xref: /linux/net/ceph/messenger_v2.c (revision 4fd18fc38757217c746aa063ba9e4729814dc737)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Ceph msgr2 protocol implementation
4  *
5  * Copyright (C) 2020 Ilya Dryomov <idryomov@gmail.com>
6  */
7 
8 #include <linux/ceph/ceph_debug.h>
9 
10 #include <crypto/aead.h>
11 #include <crypto/algapi.h>  /* for crypto_memneq() */
12 #include <crypto/hash.h>
13 #include <crypto/sha2.h>
14 #include <linux/bvec.h>
15 #include <linux/crc32c.h>
16 #include <linux/net.h>
17 #include <linux/scatterlist.h>
18 #include <linux/socket.h>
19 #include <linux/sched/mm.h>
20 #include <net/sock.h>
21 #include <net/tcp.h>
22 
23 #include <linux/ceph/ceph_features.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/libceph.h>
26 #include <linux/ceph/messenger.h>
27 
28 #include "crypto.h"  /* for CEPH_KEY_LEN and CEPH_MAX_CON_SECRET_LEN */
29 
30 #define FRAME_TAG_HELLO			1
31 #define FRAME_TAG_AUTH_REQUEST		2
32 #define FRAME_TAG_AUTH_BAD_METHOD	3
33 #define FRAME_TAG_AUTH_REPLY_MORE	4
34 #define FRAME_TAG_AUTH_REQUEST_MORE	5
35 #define FRAME_TAG_AUTH_DONE		6
36 #define FRAME_TAG_AUTH_SIGNATURE	7
37 #define FRAME_TAG_CLIENT_IDENT		8
38 #define FRAME_TAG_SERVER_IDENT		9
39 #define FRAME_TAG_IDENT_MISSING_FEATURES 10
40 #define FRAME_TAG_SESSION_RECONNECT	11
41 #define FRAME_TAG_SESSION_RESET		12
42 #define FRAME_TAG_SESSION_RETRY		13
43 #define FRAME_TAG_SESSION_RETRY_GLOBAL	14
44 #define FRAME_TAG_SESSION_RECONNECT_OK	15
45 #define FRAME_TAG_WAIT			16
46 #define FRAME_TAG_MESSAGE		17
47 #define FRAME_TAG_KEEPALIVE2		18
48 #define FRAME_TAG_KEEPALIVE2_ACK	19
49 #define FRAME_TAG_ACK			20
50 
51 #define FRAME_LATE_STATUS_ABORTED	0x1
52 #define FRAME_LATE_STATUS_COMPLETE	0xe
53 #define FRAME_LATE_STATUS_ABORTED_MASK	0xf
54 
55 #define IN_S_HANDLE_PREAMBLE		1
56 #define IN_S_HANDLE_CONTROL		2
57 #define IN_S_HANDLE_CONTROL_REMAINDER	3
58 #define IN_S_PREPARE_READ_DATA		4
59 #define IN_S_PREPARE_READ_DATA_CONT	5
60 #define IN_S_HANDLE_EPILOGUE		6
61 #define IN_S_FINISH_SKIP		7
62 
63 #define OUT_S_QUEUE_DATA		1
64 #define OUT_S_QUEUE_DATA_CONT		2
65 #define OUT_S_QUEUE_ENC_PAGE		3
66 #define OUT_S_QUEUE_ZEROS		4
67 #define OUT_S_FINISH_MESSAGE		5
68 #define OUT_S_GET_NEXT			6
69 
70 #define CTRL_BODY(p)	((void *)(p) + CEPH_PREAMBLE_LEN)
71 #define FRONT_PAD(p)	((void *)(p) + CEPH_EPILOGUE_SECURE_LEN)
72 #define MIDDLE_PAD(p)	(FRONT_PAD(p) + CEPH_GCM_BLOCK_LEN)
73 #define DATA_PAD(p)	(MIDDLE_PAD(p) + CEPH_GCM_BLOCK_LEN)
74 
75 #define CEPH_MSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL)
76 
77 static int do_recvmsg(struct socket *sock, struct iov_iter *it)
78 {
79 	struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
80 	int ret;
81 
82 	msg.msg_iter = *it;
83 	while (iov_iter_count(it)) {
84 		ret = sock_recvmsg(sock, &msg, msg.msg_flags);
85 		if (ret <= 0) {
86 			if (ret == -EAGAIN)
87 				ret = 0;
88 			return ret;
89 		}
90 
91 		iov_iter_advance(it, ret);
92 	}
93 
94 	WARN_ON(msg_data_left(&msg));
95 	return 1;
96 }
97 
98 /*
99  * Read as much as possible.
100  *
101  * Return:
102  *   1 - done, nothing (else) to read
103  *   0 - socket is empty, need to wait
104  *  <0 - error
105  */
106 static int ceph_tcp_recv(struct ceph_connection *con)
107 {
108 	int ret;
109 
110 	dout("%s con %p %s %zu\n", __func__, con,
111 	     iov_iter_is_discard(&con->v2.in_iter) ? "discard" : "need",
112 	     iov_iter_count(&con->v2.in_iter));
113 	ret = do_recvmsg(con->sock, &con->v2.in_iter);
114 	dout("%s con %p ret %d left %zu\n", __func__, con, ret,
115 	     iov_iter_count(&con->v2.in_iter));
116 	return ret;
117 }
118 
119 static int do_sendmsg(struct socket *sock, struct iov_iter *it)
120 {
121 	struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
122 	int ret;
123 
124 	msg.msg_iter = *it;
125 	while (iov_iter_count(it)) {
126 		ret = sock_sendmsg(sock, &msg);
127 		if (ret <= 0) {
128 			if (ret == -EAGAIN)
129 				ret = 0;
130 			return ret;
131 		}
132 
133 		iov_iter_advance(it, ret);
134 	}
135 
136 	WARN_ON(msg_data_left(&msg));
137 	return 1;
138 }
139 
140 static int do_try_sendpage(struct socket *sock, struct iov_iter *it)
141 {
142 	struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
143 	struct bio_vec bv;
144 	int ret;
145 
146 	if (WARN_ON(!iov_iter_is_bvec(it)))
147 		return -EINVAL;
148 
149 	while (iov_iter_count(it)) {
150 		/* iov_iter_iovec() for ITER_BVEC */
151 		bv.bv_page = it->bvec->bv_page;
152 		bv.bv_offset = it->bvec->bv_offset + it->iov_offset;
153 		bv.bv_len = min(iov_iter_count(it),
154 				it->bvec->bv_len - it->iov_offset);
155 
156 		/*
157 		 * sendpage cannot properly handle pages with
158 		 * page_count == 0, we need to fall back to sendmsg if
159 		 * that's the case.
160 		 *
161 		 * Same goes for slab pages: skb_can_coalesce() allows
162 		 * coalescing neighboring slab objects into a single frag
163 		 * which triggers one of hardened usercopy checks.
164 		 */
165 		if (sendpage_ok(bv.bv_page)) {
166 			ret = sock->ops->sendpage(sock, bv.bv_page,
167 						  bv.bv_offset, bv.bv_len,
168 						  CEPH_MSG_FLAGS);
169 		} else {
170 			iov_iter_bvec(&msg.msg_iter, WRITE, &bv, 1, bv.bv_len);
171 			ret = sock_sendmsg(sock, &msg);
172 		}
173 		if (ret <= 0) {
174 			if (ret == -EAGAIN)
175 				ret = 0;
176 			return ret;
177 		}
178 
179 		iov_iter_advance(it, ret);
180 	}
181 
182 	return 1;
183 }
184 
185 /*
186  * Write as much as possible.  The socket is expected to be corked,
187  * so we don't bother with MSG_MORE/MSG_SENDPAGE_NOTLAST here.
188  *
189  * Return:
190  *   1 - done, nothing (else) to write
191  *   0 - socket is full, need to wait
192  *  <0 - error
193  */
194 static int ceph_tcp_send(struct ceph_connection *con)
195 {
196 	int ret;
197 
198 	dout("%s con %p have %zu try_sendpage %d\n", __func__, con,
199 	     iov_iter_count(&con->v2.out_iter), con->v2.out_iter_sendpage);
200 	if (con->v2.out_iter_sendpage)
201 		ret = do_try_sendpage(con->sock, &con->v2.out_iter);
202 	else
203 		ret = do_sendmsg(con->sock, &con->v2.out_iter);
204 	dout("%s con %p ret %d left %zu\n", __func__, con, ret,
205 	     iov_iter_count(&con->v2.out_iter));
206 	return ret;
207 }
208 
209 static void add_in_kvec(struct ceph_connection *con, void *buf, int len)
210 {
211 	BUG_ON(con->v2.in_kvec_cnt >= ARRAY_SIZE(con->v2.in_kvecs));
212 	WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
213 
214 	con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_base = buf;
215 	con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_len = len;
216 	con->v2.in_kvec_cnt++;
217 
218 	con->v2.in_iter.nr_segs++;
219 	con->v2.in_iter.count += len;
220 }
221 
222 static void reset_in_kvecs(struct ceph_connection *con)
223 {
224 	WARN_ON(iov_iter_count(&con->v2.in_iter));
225 
226 	con->v2.in_kvec_cnt = 0;
227 	iov_iter_kvec(&con->v2.in_iter, READ, con->v2.in_kvecs, 0, 0);
228 }
229 
230 static void set_in_bvec(struct ceph_connection *con, const struct bio_vec *bv)
231 {
232 	WARN_ON(iov_iter_count(&con->v2.in_iter));
233 
234 	con->v2.in_bvec = *bv;
235 	iov_iter_bvec(&con->v2.in_iter, READ, &con->v2.in_bvec, 1, bv->bv_len);
236 }
237 
238 static void set_in_skip(struct ceph_connection *con, int len)
239 {
240 	WARN_ON(iov_iter_count(&con->v2.in_iter));
241 
242 	dout("%s con %p len %d\n", __func__, con, len);
243 	iov_iter_discard(&con->v2.in_iter, READ, len);
244 }
245 
246 static void add_out_kvec(struct ceph_connection *con, void *buf, int len)
247 {
248 	BUG_ON(con->v2.out_kvec_cnt >= ARRAY_SIZE(con->v2.out_kvecs));
249 	WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
250 	WARN_ON(con->v2.out_zero);
251 
252 	con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_base = buf;
253 	con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_len = len;
254 	con->v2.out_kvec_cnt++;
255 
256 	con->v2.out_iter.nr_segs++;
257 	con->v2.out_iter.count += len;
258 }
259 
260 static void reset_out_kvecs(struct ceph_connection *con)
261 {
262 	WARN_ON(iov_iter_count(&con->v2.out_iter));
263 	WARN_ON(con->v2.out_zero);
264 
265 	con->v2.out_kvec_cnt = 0;
266 
267 	iov_iter_kvec(&con->v2.out_iter, WRITE, con->v2.out_kvecs, 0, 0);
268 	con->v2.out_iter_sendpage = false;
269 }
270 
271 static void set_out_bvec(struct ceph_connection *con, const struct bio_vec *bv,
272 			 bool zerocopy)
273 {
274 	WARN_ON(iov_iter_count(&con->v2.out_iter));
275 	WARN_ON(con->v2.out_zero);
276 
277 	con->v2.out_bvec = *bv;
278 	con->v2.out_iter_sendpage = zerocopy;
279 	iov_iter_bvec(&con->v2.out_iter, WRITE, &con->v2.out_bvec, 1,
280 		      con->v2.out_bvec.bv_len);
281 }
282 
283 static void set_out_bvec_zero(struct ceph_connection *con)
284 {
285 	WARN_ON(iov_iter_count(&con->v2.out_iter));
286 	WARN_ON(!con->v2.out_zero);
287 
288 	con->v2.out_bvec.bv_page = ceph_zero_page;
289 	con->v2.out_bvec.bv_offset = 0;
290 	con->v2.out_bvec.bv_len = min(con->v2.out_zero, (int)PAGE_SIZE);
291 	con->v2.out_iter_sendpage = true;
292 	iov_iter_bvec(&con->v2.out_iter, WRITE, &con->v2.out_bvec, 1,
293 		      con->v2.out_bvec.bv_len);
294 }
295 
296 static void out_zero_add(struct ceph_connection *con, int len)
297 {
298 	dout("%s con %p len %d\n", __func__, con, len);
299 	con->v2.out_zero += len;
300 }
301 
302 static void *alloc_conn_buf(struct ceph_connection *con, int len)
303 {
304 	void *buf;
305 
306 	dout("%s con %p len %d\n", __func__, con, len);
307 
308 	if (WARN_ON(con->v2.conn_buf_cnt >= ARRAY_SIZE(con->v2.conn_bufs)))
309 		return NULL;
310 
311 	buf = ceph_kvmalloc(len, GFP_NOIO);
312 	if (!buf)
313 		return NULL;
314 
315 	con->v2.conn_bufs[con->v2.conn_buf_cnt++] = buf;
316 	return buf;
317 }
318 
319 static void free_conn_bufs(struct ceph_connection *con)
320 {
321 	while (con->v2.conn_buf_cnt)
322 		kvfree(con->v2.conn_bufs[--con->v2.conn_buf_cnt]);
323 }
324 
325 static void add_in_sign_kvec(struct ceph_connection *con, void *buf, int len)
326 {
327 	BUG_ON(con->v2.in_sign_kvec_cnt >= ARRAY_SIZE(con->v2.in_sign_kvecs));
328 
329 	con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_base = buf;
330 	con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_len = len;
331 	con->v2.in_sign_kvec_cnt++;
332 }
333 
334 static void clear_in_sign_kvecs(struct ceph_connection *con)
335 {
336 	con->v2.in_sign_kvec_cnt = 0;
337 }
338 
339 static void add_out_sign_kvec(struct ceph_connection *con, void *buf, int len)
340 {
341 	BUG_ON(con->v2.out_sign_kvec_cnt >= ARRAY_SIZE(con->v2.out_sign_kvecs));
342 
343 	con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_base = buf;
344 	con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_len = len;
345 	con->v2.out_sign_kvec_cnt++;
346 }
347 
348 static void clear_out_sign_kvecs(struct ceph_connection *con)
349 {
350 	con->v2.out_sign_kvec_cnt = 0;
351 }
352 
353 static bool con_secure(struct ceph_connection *con)
354 {
355 	return con->v2.con_mode == CEPH_CON_MODE_SECURE;
356 }
357 
358 static int front_len(const struct ceph_msg *msg)
359 {
360 	return le32_to_cpu(msg->hdr.front_len);
361 }
362 
363 static int middle_len(const struct ceph_msg *msg)
364 {
365 	return le32_to_cpu(msg->hdr.middle_len);
366 }
367 
368 static int data_len(const struct ceph_msg *msg)
369 {
370 	return le32_to_cpu(msg->hdr.data_len);
371 }
372 
373 static bool need_padding(int len)
374 {
375 	return !IS_ALIGNED(len, CEPH_GCM_BLOCK_LEN);
376 }
377 
378 static int padded_len(int len)
379 {
380 	return ALIGN(len, CEPH_GCM_BLOCK_LEN);
381 }
382 
383 static int padding_len(int len)
384 {
385 	return padded_len(len) - len;
386 }
387 
388 /* preamble + control segment */
389 static int head_onwire_len(int ctrl_len, bool secure)
390 {
391 	int head_len;
392 	int rem_len;
393 
394 	if (secure) {
395 		head_len = CEPH_PREAMBLE_SECURE_LEN;
396 		if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) {
397 			rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
398 			head_len += padded_len(rem_len) + CEPH_GCM_TAG_LEN;
399 		}
400 	} else {
401 		head_len = CEPH_PREAMBLE_PLAIN_LEN;
402 		if (ctrl_len)
403 			head_len += ctrl_len + CEPH_CRC_LEN;
404 	}
405 	return head_len;
406 }
407 
408 /* front, middle and data segments + epilogue */
409 static int __tail_onwire_len(int front_len, int middle_len, int data_len,
410 			     bool secure)
411 {
412 	if (!front_len && !middle_len && !data_len)
413 		return 0;
414 
415 	if (!secure)
416 		return front_len + middle_len + data_len +
417 		       CEPH_EPILOGUE_PLAIN_LEN;
418 
419 	return padded_len(front_len) + padded_len(middle_len) +
420 	       padded_len(data_len) + CEPH_EPILOGUE_SECURE_LEN;
421 }
422 
423 static int tail_onwire_len(const struct ceph_msg *msg, bool secure)
424 {
425 	return __tail_onwire_len(front_len(msg), middle_len(msg),
426 				 data_len(msg), secure);
427 }
428 
429 /* head_onwire_len(sizeof(struct ceph_msg_header2), false) */
430 #define MESSAGE_HEAD_PLAIN_LEN	(CEPH_PREAMBLE_PLAIN_LEN +		\
431 				 sizeof(struct ceph_msg_header2) +	\
432 				 CEPH_CRC_LEN)
433 
434 static const int frame_aligns[] = {
435 	sizeof(void *),
436 	sizeof(void *),
437 	sizeof(void *),
438 	PAGE_SIZE
439 };
440 
441 /*
442  * Discards trailing empty segments, unless there is just one segment.
443  * A frame always has at least one (possibly empty) segment.
444  */
445 static int calc_segment_count(const int *lens, int len_cnt)
446 {
447 	int i;
448 
449 	for (i = len_cnt - 1; i >= 0; i--) {
450 		if (lens[i])
451 			return i + 1;
452 	}
453 
454 	return 1;
455 }
456 
457 static void init_frame_desc(struct ceph_frame_desc *desc, int tag,
458 			    const int *lens, int len_cnt)
459 {
460 	int i;
461 
462 	memset(desc, 0, sizeof(*desc));
463 
464 	desc->fd_tag = tag;
465 	desc->fd_seg_cnt = calc_segment_count(lens, len_cnt);
466 	BUG_ON(desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT);
467 	for (i = 0; i < desc->fd_seg_cnt; i++) {
468 		desc->fd_lens[i] = lens[i];
469 		desc->fd_aligns[i] = frame_aligns[i];
470 	}
471 }
472 
473 /*
474  * Preamble crc covers everything up to itself (28 bytes) and
475  * is calculated and verified irrespective of the connection mode
476  * (i.e. even if the frame is encrypted).
477  */
478 static void encode_preamble(const struct ceph_frame_desc *desc, void *p)
479 {
480 	void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN;
481 	void *start = p;
482 	int i;
483 
484 	memset(p, 0, CEPH_PREAMBLE_LEN);
485 
486 	ceph_encode_8(&p, desc->fd_tag);
487 	ceph_encode_8(&p, desc->fd_seg_cnt);
488 	for (i = 0; i < desc->fd_seg_cnt; i++) {
489 		ceph_encode_32(&p, desc->fd_lens[i]);
490 		ceph_encode_16(&p, desc->fd_aligns[i]);
491 	}
492 
493 	put_unaligned_le32(crc32c(0, start, crcp - start), crcp);
494 }
495 
496 static int decode_preamble(void *p, struct ceph_frame_desc *desc)
497 {
498 	void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN;
499 	u32 crc, expected_crc;
500 	int i;
501 
502 	crc = crc32c(0, p, crcp - p);
503 	expected_crc = get_unaligned_le32(crcp);
504 	if (crc != expected_crc) {
505 		pr_err("bad preamble crc, calculated %u, expected %u\n",
506 		       crc, expected_crc);
507 		return -EBADMSG;
508 	}
509 
510 	memset(desc, 0, sizeof(*desc));
511 
512 	desc->fd_tag = ceph_decode_8(&p);
513 	desc->fd_seg_cnt = ceph_decode_8(&p);
514 	if (desc->fd_seg_cnt < 1 ||
515 	    desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT) {
516 		pr_err("bad segment count %d\n", desc->fd_seg_cnt);
517 		return -EINVAL;
518 	}
519 	for (i = 0; i < desc->fd_seg_cnt; i++) {
520 		desc->fd_lens[i] = ceph_decode_32(&p);
521 		desc->fd_aligns[i] = ceph_decode_16(&p);
522 	}
523 
524 	/*
525 	 * This would fire for FRAME_TAG_WAIT (it has one empty
526 	 * segment), but we should never get it as client.
527 	 */
528 	if (!desc->fd_lens[desc->fd_seg_cnt - 1]) {
529 		pr_err("last segment empty\n");
530 		return -EINVAL;
531 	}
532 
533 	if (desc->fd_lens[0] > CEPH_MSG_MAX_CONTROL_LEN) {
534 		pr_err("control segment too big %d\n", desc->fd_lens[0]);
535 		return -EINVAL;
536 	}
537 	if (desc->fd_lens[1] > CEPH_MSG_MAX_FRONT_LEN) {
538 		pr_err("front segment too big %d\n", desc->fd_lens[1]);
539 		return -EINVAL;
540 	}
541 	if (desc->fd_lens[2] > CEPH_MSG_MAX_MIDDLE_LEN) {
542 		pr_err("middle segment too big %d\n", desc->fd_lens[2]);
543 		return -EINVAL;
544 	}
545 	if (desc->fd_lens[3] > CEPH_MSG_MAX_DATA_LEN) {
546 		pr_err("data segment too big %d\n", desc->fd_lens[3]);
547 		return -EINVAL;
548 	}
549 
550 	return 0;
551 }
552 
553 static void encode_epilogue_plain(struct ceph_connection *con, bool aborted)
554 {
555 	con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED :
556 						 FRAME_LATE_STATUS_COMPLETE;
557 	cpu_to_le32s(&con->v2.out_epil.front_crc);
558 	cpu_to_le32s(&con->v2.out_epil.middle_crc);
559 	cpu_to_le32s(&con->v2.out_epil.data_crc);
560 }
561 
562 static void encode_epilogue_secure(struct ceph_connection *con, bool aborted)
563 {
564 	memset(&con->v2.out_epil, 0, sizeof(con->v2.out_epil));
565 	con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED :
566 						 FRAME_LATE_STATUS_COMPLETE;
567 }
568 
569 static int decode_epilogue(void *p, u32 *front_crc, u32 *middle_crc,
570 			   u32 *data_crc)
571 {
572 	u8 late_status;
573 
574 	late_status = ceph_decode_8(&p);
575 	if ((late_status & FRAME_LATE_STATUS_ABORTED_MASK) !=
576 			FRAME_LATE_STATUS_COMPLETE) {
577 		/* we should never get an aborted message as client */
578 		pr_err("bad late_status 0x%x\n", late_status);
579 		return -EINVAL;
580 	}
581 
582 	if (front_crc && middle_crc && data_crc) {
583 		*front_crc = ceph_decode_32(&p);
584 		*middle_crc = ceph_decode_32(&p);
585 		*data_crc = ceph_decode_32(&p);
586 	}
587 
588 	return 0;
589 }
590 
591 static void fill_header(struct ceph_msg_header *hdr,
592 			const struct ceph_msg_header2 *hdr2,
593 			int front_len, int middle_len, int data_len,
594 			const struct ceph_entity_name *peer_name)
595 {
596 	hdr->seq = hdr2->seq;
597 	hdr->tid = hdr2->tid;
598 	hdr->type = hdr2->type;
599 	hdr->priority = hdr2->priority;
600 	hdr->version = hdr2->version;
601 	hdr->front_len = cpu_to_le32(front_len);
602 	hdr->middle_len = cpu_to_le32(middle_len);
603 	hdr->data_len = cpu_to_le32(data_len);
604 	hdr->data_off = hdr2->data_off;
605 	hdr->src = *peer_name;
606 	hdr->compat_version = hdr2->compat_version;
607 	hdr->reserved = 0;
608 	hdr->crc = 0;
609 }
610 
611 static void fill_header2(struct ceph_msg_header2 *hdr2,
612 			 const struct ceph_msg_header *hdr, u64 ack_seq)
613 {
614 	hdr2->seq = hdr->seq;
615 	hdr2->tid = hdr->tid;
616 	hdr2->type = hdr->type;
617 	hdr2->priority = hdr->priority;
618 	hdr2->version = hdr->version;
619 	hdr2->data_pre_padding_len = 0;
620 	hdr2->data_off = hdr->data_off;
621 	hdr2->ack_seq = cpu_to_le64(ack_seq);
622 	hdr2->flags = 0;
623 	hdr2->compat_version = hdr->compat_version;
624 	hdr2->reserved = 0;
625 }
626 
627 static int verify_control_crc(struct ceph_connection *con)
628 {
629 	int ctrl_len = con->v2.in_desc.fd_lens[0];
630 	u32 crc, expected_crc;
631 
632 	WARN_ON(con->v2.in_kvecs[0].iov_len != ctrl_len);
633 	WARN_ON(con->v2.in_kvecs[1].iov_len != CEPH_CRC_LEN);
634 
635 	crc = crc32c(-1, con->v2.in_kvecs[0].iov_base, ctrl_len);
636 	expected_crc = get_unaligned_le32(con->v2.in_kvecs[1].iov_base);
637 	if (crc != expected_crc) {
638 		pr_err("bad control crc, calculated %u, expected %u\n",
639 		       crc, expected_crc);
640 		return -EBADMSG;
641 	}
642 
643 	return 0;
644 }
645 
646 static int verify_epilogue_crcs(struct ceph_connection *con, u32 front_crc,
647 				u32 middle_crc, u32 data_crc)
648 {
649 	if (front_len(con->in_msg)) {
650 		con->in_front_crc = crc32c(-1, con->in_msg->front.iov_base,
651 					   front_len(con->in_msg));
652 	} else {
653 		WARN_ON(!middle_len(con->in_msg) && !data_len(con->in_msg));
654 		con->in_front_crc = -1;
655 	}
656 
657 	if (middle_len(con->in_msg))
658 		con->in_middle_crc = crc32c(-1,
659 					    con->in_msg->middle->vec.iov_base,
660 					    middle_len(con->in_msg));
661 	else if (data_len(con->in_msg))
662 		con->in_middle_crc = -1;
663 	else
664 		con->in_middle_crc = 0;
665 
666 	if (!data_len(con->in_msg))
667 		con->in_data_crc = 0;
668 
669 	dout("%s con %p msg %p crcs %u %u %u\n", __func__, con, con->in_msg,
670 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
671 
672 	if (con->in_front_crc != front_crc) {
673 		pr_err("bad front crc, calculated %u, expected %u\n",
674 		       con->in_front_crc, front_crc);
675 		return -EBADMSG;
676 	}
677 	if (con->in_middle_crc != middle_crc) {
678 		pr_err("bad middle crc, calculated %u, expected %u\n",
679 		       con->in_middle_crc, middle_crc);
680 		return -EBADMSG;
681 	}
682 	if (con->in_data_crc != data_crc) {
683 		pr_err("bad data crc, calculated %u, expected %u\n",
684 		       con->in_data_crc, data_crc);
685 		return -EBADMSG;
686 	}
687 
688 	return 0;
689 }
690 
691 static int setup_crypto(struct ceph_connection *con,
692 			u8 *session_key, int session_key_len,
693 			u8 *con_secret, int con_secret_len)
694 {
695 	unsigned int noio_flag;
696 	void *p;
697 	int ret;
698 
699 	dout("%s con %p con_mode %d session_key_len %d con_secret_len %d\n",
700 	     __func__, con, con->v2.con_mode, session_key_len, con_secret_len);
701 	WARN_ON(con->v2.hmac_tfm || con->v2.gcm_tfm || con->v2.gcm_req);
702 
703 	if (con->v2.con_mode != CEPH_CON_MODE_CRC &&
704 	    con->v2.con_mode != CEPH_CON_MODE_SECURE) {
705 		pr_err("bad con_mode %d\n", con->v2.con_mode);
706 		return -EINVAL;
707 	}
708 
709 	if (!session_key_len) {
710 		WARN_ON(con->v2.con_mode != CEPH_CON_MODE_CRC);
711 		WARN_ON(con_secret_len);
712 		return 0;  /* auth_none */
713 	}
714 
715 	noio_flag = memalloc_noio_save();
716 	con->v2.hmac_tfm = crypto_alloc_shash("hmac(sha256)", 0, 0);
717 	memalloc_noio_restore(noio_flag);
718 	if (IS_ERR(con->v2.hmac_tfm)) {
719 		ret = PTR_ERR(con->v2.hmac_tfm);
720 		con->v2.hmac_tfm = NULL;
721 		pr_err("failed to allocate hmac tfm context: %d\n", ret);
722 		return ret;
723 	}
724 
725 	WARN_ON((unsigned long)session_key &
726 		crypto_shash_alignmask(con->v2.hmac_tfm));
727 	ret = crypto_shash_setkey(con->v2.hmac_tfm, session_key,
728 				  session_key_len);
729 	if (ret) {
730 		pr_err("failed to set hmac key: %d\n", ret);
731 		return ret;
732 	}
733 
734 	if (con->v2.con_mode == CEPH_CON_MODE_CRC) {
735 		WARN_ON(con_secret_len);
736 		return 0;  /* auth_x, plain mode */
737 	}
738 
739 	if (con_secret_len < CEPH_GCM_KEY_LEN + 2 * CEPH_GCM_IV_LEN) {
740 		pr_err("con_secret too small %d\n", con_secret_len);
741 		return -EINVAL;
742 	}
743 
744 	noio_flag = memalloc_noio_save();
745 	con->v2.gcm_tfm = crypto_alloc_aead("gcm(aes)", 0, 0);
746 	memalloc_noio_restore(noio_flag);
747 	if (IS_ERR(con->v2.gcm_tfm)) {
748 		ret = PTR_ERR(con->v2.gcm_tfm);
749 		con->v2.gcm_tfm = NULL;
750 		pr_err("failed to allocate gcm tfm context: %d\n", ret);
751 		return ret;
752 	}
753 
754 	p = con_secret;
755 	WARN_ON((unsigned long)p & crypto_aead_alignmask(con->v2.gcm_tfm));
756 	ret = crypto_aead_setkey(con->v2.gcm_tfm, p, CEPH_GCM_KEY_LEN);
757 	if (ret) {
758 		pr_err("failed to set gcm key: %d\n", ret);
759 		return ret;
760 	}
761 
762 	p += CEPH_GCM_KEY_LEN;
763 	WARN_ON(crypto_aead_ivsize(con->v2.gcm_tfm) != CEPH_GCM_IV_LEN);
764 	ret = crypto_aead_setauthsize(con->v2.gcm_tfm, CEPH_GCM_TAG_LEN);
765 	if (ret) {
766 		pr_err("failed to set gcm tag size: %d\n", ret);
767 		return ret;
768 	}
769 
770 	con->v2.gcm_req = aead_request_alloc(con->v2.gcm_tfm, GFP_NOIO);
771 	if (!con->v2.gcm_req) {
772 		pr_err("failed to allocate gcm request\n");
773 		return -ENOMEM;
774 	}
775 
776 	crypto_init_wait(&con->v2.gcm_wait);
777 	aead_request_set_callback(con->v2.gcm_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
778 				  crypto_req_done, &con->v2.gcm_wait);
779 
780 	memcpy(&con->v2.in_gcm_nonce, p, CEPH_GCM_IV_LEN);
781 	memcpy(&con->v2.out_gcm_nonce, p + CEPH_GCM_IV_LEN, CEPH_GCM_IV_LEN);
782 	return 0;  /* auth_x, secure mode */
783 }
784 
785 static int hmac_sha256(struct ceph_connection *con, const struct kvec *kvecs,
786 		       int kvec_cnt, u8 *hmac)
787 {
788 	SHASH_DESC_ON_STACK(desc, con->v2.hmac_tfm);  /* tfm arg is ignored */
789 	int ret;
790 	int i;
791 
792 	dout("%s con %p hmac_tfm %p kvec_cnt %d\n", __func__, con,
793 	     con->v2.hmac_tfm, kvec_cnt);
794 
795 	if (!con->v2.hmac_tfm) {
796 		memset(hmac, 0, SHA256_DIGEST_SIZE);
797 		return 0;  /* auth_none */
798 	}
799 
800 	desc->tfm = con->v2.hmac_tfm;
801 	ret = crypto_shash_init(desc);
802 	if (ret)
803 		return ret;
804 
805 	for (i = 0; i < kvec_cnt; i++) {
806 		WARN_ON((unsigned long)kvecs[i].iov_base &
807 			crypto_shash_alignmask(con->v2.hmac_tfm));
808 		ret = crypto_shash_update(desc, kvecs[i].iov_base,
809 					  kvecs[i].iov_len);
810 		if (ret)
811 			return ret;
812 	}
813 
814 	ret = crypto_shash_final(desc, hmac);
815 	if (ret)
816 		return ret;
817 
818 	shash_desc_zero(desc);
819 	return 0;  /* auth_x, both plain and secure modes */
820 }
821 
822 static void gcm_inc_nonce(struct ceph_gcm_nonce *nonce)
823 {
824 	u64 counter;
825 
826 	counter = le64_to_cpu(nonce->counter);
827 	nonce->counter = cpu_to_le64(counter + 1);
828 }
829 
830 static int gcm_crypt(struct ceph_connection *con, bool encrypt,
831 		     struct scatterlist *src, struct scatterlist *dst,
832 		     int src_len)
833 {
834 	struct ceph_gcm_nonce *nonce;
835 	int ret;
836 
837 	nonce = encrypt ? &con->v2.out_gcm_nonce : &con->v2.in_gcm_nonce;
838 
839 	aead_request_set_ad(con->v2.gcm_req, 0);  /* no AAD */
840 	aead_request_set_crypt(con->v2.gcm_req, src, dst, src_len, (u8 *)nonce);
841 	ret = crypto_wait_req(encrypt ? crypto_aead_encrypt(con->v2.gcm_req) :
842 					crypto_aead_decrypt(con->v2.gcm_req),
843 			      &con->v2.gcm_wait);
844 	if (ret)
845 		return ret;
846 
847 	gcm_inc_nonce(nonce);
848 	return 0;
849 }
850 
851 static void get_bvec_at(struct ceph_msg_data_cursor *cursor,
852 			struct bio_vec *bv)
853 {
854 	struct page *page;
855 	size_t off, len;
856 
857 	WARN_ON(!cursor->total_resid);
858 
859 	/* skip zero-length data items */
860 	while (!cursor->resid)
861 		ceph_msg_data_advance(cursor, 0);
862 
863 	/* get a piece of data, cursor isn't advanced */
864 	page = ceph_msg_data_next(cursor, &off, &len, NULL);
865 
866 	bv->bv_page = page;
867 	bv->bv_offset = off;
868 	bv->bv_len = len;
869 }
870 
871 static int calc_sg_cnt(void *buf, int buf_len)
872 {
873 	int sg_cnt;
874 
875 	if (!buf_len)
876 		return 0;
877 
878 	sg_cnt = need_padding(buf_len) ? 1 : 0;
879 	if (is_vmalloc_addr(buf)) {
880 		WARN_ON(offset_in_page(buf));
881 		sg_cnt += PAGE_ALIGN(buf_len) >> PAGE_SHIFT;
882 	} else {
883 		sg_cnt++;
884 	}
885 
886 	return sg_cnt;
887 }
888 
889 static int calc_sg_cnt_cursor(struct ceph_msg_data_cursor *cursor)
890 {
891 	int data_len = cursor->total_resid;
892 	struct bio_vec bv;
893 	int sg_cnt;
894 
895 	if (!data_len)
896 		return 0;
897 
898 	sg_cnt = need_padding(data_len) ? 1 : 0;
899 	do {
900 		get_bvec_at(cursor, &bv);
901 		sg_cnt++;
902 
903 		ceph_msg_data_advance(cursor, bv.bv_len);
904 	} while (cursor->total_resid);
905 
906 	return sg_cnt;
907 }
908 
909 static void init_sgs(struct scatterlist **sg, void *buf, int buf_len, u8 *pad)
910 {
911 	void *end = buf + buf_len;
912 	struct page *page;
913 	int len;
914 	void *p;
915 
916 	if (!buf_len)
917 		return;
918 
919 	if (is_vmalloc_addr(buf)) {
920 		p = buf;
921 		do {
922 			page = vmalloc_to_page(p);
923 			len = min_t(int, end - p, PAGE_SIZE);
924 			WARN_ON(!page || !len || offset_in_page(p));
925 			sg_set_page(*sg, page, len, 0);
926 			*sg = sg_next(*sg);
927 			p += len;
928 		} while (p != end);
929 	} else {
930 		sg_set_buf(*sg, buf, buf_len);
931 		*sg = sg_next(*sg);
932 	}
933 
934 	if (need_padding(buf_len)) {
935 		sg_set_buf(*sg, pad, padding_len(buf_len));
936 		*sg = sg_next(*sg);
937 	}
938 }
939 
940 static void init_sgs_cursor(struct scatterlist **sg,
941 			    struct ceph_msg_data_cursor *cursor, u8 *pad)
942 {
943 	int data_len = cursor->total_resid;
944 	struct bio_vec bv;
945 
946 	if (!data_len)
947 		return;
948 
949 	do {
950 		get_bvec_at(cursor, &bv);
951 		sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
952 		*sg = sg_next(*sg);
953 
954 		ceph_msg_data_advance(cursor, bv.bv_len);
955 	} while (cursor->total_resid);
956 
957 	if (need_padding(data_len)) {
958 		sg_set_buf(*sg, pad, padding_len(data_len));
959 		*sg = sg_next(*sg);
960 	}
961 }
962 
963 static int setup_message_sgs(struct sg_table *sgt, struct ceph_msg *msg,
964 			     u8 *front_pad, u8 *middle_pad, u8 *data_pad,
965 			     void *epilogue, bool add_tag)
966 {
967 	struct ceph_msg_data_cursor cursor;
968 	struct scatterlist *cur_sg;
969 	int sg_cnt;
970 	int ret;
971 
972 	if (!front_len(msg) && !middle_len(msg) && !data_len(msg))
973 		return 0;
974 
975 	sg_cnt = 1;  /* epilogue + [auth tag] */
976 	if (front_len(msg))
977 		sg_cnt += calc_sg_cnt(msg->front.iov_base,
978 				      front_len(msg));
979 	if (middle_len(msg))
980 		sg_cnt += calc_sg_cnt(msg->middle->vec.iov_base,
981 				      middle_len(msg));
982 	if (data_len(msg)) {
983 		ceph_msg_data_cursor_init(&cursor, msg, data_len(msg));
984 		sg_cnt += calc_sg_cnt_cursor(&cursor);
985 	}
986 
987 	ret = sg_alloc_table(sgt, sg_cnt, GFP_NOIO);
988 	if (ret)
989 		return ret;
990 
991 	cur_sg = sgt->sgl;
992 	if (front_len(msg))
993 		init_sgs(&cur_sg, msg->front.iov_base, front_len(msg),
994 			 front_pad);
995 	if (middle_len(msg))
996 		init_sgs(&cur_sg, msg->middle->vec.iov_base, middle_len(msg),
997 			 middle_pad);
998 	if (data_len(msg)) {
999 		ceph_msg_data_cursor_init(&cursor, msg, data_len(msg));
1000 		init_sgs_cursor(&cur_sg, &cursor, data_pad);
1001 	}
1002 
1003 	WARN_ON(!sg_is_last(cur_sg));
1004 	sg_set_buf(cur_sg, epilogue,
1005 		   CEPH_GCM_BLOCK_LEN + (add_tag ? CEPH_GCM_TAG_LEN : 0));
1006 	return 0;
1007 }
1008 
1009 static int decrypt_preamble(struct ceph_connection *con)
1010 {
1011 	struct scatterlist sg;
1012 
1013 	sg_init_one(&sg, con->v2.in_buf, CEPH_PREAMBLE_SECURE_LEN);
1014 	return gcm_crypt(con, false, &sg, &sg, CEPH_PREAMBLE_SECURE_LEN);
1015 }
1016 
1017 static int decrypt_control_remainder(struct ceph_connection *con)
1018 {
1019 	int ctrl_len = con->v2.in_desc.fd_lens[0];
1020 	int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1021 	int pt_len = padding_len(rem_len) + CEPH_GCM_TAG_LEN;
1022 	struct scatterlist sgs[2];
1023 
1024 	WARN_ON(con->v2.in_kvecs[0].iov_len != rem_len);
1025 	WARN_ON(con->v2.in_kvecs[1].iov_len != pt_len);
1026 
1027 	sg_init_table(sgs, 2);
1028 	sg_set_buf(&sgs[0], con->v2.in_kvecs[0].iov_base, rem_len);
1029 	sg_set_buf(&sgs[1], con->v2.in_buf, pt_len);
1030 
1031 	return gcm_crypt(con, false, sgs, sgs,
1032 			 padded_len(rem_len) + CEPH_GCM_TAG_LEN);
1033 }
1034 
1035 static int decrypt_message(struct ceph_connection *con)
1036 {
1037 	struct sg_table sgt = {};
1038 	int ret;
1039 
1040 	ret = setup_message_sgs(&sgt, con->in_msg, FRONT_PAD(con->v2.in_buf),
1041 			MIDDLE_PAD(con->v2.in_buf), DATA_PAD(con->v2.in_buf),
1042 			con->v2.in_buf, true);
1043 	if (ret)
1044 		goto out;
1045 
1046 	ret = gcm_crypt(con, false, sgt.sgl, sgt.sgl,
1047 			tail_onwire_len(con->in_msg, true));
1048 
1049 out:
1050 	sg_free_table(&sgt);
1051 	return ret;
1052 }
1053 
1054 static int prepare_banner(struct ceph_connection *con)
1055 {
1056 	int buf_len = CEPH_BANNER_V2_LEN + 2 + 8 + 8;
1057 	void *buf, *p;
1058 
1059 	buf = alloc_conn_buf(con, buf_len);
1060 	if (!buf)
1061 		return -ENOMEM;
1062 
1063 	p = buf;
1064 	ceph_encode_copy(&p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN);
1065 	ceph_encode_16(&p, sizeof(u64) + sizeof(u64));
1066 	ceph_encode_64(&p, CEPH_MSGR2_SUPPORTED_FEATURES);
1067 	ceph_encode_64(&p, CEPH_MSGR2_REQUIRED_FEATURES);
1068 	WARN_ON(p != buf + buf_len);
1069 
1070 	add_out_kvec(con, buf, buf_len);
1071 	add_out_sign_kvec(con, buf, buf_len);
1072 	ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1073 	return 0;
1074 }
1075 
1076 /*
1077  * base:
1078  *   preamble
1079  *   control body (ctrl_len bytes)
1080  *   space for control crc
1081  *
1082  * extdata (optional):
1083  *   control body (extdata_len bytes)
1084  *
1085  * Compute control crc and gather base and extdata into:
1086  *
1087  *   preamble
1088  *   control body (ctrl_len + extdata_len bytes)
1089  *   control crc
1090  *
1091  * Preamble should already be encoded at the start of base.
1092  */
1093 static void prepare_head_plain(struct ceph_connection *con, void *base,
1094 			       int ctrl_len, void *extdata, int extdata_len,
1095 			       bool to_be_signed)
1096 {
1097 	int base_len = CEPH_PREAMBLE_LEN + ctrl_len + CEPH_CRC_LEN;
1098 	void *crcp = base + base_len - CEPH_CRC_LEN;
1099 	u32 crc;
1100 
1101 	crc = crc32c(-1, CTRL_BODY(base), ctrl_len);
1102 	if (extdata_len)
1103 		crc = crc32c(crc, extdata, extdata_len);
1104 	put_unaligned_le32(crc, crcp);
1105 
1106 	if (!extdata_len) {
1107 		add_out_kvec(con, base, base_len);
1108 		if (to_be_signed)
1109 			add_out_sign_kvec(con, base, base_len);
1110 		return;
1111 	}
1112 
1113 	add_out_kvec(con, base, crcp - base);
1114 	add_out_kvec(con, extdata, extdata_len);
1115 	add_out_kvec(con, crcp, CEPH_CRC_LEN);
1116 	if (to_be_signed) {
1117 		add_out_sign_kvec(con, base, crcp - base);
1118 		add_out_sign_kvec(con, extdata, extdata_len);
1119 		add_out_sign_kvec(con, crcp, CEPH_CRC_LEN);
1120 	}
1121 }
1122 
1123 static int prepare_head_secure_small(struct ceph_connection *con,
1124 				     void *base, int ctrl_len)
1125 {
1126 	struct scatterlist sg;
1127 	int ret;
1128 
1129 	/* inline buffer padding? */
1130 	if (ctrl_len < CEPH_PREAMBLE_INLINE_LEN)
1131 		memset(CTRL_BODY(base) + ctrl_len, 0,
1132 		       CEPH_PREAMBLE_INLINE_LEN - ctrl_len);
1133 
1134 	sg_init_one(&sg, base, CEPH_PREAMBLE_SECURE_LEN);
1135 	ret = gcm_crypt(con, true, &sg, &sg,
1136 			CEPH_PREAMBLE_SECURE_LEN - CEPH_GCM_TAG_LEN);
1137 	if (ret)
1138 		return ret;
1139 
1140 	add_out_kvec(con, base, CEPH_PREAMBLE_SECURE_LEN);
1141 	return 0;
1142 }
1143 
1144 /*
1145  * base:
1146  *   preamble
1147  *   control body (ctrl_len bytes)
1148  *   space for padding, if needed
1149  *   space for control remainder auth tag
1150  *   space for preamble auth tag
1151  *
1152  * Encrypt preamble and the inline portion, then encrypt the remainder
1153  * and gather into:
1154  *
1155  *   preamble
1156  *   control body (48 bytes)
1157  *   preamble auth tag
1158  *   control body (ctrl_len - 48 bytes)
1159  *   zero padding, if needed
1160  *   control remainder auth tag
1161  *
1162  * Preamble should already be encoded at the start of base.
1163  */
1164 static int prepare_head_secure_big(struct ceph_connection *con,
1165 				   void *base, int ctrl_len)
1166 {
1167 	int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1168 	void *rem = CTRL_BODY(base) + CEPH_PREAMBLE_INLINE_LEN;
1169 	void *rem_tag = rem + padded_len(rem_len);
1170 	void *pmbl_tag = rem_tag + CEPH_GCM_TAG_LEN;
1171 	struct scatterlist sgs[2];
1172 	int ret;
1173 
1174 	sg_init_table(sgs, 2);
1175 	sg_set_buf(&sgs[0], base, rem - base);
1176 	sg_set_buf(&sgs[1], pmbl_tag, CEPH_GCM_TAG_LEN);
1177 	ret = gcm_crypt(con, true, sgs, sgs, rem - base);
1178 	if (ret)
1179 		return ret;
1180 
1181 	/* control remainder padding? */
1182 	if (need_padding(rem_len))
1183 		memset(rem + rem_len, 0, padding_len(rem_len));
1184 
1185 	sg_init_one(&sgs[0], rem, pmbl_tag - rem);
1186 	ret = gcm_crypt(con, true, sgs, sgs, rem_tag - rem);
1187 	if (ret)
1188 		return ret;
1189 
1190 	add_out_kvec(con, base, rem - base);
1191 	add_out_kvec(con, pmbl_tag, CEPH_GCM_TAG_LEN);
1192 	add_out_kvec(con, rem, pmbl_tag - rem);
1193 	return 0;
1194 }
1195 
1196 static int __prepare_control(struct ceph_connection *con, int tag,
1197 			     void *base, int ctrl_len, void *extdata,
1198 			     int extdata_len, bool to_be_signed)
1199 {
1200 	int total_len = ctrl_len + extdata_len;
1201 	struct ceph_frame_desc desc;
1202 	int ret;
1203 
1204 	dout("%s con %p tag %d len %d (%d+%d)\n", __func__, con, tag,
1205 	     total_len, ctrl_len, extdata_len);
1206 
1207 	/* extdata may be vmalloc'ed but not base */
1208 	if (WARN_ON(is_vmalloc_addr(base) || !ctrl_len))
1209 		return -EINVAL;
1210 
1211 	init_frame_desc(&desc, tag, &total_len, 1);
1212 	encode_preamble(&desc, base);
1213 
1214 	if (con_secure(con)) {
1215 		if (WARN_ON(extdata_len || to_be_signed))
1216 			return -EINVAL;
1217 
1218 		if (ctrl_len <= CEPH_PREAMBLE_INLINE_LEN)
1219 			/* fully inlined, inline buffer may need padding */
1220 			ret = prepare_head_secure_small(con, base, ctrl_len);
1221 		else
1222 			/* partially inlined, inline buffer is full */
1223 			ret = prepare_head_secure_big(con, base, ctrl_len);
1224 		if (ret)
1225 			return ret;
1226 	} else {
1227 		prepare_head_plain(con, base, ctrl_len, extdata, extdata_len,
1228 				   to_be_signed);
1229 	}
1230 
1231 	ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1232 	return 0;
1233 }
1234 
1235 static int prepare_control(struct ceph_connection *con, int tag,
1236 			   void *base, int ctrl_len)
1237 {
1238 	return __prepare_control(con, tag, base, ctrl_len, NULL, 0, false);
1239 }
1240 
1241 static int prepare_hello(struct ceph_connection *con)
1242 {
1243 	void *buf, *p;
1244 	int ctrl_len;
1245 
1246 	ctrl_len = 1 + ceph_entity_addr_encoding_len(&con->peer_addr);
1247 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1248 	if (!buf)
1249 		return -ENOMEM;
1250 
1251 	p = CTRL_BODY(buf);
1252 	ceph_encode_8(&p, CEPH_ENTITY_TYPE_CLIENT);
1253 	ceph_encode_entity_addr(&p, &con->peer_addr);
1254 	WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1255 
1256 	return __prepare_control(con, FRAME_TAG_HELLO, buf, ctrl_len,
1257 				 NULL, 0, true);
1258 }
1259 
1260 /* so that head_onwire_len(AUTH_BUF_LEN, false) is 512 */
1261 #define AUTH_BUF_LEN	(512 - CEPH_CRC_LEN - CEPH_PREAMBLE_PLAIN_LEN)
1262 
1263 static int prepare_auth_request(struct ceph_connection *con)
1264 {
1265 	void *authorizer, *authorizer_copy;
1266 	int ctrl_len, authorizer_len;
1267 	void *buf;
1268 	int ret;
1269 
1270 	ctrl_len = AUTH_BUF_LEN;
1271 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1272 	if (!buf)
1273 		return -ENOMEM;
1274 
1275 	mutex_unlock(&con->mutex);
1276 	ret = con->ops->get_auth_request(con, CTRL_BODY(buf), &ctrl_len,
1277 					 &authorizer, &authorizer_len);
1278 	mutex_lock(&con->mutex);
1279 	if (con->state != CEPH_CON_S_V2_HELLO) {
1280 		dout("%s con %p state changed to %d\n", __func__, con,
1281 		     con->state);
1282 		return -EAGAIN;
1283 	}
1284 
1285 	dout("%s con %p get_auth_request ret %d\n", __func__, con, ret);
1286 	if (ret)
1287 		return ret;
1288 
1289 	authorizer_copy = alloc_conn_buf(con, authorizer_len);
1290 	if (!authorizer_copy)
1291 		return -ENOMEM;
1292 
1293 	memcpy(authorizer_copy, authorizer, authorizer_len);
1294 
1295 	return __prepare_control(con, FRAME_TAG_AUTH_REQUEST, buf, ctrl_len,
1296 				 authorizer_copy, authorizer_len, true);
1297 }
1298 
1299 static int prepare_auth_request_more(struct ceph_connection *con,
1300 				     void *reply, int reply_len)
1301 {
1302 	int ctrl_len, authorizer_len;
1303 	void *authorizer;
1304 	void *buf;
1305 	int ret;
1306 
1307 	ctrl_len = AUTH_BUF_LEN;
1308 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1309 	if (!buf)
1310 		return -ENOMEM;
1311 
1312 	mutex_unlock(&con->mutex);
1313 	ret = con->ops->handle_auth_reply_more(con, reply, reply_len,
1314 					       CTRL_BODY(buf), &ctrl_len,
1315 					       &authorizer, &authorizer_len);
1316 	mutex_lock(&con->mutex);
1317 	if (con->state != CEPH_CON_S_V2_AUTH) {
1318 		dout("%s con %p state changed to %d\n", __func__, con,
1319 		     con->state);
1320 		return -EAGAIN;
1321 	}
1322 
1323 	dout("%s con %p handle_auth_reply_more ret %d\n", __func__, con, ret);
1324 	if (ret)
1325 		return ret;
1326 
1327 	return __prepare_control(con, FRAME_TAG_AUTH_REQUEST_MORE, buf,
1328 				 ctrl_len, authorizer, authorizer_len, true);
1329 }
1330 
1331 static int prepare_auth_signature(struct ceph_connection *con)
1332 {
1333 	void *buf;
1334 	int ret;
1335 
1336 	buf = alloc_conn_buf(con, head_onwire_len(SHA256_DIGEST_SIZE, false));
1337 	if (!buf)
1338 		return -ENOMEM;
1339 
1340 	ret = hmac_sha256(con, con->v2.in_sign_kvecs, con->v2.in_sign_kvec_cnt,
1341 			  CTRL_BODY(buf));
1342 	if (ret)
1343 		return ret;
1344 
1345 	return prepare_control(con, FRAME_TAG_AUTH_SIGNATURE, buf,
1346 			       SHA256_DIGEST_SIZE);
1347 }
1348 
1349 static int prepare_client_ident(struct ceph_connection *con)
1350 {
1351 	struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
1352 	struct ceph_client *client = from_msgr(con->msgr);
1353 	u64 global_id = ceph_client_gid(client);
1354 	void *buf, *p;
1355 	int ctrl_len;
1356 
1357 	WARN_ON(con->v2.server_cookie);
1358 	WARN_ON(con->v2.connect_seq);
1359 	WARN_ON(con->v2.peer_global_seq);
1360 
1361 	if (!con->v2.client_cookie) {
1362 		do {
1363 			get_random_bytes(&con->v2.client_cookie,
1364 					 sizeof(con->v2.client_cookie));
1365 		} while (!con->v2.client_cookie);
1366 		dout("%s con %p generated cookie 0x%llx\n", __func__, con,
1367 		     con->v2.client_cookie);
1368 	} else {
1369 		dout("%s con %p cookie already set 0x%llx\n", __func__, con,
1370 		     con->v2.client_cookie);
1371 	}
1372 
1373 	dout("%s con %p my_addr %s/%u peer_addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx cookie 0x%llx\n",
1374 	     __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce),
1375 	     ceph_pr_addr(&con->peer_addr), le32_to_cpu(con->peer_addr.nonce),
1376 	     global_id, con->v2.global_seq, client->supported_features,
1377 	     client->required_features, con->v2.client_cookie);
1378 
1379 	ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) +
1380 		   ceph_entity_addr_encoding_len(&con->peer_addr) + 6 * 8;
1381 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con)));
1382 	if (!buf)
1383 		return -ENOMEM;
1384 
1385 	p = CTRL_BODY(buf);
1386 	ceph_encode_8(&p, 2);  /* addrvec marker */
1387 	ceph_encode_32(&p, 1);  /* addr_cnt */
1388 	ceph_encode_entity_addr(&p, my_addr);
1389 	ceph_encode_entity_addr(&p, &con->peer_addr);
1390 	ceph_encode_64(&p, global_id);
1391 	ceph_encode_64(&p, con->v2.global_seq);
1392 	ceph_encode_64(&p, client->supported_features);
1393 	ceph_encode_64(&p, client->required_features);
1394 	ceph_encode_64(&p, 0);  /* flags */
1395 	ceph_encode_64(&p, con->v2.client_cookie);
1396 	WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1397 
1398 	return prepare_control(con, FRAME_TAG_CLIENT_IDENT, buf, ctrl_len);
1399 }
1400 
1401 static int prepare_session_reconnect(struct ceph_connection *con)
1402 {
1403 	struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
1404 	void *buf, *p;
1405 	int ctrl_len;
1406 
1407 	WARN_ON(!con->v2.client_cookie);
1408 	WARN_ON(!con->v2.server_cookie);
1409 	WARN_ON(!con->v2.connect_seq);
1410 	WARN_ON(!con->v2.peer_global_seq);
1411 
1412 	dout("%s con %p my_addr %s/%u client_cookie 0x%llx server_cookie 0x%llx global_seq %llu connect_seq %llu in_seq %llu\n",
1413 	     __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce),
1414 	     con->v2.client_cookie, con->v2.server_cookie, con->v2.global_seq,
1415 	     con->v2.connect_seq, con->in_seq);
1416 
1417 	ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 5 * 8;
1418 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con)));
1419 	if (!buf)
1420 		return -ENOMEM;
1421 
1422 	p = CTRL_BODY(buf);
1423 	ceph_encode_8(&p, 2);  /* entity_addrvec_t marker */
1424 	ceph_encode_32(&p, 1);  /* my_addrs len */
1425 	ceph_encode_entity_addr(&p, my_addr);
1426 	ceph_encode_64(&p, con->v2.client_cookie);
1427 	ceph_encode_64(&p, con->v2.server_cookie);
1428 	ceph_encode_64(&p, con->v2.global_seq);
1429 	ceph_encode_64(&p, con->v2.connect_seq);
1430 	ceph_encode_64(&p, con->in_seq);
1431 	WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1432 
1433 	return prepare_control(con, FRAME_TAG_SESSION_RECONNECT, buf, ctrl_len);
1434 }
1435 
1436 static int prepare_keepalive2(struct ceph_connection *con)
1437 {
1438 	struct ceph_timespec *ts = CTRL_BODY(con->v2.out_buf);
1439 	struct timespec64 now;
1440 
1441 	ktime_get_real_ts64(&now);
1442 	dout("%s con %p timestamp %lld.%09ld\n", __func__, con, now.tv_sec,
1443 	     now.tv_nsec);
1444 
1445 	ceph_encode_timespec64(ts, &now);
1446 
1447 	reset_out_kvecs(con);
1448 	return prepare_control(con, FRAME_TAG_KEEPALIVE2, con->v2.out_buf,
1449 			       sizeof(struct ceph_timespec));
1450 }
1451 
1452 static int prepare_ack(struct ceph_connection *con)
1453 {
1454 	void *p;
1455 
1456 	dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con,
1457 	     con->in_seq_acked, con->in_seq);
1458 	con->in_seq_acked = con->in_seq;
1459 
1460 	p = CTRL_BODY(con->v2.out_buf);
1461 	ceph_encode_64(&p, con->in_seq_acked);
1462 
1463 	reset_out_kvecs(con);
1464 	return prepare_control(con, FRAME_TAG_ACK, con->v2.out_buf, 8);
1465 }
1466 
1467 static void prepare_epilogue_plain(struct ceph_connection *con, bool aborted)
1468 {
1469 	dout("%s con %p msg %p aborted %d crcs %u %u %u\n", __func__, con,
1470 	     con->out_msg, aborted, con->v2.out_epil.front_crc,
1471 	     con->v2.out_epil.middle_crc, con->v2.out_epil.data_crc);
1472 
1473 	encode_epilogue_plain(con, aborted);
1474 	add_out_kvec(con, &con->v2.out_epil, CEPH_EPILOGUE_PLAIN_LEN);
1475 }
1476 
1477 /*
1478  * For "used" empty segments, crc is -1.  For unused (trailing)
1479  * segments, crc is 0.
1480  */
1481 static void prepare_message_plain(struct ceph_connection *con)
1482 {
1483 	struct ceph_msg *msg = con->out_msg;
1484 
1485 	prepare_head_plain(con, con->v2.out_buf,
1486 			   sizeof(struct ceph_msg_header2), NULL, 0, false);
1487 
1488 	if (!front_len(msg) && !middle_len(msg)) {
1489 		if (!data_len(msg)) {
1490 			/*
1491 			 * Empty message: once the head is written,
1492 			 * we are done -- there is no epilogue.
1493 			 */
1494 			con->v2.out_state = OUT_S_FINISH_MESSAGE;
1495 			return;
1496 		}
1497 
1498 		con->v2.out_epil.front_crc = -1;
1499 		con->v2.out_epil.middle_crc = -1;
1500 		con->v2.out_state = OUT_S_QUEUE_DATA;
1501 		return;
1502 	}
1503 
1504 	if (front_len(msg)) {
1505 		con->v2.out_epil.front_crc = crc32c(-1, msg->front.iov_base,
1506 						    front_len(msg));
1507 		add_out_kvec(con, msg->front.iov_base, front_len(msg));
1508 	} else {
1509 		/* middle (at least) is there, checked above */
1510 		con->v2.out_epil.front_crc = -1;
1511 	}
1512 
1513 	if (middle_len(msg)) {
1514 		con->v2.out_epil.middle_crc =
1515 			crc32c(-1, msg->middle->vec.iov_base, middle_len(msg));
1516 		add_out_kvec(con, msg->middle->vec.iov_base, middle_len(msg));
1517 	} else {
1518 		con->v2.out_epil.middle_crc = data_len(msg) ? -1 : 0;
1519 	}
1520 
1521 	if (data_len(msg)) {
1522 		con->v2.out_state = OUT_S_QUEUE_DATA;
1523 	} else {
1524 		con->v2.out_epil.data_crc = 0;
1525 		prepare_epilogue_plain(con, false);
1526 		con->v2.out_state = OUT_S_FINISH_MESSAGE;
1527 	}
1528 }
1529 
1530 /*
1531  * Unfortunately the kernel crypto API doesn't support streaming
1532  * (piecewise) operation for AEAD algorithms, so we can't get away
1533  * with a fixed size buffer and a couple sgs.  Instead, we have to
1534  * allocate pages for the entire tail of the message (currently up
1535  * to ~32M) and two sgs arrays (up to ~256K each)...
1536  */
1537 static int prepare_message_secure(struct ceph_connection *con)
1538 {
1539 	void *zerop = page_address(ceph_zero_page);
1540 	struct sg_table enc_sgt = {};
1541 	struct sg_table sgt = {};
1542 	struct page **enc_pages;
1543 	int enc_page_cnt;
1544 	int tail_len;
1545 	int ret;
1546 
1547 	ret = prepare_head_secure_small(con, con->v2.out_buf,
1548 					sizeof(struct ceph_msg_header2));
1549 	if (ret)
1550 		return ret;
1551 
1552 	tail_len = tail_onwire_len(con->out_msg, true);
1553 	if (!tail_len) {
1554 		/*
1555 		 * Empty message: once the head is written,
1556 		 * we are done -- there is no epilogue.
1557 		 */
1558 		con->v2.out_state = OUT_S_FINISH_MESSAGE;
1559 		return 0;
1560 	}
1561 
1562 	encode_epilogue_secure(con, false);
1563 	ret = setup_message_sgs(&sgt, con->out_msg, zerop, zerop, zerop,
1564 				&con->v2.out_epil, false);
1565 	if (ret)
1566 		goto out;
1567 
1568 	enc_page_cnt = calc_pages_for(0, tail_len);
1569 	enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO);
1570 	if (IS_ERR(enc_pages)) {
1571 		ret = PTR_ERR(enc_pages);
1572 		goto out;
1573 	}
1574 
1575 	WARN_ON(con->v2.out_enc_pages || con->v2.out_enc_page_cnt);
1576 	con->v2.out_enc_pages = enc_pages;
1577 	con->v2.out_enc_page_cnt = enc_page_cnt;
1578 	con->v2.out_enc_resid = tail_len;
1579 	con->v2.out_enc_i = 0;
1580 
1581 	ret = sg_alloc_table_from_pages(&enc_sgt, enc_pages, enc_page_cnt,
1582 					0, tail_len, GFP_NOIO);
1583 	if (ret)
1584 		goto out;
1585 
1586 	ret = gcm_crypt(con, true, sgt.sgl, enc_sgt.sgl,
1587 			tail_len - CEPH_GCM_TAG_LEN);
1588 	if (ret)
1589 		goto out;
1590 
1591 	dout("%s con %p msg %p sg_cnt %d enc_page_cnt %d\n", __func__, con,
1592 	     con->out_msg, sgt.orig_nents, enc_page_cnt);
1593 	con->v2.out_state = OUT_S_QUEUE_ENC_PAGE;
1594 
1595 out:
1596 	sg_free_table(&sgt);
1597 	sg_free_table(&enc_sgt);
1598 	return ret;
1599 }
1600 
1601 static int prepare_message(struct ceph_connection *con)
1602 {
1603 	int lens[] = {
1604 		sizeof(struct ceph_msg_header2),
1605 		front_len(con->out_msg),
1606 		middle_len(con->out_msg),
1607 		data_len(con->out_msg)
1608 	};
1609 	struct ceph_frame_desc desc;
1610 	int ret;
1611 
1612 	dout("%s con %p msg %p logical %d+%d+%d+%d\n", __func__, con,
1613 	     con->out_msg, lens[0], lens[1], lens[2], lens[3]);
1614 
1615 	if (con->in_seq > con->in_seq_acked) {
1616 		dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con,
1617 		     con->in_seq_acked, con->in_seq);
1618 		con->in_seq_acked = con->in_seq;
1619 	}
1620 
1621 	reset_out_kvecs(con);
1622 	init_frame_desc(&desc, FRAME_TAG_MESSAGE, lens, 4);
1623 	encode_preamble(&desc, con->v2.out_buf);
1624 	fill_header2(CTRL_BODY(con->v2.out_buf), &con->out_msg->hdr,
1625 		     con->in_seq_acked);
1626 
1627 	if (con_secure(con)) {
1628 		ret = prepare_message_secure(con);
1629 		if (ret)
1630 			return ret;
1631 	} else {
1632 		prepare_message_plain(con);
1633 	}
1634 
1635 	ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1636 	return 0;
1637 }
1638 
1639 static int prepare_read_banner_prefix(struct ceph_connection *con)
1640 {
1641 	void *buf;
1642 
1643 	buf = alloc_conn_buf(con, CEPH_BANNER_V2_PREFIX_LEN);
1644 	if (!buf)
1645 		return -ENOMEM;
1646 
1647 	reset_in_kvecs(con);
1648 	add_in_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN);
1649 	add_in_sign_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN);
1650 	con->state = CEPH_CON_S_V2_BANNER_PREFIX;
1651 	return 0;
1652 }
1653 
1654 static int prepare_read_banner_payload(struct ceph_connection *con,
1655 				       int payload_len)
1656 {
1657 	void *buf;
1658 
1659 	buf = alloc_conn_buf(con, payload_len);
1660 	if (!buf)
1661 		return -ENOMEM;
1662 
1663 	reset_in_kvecs(con);
1664 	add_in_kvec(con, buf, payload_len);
1665 	add_in_sign_kvec(con, buf, payload_len);
1666 	con->state = CEPH_CON_S_V2_BANNER_PAYLOAD;
1667 	return 0;
1668 }
1669 
1670 static void prepare_read_preamble(struct ceph_connection *con)
1671 {
1672 	reset_in_kvecs(con);
1673 	add_in_kvec(con, con->v2.in_buf,
1674 		    con_secure(con) ? CEPH_PREAMBLE_SECURE_LEN :
1675 				      CEPH_PREAMBLE_PLAIN_LEN);
1676 	con->v2.in_state = IN_S_HANDLE_PREAMBLE;
1677 }
1678 
1679 static int prepare_read_control(struct ceph_connection *con)
1680 {
1681 	int ctrl_len = con->v2.in_desc.fd_lens[0];
1682 	int head_len;
1683 	void *buf;
1684 
1685 	reset_in_kvecs(con);
1686 	if (con->state == CEPH_CON_S_V2_HELLO ||
1687 	    con->state == CEPH_CON_S_V2_AUTH) {
1688 		head_len = head_onwire_len(ctrl_len, false);
1689 		buf = alloc_conn_buf(con, head_len);
1690 		if (!buf)
1691 			return -ENOMEM;
1692 
1693 		/* preserve preamble */
1694 		memcpy(buf, con->v2.in_buf, CEPH_PREAMBLE_LEN);
1695 
1696 		add_in_kvec(con, CTRL_BODY(buf), ctrl_len);
1697 		add_in_kvec(con, CTRL_BODY(buf) + ctrl_len, CEPH_CRC_LEN);
1698 		add_in_sign_kvec(con, buf, head_len);
1699 	} else {
1700 		if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) {
1701 			buf = alloc_conn_buf(con, ctrl_len);
1702 			if (!buf)
1703 				return -ENOMEM;
1704 
1705 			add_in_kvec(con, buf, ctrl_len);
1706 		} else {
1707 			add_in_kvec(con, CTRL_BODY(con->v2.in_buf), ctrl_len);
1708 		}
1709 		add_in_kvec(con, con->v2.in_buf, CEPH_CRC_LEN);
1710 	}
1711 	con->v2.in_state = IN_S_HANDLE_CONTROL;
1712 	return 0;
1713 }
1714 
1715 static int prepare_read_control_remainder(struct ceph_connection *con)
1716 {
1717 	int ctrl_len = con->v2.in_desc.fd_lens[0];
1718 	int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1719 	void *buf;
1720 
1721 	buf = alloc_conn_buf(con, ctrl_len);
1722 	if (!buf)
1723 		return -ENOMEM;
1724 
1725 	memcpy(buf, CTRL_BODY(con->v2.in_buf), CEPH_PREAMBLE_INLINE_LEN);
1726 
1727 	reset_in_kvecs(con);
1728 	add_in_kvec(con, buf + CEPH_PREAMBLE_INLINE_LEN, rem_len);
1729 	add_in_kvec(con, con->v2.in_buf,
1730 		    padding_len(rem_len) + CEPH_GCM_TAG_LEN);
1731 	con->v2.in_state = IN_S_HANDLE_CONTROL_REMAINDER;
1732 	return 0;
1733 }
1734 
1735 static void prepare_read_data(struct ceph_connection *con)
1736 {
1737 	struct bio_vec bv;
1738 
1739 	if (!con_secure(con))
1740 		con->in_data_crc = -1;
1741 	ceph_msg_data_cursor_init(&con->v2.in_cursor, con->in_msg,
1742 				  data_len(con->in_msg));
1743 
1744 	get_bvec_at(&con->v2.in_cursor, &bv);
1745 	set_in_bvec(con, &bv);
1746 	con->v2.in_state = IN_S_PREPARE_READ_DATA_CONT;
1747 }
1748 
1749 static void prepare_read_data_cont(struct ceph_connection *con)
1750 {
1751 	struct bio_vec bv;
1752 
1753 	if (!con_secure(con))
1754 		con->in_data_crc = ceph_crc32c_page(con->in_data_crc,
1755 						    con->v2.in_bvec.bv_page,
1756 						    con->v2.in_bvec.bv_offset,
1757 						    con->v2.in_bvec.bv_len);
1758 
1759 	ceph_msg_data_advance(&con->v2.in_cursor, con->v2.in_bvec.bv_len);
1760 	if (con->v2.in_cursor.total_resid) {
1761 		get_bvec_at(&con->v2.in_cursor, &bv);
1762 		set_in_bvec(con, &bv);
1763 		WARN_ON(con->v2.in_state != IN_S_PREPARE_READ_DATA_CONT);
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * We've read all data.  Prepare to read data padding (if any)
1769 	 * and epilogue.
1770 	 */
1771 	reset_in_kvecs(con);
1772 	if (con_secure(con)) {
1773 		if (need_padding(data_len(con->in_msg)))
1774 			add_in_kvec(con, DATA_PAD(con->v2.in_buf),
1775 				    padding_len(data_len(con->in_msg)));
1776 		add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_SECURE_LEN);
1777 	} else {
1778 		add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
1779 	}
1780 	con->v2.in_state = IN_S_HANDLE_EPILOGUE;
1781 }
1782 
1783 static void __finish_skip(struct ceph_connection *con)
1784 {
1785 	con->in_seq++;
1786 	prepare_read_preamble(con);
1787 }
1788 
1789 static void prepare_skip_message(struct ceph_connection *con)
1790 {
1791 	struct ceph_frame_desc *desc = &con->v2.in_desc;
1792 	int tail_len;
1793 
1794 	dout("%s con %p %d+%d+%d\n", __func__, con, desc->fd_lens[1],
1795 	     desc->fd_lens[2], desc->fd_lens[3]);
1796 
1797 	tail_len = __tail_onwire_len(desc->fd_lens[1], desc->fd_lens[2],
1798 				     desc->fd_lens[3], con_secure(con));
1799 	if (!tail_len) {
1800 		__finish_skip(con);
1801 	} else {
1802 		set_in_skip(con, tail_len);
1803 		con->v2.in_state = IN_S_FINISH_SKIP;
1804 	}
1805 }
1806 
1807 static int process_banner_prefix(struct ceph_connection *con)
1808 {
1809 	int payload_len;
1810 	void *p;
1811 
1812 	WARN_ON(con->v2.in_kvecs[0].iov_len != CEPH_BANNER_V2_PREFIX_LEN);
1813 
1814 	p = con->v2.in_kvecs[0].iov_base;
1815 	if (memcmp(p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN)) {
1816 		if (!memcmp(p, CEPH_BANNER, CEPH_BANNER_LEN))
1817 			con->error_msg = "server is speaking msgr1 protocol";
1818 		else
1819 			con->error_msg = "protocol error, bad banner";
1820 		return -EINVAL;
1821 	}
1822 
1823 	p += CEPH_BANNER_V2_LEN;
1824 	payload_len = ceph_decode_16(&p);
1825 	dout("%s con %p payload_len %d\n", __func__, con, payload_len);
1826 
1827 	return prepare_read_banner_payload(con, payload_len);
1828 }
1829 
1830 static int process_banner_payload(struct ceph_connection *con)
1831 {
1832 	void *end = con->v2.in_kvecs[0].iov_base + con->v2.in_kvecs[0].iov_len;
1833 	u64 feat = CEPH_MSGR2_SUPPORTED_FEATURES;
1834 	u64 req_feat = CEPH_MSGR2_REQUIRED_FEATURES;
1835 	u64 server_feat, server_req_feat;
1836 	void *p;
1837 	int ret;
1838 
1839 	p = con->v2.in_kvecs[0].iov_base;
1840 	ceph_decode_64_safe(&p, end, server_feat, bad);
1841 	ceph_decode_64_safe(&p, end, server_req_feat, bad);
1842 
1843 	dout("%s con %p server_feat 0x%llx server_req_feat 0x%llx\n",
1844 	     __func__, con, server_feat, server_req_feat);
1845 
1846 	if (req_feat & ~server_feat) {
1847 		pr_err("msgr2 feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n",
1848 		       server_feat, req_feat & ~server_feat);
1849 		con->error_msg = "missing required protocol features";
1850 		return -EINVAL;
1851 	}
1852 	if (server_req_feat & ~feat) {
1853 		pr_err("msgr2 feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n",
1854 		       feat, server_req_feat & ~feat);
1855 		con->error_msg = "missing required protocol features";
1856 		return -EINVAL;
1857 	}
1858 
1859 	/* no reset_out_kvecs() as our banner may still be pending */
1860 	ret = prepare_hello(con);
1861 	if (ret) {
1862 		pr_err("prepare_hello failed: %d\n", ret);
1863 		return ret;
1864 	}
1865 
1866 	con->state = CEPH_CON_S_V2_HELLO;
1867 	prepare_read_preamble(con);
1868 	return 0;
1869 
1870 bad:
1871 	pr_err("failed to decode banner payload\n");
1872 	return -EINVAL;
1873 }
1874 
1875 static int process_hello(struct ceph_connection *con, void *p, void *end)
1876 {
1877 	struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
1878 	struct ceph_entity_addr addr_for_me;
1879 	u8 entity_type;
1880 	int ret;
1881 
1882 	if (con->state != CEPH_CON_S_V2_HELLO) {
1883 		con->error_msg = "protocol error, unexpected hello";
1884 		return -EINVAL;
1885 	}
1886 
1887 	ceph_decode_8_safe(&p, end, entity_type, bad);
1888 	ret = ceph_decode_entity_addr(&p, end, &addr_for_me);
1889 	if (ret) {
1890 		pr_err("failed to decode addr_for_me: %d\n", ret);
1891 		return ret;
1892 	}
1893 
1894 	dout("%s con %p entity_type %d addr_for_me %s\n", __func__, con,
1895 	     entity_type, ceph_pr_addr(&addr_for_me));
1896 
1897 	if (entity_type != con->peer_name.type) {
1898 		pr_err("bad peer type, want %d, got %d\n",
1899 		       con->peer_name.type, entity_type);
1900 		con->error_msg = "wrong peer at address";
1901 		return -EINVAL;
1902 	}
1903 
1904 	/*
1905 	 * Set our address to the address our first peer (i.e. monitor)
1906 	 * sees that we are connecting from.  If we are behind some sort
1907 	 * of NAT and want to be identified by some private (not NATed)
1908 	 * address, ip option should be used.
1909 	 */
1910 	if (ceph_addr_is_blank(my_addr)) {
1911 		memcpy(&my_addr->in_addr, &addr_for_me.in_addr,
1912 		       sizeof(my_addr->in_addr));
1913 		ceph_addr_set_port(my_addr, 0);
1914 		dout("%s con %p set my addr %s, as seen by peer %s\n",
1915 		     __func__, con, ceph_pr_addr(my_addr),
1916 		     ceph_pr_addr(&con->peer_addr));
1917 	} else {
1918 		dout("%s con %p my addr already set %s\n",
1919 		     __func__, con, ceph_pr_addr(my_addr));
1920 	}
1921 
1922 	WARN_ON(ceph_addr_is_blank(my_addr) || ceph_addr_port(my_addr));
1923 	WARN_ON(my_addr->type != CEPH_ENTITY_ADDR_TYPE_ANY);
1924 	WARN_ON(!my_addr->nonce);
1925 
1926 	/* no reset_out_kvecs() as our hello may still be pending */
1927 	ret = prepare_auth_request(con);
1928 	if (ret) {
1929 		if (ret != -EAGAIN)
1930 			pr_err("prepare_auth_request failed: %d\n", ret);
1931 		return ret;
1932 	}
1933 
1934 	con->state = CEPH_CON_S_V2_AUTH;
1935 	return 0;
1936 
1937 bad:
1938 	pr_err("failed to decode hello\n");
1939 	return -EINVAL;
1940 }
1941 
1942 static int process_auth_bad_method(struct ceph_connection *con,
1943 				   void *p, void *end)
1944 {
1945 	int allowed_protos[8], allowed_modes[8];
1946 	int allowed_proto_cnt, allowed_mode_cnt;
1947 	int used_proto, result;
1948 	int ret;
1949 	int i;
1950 
1951 	if (con->state != CEPH_CON_S_V2_AUTH) {
1952 		con->error_msg = "protocol error, unexpected auth_bad_method";
1953 		return -EINVAL;
1954 	}
1955 
1956 	ceph_decode_32_safe(&p, end, used_proto, bad);
1957 	ceph_decode_32_safe(&p, end, result, bad);
1958 	dout("%s con %p used_proto %d result %d\n", __func__, con, used_proto,
1959 	     result);
1960 
1961 	ceph_decode_32_safe(&p, end, allowed_proto_cnt, bad);
1962 	if (allowed_proto_cnt > ARRAY_SIZE(allowed_protos)) {
1963 		pr_err("allowed_protos too big %d\n", allowed_proto_cnt);
1964 		return -EINVAL;
1965 	}
1966 	for (i = 0; i < allowed_proto_cnt; i++) {
1967 		ceph_decode_32_safe(&p, end, allowed_protos[i], bad);
1968 		dout("%s con %p allowed_protos[%d] %d\n", __func__, con,
1969 		     i, allowed_protos[i]);
1970 	}
1971 
1972 	ceph_decode_32_safe(&p, end, allowed_mode_cnt, bad);
1973 	if (allowed_mode_cnt > ARRAY_SIZE(allowed_modes)) {
1974 		pr_err("allowed_modes too big %d\n", allowed_mode_cnt);
1975 		return -EINVAL;
1976 	}
1977 	for (i = 0; i < allowed_mode_cnt; i++) {
1978 		ceph_decode_32_safe(&p, end, allowed_modes[i], bad);
1979 		dout("%s con %p allowed_modes[%d] %d\n", __func__, con,
1980 		     i, allowed_modes[i]);
1981 	}
1982 
1983 	mutex_unlock(&con->mutex);
1984 	ret = con->ops->handle_auth_bad_method(con, used_proto, result,
1985 					       allowed_protos,
1986 					       allowed_proto_cnt,
1987 					       allowed_modes,
1988 					       allowed_mode_cnt);
1989 	mutex_lock(&con->mutex);
1990 	if (con->state != CEPH_CON_S_V2_AUTH) {
1991 		dout("%s con %p state changed to %d\n", __func__, con,
1992 		     con->state);
1993 		return -EAGAIN;
1994 	}
1995 
1996 	dout("%s con %p handle_auth_bad_method ret %d\n", __func__, con, ret);
1997 	return ret;
1998 
1999 bad:
2000 	pr_err("failed to decode auth_bad_method\n");
2001 	return -EINVAL;
2002 }
2003 
2004 static int process_auth_reply_more(struct ceph_connection *con,
2005 				   void *p, void *end)
2006 {
2007 	int payload_len;
2008 	int ret;
2009 
2010 	if (con->state != CEPH_CON_S_V2_AUTH) {
2011 		con->error_msg = "protocol error, unexpected auth_reply_more";
2012 		return -EINVAL;
2013 	}
2014 
2015 	ceph_decode_32_safe(&p, end, payload_len, bad);
2016 	ceph_decode_need(&p, end, payload_len, bad);
2017 
2018 	dout("%s con %p payload_len %d\n", __func__, con, payload_len);
2019 
2020 	reset_out_kvecs(con);
2021 	ret = prepare_auth_request_more(con, p, payload_len);
2022 	if (ret) {
2023 		if (ret != -EAGAIN)
2024 			pr_err("prepare_auth_request_more failed: %d\n", ret);
2025 		return ret;
2026 	}
2027 
2028 	return 0;
2029 
2030 bad:
2031 	pr_err("failed to decode auth_reply_more\n");
2032 	return -EINVAL;
2033 }
2034 
2035 static int process_auth_done(struct ceph_connection *con, void *p, void *end)
2036 {
2037 	u8 session_key[CEPH_KEY_LEN];
2038 	u8 con_secret[CEPH_MAX_CON_SECRET_LEN];
2039 	int session_key_len, con_secret_len;
2040 	int payload_len;
2041 	u64 global_id;
2042 	int ret;
2043 
2044 	if (con->state != CEPH_CON_S_V2_AUTH) {
2045 		con->error_msg = "protocol error, unexpected auth_done";
2046 		return -EINVAL;
2047 	}
2048 
2049 	ceph_decode_64_safe(&p, end, global_id, bad);
2050 	ceph_decode_32_safe(&p, end, con->v2.con_mode, bad);
2051 	ceph_decode_32_safe(&p, end, payload_len, bad);
2052 
2053 	dout("%s con %p global_id %llu con_mode %d payload_len %d\n",
2054 	     __func__, con, global_id, con->v2.con_mode, payload_len);
2055 
2056 	mutex_unlock(&con->mutex);
2057 	session_key_len = 0;
2058 	con_secret_len = 0;
2059 	ret = con->ops->handle_auth_done(con, global_id, p, payload_len,
2060 					 session_key, &session_key_len,
2061 					 con_secret, &con_secret_len);
2062 	mutex_lock(&con->mutex);
2063 	if (con->state != CEPH_CON_S_V2_AUTH) {
2064 		dout("%s con %p state changed to %d\n", __func__, con,
2065 		     con->state);
2066 		return -EAGAIN;
2067 	}
2068 
2069 	dout("%s con %p handle_auth_done ret %d\n", __func__, con, ret);
2070 	if (ret)
2071 		return ret;
2072 
2073 	ret = setup_crypto(con, session_key, session_key_len, con_secret,
2074 			   con_secret_len);
2075 	if (ret)
2076 		return ret;
2077 
2078 	reset_out_kvecs(con);
2079 	ret = prepare_auth_signature(con);
2080 	if (ret) {
2081 		pr_err("prepare_auth_signature failed: %d\n", ret);
2082 		return ret;
2083 	}
2084 
2085 	con->state = CEPH_CON_S_V2_AUTH_SIGNATURE;
2086 	return 0;
2087 
2088 bad:
2089 	pr_err("failed to decode auth_done\n");
2090 	return -EINVAL;
2091 }
2092 
2093 static int process_auth_signature(struct ceph_connection *con,
2094 				  void *p, void *end)
2095 {
2096 	u8 hmac[SHA256_DIGEST_SIZE];
2097 	int ret;
2098 
2099 	if (con->state != CEPH_CON_S_V2_AUTH_SIGNATURE) {
2100 		con->error_msg = "protocol error, unexpected auth_signature";
2101 		return -EINVAL;
2102 	}
2103 
2104 	ret = hmac_sha256(con, con->v2.out_sign_kvecs,
2105 			  con->v2.out_sign_kvec_cnt, hmac);
2106 	if (ret)
2107 		return ret;
2108 
2109 	ceph_decode_need(&p, end, SHA256_DIGEST_SIZE, bad);
2110 	if (crypto_memneq(p, hmac, SHA256_DIGEST_SIZE)) {
2111 		con->error_msg = "integrity error, bad auth signature";
2112 		return -EBADMSG;
2113 	}
2114 
2115 	dout("%s con %p auth signature ok\n", __func__, con);
2116 
2117 	/* no reset_out_kvecs() as our auth_signature may still be pending */
2118 	if (!con->v2.server_cookie) {
2119 		ret = prepare_client_ident(con);
2120 		if (ret) {
2121 			pr_err("prepare_client_ident failed: %d\n", ret);
2122 			return ret;
2123 		}
2124 
2125 		con->state = CEPH_CON_S_V2_SESSION_CONNECT;
2126 	} else {
2127 		ret = prepare_session_reconnect(con);
2128 		if (ret) {
2129 			pr_err("prepare_session_reconnect failed: %d\n", ret);
2130 			return ret;
2131 		}
2132 
2133 		con->state = CEPH_CON_S_V2_SESSION_RECONNECT;
2134 	}
2135 
2136 	return 0;
2137 
2138 bad:
2139 	pr_err("failed to decode auth_signature\n");
2140 	return -EINVAL;
2141 }
2142 
2143 static int process_server_ident(struct ceph_connection *con,
2144 				void *p, void *end)
2145 {
2146 	struct ceph_client *client = from_msgr(con->msgr);
2147 	u64 features, required_features;
2148 	struct ceph_entity_addr addr;
2149 	u64 global_seq;
2150 	u64 global_id;
2151 	u64 cookie;
2152 	u64 flags;
2153 	int ret;
2154 
2155 	if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) {
2156 		con->error_msg = "protocol error, unexpected server_ident";
2157 		return -EINVAL;
2158 	}
2159 
2160 	ret = ceph_decode_entity_addrvec(&p, end, true, &addr);
2161 	if (ret) {
2162 		pr_err("failed to decode server addrs: %d\n", ret);
2163 		return ret;
2164 	}
2165 
2166 	ceph_decode_64_safe(&p, end, global_id, bad);
2167 	ceph_decode_64_safe(&p, end, global_seq, bad);
2168 	ceph_decode_64_safe(&p, end, features, bad);
2169 	ceph_decode_64_safe(&p, end, required_features, bad);
2170 	ceph_decode_64_safe(&p, end, flags, bad);
2171 	ceph_decode_64_safe(&p, end, cookie, bad);
2172 
2173 	dout("%s con %p addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx flags 0x%llx cookie 0x%llx\n",
2174 	     __func__, con, ceph_pr_addr(&addr), le32_to_cpu(addr.nonce),
2175 	     global_id, global_seq, features, required_features, flags, cookie);
2176 
2177 	/* is this who we intended to talk to? */
2178 	if (memcmp(&addr, &con->peer_addr, sizeof(con->peer_addr))) {
2179 		pr_err("bad peer addr/nonce, want %s/%u, got %s/%u\n",
2180 		       ceph_pr_addr(&con->peer_addr),
2181 		       le32_to_cpu(con->peer_addr.nonce),
2182 		       ceph_pr_addr(&addr), le32_to_cpu(addr.nonce));
2183 		con->error_msg = "wrong peer at address";
2184 		return -EINVAL;
2185 	}
2186 
2187 	if (client->required_features & ~features) {
2188 		pr_err("RADOS feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n",
2189 		       features, client->required_features & ~features);
2190 		con->error_msg = "missing required protocol features";
2191 		return -EINVAL;
2192 	}
2193 
2194 	/*
2195 	 * Both name->type and name->num are set in ceph_con_open() but
2196 	 * name->num may be bogus in the initial monmap.  name->type is
2197 	 * verified in handle_hello().
2198 	 */
2199 	WARN_ON(!con->peer_name.type);
2200 	con->peer_name.num = cpu_to_le64(global_id);
2201 	con->v2.peer_global_seq = global_seq;
2202 	con->peer_features = features;
2203 	WARN_ON(required_features & ~client->supported_features);
2204 	con->v2.server_cookie = cookie;
2205 
2206 	if (flags & CEPH_MSG_CONNECT_LOSSY) {
2207 		ceph_con_flag_set(con, CEPH_CON_F_LOSSYTX);
2208 		WARN_ON(con->v2.server_cookie);
2209 	} else {
2210 		WARN_ON(!con->v2.server_cookie);
2211 	}
2212 
2213 	clear_in_sign_kvecs(con);
2214 	clear_out_sign_kvecs(con);
2215 	free_conn_bufs(con);
2216 	con->delay = 0;  /* reset backoff memory */
2217 
2218 	con->state = CEPH_CON_S_OPEN;
2219 	con->v2.out_state = OUT_S_GET_NEXT;
2220 	return 0;
2221 
2222 bad:
2223 	pr_err("failed to decode server_ident\n");
2224 	return -EINVAL;
2225 }
2226 
2227 static int process_ident_missing_features(struct ceph_connection *con,
2228 					  void *p, void *end)
2229 {
2230 	struct ceph_client *client = from_msgr(con->msgr);
2231 	u64 missing_features;
2232 
2233 	if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) {
2234 		con->error_msg = "protocol error, unexpected ident_missing_features";
2235 		return -EINVAL;
2236 	}
2237 
2238 	ceph_decode_64_safe(&p, end, missing_features, bad);
2239 	pr_err("RADOS feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n",
2240 	       client->supported_features, missing_features);
2241 	con->error_msg = "missing required protocol features";
2242 	return -EINVAL;
2243 
2244 bad:
2245 	pr_err("failed to decode ident_missing_features\n");
2246 	return -EINVAL;
2247 }
2248 
2249 static int process_session_reconnect_ok(struct ceph_connection *con,
2250 					void *p, void *end)
2251 {
2252 	u64 seq;
2253 
2254 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2255 		con->error_msg = "protocol error, unexpected session_reconnect_ok";
2256 		return -EINVAL;
2257 	}
2258 
2259 	ceph_decode_64_safe(&p, end, seq, bad);
2260 
2261 	dout("%s con %p seq %llu\n", __func__, con, seq);
2262 	ceph_con_discard_requeued(con, seq);
2263 
2264 	clear_in_sign_kvecs(con);
2265 	clear_out_sign_kvecs(con);
2266 	free_conn_bufs(con);
2267 	con->delay = 0;  /* reset backoff memory */
2268 
2269 	con->state = CEPH_CON_S_OPEN;
2270 	con->v2.out_state = OUT_S_GET_NEXT;
2271 	return 0;
2272 
2273 bad:
2274 	pr_err("failed to decode session_reconnect_ok\n");
2275 	return -EINVAL;
2276 }
2277 
2278 static int process_session_retry(struct ceph_connection *con,
2279 				 void *p, void *end)
2280 {
2281 	u64 connect_seq;
2282 	int ret;
2283 
2284 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2285 		con->error_msg = "protocol error, unexpected session_retry";
2286 		return -EINVAL;
2287 	}
2288 
2289 	ceph_decode_64_safe(&p, end, connect_seq, bad);
2290 
2291 	dout("%s con %p connect_seq %llu\n", __func__, con, connect_seq);
2292 	WARN_ON(connect_seq <= con->v2.connect_seq);
2293 	con->v2.connect_seq = connect_seq + 1;
2294 
2295 	free_conn_bufs(con);
2296 
2297 	reset_out_kvecs(con);
2298 	ret = prepare_session_reconnect(con);
2299 	if (ret) {
2300 		pr_err("prepare_session_reconnect (cseq) failed: %d\n", ret);
2301 		return ret;
2302 	}
2303 
2304 	return 0;
2305 
2306 bad:
2307 	pr_err("failed to decode session_retry\n");
2308 	return -EINVAL;
2309 }
2310 
2311 static int process_session_retry_global(struct ceph_connection *con,
2312 					void *p, void *end)
2313 {
2314 	u64 global_seq;
2315 	int ret;
2316 
2317 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2318 		con->error_msg = "protocol error, unexpected session_retry_global";
2319 		return -EINVAL;
2320 	}
2321 
2322 	ceph_decode_64_safe(&p, end, global_seq, bad);
2323 
2324 	dout("%s con %p global_seq %llu\n", __func__, con, global_seq);
2325 	WARN_ON(global_seq <= con->v2.global_seq);
2326 	con->v2.global_seq = ceph_get_global_seq(con->msgr, global_seq);
2327 
2328 	free_conn_bufs(con);
2329 
2330 	reset_out_kvecs(con);
2331 	ret = prepare_session_reconnect(con);
2332 	if (ret) {
2333 		pr_err("prepare_session_reconnect (gseq) failed: %d\n", ret);
2334 		return ret;
2335 	}
2336 
2337 	return 0;
2338 
2339 bad:
2340 	pr_err("failed to decode session_retry_global\n");
2341 	return -EINVAL;
2342 }
2343 
2344 static int process_session_reset(struct ceph_connection *con,
2345 				 void *p, void *end)
2346 {
2347 	bool full;
2348 	int ret;
2349 
2350 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2351 		con->error_msg = "protocol error, unexpected session_reset";
2352 		return -EINVAL;
2353 	}
2354 
2355 	ceph_decode_8_safe(&p, end, full, bad);
2356 	if (!full) {
2357 		con->error_msg = "protocol error, bad session_reset";
2358 		return -EINVAL;
2359 	}
2360 
2361 	pr_info("%s%lld %s session reset\n", ENTITY_NAME(con->peer_name),
2362 		ceph_pr_addr(&con->peer_addr));
2363 	ceph_con_reset_session(con);
2364 
2365 	mutex_unlock(&con->mutex);
2366 	if (con->ops->peer_reset)
2367 		con->ops->peer_reset(con);
2368 	mutex_lock(&con->mutex);
2369 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2370 		dout("%s con %p state changed to %d\n", __func__, con,
2371 		     con->state);
2372 		return -EAGAIN;
2373 	}
2374 
2375 	free_conn_bufs(con);
2376 
2377 	reset_out_kvecs(con);
2378 	ret = prepare_client_ident(con);
2379 	if (ret) {
2380 		pr_err("prepare_client_ident (rst) failed: %d\n", ret);
2381 		return ret;
2382 	}
2383 
2384 	con->state = CEPH_CON_S_V2_SESSION_CONNECT;
2385 	return 0;
2386 
2387 bad:
2388 	pr_err("failed to decode session_reset\n");
2389 	return -EINVAL;
2390 }
2391 
2392 static int process_keepalive2_ack(struct ceph_connection *con,
2393 				  void *p, void *end)
2394 {
2395 	if (con->state != CEPH_CON_S_OPEN) {
2396 		con->error_msg = "protocol error, unexpected keepalive2_ack";
2397 		return -EINVAL;
2398 	}
2399 
2400 	ceph_decode_need(&p, end, sizeof(struct ceph_timespec), bad);
2401 	ceph_decode_timespec64(&con->last_keepalive_ack, p);
2402 
2403 	dout("%s con %p timestamp %lld.%09ld\n", __func__, con,
2404 	     con->last_keepalive_ack.tv_sec, con->last_keepalive_ack.tv_nsec);
2405 
2406 	return 0;
2407 
2408 bad:
2409 	pr_err("failed to decode keepalive2_ack\n");
2410 	return -EINVAL;
2411 }
2412 
2413 static int process_ack(struct ceph_connection *con, void *p, void *end)
2414 {
2415 	u64 seq;
2416 
2417 	if (con->state != CEPH_CON_S_OPEN) {
2418 		con->error_msg = "protocol error, unexpected ack";
2419 		return -EINVAL;
2420 	}
2421 
2422 	ceph_decode_64_safe(&p, end, seq, bad);
2423 
2424 	dout("%s con %p seq %llu\n", __func__, con, seq);
2425 	ceph_con_discard_sent(con, seq);
2426 	return 0;
2427 
2428 bad:
2429 	pr_err("failed to decode ack\n");
2430 	return -EINVAL;
2431 }
2432 
2433 static int process_control(struct ceph_connection *con, void *p, void *end)
2434 {
2435 	int tag = con->v2.in_desc.fd_tag;
2436 	int ret;
2437 
2438 	dout("%s con %p tag %d len %d\n", __func__, con, tag, (int)(end - p));
2439 
2440 	switch (tag) {
2441 	case FRAME_TAG_HELLO:
2442 		ret = process_hello(con, p, end);
2443 		break;
2444 	case FRAME_TAG_AUTH_BAD_METHOD:
2445 		ret = process_auth_bad_method(con, p, end);
2446 		break;
2447 	case FRAME_TAG_AUTH_REPLY_MORE:
2448 		ret = process_auth_reply_more(con, p, end);
2449 		break;
2450 	case FRAME_TAG_AUTH_DONE:
2451 		ret = process_auth_done(con, p, end);
2452 		break;
2453 	case FRAME_TAG_AUTH_SIGNATURE:
2454 		ret = process_auth_signature(con, p, end);
2455 		break;
2456 	case FRAME_TAG_SERVER_IDENT:
2457 		ret = process_server_ident(con, p, end);
2458 		break;
2459 	case FRAME_TAG_IDENT_MISSING_FEATURES:
2460 		ret = process_ident_missing_features(con, p, end);
2461 		break;
2462 	case FRAME_TAG_SESSION_RECONNECT_OK:
2463 		ret = process_session_reconnect_ok(con, p, end);
2464 		break;
2465 	case FRAME_TAG_SESSION_RETRY:
2466 		ret = process_session_retry(con, p, end);
2467 		break;
2468 	case FRAME_TAG_SESSION_RETRY_GLOBAL:
2469 		ret = process_session_retry_global(con, p, end);
2470 		break;
2471 	case FRAME_TAG_SESSION_RESET:
2472 		ret = process_session_reset(con, p, end);
2473 		break;
2474 	case FRAME_TAG_KEEPALIVE2_ACK:
2475 		ret = process_keepalive2_ack(con, p, end);
2476 		break;
2477 	case FRAME_TAG_ACK:
2478 		ret = process_ack(con, p, end);
2479 		break;
2480 	default:
2481 		pr_err("bad tag %d\n", tag);
2482 		con->error_msg = "protocol error, bad tag";
2483 		return -EINVAL;
2484 	}
2485 	if (ret) {
2486 		dout("%s con %p error %d\n", __func__, con, ret);
2487 		return ret;
2488 	}
2489 
2490 	prepare_read_preamble(con);
2491 	return 0;
2492 }
2493 
2494 /*
2495  * Return:
2496  *   1 - con->in_msg set, read message
2497  *   0 - skip message
2498  *  <0 - error
2499  */
2500 static int process_message_header(struct ceph_connection *con,
2501 				  void *p, void *end)
2502 {
2503 	struct ceph_frame_desc *desc = &con->v2.in_desc;
2504 	struct ceph_msg_header2 *hdr2 = p;
2505 	struct ceph_msg_header hdr;
2506 	int skip;
2507 	int ret;
2508 	u64 seq;
2509 
2510 	/* verify seq# */
2511 	seq = le64_to_cpu(hdr2->seq);
2512 	if ((s64)seq - (s64)con->in_seq < 1) {
2513 		pr_info("%s%lld %s skipping old message: seq %llu, expected %llu\n",
2514 			ENTITY_NAME(con->peer_name),
2515 			ceph_pr_addr(&con->peer_addr),
2516 			seq, con->in_seq + 1);
2517 		return 0;
2518 	}
2519 	if ((s64)seq - (s64)con->in_seq > 1) {
2520 		pr_err("bad seq %llu, expected %llu\n", seq, con->in_seq + 1);
2521 		con->error_msg = "bad message sequence # for incoming message";
2522 		return -EBADE;
2523 	}
2524 
2525 	ceph_con_discard_sent(con, le64_to_cpu(hdr2->ack_seq));
2526 
2527 	fill_header(&hdr, hdr2, desc->fd_lens[1], desc->fd_lens[2],
2528 		    desc->fd_lens[3], &con->peer_name);
2529 	ret = ceph_con_in_msg_alloc(con, &hdr, &skip);
2530 	if (ret)
2531 		return ret;
2532 
2533 	WARN_ON(!con->in_msg ^ skip);
2534 	if (skip)
2535 		return 0;
2536 
2537 	WARN_ON(!con->in_msg);
2538 	WARN_ON(con->in_msg->con != con);
2539 	return 1;
2540 }
2541 
2542 static int process_message(struct ceph_connection *con)
2543 {
2544 	ceph_con_process_message(con);
2545 
2546 	/*
2547 	 * We could have been closed by ceph_con_close() because
2548 	 * ceph_con_process_message() temporarily drops con->mutex.
2549 	 */
2550 	if (con->state != CEPH_CON_S_OPEN) {
2551 		dout("%s con %p state changed to %d\n", __func__, con,
2552 		     con->state);
2553 		return -EAGAIN;
2554 	}
2555 
2556 	prepare_read_preamble(con);
2557 	return 0;
2558 }
2559 
2560 static int __handle_control(struct ceph_connection *con, void *p)
2561 {
2562 	void *end = p + con->v2.in_desc.fd_lens[0];
2563 	struct ceph_msg *msg;
2564 	int ret;
2565 
2566 	if (con->v2.in_desc.fd_tag != FRAME_TAG_MESSAGE)
2567 		return process_control(con, p, end);
2568 
2569 	ret = process_message_header(con, p, end);
2570 	if (ret < 0)
2571 		return ret;
2572 	if (ret == 0) {
2573 		prepare_skip_message(con);
2574 		return 0;
2575 	}
2576 
2577 	msg = con->in_msg;  /* set in process_message_header() */
2578 	if (!front_len(msg) && !middle_len(msg)) {
2579 		if (!data_len(msg))
2580 			return process_message(con);
2581 
2582 		prepare_read_data(con);
2583 		return 0;
2584 	}
2585 
2586 	reset_in_kvecs(con);
2587 	if (front_len(msg)) {
2588 		WARN_ON(front_len(msg) > msg->front_alloc_len);
2589 		add_in_kvec(con, msg->front.iov_base, front_len(msg));
2590 		msg->front.iov_len = front_len(msg);
2591 
2592 		if (con_secure(con) && need_padding(front_len(msg)))
2593 			add_in_kvec(con, FRONT_PAD(con->v2.in_buf),
2594 				    padding_len(front_len(msg)));
2595 	} else {
2596 		msg->front.iov_len = 0;
2597 	}
2598 	if (middle_len(msg)) {
2599 		WARN_ON(middle_len(msg) > msg->middle->alloc_len);
2600 		add_in_kvec(con, msg->middle->vec.iov_base, middle_len(msg));
2601 		msg->middle->vec.iov_len = middle_len(msg);
2602 
2603 		if (con_secure(con) && need_padding(middle_len(msg)))
2604 			add_in_kvec(con, MIDDLE_PAD(con->v2.in_buf),
2605 				    padding_len(middle_len(msg)));
2606 	} else if (msg->middle) {
2607 		msg->middle->vec.iov_len = 0;
2608 	}
2609 
2610 	if (data_len(msg)) {
2611 		con->v2.in_state = IN_S_PREPARE_READ_DATA;
2612 	} else {
2613 		add_in_kvec(con, con->v2.in_buf,
2614 			    con_secure(con) ? CEPH_EPILOGUE_SECURE_LEN :
2615 					      CEPH_EPILOGUE_PLAIN_LEN);
2616 		con->v2.in_state = IN_S_HANDLE_EPILOGUE;
2617 	}
2618 	return 0;
2619 }
2620 
2621 static int handle_preamble(struct ceph_connection *con)
2622 {
2623 	struct ceph_frame_desc *desc = &con->v2.in_desc;
2624 	int ret;
2625 
2626 	if (con_secure(con)) {
2627 		ret = decrypt_preamble(con);
2628 		if (ret) {
2629 			if (ret == -EBADMSG)
2630 				con->error_msg = "integrity error, bad preamble auth tag";
2631 			return ret;
2632 		}
2633 	}
2634 
2635 	ret = decode_preamble(con->v2.in_buf, desc);
2636 	if (ret) {
2637 		if (ret == -EBADMSG)
2638 			con->error_msg = "integrity error, bad crc";
2639 		else
2640 			con->error_msg = "protocol error, bad preamble";
2641 		return ret;
2642 	}
2643 
2644 	dout("%s con %p tag %d seg_cnt %d %d+%d+%d+%d\n", __func__,
2645 	     con, desc->fd_tag, desc->fd_seg_cnt, desc->fd_lens[0],
2646 	     desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3]);
2647 
2648 	if (!con_secure(con))
2649 		return prepare_read_control(con);
2650 
2651 	if (desc->fd_lens[0] > CEPH_PREAMBLE_INLINE_LEN)
2652 		return prepare_read_control_remainder(con);
2653 
2654 	return __handle_control(con, CTRL_BODY(con->v2.in_buf));
2655 }
2656 
2657 static int handle_control(struct ceph_connection *con)
2658 {
2659 	int ctrl_len = con->v2.in_desc.fd_lens[0];
2660 	void *buf;
2661 	int ret;
2662 
2663 	WARN_ON(con_secure(con));
2664 
2665 	ret = verify_control_crc(con);
2666 	if (ret) {
2667 		con->error_msg = "integrity error, bad crc";
2668 		return ret;
2669 	}
2670 
2671 	if (con->state == CEPH_CON_S_V2_AUTH) {
2672 		buf = alloc_conn_buf(con, ctrl_len);
2673 		if (!buf)
2674 			return -ENOMEM;
2675 
2676 		memcpy(buf, con->v2.in_kvecs[0].iov_base, ctrl_len);
2677 		return __handle_control(con, buf);
2678 	}
2679 
2680 	return __handle_control(con, con->v2.in_kvecs[0].iov_base);
2681 }
2682 
2683 static int handle_control_remainder(struct ceph_connection *con)
2684 {
2685 	int ret;
2686 
2687 	WARN_ON(!con_secure(con));
2688 
2689 	ret = decrypt_control_remainder(con);
2690 	if (ret) {
2691 		if (ret == -EBADMSG)
2692 			con->error_msg = "integrity error, bad control remainder auth tag";
2693 		return ret;
2694 	}
2695 
2696 	return __handle_control(con, con->v2.in_kvecs[0].iov_base -
2697 				     CEPH_PREAMBLE_INLINE_LEN);
2698 }
2699 
2700 static int handle_epilogue(struct ceph_connection *con)
2701 {
2702 	u32 front_crc, middle_crc, data_crc;
2703 	int ret;
2704 
2705 	if (con_secure(con)) {
2706 		ret = decrypt_message(con);
2707 		if (ret) {
2708 			if (ret == -EBADMSG)
2709 				con->error_msg = "integrity error, bad epilogue auth tag";
2710 			return ret;
2711 		}
2712 
2713 		/* just late_status */
2714 		ret = decode_epilogue(con->v2.in_buf, NULL, NULL, NULL);
2715 		if (ret) {
2716 			con->error_msg = "protocol error, bad epilogue";
2717 			return ret;
2718 		}
2719 	} else {
2720 		ret = decode_epilogue(con->v2.in_buf, &front_crc,
2721 				      &middle_crc, &data_crc);
2722 		if (ret) {
2723 			con->error_msg = "protocol error, bad epilogue";
2724 			return ret;
2725 		}
2726 
2727 		ret = verify_epilogue_crcs(con, front_crc, middle_crc,
2728 					   data_crc);
2729 		if (ret) {
2730 			con->error_msg = "integrity error, bad crc";
2731 			return ret;
2732 		}
2733 	}
2734 
2735 	return process_message(con);
2736 }
2737 
2738 static void finish_skip(struct ceph_connection *con)
2739 {
2740 	dout("%s con %p\n", __func__, con);
2741 
2742 	if (con_secure(con))
2743 		gcm_inc_nonce(&con->v2.in_gcm_nonce);
2744 
2745 	__finish_skip(con);
2746 }
2747 
2748 static int populate_in_iter(struct ceph_connection *con)
2749 {
2750 	int ret;
2751 
2752 	dout("%s con %p state %d in_state %d\n", __func__, con, con->state,
2753 	     con->v2.in_state);
2754 	WARN_ON(iov_iter_count(&con->v2.in_iter));
2755 
2756 	if (con->state == CEPH_CON_S_V2_BANNER_PREFIX) {
2757 		ret = process_banner_prefix(con);
2758 	} else if (con->state == CEPH_CON_S_V2_BANNER_PAYLOAD) {
2759 		ret = process_banner_payload(con);
2760 	} else if ((con->state >= CEPH_CON_S_V2_HELLO &&
2761 		    con->state <= CEPH_CON_S_V2_SESSION_RECONNECT) ||
2762 		   con->state == CEPH_CON_S_OPEN) {
2763 		switch (con->v2.in_state) {
2764 		case IN_S_HANDLE_PREAMBLE:
2765 			ret = handle_preamble(con);
2766 			break;
2767 		case IN_S_HANDLE_CONTROL:
2768 			ret = handle_control(con);
2769 			break;
2770 		case IN_S_HANDLE_CONTROL_REMAINDER:
2771 			ret = handle_control_remainder(con);
2772 			break;
2773 		case IN_S_PREPARE_READ_DATA:
2774 			prepare_read_data(con);
2775 			ret = 0;
2776 			break;
2777 		case IN_S_PREPARE_READ_DATA_CONT:
2778 			prepare_read_data_cont(con);
2779 			ret = 0;
2780 			break;
2781 		case IN_S_HANDLE_EPILOGUE:
2782 			ret = handle_epilogue(con);
2783 			break;
2784 		case IN_S_FINISH_SKIP:
2785 			finish_skip(con);
2786 			ret = 0;
2787 			break;
2788 		default:
2789 			WARN(1, "bad in_state %d", con->v2.in_state);
2790 			return -EINVAL;
2791 		}
2792 	} else {
2793 		WARN(1, "bad state %d", con->state);
2794 		return -EINVAL;
2795 	}
2796 	if (ret) {
2797 		dout("%s con %p error %d\n", __func__, con, ret);
2798 		return ret;
2799 	}
2800 
2801 	if (WARN_ON(!iov_iter_count(&con->v2.in_iter)))
2802 		return -ENODATA;
2803 	dout("%s con %p populated %zu\n", __func__, con,
2804 	     iov_iter_count(&con->v2.in_iter));
2805 	return 1;
2806 }
2807 
2808 int ceph_con_v2_try_read(struct ceph_connection *con)
2809 {
2810 	int ret;
2811 
2812 	dout("%s con %p state %d need %zu\n", __func__, con, con->state,
2813 	     iov_iter_count(&con->v2.in_iter));
2814 
2815 	if (con->state == CEPH_CON_S_PREOPEN)
2816 		return 0;
2817 
2818 	/*
2819 	 * We should always have something pending here.  If not,
2820 	 * avoid calling populate_in_iter() as if we read something
2821 	 * (ceph_tcp_recv() would immediately return 1).
2822 	 */
2823 	if (WARN_ON(!iov_iter_count(&con->v2.in_iter)))
2824 		return -ENODATA;
2825 
2826 	for (;;) {
2827 		ret = ceph_tcp_recv(con);
2828 		if (ret <= 0)
2829 			return ret;
2830 
2831 		ret = populate_in_iter(con);
2832 		if (ret <= 0) {
2833 			if (ret && ret != -EAGAIN && !con->error_msg)
2834 				con->error_msg = "read processing error";
2835 			return ret;
2836 		}
2837 	}
2838 }
2839 
2840 static void queue_data(struct ceph_connection *con)
2841 {
2842 	struct bio_vec bv;
2843 
2844 	con->v2.out_epil.data_crc = -1;
2845 	ceph_msg_data_cursor_init(&con->v2.out_cursor, con->out_msg,
2846 				  data_len(con->out_msg));
2847 
2848 	get_bvec_at(&con->v2.out_cursor, &bv);
2849 	set_out_bvec(con, &bv, true);
2850 	con->v2.out_state = OUT_S_QUEUE_DATA_CONT;
2851 }
2852 
2853 static void queue_data_cont(struct ceph_connection *con)
2854 {
2855 	struct bio_vec bv;
2856 
2857 	con->v2.out_epil.data_crc = ceph_crc32c_page(
2858 		con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page,
2859 		con->v2.out_bvec.bv_offset, con->v2.out_bvec.bv_len);
2860 
2861 	ceph_msg_data_advance(&con->v2.out_cursor, con->v2.out_bvec.bv_len);
2862 	if (con->v2.out_cursor.total_resid) {
2863 		get_bvec_at(&con->v2.out_cursor, &bv);
2864 		set_out_bvec(con, &bv, true);
2865 		WARN_ON(con->v2.out_state != OUT_S_QUEUE_DATA_CONT);
2866 		return;
2867 	}
2868 
2869 	/*
2870 	 * We've written all data.  Queue epilogue.  Once it's written,
2871 	 * we are done.
2872 	 */
2873 	reset_out_kvecs(con);
2874 	prepare_epilogue_plain(con, false);
2875 	con->v2.out_state = OUT_S_FINISH_MESSAGE;
2876 }
2877 
2878 static void queue_enc_page(struct ceph_connection *con)
2879 {
2880 	struct bio_vec bv;
2881 
2882 	dout("%s con %p i %d resid %d\n", __func__, con, con->v2.out_enc_i,
2883 	     con->v2.out_enc_resid);
2884 	WARN_ON(!con->v2.out_enc_resid);
2885 
2886 	bv.bv_page = con->v2.out_enc_pages[con->v2.out_enc_i];
2887 	bv.bv_offset = 0;
2888 	bv.bv_len = min(con->v2.out_enc_resid, (int)PAGE_SIZE);
2889 
2890 	set_out_bvec(con, &bv, false);
2891 	con->v2.out_enc_i++;
2892 	con->v2.out_enc_resid -= bv.bv_len;
2893 
2894 	if (con->v2.out_enc_resid) {
2895 		WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE);
2896 		return;
2897 	}
2898 
2899 	/*
2900 	 * We've queued the last piece of ciphertext (ending with
2901 	 * epilogue) + auth tag.  Once it's written, we are done.
2902 	 */
2903 	WARN_ON(con->v2.out_enc_i != con->v2.out_enc_page_cnt);
2904 	con->v2.out_state = OUT_S_FINISH_MESSAGE;
2905 }
2906 
2907 static void queue_zeros(struct ceph_connection *con)
2908 {
2909 	dout("%s con %p out_zero %d\n", __func__, con, con->v2.out_zero);
2910 
2911 	if (con->v2.out_zero) {
2912 		set_out_bvec_zero(con);
2913 		con->v2.out_zero -= con->v2.out_bvec.bv_len;
2914 		con->v2.out_state = OUT_S_QUEUE_ZEROS;
2915 		return;
2916 	}
2917 
2918 	/*
2919 	 * We've zero-filled everything up to epilogue.  Queue epilogue
2920 	 * with late_status set to ABORTED and crcs adjusted for zeros.
2921 	 * Once it's written, we are done patching up for the revoke.
2922 	 */
2923 	reset_out_kvecs(con);
2924 	prepare_epilogue_plain(con, true);
2925 	con->v2.out_state = OUT_S_FINISH_MESSAGE;
2926 }
2927 
2928 static void finish_message(struct ceph_connection *con)
2929 {
2930 	dout("%s con %p msg %p\n", __func__, con, con->out_msg);
2931 
2932 	/* we end up here both plain and secure modes */
2933 	if (con->v2.out_enc_pages) {
2934 		WARN_ON(!con->v2.out_enc_page_cnt);
2935 		ceph_release_page_vector(con->v2.out_enc_pages,
2936 					 con->v2.out_enc_page_cnt);
2937 		con->v2.out_enc_pages = NULL;
2938 		con->v2.out_enc_page_cnt = 0;
2939 	}
2940 	/* message may have been revoked */
2941 	if (con->out_msg) {
2942 		ceph_msg_put(con->out_msg);
2943 		con->out_msg = NULL;
2944 	}
2945 
2946 	con->v2.out_state = OUT_S_GET_NEXT;
2947 }
2948 
2949 static int populate_out_iter(struct ceph_connection *con)
2950 {
2951 	int ret;
2952 
2953 	dout("%s con %p state %d out_state %d\n", __func__, con, con->state,
2954 	     con->v2.out_state);
2955 	WARN_ON(iov_iter_count(&con->v2.out_iter));
2956 
2957 	if (con->state != CEPH_CON_S_OPEN) {
2958 		WARN_ON(con->state < CEPH_CON_S_V2_BANNER_PREFIX ||
2959 			con->state > CEPH_CON_S_V2_SESSION_RECONNECT);
2960 		goto nothing_pending;
2961 	}
2962 
2963 	switch (con->v2.out_state) {
2964 	case OUT_S_QUEUE_DATA:
2965 		WARN_ON(!con->out_msg);
2966 		queue_data(con);
2967 		goto populated;
2968 	case OUT_S_QUEUE_DATA_CONT:
2969 		WARN_ON(!con->out_msg);
2970 		queue_data_cont(con);
2971 		goto populated;
2972 	case OUT_S_QUEUE_ENC_PAGE:
2973 		queue_enc_page(con);
2974 		goto populated;
2975 	case OUT_S_QUEUE_ZEROS:
2976 		WARN_ON(con->out_msg);  /* revoked */
2977 		queue_zeros(con);
2978 		goto populated;
2979 	case OUT_S_FINISH_MESSAGE:
2980 		finish_message(con);
2981 		break;
2982 	case OUT_S_GET_NEXT:
2983 		break;
2984 	default:
2985 		WARN(1, "bad out_state %d", con->v2.out_state);
2986 		return -EINVAL;
2987 	}
2988 
2989 	WARN_ON(con->v2.out_state != OUT_S_GET_NEXT);
2990 	if (ceph_con_flag_test_and_clear(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
2991 		ret = prepare_keepalive2(con);
2992 		if (ret) {
2993 			pr_err("prepare_keepalive2 failed: %d\n", ret);
2994 			return ret;
2995 		}
2996 	} else if (!list_empty(&con->out_queue)) {
2997 		ceph_con_get_out_msg(con);
2998 		ret = prepare_message(con);
2999 		if (ret) {
3000 			pr_err("prepare_message failed: %d\n", ret);
3001 			return ret;
3002 		}
3003 	} else if (con->in_seq > con->in_seq_acked) {
3004 		ret = prepare_ack(con);
3005 		if (ret) {
3006 			pr_err("prepare_ack failed: %d\n", ret);
3007 			return ret;
3008 		}
3009 	} else {
3010 		goto nothing_pending;
3011 	}
3012 
3013 populated:
3014 	if (WARN_ON(!iov_iter_count(&con->v2.out_iter)))
3015 		return -ENODATA;
3016 	dout("%s con %p populated %zu\n", __func__, con,
3017 	     iov_iter_count(&con->v2.out_iter));
3018 	return 1;
3019 
3020 nothing_pending:
3021 	WARN_ON(iov_iter_count(&con->v2.out_iter));
3022 	dout("%s con %p nothing pending\n", __func__, con);
3023 	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
3024 	return 0;
3025 }
3026 
3027 int ceph_con_v2_try_write(struct ceph_connection *con)
3028 {
3029 	int ret;
3030 
3031 	dout("%s con %p state %d have %zu\n", __func__, con, con->state,
3032 	     iov_iter_count(&con->v2.out_iter));
3033 
3034 	/* open the socket first? */
3035 	if (con->state == CEPH_CON_S_PREOPEN) {
3036 		WARN_ON(con->peer_addr.type != CEPH_ENTITY_ADDR_TYPE_MSGR2);
3037 
3038 		/*
3039 		 * Always bump global_seq.  Bump connect_seq only if
3040 		 * there is a session (i.e. we are reconnecting and will
3041 		 * send session_reconnect instead of client_ident).
3042 		 */
3043 		con->v2.global_seq = ceph_get_global_seq(con->msgr, 0);
3044 		if (con->v2.server_cookie)
3045 			con->v2.connect_seq++;
3046 
3047 		ret = prepare_read_banner_prefix(con);
3048 		if (ret) {
3049 			pr_err("prepare_read_banner_prefix failed: %d\n", ret);
3050 			con->error_msg = "connect error";
3051 			return ret;
3052 		}
3053 
3054 		reset_out_kvecs(con);
3055 		ret = prepare_banner(con);
3056 		if (ret) {
3057 			pr_err("prepare_banner failed: %d\n", ret);
3058 			con->error_msg = "connect error";
3059 			return ret;
3060 		}
3061 
3062 		ret = ceph_tcp_connect(con);
3063 		if (ret) {
3064 			pr_err("ceph_tcp_connect failed: %d\n", ret);
3065 			con->error_msg = "connect error";
3066 			return ret;
3067 		}
3068 	}
3069 
3070 	if (!iov_iter_count(&con->v2.out_iter)) {
3071 		ret = populate_out_iter(con);
3072 		if (ret <= 0) {
3073 			if (ret && ret != -EAGAIN && !con->error_msg)
3074 				con->error_msg = "write processing error";
3075 			return ret;
3076 		}
3077 	}
3078 
3079 	tcp_sock_set_cork(con->sock->sk, true);
3080 	for (;;) {
3081 		ret = ceph_tcp_send(con);
3082 		if (ret <= 0)
3083 			break;
3084 
3085 		ret = populate_out_iter(con);
3086 		if (ret <= 0) {
3087 			if (ret && ret != -EAGAIN && !con->error_msg)
3088 				con->error_msg = "write processing error";
3089 			break;
3090 		}
3091 	}
3092 
3093 	tcp_sock_set_cork(con->sock->sk, false);
3094 	return ret;
3095 }
3096 
3097 static u32 crc32c_zeros(u32 crc, int zero_len)
3098 {
3099 	int len;
3100 
3101 	while (zero_len) {
3102 		len = min(zero_len, (int)PAGE_SIZE);
3103 		crc = crc32c(crc, page_address(ceph_zero_page), len);
3104 		zero_len -= len;
3105 	}
3106 
3107 	return crc;
3108 }
3109 
3110 static void prepare_zero_front(struct ceph_connection *con, int resid)
3111 {
3112 	int sent;
3113 
3114 	WARN_ON(!resid || resid > front_len(con->out_msg));
3115 	sent = front_len(con->out_msg) - resid;
3116 	dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3117 
3118 	if (sent) {
3119 		con->v2.out_epil.front_crc =
3120 			crc32c(-1, con->out_msg->front.iov_base, sent);
3121 		con->v2.out_epil.front_crc =
3122 			crc32c_zeros(con->v2.out_epil.front_crc, resid);
3123 	} else {
3124 		con->v2.out_epil.front_crc = crc32c_zeros(-1, resid);
3125 	}
3126 
3127 	con->v2.out_iter.count -= resid;
3128 	out_zero_add(con, resid);
3129 }
3130 
3131 static void prepare_zero_middle(struct ceph_connection *con, int resid)
3132 {
3133 	int sent;
3134 
3135 	WARN_ON(!resid || resid > middle_len(con->out_msg));
3136 	sent = middle_len(con->out_msg) - resid;
3137 	dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3138 
3139 	if (sent) {
3140 		con->v2.out_epil.middle_crc =
3141 			crc32c(-1, con->out_msg->middle->vec.iov_base, sent);
3142 		con->v2.out_epil.middle_crc =
3143 			crc32c_zeros(con->v2.out_epil.middle_crc, resid);
3144 	} else {
3145 		con->v2.out_epil.middle_crc = crc32c_zeros(-1, resid);
3146 	}
3147 
3148 	con->v2.out_iter.count -= resid;
3149 	out_zero_add(con, resid);
3150 }
3151 
3152 static void prepare_zero_data(struct ceph_connection *con)
3153 {
3154 	dout("%s con %p\n", __func__, con);
3155 	con->v2.out_epil.data_crc = crc32c_zeros(-1, data_len(con->out_msg));
3156 	out_zero_add(con, data_len(con->out_msg));
3157 }
3158 
3159 static void revoke_at_queue_data(struct ceph_connection *con)
3160 {
3161 	int boundary;
3162 	int resid;
3163 
3164 	WARN_ON(!data_len(con->out_msg));
3165 	WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
3166 	resid = iov_iter_count(&con->v2.out_iter);
3167 
3168 	boundary = front_len(con->out_msg) + middle_len(con->out_msg);
3169 	if (resid > boundary) {
3170 		resid -= boundary;
3171 		WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN);
3172 		dout("%s con %p was sending head\n", __func__, con);
3173 		if (front_len(con->out_msg))
3174 			prepare_zero_front(con, front_len(con->out_msg));
3175 		if (middle_len(con->out_msg))
3176 			prepare_zero_middle(con, middle_len(con->out_msg));
3177 		prepare_zero_data(con);
3178 		WARN_ON(iov_iter_count(&con->v2.out_iter) != resid);
3179 		con->v2.out_state = OUT_S_QUEUE_ZEROS;
3180 		return;
3181 	}
3182 
3183 	boundary = middle_len(con->out_msg);
3184 	if (resid > boundary) {
3185 		resid -= boundary;
3186 		dout("%s con %p was sending front\n", __func__, con);
3187 		prepare_zero_front(con, resid);
3188 		if (middle_len(con->out_msg))
3189 			prepare_zero_middle(con, middle_len(con->out_msg));
3190 		prepare_zero_data(con);
3191 		queue_zeros(con);
3192 		return;
3193 	}
3194 
3195 	WARN_ON(!resid);
3196 	dout("%s con %p was sending middle\n", __func__, con);
3197 	prepare_zero_middle(con, resid);
3198 	prepare_zero_data(con);
3199 	queue_zeros(con);
3200 }
3201 
3202 static void revoke_at_queue_data_cont(struct ceph_connection *con)
3203 {
3204 	int sent, resid;  /* current piece of data */
3205 
3206 	WARN_ON(!data_len(con->out_msg));
3207 	WARN_ON(!iov_iter_is_bvec(&con->v2.out_iter));
3208 	resid = iov_iter_count(&con->v2.out_iter);
3209 	WARN_ON(!resid || resid > con->v2.out_bvec.bv_len);
3210 	sent = con->v2.out_bvec.bv_len - resid;
3211 	dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3212 
3213 	if (sent) {
3214 		con->v2.out_epil.data_crc = ceph_crc32c_page(
3215 			con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page,
3216 			con->v2.out_bvec.bv_offset, sent);
3217 		ceph_msg_data_advance(&con->v2.out_cursor, sent);
3218 	}
3219 	WARN_ON(resid > con->v2.out_cursor.total_resid);
3220 	con->v2.out_epil.data_crc = crc32c_zeros(con->v2.out_epil.data_crc,
3221 						con->v2.out_cursor.total_resid);
3222 
3223 	con->v2.out_iter.count -= resid;
3224 	out_zero_add(con, con->v2.out_cursor.total_resid);
3225 	queue_zeros(con);
3226 }
3227 
3228 static void revoke_at_finish_message(struct ceph_connection *con)
3229 {
3230 	int boundary;
3231 	int resid;
3232 
3233 	WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
3234 	resid = iov_iter_count(&con->v2.out_iter);
3235 
3236 	if (!front_len(con->out_msg) && !middle_len(con->out_msg) &&
3237 	    !data_len(con->out_msg)) {
3238 		WARN_ON(!resid || resid > MESSAGE_HEAD_PLAIN_LEN);
3239 		dout("%s con %p was sending head (empty message) - noop\n",
3240 		     __func__, con);
3241 		return;
3242 	}
3243 
3244 	boundary = front_len(con->out_msg) + middle_len(con->out_msg) +
3245 		   CEPH_EPILOGUE_PLAIN_LEN;
3246 	if (resid > boundary) {
3247 		resid -= boundary;
3248 		WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN);
3249 		dout("%s con %p was sending head\n", __func__, con);
3250 		if (front_len(con->out_msg))
3251 			prepare_zero_front(con, front_len(con->out_msg));
3252 		if (middle_len(con->out_msg))
3253 			prepare_zero_middle(con, middle_len(con->out_msg));
3254 		con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3255 		WARN_ON(iov_iter_count(&con->v2.out_iter) != resid);
3256 		con->v2.out_state = OUT_S_QUEUE_ZEROS;
3257 		return;
3258 	}
3259 
3260 	boundary = middle_len(con->out_msg) + CEPH_EPILOGUE_PLAIN_LEN;
3261 	if (resid > boundary) {
3262 		resid -= boundary;
3263 		dout("%s con %p was sending front\n", __func__, con);
3264 		prepare_zero_front(con, resid);
3265 		if (middle_len(con->out_msg))
3266 			prepare_zero_middle(con, middle_len(con->out_msg));
3267 		con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3268 		queue_zeros(con);
3269 		return;
3270 	}
3271 
3272 	boundary = CEPH_EPILOGUE_PLAIN_LEN;
3273 	if (resid > boundary) {
3274 		resid -= boundary;
3275 		dout("%s con %p was sending middle\n", __func__, con);
3276 		prepare_zero_middle(con, resid);
3277 		con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3278 		queue_zeros(con);
3279 		return;
3280 	}
3281 
3282 	WARN_ON(!resid);
3283 	dout("%s con %p was sending epilogue - noop\n", __func__, con);
3284 }
3285 
3286 void ceph_con_v2_revoke(struct ceph_connection *con)
3287 {
3288 	WARN_ON(con->v2.out_zero);
3289 
3290 	if (con_secure(con)) {
3291 		WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE &&
3292 			con->v2.out_state != OUT_S_FINISH_MESSAGE);
3293 		dout("%s con %p secure - noop\n", __func__, con);
3294 		return;
3295 	}
3296 
3297 	switch (con->v2.out_state) {
3298 	case OUT_S_QUEUE_DATA:
3299 		revoke_at_queue_data(con);
3300 		break;
3301 	case OUT_S_QUEUE_DATA_CONT:
3302 		revoke_at_queue_data_cont(con);
3303 		break;
3304 	case OUT_S_FINISH_MESSAGE:
3305 		revoke_at_finish_message(con);
3306 		break;
3307 	default:
3308 		WARN(1, "bad out_state %d", con->v2.out_state);
3309 		break;
3310 	}
3311 }
3312 
3313 static void revoke_at_prepare_read_data(struct ceph_connection *con)
3314 {
3315 	int remaining;  /* data + [data padding] + epilogue */
3316 	int resid;
3317 
3318 	WARN_ON(!data_len(con->in_msg));
3319 	WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
3320 	resid = iov_iter_count(&con->v2.in_iter);
3321 	WARN_ON(!resid);
3322 
3323 	if (con_secure(con))
3324 		remaining = padded_len(data_len(con->in_msg)) +
3325 			    CEPH_EPILOGUE_SECURE_LEN;
3326 	else
3327 		remaining = data_len(con->in_msg) + CEPH_EPILOGUE_PLAIN_LEN;
3328 
3329 	dout("%s con %p resid %d remaining %d\n", __func__, con, resid,
3330 	     remaining);
3331 	con->v2.in_iter.count -= resid;
3332 	set_in_skip(con, resid + remaining);
3333 	con->v2.in_state = IN_S_FINISH_SKIP;
3334 }
3335 
3336 static void revoke_at_prepare_read_data_cont(struct ceph_connection *con)
3337 {
3338 	int recved, resid;  /* current piece of data */
3339 	int remaining;  /* [data padding] + epilogue */
3340 
3341 	WARN_ON(!data_len(con->in_msg));
3342 	WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
3343 	resid = iov_iter_count(&con->v2.in_iter);
3344 	WARN_ON(!resid || resid > con->v2.in_bvec.bv_len);
3345 	recved = con->v2.in_bvec.bv_len - resid;
3346 	dout("%s con %p recved %d resid %d\n", __func__, con, recved, resid);
3347 
3348 	if (recved)
3349 		ceph_msg_data_advance(&con->v2.in_cursor, recved);
3350 	WARN_ON(resid > con->v2.in_cursor.total_resid);
3351 
3352 	if (con_secure(con))
3353 		remaining = padding_len(data_len(con->in_msg)) +
3354 			    CEPH_EPILOGUE_SECURE_LEN;
3355 	else
3356 		remaining = CEPH_EPILOGUE_PLAIN_LEN;
3357 
3358 	dout("%s con %p total_resid %zu remaining %d\n", __func__, con,
3359 	     con->v2.in_cursor.total_resid, remaining);
3360 	con->v2.in_iter.count -= resid;
3361 	set_in_skip(con, con->v2.in_cursor.total_resid + remaining);
3362 	con->v2.in_state = IN_S_FINISH_SKIP;
3363 }
3364 
3365 static void revoke_at_handle_epilogue(struct ceph_connection *con)
3366 {
3367 	int resid;
3368 
3369 	WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
3370 	resid = iov_iter_count(&con->v2.in_iter);
3371 	WARN_ON(!resid);
3372 
3373 	dout("%s con %p resid %d\n", __func__, con, resid);
3374 	con->v2.in_iter.count -= resid;
3375 	set_in_skip(con, resid);
3376 	con->v2.in_state = IN_S_FINISH_SKIP;
3377 }
3378 
3379 void ceph_con_v2_revoke_incoming(struct ceph_connection *con)
3380 {
3381 	switch (con->v2.in_state) {
3382 	case IN_S_PREPARE_READ_DATA:
3383 		revoke_at_prepare_read_data(con);
3384 		break;
3385 	case IN_S_PREPARE_READ_DATA_CONT:
3386 		revoke_at_prepare_read_data_cont(con);
3387 		break;
3388 	case IN_S_HANDLE_EPILOGUE:
3389 		revoke_at_handle_epilogue(con);
3390 		break;
3391 	default:
3392 		WARN(1, "bad in_state %d", con->v2.in_state);
3393 		break;
3394 	}
3395 }
3396 
3397 bool ceph_con_v2_opened(struct ceph_connection *con)
3398 {
3399 	return con->v2.peer_global_seq;
3400 }
3401 
3402 void ceph_con_v2_reset_session(struct ceph_connection *con)
3403 {
3404 	con->v2.client_cookie = 0;
3405 	con->v2.server_cookie = 0;
3406 	con->v2.global_seq = 0;
3407 	con->v2.connect_seq = 0;
3408 	con->v2.peer_global_seq = 0;
3409 }
3410 
3411 void ceph_con_v2_reset_protocol(struct ceph_connection *con)
3412 {
3413 	iov_iter_truncate(&con->v2.in_iter, 0);
3414 	iov_iter_truncate(&con->v2.out_iter, 0);
3415 	con->v2.out_zero = 0;
3416 
3417 	clear_in_sign_kvecs(con);
3418 	clear_out_sign_kvecs(con);
3419 	free_conn_bufs(con);
3420 
3421 	if (con->v2.out_enc_pages) {
3422 		WARN_ON(!con->v2.out_enc_page_cnt);
3423 		ceph_release_page_vector(con->v2.out_enc_pages,
3424 					 con->v2.out_enc_page_cnt);
3425 		con->v2.out_enc_pages = NULL;
3426 		con->v2.out_enc_page_cnt = 0;
3427 	}
3428 
3429 	con->v2.con_mode = CEPH_CON_MODE_UNKNOWN;
3430 
3431 	if (con->v2.hmac_tfm) {
3432 		crypto_free_shash(con->v2.hmac_tfm);
3433 		con->v2.hmac_tfm = NULL;
3434 	}
3435 	if (con->v2.gcm_req) {
3436 		aead_request_free(con->v2.gcm_req);
3437 		con->v2.gcm_req = NULL;
3438 	}
3439 	if (con->v2.gcm_tfm) {
3440 		crypto_free_aead(con->v2.gcm_tfm);
3441 		con->v2.gcm_tfm = NULL;
3442 	}
3443 }
3444