static void queue_data_cont(struct ceph_connection *con, struct ceph_msg *msg) 3174 { 3175 struct bio_vec bv; 3176 3177 con->v2.out_epil.data_crc = ceph_crc32c_page( 3178 con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page, 3179 con->v2.out_bvec.bv_offset, con->v2.out_bvec.bv_len); 3180 3181 ceph_msg_data_advance(&con->v2.out_cursor, con->v2.out_bvec.bv_len); 3182 if (con->v2.out_cursor.total_resid) { 3183 get_bvec_at(&con->v2.out_cursor, &bv); 3184 set_out_bvec(con, &bv, true); 3185 WARN_ON(con->v2.out_state != OUT_S_QUEUE_DATA_CONT); 3186 return; 3187 } 3188 3189 /* 3190 * We've written all data. Queue epilogue. Once it's written, 3191 * we are done. 3192 */ 3193 reset_out_kvecs(con); 3194 prepare_epilogue_plain(con, msg, false); 3195 con->v2.out_state = OUT_S_FINISH_MESSAGE; 3196 } 3197 3198 static void queue_enc_page(struct ceph_connection *con) 3199 { 3200 struct bio_vec bv; 3201 3202 dout("%s con %p i %d resid %d\n", __func__, con, con->v2.out_enc_i, 3203 con->v2.out_enc_resid); 3204 WARN_ON(!con->v2.out_enc_resid); 3205 3206 bvec_set_page(&bv, con->v2.out_enc_pages[con->v2.out_enc_i], 3207 min(con->v2.out_enc_resid, (int)PAGE_SIZE), 0); 3208 3209 set_out_bvec(con, &bv, false); 3210 con->v2.out_enc_i++; 3211 con->v2.out_enc_resid -= bv.bv_len; 3212 3213 if (con->v2.out_enc_resid) { 3214 WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE); 3215 return; 3216 } 3217 3218 /* 3219 * We've queued the last piece of ciphertext (ending with 3220 * epilogue) + auth tag. Once it's written, we are done. 3221 */ 3222 WARN_ON(con->v2.out_enc_i != con->v2.out_enc_page_cnt); 3223 con->v2.out_state = OUT_S_FINISH_MESSAGE; 3224 } 3225 3226 static void queue_zeros(struct ceph_connection *con, struct ceph_msg *msg) 3227 { 3228 dout("%s con %p out_zero %d\n", __func__, con, con->v2.out_zero); 3229 3230 if (con->v2.out_zero) { 3231 set_out_bvec_zero(con); 3232 con->v2.out_zero -= con->v2.out_bvec.bv_len; 3233 con->v2.out_state = OUT_S_QUEUE_ZEROS; 3234 return; 3235 } 3236 3237 /* 3238 * We've zero-filled everything up to epilogue. Queue epilogue 3239 * with late_status set to ABORTED and crcs adjusted for zeros. 3240 * Once it's written, we are done patching up for the revoke. 3241 */ 3242 reset_out_kvecs(con); 3243 prepare_epilogue_plain(con, msg, true); 3244 con->v2.out_state = OUT_S_FINISH_MESSAGE; 3245 } 3246 3247 static void finish_message(struct ceph_connection *con) 3248 { 3249 dout("%s con %p msg %p\n", __func__, con, con->out_msg); 3250 3251 /* we end up here both plain and secure modes */ 3252 if (con->v2.out_enc_pages) { 3253 WARN_ON(!con->v2.out_enc_page_cnt); 3254 ceph_release_page_vector(con->v2.out_enc_pages, 3255 con->v2.out_enc_page_cnt); 3256 con->v2.out_enc_pages = NULL; 3257 con->v2.out_enc_page_cnt = 0; 3258 } 3259 /* message may have been revoked */ 3260 if (con->out_msg) { 3261 ceph_msg_put(con->out_msg); 3262 con->out_msg = NULL; 3263 } 3264 3265 con->v2.out_state = OUT_S_GET_NEXT; 3266 } 3267 3268 static int populate_out_iter(struct ceph_connection *con) 3269 { 3270 struct ceph_msg *msg; 3271 int ret; 3272 3273 dout("%s con %p state %d out_state %d\n", __func__, con, con->state, 3274 con->v2.out_state); 3275 WARN_ON(iov_iter_count(&con->v2.out_iter)); 3276 3277 if (con->state != CEPH_CON_S_OPEN) { 3278 WARN_ON(con->state < CEPH_CON_S_V2_BANNER_PREFIX || 3279 con->state > CEPH_CON_S_V2_SESSION_RECONNECT); 3280 goto nothing_pending; 3281 } 3282 3283 switch (con->v2.out_state) { 3284 case OUT_S_QUEUE_DATA: 3285 WARN_ON(!con->out_msg); 3286 queue_data(con, con->out_msg); 3287 goto populated; 3288 case OUT_S_QUEUE_DATA_CONT: 3289 WARN_ON(!con->out_msg); 3290 queue_data_cont(con, con->out_msg); 3291 goto populated; 3292 case OUT_S_QUEUE_ENC_PAGE: 3293 queue_enc_page(con); 3294 goto populated; 3295 case OUT_S_QUEUE_ZEROS: 3296 WARN_ON(con->out_msg); /* revoked */ 3297 queue_zeros(con, con->out_msg); 3298 goto populated; 3299 case OUT_S_FINISH_MESSAGE: 3300 finish_message(con); 3301 break; 3302 case OUT_S_GET_NEXT: 3303 break; 3304 default: 3305 WARN(1, "bad out_state %d", con->v2.out_state); 3306 return -EINVAL; 3307 } 3308 3309 WARN_ON(con->v2.out_state != OUT_S_GET_NEXT); 3310 if (ceph_con_flag_test_and_clear(con, CEPH_CON_F_KEEPALIVE_PENDING)) { 3311 ret = prepare_keepalive2(con); 3312 if (ret) { 3313 pr_err("prepare_keepalive2 failed: %d\n", ret); 3314 return ret; 3315 } 3316 } else if ((msg = ceph_con_get_out_msg(con)) != NULL) { 3317 ret = prepare_message(con, msg); 3318 if (ret) { 3319 pr_err("prepare_message failed: %d\n", ret); 3320 return ret; 3321 } 3322 } else if (con->in_seq > con->in_seq_acked) { 3323 ret = prepare_ack(con); 3324 if (ret) { 3325 pr_err("prepare_ack failed: %d\n", ret); 3326 return ret; 3327 } 3328 } else { 3329 goto nothing_pending; 3330 } 3331 3332 populated: 3333 if (WARN_ON(!iov_iter_count(&con->v2.out_iter))) 3334 return -ENODATA; 3335 dout("%s con %p populated %zu\n", __func__, con, 3336 iov_iter_count(&con->v2.out_iter)); 3337 return 1; 3338 3339 nothing_pending: 3340 WARN_ON(iov_iter_count(&con->v2.out_iter)); 3341 dout("%s con %p nothing pending\n", __func__, con); 3342 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); 3343 return 0; 3344 } 3345 3346 int ceph_con_v2_try_write(struct ceph_connection *con) 3347 { 3348 int ret; 3349 3350 dout("%s con %p state %d have %zu\n", __func__, con, con->state, 3351 iov_iter_count(&con->v2.out_iter)); 3352 3353 /* open the socket first? */ 3354 if (con->state == CEPH_CON_S_PREOPEN) { 3355 WARN_ON(con->peer_addr.type != CEPH_ENTITY_ADDR_TYPE_MSGR2); 3356 3357 /* 3358 * Always bump global_seq. Bump connect_seq only if 3359 * there is a session (i.e. we are reconnecting and will 3360 * send session_reconnect instead of client_ident). 3361 */ 3362 con->v2.global_seq = ceph_get_global_seq(con->msgr, 0); 3363 if (con->v2.server_cookie) 3364 con->v2.connect_seq++; 3365 3366 ret = prepare_read_banner_prefix(con); 3367 if (ret) { 3368 pr_err("prepare_read_banner_prefix failed: %d\n", ret); 3369 con->error_msg = "connect error"; 3370 return ret; 3371 } 3372 3373 reset_out_kvecs(con); 3374 ret = prepare_banner(con); 3375 if (ret) { 3376 pr_err("prepare_banner failed: %d\n", ret); 3377 con->error_msg = "connect error"; 3378 return ret; 3379 } 3380 3381 ret = ceph_tcp_connect(con); 3382 if (ret) { 3383 pr_err("ceph_tcp_connect failed: %d\n", ret); 3384 con->error_msg = "connect error"; 3385 return ret; 3386 } 3387 } 3388 3389 if (!iov_iter_count(&con->v2.out_iter)) { 3390 ret = populate_out_iter(con); 3391 if (ret <= 0) { 3392 if (ret && ret != -EAGAIN && !con->error_msg) 3393 con->error_msg = "write processing error"; 3394 return ret; 3395 } 3396 } 3397 3398 tcp_sock_set_cork(con->sock->sk, true); 3399 for (;;) { 3400 ret = ceph_tcp_send(con); 3401 if (ret <= 0) 3402 break; 3403 3404 ret = populate_out_iter(con); 3405 if (ret <= 0) { 3406 if (ret && ret != -EAGAIN && !con->error_msg) 3407 con->error_msg = "write processing error"; 3408 break; 3409 } 3410 } 3411 3412 tcp_sock_set_cork(con->sock->sk, false); 3413 return ret; 3414 } 3415 3416 static u32 crc32c_zeros(u32 crc, int zero_len) 3417 { 3418 int len; 3419 3420 while (zero_len) { 3421 len = min(zero_len, (int)PAGE_SIZE); 3422 crc = crc32c(crc, page_address(ceph_zero_page), len); 3423 zero_len -= len; 3424 } 3425 3426 return crc; 3427 } 3428 3429 static void prepare_zero_front(struct ceph_connection *con, 3430 struct ceph_msg *msg, int resid) 3431 { 3432 int sent; 3433 3434 WARN_ON(!resid || resid > front_len(msg)); 3435 sent = front_len(msg) - resid; 3436 dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid); 3437 3438 if (sent) { 3439 con->v2.out_epil.front_crc = 3440 crc32c(-1, msg->front.iov_base, sent); 3441 con->v2.out_epil.front_crc = 3442 crc32c_zeros(con->v2.out_epil.front_crc, resid); 3443 } else { 3444 con->v2.out_epil.front_crc = crc32c_zeros(-1, resid); 3445 } 3446 3447 con->v2.out_iter.count -= resid; 3448 out_zero_add(con, resid); 3449 } 3450 3451 static void prepare_zero_middle(struct ceph_connection *con, 3452 struct ceph_msg *msg, int resid) 3453 { 3454 int sent; 3455 3456 WARN_ON(!resid || resid > middle_len(msg)); 3457 sent = middle_len(msg) - resid; 3458 dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid); 3459 3460 if (sent) { 3461 con->v2.out_epil.middle_crc = 3462 crc32c(-1, msg->middle->vec.iov_base, sent); 3463 con->v2.out_epil.middle_crc = 3464 crc32c_zeros(con->v2.out_epil.middle_crc, resid); 3465 } else { 3466 con->v2.out_epil.middle_crc = crc32c_zeros(-1, resid); 3467 } 3468 3469 con->v2.out_iter.count -= resid; 3470 out_zero_add(con, resid); 3471 } 3472 3473 static void prepare_zero_data(struct ceph_connection *con, 3474 struct ceph_msg *msg) 3475 { 3476 dout("%s con %p\n", __func__, con); 3477 con->v2.out_epil.data_crc = crc32c_zeros(-1, data_len(msg)); 3478 out_zero_add(con, data_len(msg)); 3479 } 3480 3481 static void revoke_at_queue_data(struct ceph_connection *con, 3482 struct ceph_msg *msg) 3483 { 3484 int boundary; 3485 int resid; 3486 3487 WARN_ON(!data_len(msg)); 3488 WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter)); 3489 resid = iov_iter_count(&con->v2.out_iter); 3490 3491 boundary = front_len(msg) + middle_len(msg); 3492 if (resid > boundary) { 3493 resid -= boundary; 3494 WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN); 3495 dout("%s con %p was sending head\n", __func__, con); 3496 if (front_len(msg)) 3497 prepare_zero_front(con, msg, front_len(msg)); 3498 if (middle_len(msg)) 3499 prepare_zero_middle(con, msg, middle_len(msg)); 3500 prepare_zero_data(con, msg); 3501 WARN_ON(iov_iter_count(&con->v2.out_iter) != resid); 3502 con->v2.out_state = OUT_S_QUEUE_ZEROS; 3503 return; 3504 } 3505 3506 boundary = middle_len(msg); 3507 if (resid > boundary) { 3508 resid -= boundary; 3509 dout("%s con %p was sending front\n", __func__, con); 3510 prepare_zero_front(con, msg, resid); 3511 if (middle_len(msg)) 3512 prepare_zero_middle(con, msg, middle_len(msg)); 3513 prepare_zero_data(con, msg); 3514 queue_zeros(con, msg); 3515 return; 3516 } 3517 3518 WARN_ON(!resid); 3519 dout("%s con %p was sending middle\n", __func__, con); 3520 prepare_zero_middle(con, msg, resid); 3521 prepare_zero_data(con, msg); 3522 queue_zeros(con, msg); 3523 } 3524 3525 static void revoke_at_queue_data_cont(struct ceph_connection *con, 3526 struct ceph_msg *msg) 3527 { 3528 int sent, resid; /* current piece of data */ 3529 3530 WARN_ON(!data_len(msg)); 3531 WARN_ON(!iov_iter_is_bvec(&con->v2.out_iter)); 3532 resid = iov_iter_count(&con->v2.out_iter); 3533 WARN_ON(!resid || resid > con->v2.out_bvec.bv_len); 3534 sent = con->v2.out_bvec.bv_len - resid; 3535 dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid); 3536 3537 if (sent) { 3538 con->v2.out_epil.data_crc = ceph_crc32c_page( 3539 con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page, 3540 con->v2.out_bvec.bv_offset, sent); 3541 ceph_msg_data_advance(&con->v2.out_cursor, sent); 3542 } 3543 WARN_ON(resid > con->v2.out_cursor.total_resid); 3544 con->v2.out_epil.data_crc = crc32c_zeros(con->v2.out_epil.data_crc, 3545 con->v2.out_cursor.total_resid); 3546 3547 con->v2.out_iter.count -= resid; 3548 out_zero_add(con, con->v2.out_cursor.total_resid); 3549 queue_zeros(con, msg); 3550 } 3551 3552 static void revoke_at_finish_message(struct ceph_connection *con, 3553 struct ceph_msg *msg) 3554 { 3555 int boundary; 3556 int resid; 3557 3558 WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter)); 3559 resid = iov_iter_count(&con->v2.out_iter); 3560 3561 if (!front_len(msg) && !middle_len(msg) && 3562 !data_len(msg)) { 3563 WARN_ON(!resid || resid > MESSAGE_HEAD_PLAIN_LEN); 3564 dout("%s con %p was sending head (empty message) - noop\n", 3565 __func__, con); 3566 return; 3567 } 3568 3569 boundary = front_len(msg) + middle_len(msg) + 3570 CEPH_EPILOGUE_PLAIN_LEN; 3571 if (resid > boundary) { 3572 resid -= boundary; 3573 WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN); 3574 dout("%s con %p was sending head\n", __func__, con); 3575 if (front_len(msg)) 3576 prepare_zero_front(con, msg, front_len(msg)); 3577 if (middle_len(msg)) 3578 prepare_zero_middle(con, msg, middle_len(msg)); 3579 con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN; 3580 WARN_ON(iov_iter_count(&con->v2.out_iter) != resid); 3581 con->v2.out_state = OUT_S_QUEUE_ZEROS; 3582 return; 3583 } 3584 3585 boundary = middle_len(msg) + CEPH_EPILOGUE_PLAIN_LEN; 3586 if (resid > boundary) { 3587 resid -= boundary; 3588 dout("%s con %p was sending front\n", __func__, con); 3589 prepare_zero_front(con, msg, resid); 3590 if (middle_len(msg)) 3591 prepare_zero_middle(con, msg, middle_len(msg)); 3592 con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN; 3593 queue_zeros(con, msg); 3594 return; 3595 } 3596 3597 boundary = CEPH_EPILOGUE_PLAIN_LEN; 3598 if (resid > boundary) { 3599 resid -= boundary; 3600 dout("%s con %p was sending middle\n", __func__, con); 3601 prepare_zero_middle(con, msg, resid); 3602 con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN; 3603 queue_zeros(con, msg); 3604 return; 3605 } 3606 3607 WARN_ON(!resid); 3608 dout("%s con %p was sending epilogue - noop\n", __func__, con); 3609 } 3610 3611 void ceph_con_v2_revoke(struct ceph_connection *con, struct ceph_msg *msg) 3612 { 3613 WARN_ON(con->v2.out_zero); 3614 3615 if (con_secure(con)) { 3616 WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE && 3617 con->v2.out_state != OUT_S_FINISH_MESSAGE); 3618 dout("%s con %p secure - noop\n", __func__, con); 3619 return; 3620 } 3621 3622 switch (con->v2.out_state) { 3623 case OUT_S_QUEUE_DATA: 3624 revoke_at_queue_data(con, msg); 3625 break; 3626 case OUT_S_QUEUE_DATA_CONT: 3627 revoke_at_queue_data_cont(con, msg); 3628 break; 3629 case OUT_S_FINISH_MESSAGE: 3630 revoke_at_finish_message(con, msg); 3631 break; 3632 default: 3633 WARN(1, "bad out_state %d", con->v2.out_state); 3634 break; 3635 } 3636 } 3637 3638 static void revoke_at_prepare_read_data(struct ceph_connection *con) 3639 { 3640 int remaining; 3641 int resid; 3642 3643 WARN_ON(con_secure(con)); 3644 WARN_ON(!data_len(con->in_msg)); 3645 WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter)); 3646 resid = iov_iter_count(&con->v2.in_iter); 3647 WARN_ON(!resid); 3648 3649 remaining = data_len(con->in_msg) + CEPH_EPILOGUE_PLAIN_LEN; 3650 dout("%s con %p resid %d remaining %d\n", __func__, con, resid, 3651 remaining); 3652 con->v2.in_iter.count -= resid; 3653 set_in_skip(con, resid + remaining); 3654 con->v2.in_state = IN_S_FINISH_SKIP; 3655 } 3656 3657 static void revoke_at_prepare_read_data_cont(struct ceph_connection *con) 3658 { 3659 int recved, resid; /* current piece of data */ 3660 int remaining; 3661 3662 WARN_ON(con_secure(con)); 3663 WARN_ON(!data_len(con->in_msg)); 3664 WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter)); 3665 resid = iov_iter_count(&con->v2.in_iter); 3666 WARN_ON(!resid || resid > con->v2.in_bvec.bv_len); 3667 recved = con->v2.in_bvec.bv_len - resid; 3668 dout("%s con %p recved %d resid %d\n", __func__, con, recved, resid); 3669 3670 if (recved) 3671 ceph_msg_data_advance(&con->v2.in_cursor, recved); 3672 WARN_ON(resid > con->v2.in_cursor.total_resid); 3673 3674 remaining = CEPH_EPILOGUE_PLAIN_LEN; 3675 dout("%s con %p total_resid %zu remaining %d\n", __func__, con, 3676 con->v2.in_cursor.total_resid, remaining); 3677 con->v2.in_iter.count -= resid; 3678 set_in_skip(con, con->v2.in_cursor.total_resid + remaining); 3679 con->v2.in_state = IN_S_FINISH_SKIP; 3680 } 3681 3682 static void revoke_at_prepare_read_enc_page(struct ceph_connection *con) 3683 { 3684 int resid; /* current enc page (not necessarily data) */ 3685 3686 WARN_ON(!con_secure(con)); 3687 WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter)); 3688 resid = iov_iter_count(&con->v2.in_iter); 3689 WARN_ON(!resid || resid > con->v2.in_bvec.bv_len); 3690 3691 dout("%s con %p resid %d enc_resid %d\n", __func__, con, resid, 3692 con->v2.in_enc_resid); 3693 con->v2.in_iter.count -= resid; 3694 set_in_skip(con, resid + con->v2.in_enc_resid); 3695 con->v2.in_state = IN_S_FINISH_SKIP; 3696 } 3697 3698 static void revoke_at_prepare_sparse_data(struct ceph_connection *con) 3699 { 3700 int resid; /* current piece of data */ 3701 int remaining; 3702 3703 WARN_ON(con_secure(con)); 3704 WARN_ON(!data_len(con->in_msg)); 3705 WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter)); 3706 resid = iov_iter_count(&con->v2.in_iter); 3707 dout("%s con %p resid %d\n", __func__, con, resid); 3708 3709 remaining = CEPH_EPILOGUE_PLAIN_LEN + con->v2.data_len_remain; 3710 con->v2.in_iter.count -= resid; 3711 set_in_skip(con, resid + remaining); 3712 con->v2.in_state = IN_S_FINISH_SKIP; 3713 } 3714 3715 static void revoke_at_handle_epilogue(struct ceph_connection *con) 3716 { 3717 int resid; 3718 3719 resid = iov_iter_count(&con->v2.in_iter); 3720 WARN_ON(!resid); 3721 3722 dout("%s con %p resid %d\n", __func__, con, resid); 3723 con->v2.in_iter.count -= resid; 3724 set_in_skip(con, resid); 3725 con->v2.in_state = IN_S_FINISH_SKIP; 3726 } 3727 3728 void ceph_con_v2_revoke_incoming(struct ceph_connection *con) 3729 { 3730 switch (con->v2.in_state) { 3731 case IN_S_PREPARE_SPARSE_DATA: 3732 case IN_S_PREPARE_READ_DATA: 3733 revoke_at_prepare_read_data(con); 3734 break; 3735 case IN_S_PREPARE_READ_DATA_CONT: 3736 revoke_at_prepare_read_data_cont(con); 3737 break; 3738 case IN_S_PREPARE_READ_ENC_PAGE: 3739 revoke_at_prepare_read_enc_page(con); 3740 break; 3741 case IN_S_PREPARE_SPARSE_DATA_CONT: 3742 revoke_at_prepare_sparse_data(con); 3743 break; 3744 case IN_S_HANDLE_EPILOGUE: 3745 revoke_at_handle_epilogue(con); 3746 break; 3747 default: 3748 WARN(1, "bad in_state %d", con->v2.in_state); 3749 break; 3750 } 3751 } 3752 3753 bool ceph_con_v2_opened(struct ceph_connection *con) 3754 { 3755 return con->v2.peer_global_seq; 3756 } 3757 3758 void ceph_con_v2_reset_session(struct ceph_connection *con) 3759 { 3760 con->v2.client_cookie = 0; 3761 con->v2.server_cookie = 0; 3762 con->v2.global_seq = 0; 3763 con->v2.connect_seq = 0; 3764 con->v2.peer_global_seq = 0; 3765 } 3766 3767 void ceph_con_v2_reset_protocol(struct ceph_connection *con) 3768 { 3769 iov_iter_truncate(&con->v2.in_iter, 0); 3770 iov_iter_truncate(&con->v2.out_iter, 0); 3771 con->v2.out_zero = 0; 3772 3773 clear_in_sign_kvecs(con); 3774 clear_out_sign_kvecs(con); 3775 free_conn_bufs(con); 3776 3777 if (con->v2.in_enc_pages) { 3778 WARN_ON(!con->v2.in_enc_page_cnt); 3779 ceph_release_page_vector(con->v2.in_enc_pages, 3780 con->v2.in_enc_page_cnt); 3781 con->v2.in_enc_pages = NULL; 3782 con->v2.in_enc_page_cnt = 0; 3783 } 3784 if (con->v2.out_enc_pages) { 3785 WARN_ON(!con->v2.out_enc_page_cnt); 3786 ceph_release_page_vector(con->v2.out_enc_pages, 3787 con->v2.out_enc_page_cnt); 3788 con->v2.out_enc_pages = NULL; 3789 con->v2.out_enc_page_cnt = 0; 3790 } 3791 3792 con->v2.con_mode = CEPH_CON_MODE_UNKNOWN; 3793 memzero_explicit(&con->v2.in_gcm_nonce, CEPH_GCM_IV_LEN); 3794 memzero_explicit(&con->v2.out_gcm_nonce, CEPH_GCM_IV_LEN); 3795 3796 memzero_explicit(&con->v2.hmac_key, sizeof(con->v2.hmac_key)); 3797 con->v2.hmac_key_set = false; 3798 if (con->v2.gcm_req) { 3799 aead_request_free(con->v2.gcm_req); 3800 con->v2.gcm_req = NULL; 3801 } 3802 if (con->v2.gcm_tfm) { 3803 crypto_free_aead(con->v2.gcm_tfm); 3804 con->v2.gcm_tfm = NULL; 3805 } 3806 } 3807