xref: /linux/net/ceph/messenger_v2.c (revision 2d7f3d1a5866705be2393150e1ffdf67030ab88d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Ceph msgr2 protocol implementation
4  *
5  * Copyright (C) 2020 Ilya Dryomov <idryomov@gmail.com>
6  */
7 
8 #include <linux/ceph/ceph_debug.h>
9 
10 #include <crypto/aead.h>
11 #include <crypto/hash.h>
12 #include <crypto/sha2.h>
13 #include <crypto/utils.h>
14 #include <linux/bvec.h>
15 #include <linux/crc32c.h>
16 #include <linux/net.h>
17 #include <linux/scatterlist.h>
18 #include <linux/socket.h>
19 #include <linux/sched/mm.h>
20 #include <net/sock.h>
21 #include <net/tcp.h>
22 
23 #include <linux/ceph/ceph_features.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/libceph.h>
26 #include <linux/ceph/messenger.h>
27 
28 #include "crypto.h"  /* for CEPH_KEY_LEN and CEPH_MAX_CON_SECRET_LEN */
29 
30 #define FRAME_TAG_HELLO			1
31 #define FRAME_TAG_AUTH_REQUEST		2
32 #define FRAME_TAG_AUTH_BAD_METHOD	3
33 #define FRAME_TAG_AUTH_REPLY_MORE	4
34 #define FRAME_TAG_AUTH_REQUEST_MORE	5
35 #define FRAME_TAG_AUTH_DONE		6
36 #define FRAME_TAG_AUTH_SIGNATURE	7
37 #define FRAME_TAG_CLIENT_IDENT		8
38 #define FRAME_TAG_SERVER_IDENT		9
39 #define FRAME_TAG_IDENT_MISSING_FEATURES 10
40 #define FRAME_TAG_SESSION_RECONNECT	11
41 #define FRAME_TAG_SESSION_RESET		12
42 #define FRAME_TAG_SESSION_RETRY		13
43 #define FRAME_TAG_SESSION_RETRY_GLOBAL	14
44 #define FRAME_TAG_SESSION_RECONNECT_OK	15
45 #define FRAME_TAG_WAIT			16
46 #define FRAME_TAG_MESSAGE		17
47 #define FRAME_TAG_KEEPALIVE2		18
48 #define FRAME_TAG_KEEPALIVE2_ACK	19
49 #define FRAME_TAG_ACK			20
50 
51 #define FRAME_LATE_STATUS_ABORTED	0x1
52 #define FRAME_LATE_STATUS_COMPLETE	0xe
53 #define FRAME_LATE_STATUS_ABORTED_MASK	0xf
54 
55 #define IN_S_HANDLE_PREAMBLE			1
56 #define IN_S_HANDLE_CONTROL			2
57 #define IN_S_HANDLE_CONTROL_REMAINDER		3
58 #define IN_S_PREPARE_READ_DATA			4
59 #define IN_S_PREPARE_READ_DATA_CONT		5
60 #define IN_S_PREPARE_READ_ENC_PAGE		6
61 #define IN_S_PREPARE_SPARSE_DATA		7
62 #define IN_S_PREPARE_SPARSE_DATA_CONT		8
63 #define IN_S_HANDLE_EPILOGUE			9
64 #define IN_S_FINISH_SKIP			10
65 
66 #define OUT_S_QUEUE_DATA		1
67 #define OUT_S_QUEUE_DATA_CONT		2
68 #define OUT_S_QUEUE_ENC_PAGE		3
69 #define OUT_S_QUEUE_ZEROS		4
70 #define OUT_S_FINISH_MESSAGE		5
71 #define OUT_S_GET_NEXT			6
72 
73 #define CTRL_BODY(p)	((void *)(p) + CEPH_PREAMBLE_LEN)
74 #define FRONT_PAD(p)	((void *)(p) + CEPH_EPILOGUE_SECURE_LEN)
75 #define MIDDLE_PAD(p)	(FRONT_PAD(p) + CEPH_GCM_BLOCK_LEN)
76 #define DATA_PAD(p)	(MIDDLE_PAD(p) + CEPH_GCM_BLOCK_LEN)
77 
78 #define CEPH_MSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL)
79 
80 static int do_recvmsg(struct socket *sock, struct iov_iter *it)
81 {
82 	struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
83 	int ret;
84 
85 	msg.msg_iter = *it;
86 	while (iov_iter_count(it)) {
87 		ret = sock_recvmsg(sock, &msg, msg.msg_flags);
88 		if (ret <= 0) {
89 			if (ret == -EAGAIN)
90 				ret = 0;
91 			return ret;
92 		}
93 
94 		iov_iter_advance(it, ret);
95 	}
96 
97 	WARN_ON(msg_data_left(&msg));
98 	return 1;
99 }
100 
101 /*
102  * Read as much as possible.
103  *
104  * Return:
105  *   1 - done, nothing (else) to read
106  *   0 - socket is empty, need to wait
107  *  <0 - error
108  */
109 static int ceph_tcp_recv(struct ceph_connection *con)
110 {
111 	int ret;
112 
113 	dout("%s con %p %s %zu\n", __func__, con,
114 	     iov_iter_is_discard(&con->v2.in_iter) ? "discard" : "need",
115 	     iov_iter_count(&con->v2.in_iter));
116 	ret = do_recvmsg(con->sock, &con->v2.in_iter);
117 	dout("%s con %p ret %d left %zu\n", __func__, con, ret,
118 	     iov_iter_count(&con->v2.in_iter));
119 	return ret;
120 }
121 
122 static int do_sendmsg(struct socket *sock, struct iov_iter *it)
123 {
124 	struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
125 	int ret;
126 
127 	msg.msg_iter = *it;
128 	while (iov_iter_count(it)) {
129 		ret = sock_sendmsg(sock, &msg);
130 		if (ret <= 0) {
131 			if (ret == -EAGAIN)
132 				ret = 0;
133 			return ret;
134 		}
135 
136 		iov_iter_advance(it, ret);
137 	}
138 
139 	WARN_ON(msg_data_left(&msg));
140 	return 1;
141 }
142 
143 static int do_try_sendpage(struct socket *sock, struct iov_iter *it)
144 {
145 	struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
146 	struct bio_vec bv;
147 	int ret;
148 
149 	if (WARN_ON(!iov_iter_is_bvec(it)))
150 		return -EINVAL;
151 
152 	while (iov_iter_count(it)) {
153 		/* iov_iter_iovec() for ITER_BVEC */
154 		bvec_set_page(&bv, it->bvec->bv_page,
155 			      min(iov_iter_count(it),
156 				  it->bvec->bv_len - it->iov_offset),
157 			      it->bvec->bv_offset + it->iov_offset);
158 
159 		/*
160 		 * MSG_SPLICE_PAGES cannot properly handle pages with
161 		 * page_count == 0, we need to fall back to sendmsg if
162 		 * that's the case.
163 		 *
164 		 * Same goes for slab pages: skb_can_coalesce() allows
165 		 * coalescing neighboring slab objects into a single frag
166 		 * which triggers one of hardened usercopy checks.
167 		 */
168 		if (sendpage_ok(bv.bv_page))
169 			msg.msg_flags |= MSG_SPLICE_PAGES;
170 		else
171 			msg.msg_flags &= ~MSG_SPLICE_PAGES;
172 
173 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bv, 1, bv.bv_len);
174 		ret = sock_sendmsg(sock, &msg);
175 		if (ret <= 0) {
176 			if (ret == -EAGAIN)
177 				ret = 0;
178 			return ret;
179 		}
180 
181 		iov_iter_advance(it, ret);
182 	}
183 
184 	return 1;
185 }
186 
187 /*
188  * Write as much as possible.  The socket is expected to be corked,
189  * so we don't bother with MSG_MORE here.
190  *
191  * Return:
192  *   1 - done, nothing (else) to write
193  *   0 - socket is full, need to wait
194  *  <0 - error
195  */
196 static int ceph_tcp_send(struct ceph_connection *con)
197 {
198 	int ret;
199 
200 	dout("%s con %p have %zu try_sendpage %d\n", __func__, con,
201 	     iov_iter_count(&con->v2.out_iter), con->v2.out_iter_sendpage);
202 	if (con->v2.out_iter_sendpage)
203 		ret = do_try_sendpage(con->sock, &con->v2.out_iter);
204 	else
205 		ret = do_sendmsg(con->sock, &con->v2.out_iter);
206 	dout("%s con %p ret %d left %zu\n", __func__, con, ret,
207 	     iov_iter_count(&con->v2.out_iter));
208 	return ret;
209 }
210 
211 static void add_in_kvec(struct ceph_connection *con, void *buf, int len)
212 {
213 	BUG_ON(con->v2.in_kvec_cnt >= ARRAY_SIZE(con->v2.in_kvecs));
214 	WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
215 
216 	con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_base = buf;
217 	con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_len = len;
218 	con->v2.in_kvec_cnt++;
219 
220 	con->v2.in_iter.nr_segs++;
221 	con->v2.in_iter.count += len;
222 }
223 
224 static void reset_in_kvecs(struct ceph_connection *con)
225 {
226 	WARN_ON(iov_iter_count(&con->v2.in_iter));
227 
228 	con->v2.in_kvec_cnt = 0;
229 	iov_iter_kvec(&con->v2.in_iter, ITER_DEST, con->v2.in_kvecs, 0, 0);
230 }
231 
232 static void set_in_bvec(struct ceph_connection *con, const struct bio_vec *bv)
233 {
234 	WARN_ON(iov_iter_count(&con->v2.in_iter));
235 
236 	con->v2.in_bvec = *bv;
237 	iov_iter_bvec(&con->v2.in_iter, ITER_DEST, &con->v2.in_bvec, 1, bv->bv_len);
238 }
239 
240 static void set_in_skip(struct ceph_connection *con, int len)
241 {
242 	WARN_ON(iov_iter_count(&con->v2.in_iter));
243 
244 	dout("%s con %p len %d\n", __func__, con, len);
245 	iov_iter_discard(&con->v2.in_iter, ITER_DEST, len);
246 }
247 
248 static void add_out_kvec(struct ceph_connection *con, void *buf, int len)
249 {
250 	BUG_ON(con->v2.out_kvec_cnt >= ARRAY_SIZE(con->v2.out_kvecs));
251 	WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
252 	WARN_ON(con->v2.out_zero);
253 
254 	con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_base = buf;
255 	con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_len = len;
256 	con->v2.out_kvec_cnt++;
257 
258 	con->v2.out_iter.nr_segs++;
259 	con->v2.out_iter.count += len;
260 }
261 
262 static void reset_out_kvecs(struct ceph_connection *con)
263 {
264 	WARN_ON(iov_iter_count(&con->v2.out_iter));
265 	WARN_ON(con->v2.out_zero);
266 
267 	con->v2.out_kvec_cnt = 0;
268 
269 	iov_iter_kvec(&con->v2.out_iter, ITER_SOURCE, con->v2.out_kvecs, 0, 0);
270 	con->v2.out_iter_sendpage = false;
271 }
272 
273 static void set_out_bvec(struct ceph_connection *con, const struct bio_vec *bv,
274 			 bool zerocopy)
275 {
276 	WARN_ON(iov_iter_count(&con->v2.out_iter));
277 	WARN_ON(con->v2.out_zero);
278 
279 	con->v2.out_bvec = *bv;
280 	con->v2.out_iter_sendpage = zerocopy;
281 	iov_iter_bvec(&con->v2.out_iter, ITER_SOURCE, &con->v2.out_bvec, 1,
282 		      con->v2.out_bvec.bv_len);
283 }
284 
285 static void set_out_bvec_zero(struct ceph_connection *con)
286 {
287 	WARN_ON(iov_iter_count(&con->v2.out_iter));
288 	WARN_ON(!con->v2.out_zero);
289 
290 	bvec_set_page(&con->v2.out_bvec, ceph_zero_page,
291 		      min(con->v2.out_zero, (int)PAGE_SIZE), 0);
292 	con->v2.out_iter_sendpage = true;
293 	iov_iter_bvec(&con->v2.out_iter, ITER_SOURCE, &con->v2.out_bvec, 1,
294 		      con->v2.out_bvec.bv_len);
295 }
296 
297 static void out_zero_add(struct ceph_connection *con, int len)
298 {
299 	dout("%s con %p len %d\n", __func__, con, len);
300 	con->v2.out_zero += len;
301 }
302 
303 static void *alloc_conn_buf(struct ceph_connection *con, int len)
304 {
305 	void *buf;
306 
307 	dout("%s con %p len %d\n", __func__, con, len);
308 
309 	if (WARN_ON(con->v2.conn_buf_cnt >= ARRAY_SIZE(con->v2.conn_bufs)))
310 		return NULL;
311 
312 	buf = kvmalloc(len, GFP_NOIO);
313 	if (!buf)
314 		return NULL;
315 
316 	con->v2.conn_bufs[con->v2.conn_buf_cnt++] = buf;
317 	return buf;
318 }
319 
320 static void free_conn_bufs(struct ceph_connection *con)
321 {
322 	while (con->v2.conn_buf_cnt)
323 		kvfree(con->v2.conn_bufs[--con->v2.conn_buf_cnt]);
324 }
325 
326 static void add_in_sign_kvec(struct ceph_connection *con, void *buf, int len)
327 {
328 	BUG_ON(con->v2.in_sign_kvec_cnt >= ARRAY_SIZE(con->v2.in_sign_kvecs));
329 
330 	con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_base = buf;
331 	con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_len = len;
332 	con->v2.in_sign_kvec_cnt++;
333 }
334 
335 static void clear_in_sign_kvecs(struct ceph_connection *con)
336 {
337 	con->v2.in_sign_kvec_cnt = 0;
338 }
339 
340 static void add_out_sign_kvec(struct ceph_connection *con, void *buf, int len)
341 {
342 	BUG_ON(con->v2.out_sign_kvec_cnt >= ARRAY_SIZE(con->v2.out_sign_kvecs));
343 
344 	con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_base = buf;
345 	con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_len = len;
346 	con->v2.out_sign_kvec_cnt++;
347 }
348 
349 static void clear_out_sign_kvecs(struct ceph_connection *con)
350 {
351 	con->v2.out_sign_kvec_cnt = 0;
352 }
353 
354 static bool con_secure(struct ceph_connection *con)
355 {
356 	return con->v2.con_mode == CEPH_CON_MODE_SECURE;
357 }
358 
359 static int front_len(const struct ceph_msg *msg)
360 {
361 	return le32_to_cpu(msg->hdr.front_len);
362 }
363 
364 static int middle_len(const struct ceph_msg *msg)
365 {
366 	return le32_to_cpu(msg->hdr.middle_len);
367 }
368 
369 static int data_len(const struct ceph_msg *msg)
370 {
371 	return le32_to_cpu(msg->hdr.data_len);
372 }
373 
374 static bool need_padding(int len)
375 {
376 	return !IS_ALIGNED(len, CEPH_GCM_BLOCK_LEN);
377 }
378 
379 static int padded_len(int len)
380 {
381 	return ALIGN(len, CEPH_GCM_BLOCK_LEN);
382 }
383 
384 static int padding_len(int len)
385 {
386 	return padded_len(len) - len;
387 }
388 
389 /* preamble + control segment */
390 static int head_onwire_len(int ctrl_len, bool secure)
391 {
392 	int head_len;
393 	int rem_len;
394 
395 	BUG_ON(ctrl_len < 0 || ctrl_len > CEPH_MSG_MAX_CONTROL_LEN);
396 
397 	if (secure) {
398 		head_len = CEPH_PREAMBLE_SECURE_LEN;
399 		if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) {
400 			rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
401 			head_len += padded_len(rem_len) + CEPH_GCM_TAG_LEN;
402 		}
403 	} else {
404 		head_len = CEPH_PREAMBLE_PLAIN_LEN;
405 		if (ctrl_len)
406 			head_len += ctrl_len + CEPH_CRC_LEN;
407 	}
408 	return head_len;
409 }
410 
411 /* front, middle and data segments + epilogue */
412 static int __tail_onwire_len(int front_len, int middle_len, int data_len,
413 			     bool secure)
414 {
415 	BUG_ON(front_len < 0 || front_len > CEPH_MSG_MAX_FRONT_LEN ||
416 	       middle_len < 0 || middle_len > CEPH_MSG_MAX_MIDDLE_LEN ||
417 	       data_len < 0 || data_len > CEPH_MSG_MAX_DATA_LEN);
418 
419 	if (!front_len && !middle_len && !data_len)
420 		return 0;
421 
422 	if (!secure)
423 		return front_len + middle_len + data_len +
424 		       CEPH_EPILOGUE_PLAIN_LEN;
425 
426 	return padded_len(front_len) + padded_len(middle_len) +
427 	       padded_len(data_len) + CEPH_EPILOGUE_SECURE_LEN;
428 }
429 
430 static int tail_onwire_len(const struct ceph_msg *msg, bool secure)
431 {
432 	return __tail_onwire_len(front_len(msg), middle_len(msg),
433 				 data_len(msg), secure);
434 }
435 
436 /* head_onwire_len(sizeof(struct ceph_msg_header2), false) */
437 #define MESSAGE_HEAD_PLAIN_LEN	(CEPH_PREAMBLE_PLAIN_LEN +		\
438 				 sizeof(struct ceph_msg_header2) +	\
439 				 CEPH_CRC_LEN)
440 
441 static const int frame_aligns[] = {
442 	sizeof(void *),
443 	sizeof(void *),
444 	sizeof(void *),
445 	PAGE_SIZE
446 };
447 
448 /*
449  * Discards trailing empty segments, unless there is just one segment.
450  * A frame always has at least one (possibly empty) segment.
451  */
452 static int calc_segment_count(const int *lens, int len_cnt)
453 {
454 	int i;
455 
456 	for (i = len_cnt - 1; i >= 0; i--) {
457 		if (lens[i])
458 			return i + 1;
459 	}
460 
461 	return 1;
462 }
463 
464 static void init_frame_desc(struct ceph_frame_desc *desc, int tag,
465 			    const int *lens, int len_cnt)
466 {
467 	int i;
468 
469 	memset(desc, 0, sizeof(*desc));
470 
471 	desc->fd_tag = tag;
472 	desc->fd_seg_cnt = calc_segment_count(lens, len_cnt);
473 	BUG_ON(desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT);
474 	for (i = 0; i < desc->fd_seg_cnt; i++) {
475 		desc->fd_lens[i] = lens[i];
476 		desc->fd_aligns[i] = frame_aligns[i];
477 	}
478 }
479 
480 /*
481  * Preamble crc covers everything up to itself (28 bytes) and
482  * is calculated and verified irrespective of the connection mode
483  * (i.e. even if the frame is encrypted).
484  */
485 static void encode_preamble(const struct ceph_frame_desc *desc, void *p)
486 {
487 	void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN;
488 	void *start = p;
489 	int i;
490 
491 	memset(p, 0, CEPH_PREAMBLE_LEN);
492 
493 	ceph_encode_8(&p, desc->fd_tag);
494 	ceph_encode_8(&p, desc->fd_seg_cnt);
495 	for (i = 0; i < desc->fd_seg_cnt; i++) {
496 		ceph_encode_32(&p, desc->fd_lens[i]);
497 		ceph_encode_16(&p, desc->fd_aligns[i]);
498 	}
499 
500 	put_unaligned_le32(crc32c(0, start, crcp - start), crcp);
501 }
502 
503 static int decode_preamble(void *p, struct ceph_frame_desc *desc)
504 {
505 	void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN;
506 	u32 crc, expected_crc;
507 	int i;
508 
509 	crc = crc32c(0, p, crcp - p);
510 	expected_crc = get_unaligned_le32(crcp);
511 	if (crc != expected_crc) {
512 		pr_err("bad preamble crc, calculated %u, expected %u\n",
513 		       crc, expected_crc);
514 		return -EBADMSG;
515 	}
516 
517 	memset(desc, 0, sizeof(*desc));
518 
519 	desc->fd_tag = ceph_decode_8(&p);
520 	desc->fd_seg_cnt = ceph_decode_8(&p);
521 	if (desc->fd_seg_cnt < 1 ||
522 	    desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT) {
523 		pr_err("bad segment count %d\n", desc->fd_seg_cnt);
524 		return -EINVAL;
525 	}
526 	for (i = 0; i < desc->fd_seg_cnt; i++) {
527 		desc->fd_lens[i] = ceph_decode_32(&p);
528 		desc->fd_aligns[i] = ceph_decode_16(&p);
529 	}
530 
531 	if (desc->fd_lens[0] < 0 ||
532 	    desc->fd_lens[0] > CEPH_MSG_MAX_CONTROL_LEN) {
533 		pr_err("bad control segment length %d\n", desc->fd_lens[0]);
534 		return -EINVAL;
535 	}
536 	if (desc->fd_lens[1] < 0 ||
537 	    desc->fd_lens[1] > CEPH_MSG_MAX_FRONT_LEN) {
538 		pr_err("bad front segment length %d\n", desc->fd_lens[1]);
539 		return -EINVAL;
540 	}
541 	if (desc->fd_lens[2] < 0 ||
542 	    desc->fd_lens[2] > CEPH_MSG_MAX_MIDDLE_LEN) {
543 		pr_err("bad middle segment length %d\n", desc->fd_lens[2]);
544 		return -EINVAL;
545 	}
546 	if (desc->fd_lens[3] < 0 ||
547 	    desc->fd_lens[3] > CEPH_MSG_MAX_DATA_LEN) {
548 		pr_err("bad data segment length %d\n", desc->fd_lens[3]);
549 		return -EINVAL;
550 	}
551 
552 	/*
553 	 * This would fire for FRAME_TAG_WAIT (it has one empty
554 	 * segment), but we should never get it as client.
555 	 */
556 	if (!desc->fd_lens[desc->fd_seg_cnt - 1]) {
557 		pr_err("last segment empty, segment count %d\n",
558 		       desc->fd_seg_cnt);
559 		return -EINVAL;
560 	}
561 
562 	return 0;
563 }
564 
565 static void encode_epilogue_plain(struct ceph_connection *con, bool aborted)
566 {
567 	con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED :
568 						 FRAME_LATE_STATUS_COMPLETE;
569 	cpu_to_le32s(&con->v2.out_epil.front_crc);
570 	cpu_to_le32s(&con->v2.out_epil.middle_crc);
571 	cpu_to_le32s(&con->v2.out_epil.data_crc);
572 }
573 
574 static void encode_epilogue_secure(struct ceph_connection *con, bool aborted)
575 {
576 	memset(&con->v2.out_epil, 0, sizeof(con->v2.out_epil));
577 	con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED :
578 						 FRAME_LATE_STATUS_COMPLETE;
579 }
580 
581 static int decode_epilogue(void *p, u32 *front_crc, u32 *middle_crc,
582 			   u32 *data_crc)
583 {
584 	u8 late_status;
585 
586 	late_status = ceph_decode_8(&p);
587 	if ((late_status & FRAME_LATE_STATUS_ABORTED_MASK) !=
588 			FRAME_LATE_STATUS_COMPLETE) {
589 		/* we should never get an aborted message as client */
590 		pr_err("bad late_status 0x%x\n", late_status);
591 		return -EINVAL;
592 	}
593 
594 	if (front_crc && middle_crc && data_crc) {
595 		*front_crc = ceph_decode_32(&p);
596 		*middle_crc = ceph_decode_32(&p);
597 		*data_crc = ceph_decode_32(&p);
598 	}
599 
600 	return 0;
601 }
602 
603 static void fill_header(struct ceph_msg_header *hdr,
604 			const struct ceph_msg_header2 *hdr2,
605 			int front_len, int middle_len, int data_len,
606 			const struct ceph_entity_name *peer_name)
607 {
608 	hdr->seq = hdr2->seq;
609 	hdr->tid = hdr2->tid;
610 	hdr->type = hdr2->type;
611 	hdr->priority = hdr2->priority;
612 	hdr->version = hdr2->version;
613 	hdr->front_len = cpu_to_le32(front_len);
614 	hdr->middle_len = cpu_to_le32(middle_len);
615 	hdr->data_len = cpu_to_le32(data_len);
616 	hdr->data_off = hdr2->data_off;
617 	hdr->src = *peer_name;
618 	hdr->compat_version = hdr2->compat_version;
619 	hdr->reserved = 0;
620 	hdr->crc = 0;
621 }
622 
623 static void fill_header2(struct ceph_msg_header2 *hdr2,
624 			 const struct ceph_msg_header *hdr, u64 ack_seq)
625 {
626 	hdr2->seq = hdr->seq;
627 	hdr2->tid = hdr->tid;
628 	hdr2->type = hdr->type;
629 	hdr2->priority = hdr->priority;
630 	hdr2->version = hdr->version;
631 	hdr2->data_pre_padding_len = 0;
632 	hdr2->data_off = hdr->data_off;
633 	hdr2->ack_seq = cpu_to_le64(ack_seq);
634 	hdr2->flags = 0;
635 	hdr2->compat_version = hdr->compat_version;
636 	hdr2->reserved = 0;
637 }
638 
639 static int verify_control_crc(struct ceph_connection *con)
640 {
641 	int ctrl_len = con->v2.in_desc.fd_lens[0];
642 	u32 crc, expected_crc;
643 
644 	WARN_ON(con->v2.in_kvecs[0].iov_len != ctrl_len);
645 	WARN_ON(con->v2.in_kvecs[1].iov_len != CEPH_CRC_LEN);
646 
647 	crc = crc32c(-1, con->v2.in_kvecs[0].iov_base, ctrl_len);
648 	expected_crc = get_unaligned_le32(con->v2.in_kvecs[1].iov_base);
649 	if (crc != expected_crc) {
650 		pr_err("bad control crc, calculated %u, expected %u\n",
651 		       crc, expected_crc);
652 		return -EBADMSG;
653 	}
654 
655 	return 0;
656 }
657 
658 static int verify_epilogue_crcs(struct ceph_connection *con, u32 front_crc,
659 				u32 middle_crc, u32 data_crc)
660 {
661 	if (front_len(con->in_msg)) {
662 		con->in_front_crc = crc32c(-1, con->in_msg->front.iov_base,
663 					   front_len(con->in_msg));
664 	} else {
665 		WARN_ON(!middle_len(con->in_msg) && !data_len(con->in_msg));
666 		con->in_front_crc = -1;
667 	}
668 
669 	if (middle_len(con->in_msg))
670 		con->in_middle_crc = crc32c(-1,
671 					    con->in_msg->middle->vec.iov_base,
672 					    middle_len(con->in_msg));
673 	else if (data_len(con->in_msg))
674 		con->in_middle_crc = -1;
675 	else
676 		con->in_middle_crc = 0;
677 
678 	if (!data_len(con->in_msg))
679 		con->in_data_crc = 0;
680 
681 	dout("%s con %p msg %p crcs %u %u %u\n", __func__, con, con->in_msg,
682 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
683 
684 	if (con->in_front_crc != front_crc) {
685 		pr_err("bad front crc, calculated %u, expected %u\n",
686 		       con->in_front_crc, front_crc);
687 		return -EBADMSG;
688 	}
689 	if (con->in_middle_crc != middle_crc) {
690 		pr_err("bad middle crc, calculated %u, expected %u\n",
691 		       con->in_middle_crc, middle_crc);
692 		return -EBADMSG;
693 	}
694 	if (con->in_data_crc != data_crc) {
695 		pr_err("bad data crc, calculated %u, expected %u\n",
696 		       con->in_data_crc, data_crc);
697 		return -EBADMSG;
698 	}
699 
700 	return 0;
701 }
702 
703 static int setup_crypto(struct ceph_connection *con,
704 			const u8 *session_key, int session_key_len,
705 			const u8 *con_secret, int con_secret_len)
706 {
707 	unsigned int noio_flag;
708 	int ret;
709 
710 	dout("%s con %p con_mode %d session_key_len %d con_secret_len %d\n",
711 	     __func__, con, con->v2.con_mode, session_key_len, con_secret_len);
712 	WARN_ON(con->v2.hmac_tfm || con->v2.gcm_tfm || con->v2.gcm_req);
713 
714 	if (con->v2.con_mode != CEPH_CON_MODE_CRC &&
715 	    con->v2.con_mode != CEPH_CON_MODE_SECURE) {
716 		pr_err("bad con_mode %d\n", con->v2.con_mode);
717 		return -EINVAL;
718 	}
719 
720 	if (!session_key_len) {
721 		WARN_ON(con->v2.con_mode != CEPH_CON_MODE_CRC);
722 		WARN_ON(con_secret_len);
723 		return 0;  /* auth_none */
724 	}
725 
726 	noio_flag = memalloc_noio_save();
727 	con->v2.hmac_tfm = crypto_alloc_shash("hmac(sha256)", 0, 0);
728 	memalloc_noio_restore(noio_flag);
729 	if (IS_ERR(con->v2.hmac_tfm)) {
730 		ret = PTR_ERR(con->v2.hmac_tfm);
731 		con->v2.hmac_tfm = NULL;
732 		pr_err("failed to allocate hmac tfm context: %d\n", ret);
733 		return ret;
734 	}
735 
736 	ret = crypto_shash_setkey(con->v2.hmac_tfm, session_key,
737 				  session_key_len);
738 	if (ret) {
739 		pr_err("failed to set hmac key: %d\n", ret);
740 		return ret;
741 	}
742 
743 	if (con->v2.con_mode == CEPH_CON_MODE_CRC) {
744 		WARN_ON(con_secret_len);
745 		return 0;  /* auth_x, plain mode */
746 	}
747 
748 	if (con_secret_len < CEPH_GCM_KEY_LEN + 2 * CEPH_GCM_IV_LEN) {
749 		pr_err("con_secret too small %d\n", con_secret_len);
750 		return -EINVAL;
751 	}
752 
753 	noio_flag = memalloc_noio_save();
754 	con->v2.gcm_tfm = crypto_alloc_aead("gcm(aes)", 0, 0);
755 	memalloc_noio_restore(noio_flag);
756 	if (IS_ERR(con->v2.gcm_tfm)) {
757 		ret = PTR_ERR(con->v2.gcm_tfm);
758 		con->v2.gcm_tfm = NULL;
759 		pr_err("failed to allocate gcm tfm context: %d\n", ret);
760 		return ret;
761 	}
762 
763 	WARN_ON((unsigned long)con_secret &
764 		crypto_aead_alignmask(con->v2.gcm_tfm));
765 	ret = crypto_aead_setkey(con->v2.gcm_tfm, con_secret, CEPH_GCM_KEY_LEN);
766 	if (ret) {
767 		pr_err("failed to set gcm key: %d\n", ret);
768 		return ret;
769 	}
770 
771 	WARN_ON(crypto_aead_ivsize(con->v2.gcm_tfm) != CEPH_GCM_IV_LEN);
772 	ret = crypto_aead_setauthsize(con->v2.gcm_tfm, CEPH_GCM_TAG_LEN);
773 	if (ret) {
774 		pr_err("failed to set gcm tag size: %d\n", ret);
775 		return ret;
776 	}
777 
778 	con->v2.gcm_req = aead_request_alloc(con->v2.gcm_tfm, GFP_NOIO);
779 	if (!con->v2.gcm_req) {
780 		pr_err("failed to allocate gcm request\n");
781 		return -ENOMEM;
782 	}
783 
784 	crypto_init_wait(&con->v2.gcm_wait);
785 	aead_request_set_callback(con->v2.gcm_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
786 				  crypto_req_done, &con->v2.gcm_wait);
787 
788 	memcpy(&con->v2.in_gcm_nonce, con_secret + CEPH_GCM_KEY_LEN,
789 	       CEPH_GCM_IV_LEN);
790 	memcpy(&con->v2.out_gcm_nonce,
791 	       con_secret + CEPH_GCM_KEY_LEN + CEPH_GCM_IV_LEN,
792 	       CEPH_GCM_IV_LEN);
793 	return 0;  /* auth_x, secure mode */
794 }
795 
796 static int hmac_sha256(struct ceph_connection *con, const struct kvec *kvecs,
797 		       int kvec_cnt, u8 *hmac)
798 {
799 	SHASH_DESC_ON_STACK(desc, con->v2.hmac_tfm);  /* tfm arg is ignored */
800 	int ret;
801 	int i;
802 
803 	dout("%s con %p hmac_tfm %p kvec_cnt %d\n", __func__, con,
804 	     con->v2.hmac_tfm, kvec_cnt);
805 
806 	if (!con->v2.hmac_tfm) {
807 		memset(hmac, 0, SHA256_DIGEST_SIZE);
808 		return 0;  /* auth_none */
809 	}
810 
811 	desc->tfm = con->v2.hmac_tfm;
812 	ret = crypto_shash_init(desc);
813 	if (ret)
814 		goto out;
815 
816 	for (i = 0; i < kvec_cnt; i++) {
817 		ret = crypto_shash_update(desc, kvecs[i].iov_base,
818 					  kvecs[i].iov_len);
819 		if (ret)
820 			goto out;
821 	}
822 
823 	ret = crypto_shash_final(desc, hmac);
824 
825 out:
826 	shash_desc_zero(desc);
827 	return ret;  /* auth_x, both plain and secure modes */
828 }
829 
830 static void gcm_inc_nonce(struct ceph_gcm_nonce *nonce)
831 {
832 	u64 counter;
833 
834 	counter = le64_to_cpu(nonce->counter);
835 	nonce->counter = cpu_to_le64(counter + 1);
836 }
837 
838 static int gcm_crypt(struct ceph_connection *con, bool encrypt,
839 		     struct scatterlist *src, struct scatterlist *dst,
840 		     int src_len)
841 {
842 	struct ceph_gcm_nonce *nonce;
843 	int ret;
844 
845 	nonce = encrypt ? &con->v2.out_gcm_nonce : &con->v2.in_gcm_nonce;
846 
847 	aead_request_set_ad(con->v2.gcm_req, 0);  /* no AAD */
848 	aead_request_set_crypt(con->v2.gcm_req, src, dst, src_len, (u8 *)nonce);
849 	ret = crypto_wait_req(encrypt ? crypto_aead_encrypt(con->v2.gcm_req) :
850 					crypto_aead_decrypt(con->v2.gcm_req),
851 			      &con->v2.gcm_wait);
852 	if (ret)
853 		return ret;
854 
855 	gcm_inc_nonce(nonce);
856 	return 0;
857 }
858 
859 static void get_bvec_at(struct ceph_msg_data_cursor *cursor,
860 			struct bio_vec *bv)
861 {
862 	struct page *page;
863 	size_t off, len;
864 
865 	WARN_ON(!cursor->total_resid);
866 
867 	/* skip zero-length data items */
868 	while (!cursor->resid)
869 		ceph_msg_data_advance(cursor, 0);
870 
871 	/* get a piece of data, cursor isn't advanced */
872 	page = ceph_msg_data_next(cursor, &off, &len);
873 	bvec_set_page(bv, page, len, off);
874 }
875 
876 static int calc_sg_cnt(void *buf, int buf_len)
877 {
878 	int sg_cnt;
879 
880 	if (!buf_len)
881 		return 0;
882 
883 	sg_cnt = need_padding(buf_len) ? 1 : 0;
884 	if (is_vmalloc_addr(buf)) {
885 		WARN_ON(offset_in_page(buf));
886 		sg_cnt += PAGE_ALIGN(buf_len) >> PAGE_SHIFT;
887 	} else {
888 		sg_cnt++;
889 	}
890 
891 	return sg_cnt;
892 }
893 
894 static int calc_sg_cnt_cursor(struct ceph_msg_data_cursor *cursor)
895 {
896 	int data_len = cursor->total_resid;
897 	struct bio_vec bv;
898 	int sg_cnt;
899 
900 	if (!data_len)
901 		return 0;
902 
903 	sg_cnt = need_padding(data_len) ? 1 : 0;
904 	do {
905 		get_bvec_at(cursor, &bv);
906 		sg_cnt++;
907 
908 		ceph_msg_data_advance(cursor, bv.bv_len);
909 	} while (cursor->total_resid);
910 
911 	return sg_cnt;
912 }
913 
914 static void init_sgs(struct scatterlist **sg, void *buf, int buf_len, u8 *pad)
915 {
916 	void *end = buf + buf_len;
917 	struct page *page;
918 	int len;
919 	void *p;
920 
921 	if (!buf_len)
922 		return;
923 
924 	if (is_vmalloc_addr(buf)) {
925 		p = buf;
926 		do {
927 			page = vmalloc_to_page(p);
928 			len = min_t(int, end - p, PAGE_SIZE);
929 			WARN_ON(!page || !len || offset_in_page(p));
930 			sg_set_page(*sg, page, len, 0);
931 			*sg = sg_next(*sg);
932 			p += len;
933 		} while (p != end);
934 	} else {
935 		sg_set_buf(*sg, buf, buf_len);
936 		*sg = sg_next(*sg);
937 	}
938 
939 	if (need_padding(buf_len)) {
940 		sg_set_buf(*sg, pad, padding_len(buf_len));
941 		*sg = sg_next(*sg);
942 	}
943 }
944 
945 static void init_sgs_cursor(struct scatterlist **sg,
946 			    struct ceph_msg_data_cursor *cursor, u8 *pad)
947 {
948 	int data_len = cursor->total_resid;
949 	struct bio_vec bv;
950 
951 	if (!data_len)
952 		return;
953 
954 	do {
955 		get_bvec_at(cursor, &bv);
956 		sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
957 		*sg = sg_next(*sg);
958 
959 		ceph_msg_data_advance(cursor, bv.bv_len);
960 	} while (cursor->total_resid);
961 
962 	if (need_padding(data_len)) {
963 		sg_set_buf(*sg, pad, padding_len(data_len));
964 		*sg = sg_next(*sg);
965 	}
966 }
967 
968 /**
969  * init_sgs_pages: set up scatterlist on an array of page pointers
970  * @sg:		scatterlist to populate
971  * @pages:	pointer to page array
972  * @dpos:	position in the array to start (bytes)
973  * @dlen:	len to add to sg (bytes)
974  * @pad:	pointer to pad destination (if any)
975  *
976  * Populate the scatterlist from the page array, starting at an arbitrary
977  * byte in the array and running for a specified length.
978  */
979 static void init_sgs_pages(struct scatterlist **sg, struct page **pages,
980 			   int dpos, int dlen, u8 *pad)
981 {
982 	int idx = dpos >> PAGE_SHIFT;
983 	int off = offset_in_page(dpos);
984 	int resid = dlen;
985 
986 	do {
987 		int len = min(resid, (int)PAGE_SIZE - off);
988 
989 		sg_set_page(*sg, pages[idx], len, off);
990 		*sg = sg_next(*sg);
991 		off = 0;
992 		++idx;
993 		resid -= len;
994 	} while (resid);
995 
996 	if (need_padding(dlen)) {
997 		sg_set_buf(*sg, pad, padding_len(dlen));
998 		*sg = sg_next(*sg);
999 	}
1000 }
1001 
1002 static int setup_message_sgs(struct sg_table *sgt, struct ceph_msg *msg,
1003 			     u8 *front_pad, u8 *middle_pad, u8 *data_pad,
1004 			     void *epilogue, struct page **pages, int dpos,
1005 			     bool add_tag)
1006 {
1007 	struct ceph_msg_data_cursor cursor;
1008 	struct scatterlist *cur_sg;
1009 	int dlen = data_len(msg);
1010 	int sg_cnt;
1011 	int ret;
1012 
1013 	if (!front_len(msg) && !middle_len(msg) && !data_len(msg))
1014 		return 0;
1015 
1016 	sg_cnt = 1;  /* epilogue + [auth tag] */
1017 	if (front_len(msg))
1018 		sg_cnt += calc_sg_cnt(msg->front.iov_base,
1019 				      front_len(msg));
1020 	if (middle_len(msg))
1021 		sg_cnt += calc_sg_cnt(msg->middle->vec.iov_base,
1022 				      middle_len(msg));
1023 	if (dlen) {
1024 		if (pages) {
1025 			sg_cnt += calc_pages_for(dpos, dlen);
1026 			if (need_padding(dlen))
1027 				sg_cnt++;
1028 		} else {
1029 			ceph_msg_data_cursor_init(&cursor, msg, dlen);
1030 			sg_cnt += calc_sg_cnt_cursor(&cursor);
1031 		}
1032 	}
1033 
1034 	ret = sg_alloc_table(sgt, sg_cnt, GFP_NOIO);
1035 	if (ret)
1036 		return ret;
1037 
1038 	cur_sg = sgt->sgl;
1039 	if (front_len(msg))
1040 		init_sgs(&cur_sg, msg->front.iov_base, front_len(msg),
1041 			 front_pad);
1042 	if (middle_len(msg))
1043 		init_sgs(&cur_sg, msg->middle->vec.iov_base, middle_len(msg),
1044 			 middle_pad);
1045 	if (dlen) {
1046 		if (pages) {
1047 			init_sgs_pages(&cur_sg, pages, dpos, dlen, data_pad);
1048 		} else {
1049 			ceph_msg_data_cursor_init(&cursor, msg, dlen);
1050 			init_sgs_cursor(&cur_sg, &cursor, data_pad);
1051 		}
1052 	}
1053 
1054 	WARN_ON(!sg_is_last(cur_sg));
1055 	sg_set_buf(cur_sg, epilogue,
1056 		   CEPH_GCM_BLOCK_LEN + (add_tag ? CEPH_GCM_TAG_LEN : 0));
1057 	return 0;
1058 }
1059 
1060 static int decrypt_preamble(struct ceph_connection *con)
1061 {
1062 	struct scatterlist sg;
1063 
1064 	sg_init_one(&sg, con->v2.in_buf, CEPH_PREAMBLE_SECURE_LEN);
1065 	return gcm_crypt(con, false, &sg, &sg, CEPH_PREAMBLE_SECURE_LEN);
1066 }
1067 
1068 static int decrypt_control_remainder(struct ceph_connection *con)
1069 {
1070 	int ctrl_len = con->v2.in_desc.fd_lens[0];
1071 	int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1072 	int pt_len = padding_len(rem_len) + CEPH_GCM_TAG_LEN;
1073 	struct scatterlist sgs[2];
1074 
1075 	WARN_ON(con->v2.in_kvecs[0].iov_len != rem_len);
1076 	WARN_ON(con->v2.in_kvecs[1].iov_len != pt_len);
1077 
1078 	sg_init_table(sgs, 2);
1079 	sg_set_buf(&sgs[0], con->v2.in_kvecs[0].iov_base, rem_len);
1080 	sg_set_buf(&sgs[1], con->v2.in_buf, pt_len);
1081 
1082 	return gcm_crypt(con, false, sgs, sgs,
1083 			 padded_len(rem_len) + CEPH_GCM_TAG_LEN);
1084 }
1085 
1086 /* Process sparse read data that lives in a buffer */
1087 static int process_v2_sparse_read(struct ceph_connection *con,
1088 				  struct page **pages, int spos)
1089 {
1090 	struct ceph_msg_data_cursor *cursor = &con->v2.in_cursor;
1091 	int ret;
1092 
1093 	for (;;) {
1094 		char *buf = NULL;
1095 
1096 		ret = con->ops->sparse_read(con, cursor, &buf);
1097 		if (ret <= 0)
1098 			return ret;
1099 
1100 		dout("%s: sparse_read return %x buf %p\n", __func__, ret, buf);
1101 
1102 		do {
1103 			int idx = spos >> PAGE_SHIFT;
1104 			int soff = offset_in_page(spos);
1105 			struct page *spage = con->v2.in_enc_pages[idx];
1106 			int len = min_t(int, ret, PAGE_SIZE - soff);
1107 
1108 			if (buf) {
1109 				memcpy_from_page(buf, spage, soff, len);
1110 				buf += len;
1111 			} else {
1112 				struct bio_vec bv;
1113 
1114 				get_bvec_at(cursor, &bv);
1115 				len = min_t(int, len, bv.bv_len);
1116 				memcpy_page(bv.bv_page, bv.bv_offset,
1117 					    spage, soff, len);
1118 				ceph_msg_data_advance(cursor, len);
1119 			}
1120 			spos += len;
1121 			ret -= len;
1122 		} while (ret);
1123 	}
1124 }
1125 
1126 static int decrypt_tail(struct ceph_connection *con)
1127 {
1128 	struct sg_table enc_sgt = {};
1129 	struct sg_table sgt = {};
1130 	struct page **pages = NULL;
1131 	bool sparse = !!con->in_msg->sparse_read_total;
1132 	int dpos = 0;
1133 	int tail_len;
1134 	int ret;
1135 
1136 	tail_len = tail_onwire_len(con->in_msg, true);
1137 	ret = sg_alloc_table_from_pages(&enc_sgt, con->v2.in_enc_pages,
1138 					con->v2.in_enc_page_cnt, 0, tail_len,
1139 					GFP_NOIO);
1140 	if (ret)
1141 		goto out;
1142 
1143 	if (sparse) {
1144 		dpos = padded_len(front_len(con->in_msg) + padded_len(middle_len(con->in_msg)));
1145 		pages = con->v2.in_enc_pages;
1146 	}
1147 
1148 	ret = setup_message_sgs(&sgt, con->in_msg, FRONT_PAD(con->v2.in_buf),
1149 				MIDDLE_PAD(con->v2.in_buf), DATA_PAD(con->v2.in_buf),
1150 				con->v2.in_buf, pages, dpos, true);
1151 	if (ret)
1152 		goto out;
1153 
1154 	dout("%s con %p msg %p enc_page_cnt %d sg_cnt %d\n", __func__, con,
1155 	     con->in_msg, con->v2.in_enc_page_cnt, sgt.orig_nents);
1156 	ret = gcm_crypt(con, false, enc_sgt.sgl, sgt.sgl, tail_len);
1157 	if (ret)
1158 		goto out;
1159 
1160 	if (sparse && data_len(con->in_msg)) {
1161 		ret = process_v2_sparse_read(con, con->v2.in_enc_pages, dpos);
1162 		if (ret)
1163 			goto out;
1164 	}
1165 
1166 	WARN_ON(!con->v2.in_enc_page_cnt);
1167 	ceph_release_page_vector(con->v2.in_enc_pages,
1168 				 con->v2.in_enc_page_cnt);
1169 	con->v2.in_enc_pages = NULL;
1170 	con->v2.in_enc_page_cnt = 0;
1171 
1172 out:
1173 	sg_free_table(&sgt);
1174 	sg_free_table(&enc_sgt);
1175 	return ret;
1176 }
1177 
1178 static int prepare_banner(struct ceph_connection *con)
1179 {
1180 	int buf_len = CEPH_BANNER_V2_LEN + 2 + 8 + 8;
1181 	void *buf, *p;
1182 
1183 	buf = alloc_conn_buf(con, buf_len);
1184 	if (!buf)
1185 		return -ENOMEM;
1186 
1187 	p = buf;
1188 	ceph_encode_copy(&p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN);
1189 	ceph_encode_16(&p, sizeof(u64) + sizeof(u64));
1190 	ceph_encode_64(&p, CEPH_MSGR2_SUPPORTED_FEATURES);
1191 	ceph_encode_64(&p, CEPH_MSGR2_REQUIRED_FEATURES);
1192 	WARN_ON(p != buf + buf_len);
1193 
1194 	add_out_kvec(con, buf, buf_len);
1195 	add_out_sign_kvec(con, buf, buf_len);
1196 	ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1197 	return 0;
1198 }
1199 
1200 /*
1201  * base:
1202  *   preamble
1203  *   control body (ctrl_len bytes)
1204  *   space for control crc
1205  *
1206  * extdata (optional):
1207  *   control body (extdata_len bytes)
1208  *
1209  * Compute control crc and gather base and extdata into:
1210  *
1211  *   preamble
1212  *   control body (ctrl_len + extdata_len bytes)
1213  *   control crc
1214  *
1215  * Preamble should already be encoded at the start of base.
1216  */
1217 static void prepare_head_plain(struct ceph_connection *con, void *base,
1218 			       int ctrl_len, void *extdata, int extdata_len,
1219 			       bool to_be_signed)
1220 {
1221 	int base_len = CEPH_PREAMBLE_LEN + ctrl_len + CEPH_CRC_LEN;
1222 	void *crcp = base + base_len - CEPH_CRC_LEN;
1223 	u32 crc;
1224 
1225 	crc = crc32c(-1, CTRL_BODY(base), ctrl_len);
1226 	if (extdata_len)
1227 		crc = crc32c(crc, extdata, extdata_len);
1228 	put_unaligned_le32(crc, crcp);
1229 
1230 	if (!extdata_len) {
1231 		add_out_kvec(con, base, base_len);
1232 		if (to_be_signed)
1233 			add_out_sign_kvec(con, base, base_len);
1234 		return;
1235 	}
1236 
1237 	add_out_kvec(con, base, crcp - base);
1238 	add_out_kvec(con, extdata, extdata_len);
1239 	add_out_kvec(con, crcp, CEPH_CRC_LEN);
1240 	if (to_be_signed) {
1241 		add_out_sign_kvec(con, base, crcp - base);
1242 		add_out_sign_kvec(con, extdata, extdata_len);
1243 		add_out_sign_kvec(con, crcp, CEPH_CRC_LEN);
1244 	}
1245 }
1246 
1247 static int prepare_head_secure_small(struct ceph_connection *con,
1248 				     void *base, int ctrl_len)
1249 {
1250 	struct scatterlist sg;
1251 	int ret;
1252 
1253 	/* inline buffer padding? */
1254 	if (ctrl_len < CEPH_PREAMBLE_INLINE_LEN)
1255 		memset(CTRL_BODY(base) + ctrl_len, 0,
1256 		       CEPH_PREAMBLE_INLINE_LEN - ctrl_len);
1257 
1258 	sg_init_one(&sg, base, CEPH_PREAMBLE_SECURE_LEN);
1259 	ret = gcm_crypt(con, true, &sg, &sg,
1260 			CEPH_PREAMBLE_SECURE_LEN - CEPH_GCM_TAG_LEN);
1261 	if (ret)
1262 		return ret;
1263 
1264 	add_out_kvec(con, base, CEPH_PREAMBLE_SECURE_LEN);
1265 	return 0;
1266 }
1267 
1268 /*
1269  * base:
1270  *   preamble
1271  *   control body (ctrl_len bytes)
1272  *   space for padding, if needed
1273  *   space for control remainder auth tag
1274  *   space for preamble auth tag
1275  *
1276  * Encrypt preamble and the inline portion, then encrypt the remainder
1277  * and gather into:
1278  *
1279  *   preamble
1280  *   control body (48 bytes)
1281  *   preamble auth tag
1282  *   control body (ctrl_len - 48 bytes)
1283  *   zero padding, if needed
1284  *   control remainder auth tag
1285  *
1286  * Preamble should already be encoded at the start of base.
1287  */
1288 static int prepare_head_secure_big(struct ceph_connection *con,
1289 				   void *base, int ctrl_len)
1290 {
1291 	int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1292 	void *rem = CTRL_BODY(base) + CEPH_PREAMBLE_INLINE_LEN;
1293 	void *rem_tag = rem + padded_len(rem_len);
1294 	void *pmbl_tag = rem_tag + CEPH_GCM_TAG_LEN;
1295 	struct scatterlist sgs[2];
1296 	int ret;
1297 
1298 	sg_init_table(sgs, 2);
1299 	sg_set_buf(&sgs[0], base, rem - base);
1300 	sg_set_buf(&sgs[1], pmbl_tag, CEPH_GCM_TAG_LEN);
1301 	ret = gcm_crypt(con, true, sgs, sgs, rem - base);
1302 	if (ret)
1303 		return ret;
1304 
1305 	/* control remainder padding? */
1306 	if (need_padding(rem_len))
1307 		memset(rem + rem_len, 0, padding_len(rem_len));
1308 
1309 	sg_init_one(&sgs[0], rem, pmbl_tag - rem);
1310 	ret = gcm_crypt(con, true, sgs, sgs, rem_tag - rem);
1311 	if (ret)
1312 		return ret;
1313 
1314 	add_out_kvec(con, base, rem - base);
1315 	add_out_kvec(con, pmbl_tag, CEPH_GCM_TAG_LEN);
1316 	add_out_kvec(con, rem, pmbl_tag - rem);
1317 	return 0;
1318 }
1319 
1320 static int __prepare_control(struct ceph_connection *con, int tag,
1321 			     void *base, int ctrl_len, void *extdata,
1322 			     int extdata_len, bool to_be_signed)
1323 {
1324 	int total_len = ctrl_len + extdata_len;
1325 	struct ceph_frame_desc desc;
1326 	int ret;
1327 
1328 	dout("%s con %p tag %d len %d (%d+%d)\n", __func__, con, tag,
1329 	     total_len, ctrl_len, extdata_len);
1330 
1331 	/* extdata may be vmalloc'ed but not base */
1332 	if (WARN_ON(is_vmalloc_addr(base) || !ctrl_len))
1333 		return -EINVAL;
1334 
1335 	init_frame_desc(&desc, tag, &total_len, 1);
1336 	encode_preamble(&desc, base);
1337 
1338 	if (con_secure(con)) {
1339 		if (WARN_ON(extdata_len || to_be_signed))
1340 			return -EINVAL;
1341 
1342 		if (ctrl_len <= CEPH_PREAMBLE_INLINE_LEN)
1343 			/* fully inlined, inline buffer may need padding */
1344 			ret = prepare_head_secure_small(con, base, ctrl_len);
1345 		else
1346 			/* partially inlined, inline buffer is full */
1347 			ret = prepare_head_secure_big(con, base, ctrl_len);
1348 		if (ret)
1349 			return ret;
1350 	} else {
1351 		prepare_head_plain(con, base, ctrl_len, extdata, extdata_len,
1352 				   to_be_signed);
1353 	}
1354 
1355 	ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1356 	return 0;
1357 }
1358 
1359 static int prepare_control(struct ceph_connection *con, int tag,
1360 			   void *base, int ctrl_len)
1361 {
1362 	return __prepare_control(con, tag, base, ctrl_len, NULL, 0, false);
1363 }
1364 
1365 static int prepare_hello(struct ceph_connection *con)
1366 {
1367 	void *buf, *p;
1368 	int ctrl_len;
1369 
1370 	ctrl_len = 1 + ceph_entity_addr_encoding_len(&con->peer_addr);
1371 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1372 	if (!buf)
1373 		return -ENOMEM;
1374 
1375 	p = CTRL_BODY(buf);
1376 	ceph_encode_8(&p, CEPH_ENTITY_TYPE_CLIENT);
1377 	ceph_encode_entity_addr(&p, &con->peer_addr);
1378 	WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1379 
1380 	return __prepare_control(con, FRAME_TAG_HELLO, buf, ctrl_len,
1381 				 NULL, 0, true);
1382 }
1383 
1384 /* so that head_onwire_len(AUTH_BUF_LEN, false) is 512 */
1385 #define AUTH_BUF_LEN	(512 - CEPH_CRC_LEN - CEPH_PREAMBLE_PLAIN_LEN)
1386 
1387 static int prepare_auth_request(struct ceph_connection *con)
1388 {
1389 	void *authorizer, *authorizer_copy;
1390 	int ctrl_len, authorizer_len;
1391 	void *buf;
1392 	int ret;
1393 
1394 	ctrl_len = AUTH_BUF_LEN;
1395 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1396 	if (!buf)
1397 		return -ENOMEM;
1398 
1399 	mutex_unlock(&con->mutex);
1400 	ret = con->ops->get_auth_request(con, CTRL_BODY(buf), &ctrl_len,
1401 					 &authorizer, &authorizer_len);
1402 	mutex_lock(&con->mutex);
1403 	if (con->state != CEPH_CON_S_V2_HELLO) {
1404 		dout("%s con %p state changed to %d\n", __func__, con,
1405 		     con->state);
1406 		return -EAGAIN;
1407 	}
1408 
1409 	dout("%s con %p get_auth_request ret %d\n", __func__, con, ret);
1410 	if (ret)
1411 		return ret;
1412 
1413 	authorizer_copy = alloc_conn_buf(con, authorizer_len);
1414 	if (!authorizer_copy)
1415 		return -ENOMEM;
1416 
1417 	memcpy(authorizer_copy, authorizer, authorizer_len);
1418 
1419 	return __prepare_control(con, FRAME_TAG_AUTH_REQUEST, buf, ctrl_len,
1420 				 authorizer_copy, authorizer_len, true);
1421 }
1422 
1423 static int prepare_auth_request_more(struct ceph_connection *con,
1424 				     void *reply, int reply_len)
1425 {
1426 	int ctrl_len, authorizer_len;
1427 	void *authorizer;
1428 	void *buf;
1429 	int ret;
1430 
1431 	ctrl_len = AUTH_BUF_LEN;
1432 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1433 	if (!buf)
1434 		return -ENOMEM;
1435 
1436 	mutex_unlock(&con->mutex);
1437 	ret = con->ops->handle_auth_reply_more(con, reply, reply_len,
1438 					       CTRL_BODY(buf), &ctrl_len,
1439 					       &authorizer, &authorizer_len);
1440 	mutex_lock(&con->mutex);
1441 	if (con->state != CEPH_CON_S_V2_AUTH) {
1442 		dout("%s con %p state changed to %d\n", __func__, con,
1443 		     con->state);
1444 		return -EAGAIN;
1445 	}
1446 
1447 	dout("%s con %p handle_auth_reply_more ret %d\n", __func__, con, ret);
1448 	if (ret)
1449 		return ret;
1450 
1451 	return __prepare_control(con, FRAME_TAG_AUTH_REQUEST_MORE, buf,
1452 				 ctrl_len, authorizer, authorizer_len, true);
1453 }
1454 
1455 static int prepare_auth_signature(struct ceph_connection *con)
1456 {
1457 	void *buf;
1458 	int ret;
1459 
1460 	buf = alloc_conn_buf(con, head_onwire_len(SHA256_DIGEST_SIZE,
1461 						  con_secure(con)));
1462 	if (!buf)
1463 		return -ENOMEM;
1464 
1465 	ret = hmac_sha256(con, con->v2.in_sign_kvecs, con->v2.in_sign_kvec_cnt,
1466 			  CTRL_BODY(buf));
1467 	if (ret)
1468 		return ret;
1469 
1470 	return prepare_control(con, FRAME_TAG_AUTH_SIGNATURE, buf,
1471 			       SHA256_DIGEST_SIZE);
1472 }
1473 
1474 static int prepare_client_ident(struct ceph_connection *con)
1475 {
1476 	struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
1477 	struct ceph_client *client = from_msgr(con->msgr);
1478 	u64 global_id = ceph_client_gid(client);
1479 	void *buf, *p;
1480 	int ctrl_len;
1481 
1482 	WARN_ON(con->v2.server_cookie);
1483 	WARN_ON(con->v2.connect_seq);
1484 	WARN_ON(con->v2.peer_global_seq);
1485 
1486 	if (!con->v2.client_cookie) {
1487 		do {
1488 			get_random_bytes(&con->v2.client_cookie,
1489 					 sizeof(con->v2.client_cookie));
1490 		} while (!con->v2.client_cookie);
1491 		dout("%s con %p generated cookie 0x%llx\n", __func__, con,
1492 		     con->v2.client_cookie);
1493 	} else {
1494 		dout("%s con %p cookie already set 0x%llx\n", __func__, con,
1495 		     con->v2.client_cookie);
1496 	}
1497 
1498 	dout("%s con %p my_addr %s/%u peer_addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx cookie 0x%llx\n",
1499 	     __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce),
1500 	     ceph_pr_addr(&con->peer_addr), le32_to_cpu(con->peer_addr.nonce),
1501 	     global_id, con->v2.global_seq, client->supported_features,
1502 	     client->required_features, con->v2.client_cookie);
1503 
1504 	ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) +
1505 		   ceph_entity_addr_encoding_len(&con->peer_addr) + 6 * 8;
1506 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con)));
1507 	if (!buf)
1508 		return -ENOMEM;
1509 
1510 	p = CTRL_BODY(buf);
1511 	ceph_encode_8(&p, 2);  /* addrvec marker */
1512 	ceph_encode_32(&p, 1);  /* addr_cnt */
1513 	ceph_encode_entity_addr(&p, my_addr);
1514 	ceph_encode_entity_addr(&p, &con->peer_addr);
1515 	ceph_encode_64(&p, global_id);
1516 	ceph_encode_64(&p, con->v2.global_seq);
1517 	ceph_encode_64(&p, client->supported_features);
1518 	ceph_encode_64(&p, client->required_features);
1519 	ceph_encode_64(&p, 0);  /* flags */
1520 	ceph_encode_64(&p, con->v2.client_cookie);
1521 	WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1522 
1523 	return prepare_control(con, FRAME_TAG_CLIENT_IDENT, buf, ctrl_len);
1524 }
1525 
1526 static int prepare_session_reconnect(struct ceph_connection *con)
1527 {
1528 	struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
1529 	void *buf, *p;
1530 	int ctrl_len;
1531 
1532 	WARN_ON(!con->v2.client_cookie);
1533 	WARN_ON(!con->v2.server_cookie);
1534 	WARN_ON(!con->v2.connect_seq);
1535 	WARN_ON(!con->v2.peer_global_seq);
1536 
1537 	dout("%s con %p my_addr %s/%u client_cookie 0x%llx server_cookie 0x%llx global_seq %llu connect_seq %llu in_seq %llu\n",
1538 	     __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce),
1539 	     con->v2.client_cookie, con->v2.server_cookie, con->v2.global_seq,
1540 	     con->v2.connect_seq, con->in_seq);
1541 
1542 	ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 5 * 8;
1543 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con)));
1544 	if (!buf)
1545 		return -ENOMEM;
1546 
1547 	p = CTRL_BODY(buf);
1548 	ceph_encode_8(&p, 2);  /* entity_addrvec_t marker */
1549 	ceph_encode_32(&p, 1);  /* my_addrs len */
1550 	ceph_encode_entity_addr(&p, my_addr);
1551 	ceph_encode_64(&p, con->v2.client_cookie);
1552 	ceph_encode_64(&p, con->v2.server_cookie);
1553 	ceph_encode_64(&p, con->v2.global_seq);
1554 	ceph_encode_64(&p, con->v2.connect_seq);
1555 	ceph_encode_64(&p, con->in_seq);
1556 	WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1557 
1558 	return prepare_control(con, FRAME_TAG_SESSION_RECONNECT, buf, ctrl_len);
1559 }
1560 
1561 static int prepare_keepalive2(struct ceph_connection *con)
1562 {
1563 	struct ceph_timespec *ts = CTRL_BODY(con->v2.out_buf);
1564 	struct timespec64 now;
1565 
1566 	ktime_get_real_ts64(&now);
1567 	dout("%s con %p timestamp %lld.%09ld\n", __func__, con, now.tv_sec,
1568 	     now.tv_nsec);
1569 
1570 	ceph_encode_timespec64(ts, &now);
1571 
1572 	reset_out_kvecs(con);
1573 	return prepare_control(con, FRAME_TAG_KEEPALIVE2, con->v2.out_buf,
1574 			       sizeof(struct ceph_timespec));
1575 }
1576 
1577 static int prepare_ack(struct ceph_connection *con)
1578 {
1579 	void *p;
1580 
1581 	dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con,
1582 	     con->in_seq_acked, con->in_seq);
1583 	con->in_seq_acked = con->in_seq;
1584 
1585 	p = CTRL_BODY(con->v2.out_buf);
1586 	ceph_encode_64(&p, con->in_seq_acked);
1587 
1588 	reset_out_kvecs(con);
1589 	return prepare_control(con, FRAME_TAG_ACK, con->v2.out_buf, 8);
1590 }
1591 
1592 static void prepare_epilogue_plain(struct ceph_connection *con, bool aborted)
1593 {
1594 	dout("%s con %p msg %p aborted %d crcs %u %u %u\n", __func__, con,
1595 	     con->out_msg, aborted, con->v2.out_epil.front_crc,
1596 	     con->v2.out_epil.middle_crc, con->v2.out_epil.data_crc);
1597 
1598 	encode_epilogue_plain(con, aborted);
1599 	add_out_kvec(con, &con->v2.out_epil, CEPH_EPILOGUE_PLAIN_LEN);
1600 }
1601 
1602 /*
1603  * For "used" empty segments, crc is -1.  For unused (trailing)
1604  * segments, crc is 0.
1605  */
1606 static void prepare_message_plain(struct ceph_connection *con)
1607 {
1608 	struct ceph_msg *msg = con->out_msg;
1609 
1610 	prepare_head_plain(con, con->v2.out_buf,
1611 			   sizeof(struct ceph_msg_header2), NULL, 0, false);
1612 
1613 	if (!front_len(msg) && !middle_len(msg)) {
1614 		if (!data_len(msg)) {
1615 			/*
1616 			 * Empty message: once the head is written,
1617 			 * we are done -- there is no epilogue.
1618 			 */
1619 			con->v2.out_state = OUT_S_FINISH_MESSAGE;
1620 			return;
1621 		}
1622 
1623 		con->v2.out_epil.front_crc = -1;
1624 		con->v2.out_epil.middle_crc = -1;
1625 		con->v2.out_state = OUT_S_QUEUE_DATA;
1626 		return;
1627 	}
1628 
1629 	if (front_len(msg)) {
1630 		con->v2.out_epil.front_crc = crc32c(-1, msg->front.iov_base,
1631 						    front_len(msg));
1632 		add_out_kvec(con, msg->front.iov_base, front_len(msg));
1633 	} else {
1634 		/* middle (at least) is there, checked above */
1635 		con->v2.out_epil.front_crc = -1;
1636 	}
1637 
1638 	if (middle_len(msg)) {
1639 		con->v2.out_epil.middle_crc =
1640 			crc32c(-1, msg->middle->vec.iov_base, middle_len(msg));
1641 		add_out_kvec(con, msg->middle->vec.iov_base, middle_len(msg));
1642 	} else {
1643 		con->v2.out_epil.middle_crc = data_len(msg) ? -1 : 0;
1644 	}
1645 
1646 	if (data_len(msg)) {
1647 		con->v2.out_state = OUT_S_QUEUE_DATA;
1648 	} else {
1649 		con->v2.out_epil.data_crc = 0;
1650 		prepare_epilogue_plain(con, false);
1651 		con->v2.out_state = OUT_S_FINISH_MESSAGE;
1652 	}
1653 }
1654 
1655 /*
1656  * Unfortunately the kernel crypto API doesn't support streaming
1657  * (piecewise) operation for AEAD algorithms, so we can't get away
1658  * with a fixed size buffer and a couple sgs.  Instead, we have to
1659  * allocate pages for the entire tail of the message (currently up
1660  * to ~32M) and two sgs arrays (up to ~256K each)...
1661  */
1662 static int prepare_message_secure(struct ceph_connection *con)
1663 {
1664 	void *zerop = page_address(ceph_zero_page);
1665 	struct sg_table enc_sgt = {};
1666 	struct sg_table sgt = {};
1667 	struct page **enc_pages;
1668 	int enc_page_cnt;
1669 	int tail_len;
1670 	int ret;
1671 
1672 	ret = prepare_head_secure_small(con, con->v2.out_buf,
1673 					sizeof(struct ceph_msg_header2));
1674 	if (ret)
1675 		return ret;
1676 
1677 	tail_len = tail_onwire_len(con->out_msg, true);
1678 	if (!tail_len) {
1679 		/*
1680 		 * Empty message: once the head is written,
1681 		 * we are done -- there is no epilogue.
1682 		 */
1683 		con->v2.out_state = OUT_S_FINISH_MESSAGE;
1684 		return 0;
1685 	}
1686 
1687 	encode_epilogue_secure(con, false);
1688 	ret = setup_message_sgs(&sgt, con->out_msg, zerop, zerop, zerop,
1689 				&con->v2.out_epil, NULL, 0, false);
1690 	if (ret)
1691 		goto out;
1692 
1693 	enc_page_cnt = calc_pages_for(0, tail_len);
1694 	enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO);
1695 	if (IS_ERR(enc_pages)) {
1696 		ret = PTR_ERR(enc_pages);
1697 		goto out;
1698 	}
1699 
1700 	WARN_ON(con->v2.out_enc_pages || con->v2.out_enc_page_cnt);
1701 	con->v2.out_enc_pages = enc_pages;
1702 	con->v2.out_enc_page_cnt = enc_page_cnt;
1703 	con->v2.out_enc_resid = tail_len;
1704 	con->v2.out_enc_i = 0;
1705 
1706 	ret = sg_alloc_table_from_pages(&enc_sgt, enc_pages, enc_page_cnt,
1707 					0, tail_len, GFP_NOIO);
1708 	if (ret)
1709 		goto out;
1710 
1711 	ret = gcm_crypt(con, true, sgt.sgl, enc_sgt.sgl,
1712 			tail_len - CEPH_GCM_TAG_LEN);
1713 	if (ret)
1714 		goto out;
1715 
1716 	dout("%s con %p msg %p sg_cnt %d enc_page_cnt %d\n", __func__, con,
1717 	     con->out_msg, sgt.orig_nents, enc_page_cnt);
1718 	con->v2.out_state = OUT_S_QUEUE_ENC_PAGE;
1719 
1720 out:
1721 	sg_free_table(&sgt);
1722 	sg_free_table(&enc_sgt);
1723 	return ret;
1724 }
1725 
1726 static int prepare_message(struct ceph_connection *con)
1727 {
1728 	int lens[] = {
1729 		sizeof(struct ceph_msg_header2),
1730 		front_len(con->out_msg),
1731 		middle_len(con->out_msg),
1732 		data_len(con->out_msg)
1733 	};
1734 	struct ceph_frame_desc desc;
1735 	int ret;
1736 
1737 	dout("%s con %p msg %p logical %d+%d+%d+%d\n", __func__, con,
1738 	     con->out_msg, lens[0], lens[1], lens[2], lens[3]);
1739 
1740 	if (con->in_seq > con->in_seq_acked) {
1741 		dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con,
1742 		     con->in_seq_acked, con->in_seq);
1743 		con->in_seq_acked = con->in_seq;
1744 	}
1745 
1746 	reset_out_kvecs(con);
1747 	init_frame_desc(&desc, FRAME_TAG_MESSAGE, lens, 4);
1748 	encode_preamble(&desc, con->v2.out_buf);
1749 	fill_header2(CTRL_BODY(con->v2.out_buf), &con->out_msg->hdr,
1750 		     con->in_seq_acked);
1751 
1752 	if (con_secure(con)) {
1753 		ret = prepare_message_secure(con);
1754 		if (ret)
1755 			return ret;
1756 	} else {
1757 		prepare_message_plain(con);
1758 	}
1759 
1760 	ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1761 	return 0;
1762 }
1763 
1764 static int prepare_read_banner_prefix(struct ceph_connection *con)
1765 {
1766 	void *buf;
1767 
1768 	buf = alloc_conn_buf(con, CEPH_BANNER_V2_PREFIX_LEN);
1769 	if (!buf)
1770 		return -ENOMEM;
1771 
1772 	reset_in_kvecs(con);
1773 	add_in_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN);
1774 	add_in_sign_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN);
1775 	con->state = CEPH_CON_S_V2_BANNER_PREFIX;
1776 	return 0;
1777 }
1778 
1779 static int prepare_read_banner_payload(struct ceph_connection *con,
1780 				       int payload_len)
1781 {
1782 	void *buf;
1783 
1784 	buf = alloc_conn_buf(con, payload_len);
1785 	if (!buf)
1786 		return -ENOMEM;
1787 
1788 	reset_in_kvecs(con);
1789 	add_in_kvec(con, buf, payload_len);
1790 	add_in_sign_kvec(con, buf, payload_len);
1791 	con->state = CEPH_CON_S_V2_BANNER_PAYLOAD;
1792 	return 0;
1793 }
1794 
1795 static void prepare_read_preamble(struct ceph_connection *con)
1796 {
1797 	reset_in_kvecs(con);
1798 	add_in_kvec(con, con->v2.in_buf,
1799 		    con_secure(con) ? CEPH_PREAMBLE_SECURE_LEN :
1800 				      CEPH_PREAMBLE_PLAIN_LEN);
1801 	con->v2.in_state = IN_S_HANDLE_PREAMBLE;
1802 }
1803 
1804 static int prepare_read_control(struct ceph_connection *con)
1805 {
1806 	int ctrl_len = con->v2.in_desc.fd_lens[0];
1807 	int head_len;
1808 	void *buf;
1809 
1810 	reset_in_kvecs(con);
1811 	if (con->state == CEPH_CON_S_V2_HELLO ||
1812 	    con->state == CEPH_CON_S_V2_AUTH) {
1813 		head_len = head_onwire_len(ctrl_len, false);
1814 		buf = alloc_conn_buf(con, head_len);
1815 		if (!buf)
1816 			return -ENOMEM;
1817 
1818 		/* preserve preamble */
1819 		memcpy(buf, con->v2.in_buf, CEPH_PREAMBLE_LEN);
1820 
1821 		add_in_kvec(con, CTRL_BODY(buf), ctrl_len);
1822 		add_in_kvec(con, CTRL_BODY(buf) + ctrl_len, CEPH_CRC_LEN);
1823 		add_in_sign_kvec(con, buf, head_len);
1824 	} else {
1825 		if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) {
1826 			buf = alloc_conn_buf(con, ctrl_len);
1827 			if (!buf)
1828 				return -ENOMEM;
1829 
1830 			add_in_kvec(con, buf, ctrl_len);
1831 		} else {
1832 			add_in_kvec(con, CTRL_BODY(con->v2.in_buf), ctrl_len);
1833 		}
1834 		add_in_kvec(con, con->v2.in_buf, CEPH_CRC_LEN);
1835 	}
1836 	con->v2.in_state = IN_S_HANDLE_CONTROL;
1837 	return 0;
1838 }
1839 
1840 static int prepare_read_control_remainder(struct ceph_connection *con)
1841 {
1842 	int ctrl_len = con->v2.in_desc.fd_lens[0];
1843 	int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1844 	void *buf;
1845 
1846 	buf = alloc_conn_buf(con, ctrl_len);
1847 	if (!buf)
1848 		return -ENOMEM;
1849 
1850 	memcpy(buf, CTRL_BODY(con->v2.in_buf), CEPH_PREAMBLE_INLINE_LEN);
1851 
1852 	reset_in_kvecs(con);
1853 	add_in_kvec(con, buf + CEPH_PREAMBLE_INLINE_LEN, rem_len);
1854 	add_in_kvec(con, con->v2.in_buf,
1855 		    padding_len(rem_len) + CEPH_GCM_TAG_LEN);
1856 	con->v2.in_state = IN_S_HANDLE_CONTROL_REMAINDER;
1857 	return 0;
1858 }
1859 
1860 static int prepare_read_data(struct ceph_connection *con)
1861 {
1862 	struct bio_vec bv;
1863 
1864 	con->in_data_crc = -1;
1865 	ceph_msg_data_cursor_init(&con->v2.in_cursor, con->in_msg,
1866 				  data_len(con->in_msg));
1867 
1868 	get_bvec_at(&con->v2.in_cursor, &bv);
1869 	if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1870 		if (unlikely(!con->bounce_page)) {
1871 			con->bounce_page = alloc_page(GFP_NOIO);
1872 			if (!con->bounce_page) {
1873 				pr_err("failed to allocate bounce page\n");
1874 				return -ENOMEM;
1875 			}
1876 		}
1877 
1878 		bv.bv_page = con->bounce_page;
1879 		bv.bv_offset = 0;
1880 	}
1881 	set_in_bvec(con, &bv);
1882 	con->v2.in_state = IN_S_PREPARE_READ_DATA_CONT;
1883 	return 0;
1884 }
1885 
1886 static void prepare_read_data_cont(struct ceph_connection *con)
1887 {
1888 	struct bio_vec bv;
1889 
1890 	if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1891 		con->in_data_crc = crc32c(con->in_data_crc,
1892 					  page_address(con->bounce_page),
1893 					  con->v2.in_bvec.bv_len);
1894 
1895 		get_bvec_at(&con->v2.in_cursor, &bv);
1896 		memcpy_to_page(bv.bv_page, bv.bv_offset,
1897 			       page_address(con->bounce_page),
1898 			       con->v2.in_bvec.bv_len);
1899 	} else {
1900 		con->in_data_crc = ceph_crc32c_page(con->in_data_crc,
1901 						    con->v2.in_bvec.bv_page,
1902 						    con->v2.in_bvec.bv_offset,
1903 						    con->v2.in_bvec.bv_len);
1904 	}
1905 
1906 	ceph_msg_data_advance(&con->v2.in_cursor, con->v2.in_bvec.bv_len);
1907 	if (con->v2.in_cursor.total_resid) {
1908 		get_bvec_at(&con->v2.in_cursor, &bv);
1909 		if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1910 			bv.bv_page = con->bounce_page;
1911 			bv.bv_offset = 0;
1912 		}
1913 		set_in_bvec(con, &bv);
1914 		WARN_ON(con->v2.in_state != IN_S_PREPARE_READ_DATA_CONT);
1915 		return;
1916 	}
1917 
1918 	/*
1919 	 * We've read all data.  Prepare to read epilogue.
1920 	 */
1921 	reset_in_kvecs(con);
1922 	add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
1923 	con->v2.in_state = IN_S_HANDLE_EPILOGUE;
1924 }
1925 
1926 static int prepare_sparse_read_cont(struct ceph_connection *con)
1927 {
1928 	int ret;
1929 	struct bio_vec bv;
1930 	char *buf = NULL;
1931 	struct ceph_msg_data_cursor *cursor = &con->v2.in_cursor;
1932 
1933 	WARN_ON(con->v2.in_state != IN_S_PREPARE_SPARSE_DATA_CONT);
1934 
1935 	if (iov_iter_is_bvec(&con->v2.in_iter)) {
1936 		if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1937 			con->in_data_crc = crc32c(con->in_data_crc,
1938 						  page_address(con->bounce_page),
1939 						  con->v2.in_bvec.bv_len);
1940 			get_bvec_at(cursor, &bv);
1941 			memcpy_to_page(bv.bv_page, bv.bv_offset,
1942 				       page_address(con->bounce_page),
1943 				       con->v2.in_bvec.bv_len);
1944 		} else {
1945 			con->in_data_crc = ceph_crc32c_page(con->in_data_crc,
1946 							    con->v2.in_bvec.bv_page,
1947 							    con->v2.in_bvec.bv_offset,
1948 							    con->v2.in_bvec.bv_len);
1949 		}
1950 
1951 		ceph_msg_data_advance(cursor, con->v2.in_bvec.bv_len);
1952 		cursor->sr_resid -= con->v2.in_bvec.bv_len;
1953 		dout("%s: advance by 0x%x sr_resid 0x%x\n", __func__,
1954 		     con->v2.in_bvec.bv_len, cursor->sr_resid);
1955 		WARN_ON_ONCE(cursor->sr_resid > cursor->total_resid);
1956 		if (cursor->sr_resid) {
1957 			get_bvec_at(cursor, &bv);
1958 			if (bv.bv_len > cursor->sr_resid)
1959 				bv.bv_len = cursor->sr_resid;
1960 			if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1961 				bv.bv_page = con->bounce_page;
1962 				bv.bv_offset = 0;
1963 			}
1964 			set_in_bvec(con, &bv);
1965 			con->v2.data_len_remain -= bv.bv_len;
1966 			return 0;
1967 		}
1968 	} else if (iov_iter_is_kvec(&con->v2.in_iter)) {
1969 		/* On first call, we have no kvec so don't compute crc */
1970 		if (con->v2.in_kvec_cnt) {
1971 			WARN_ON_ONCE(con->v2.in_kvec_cnt > 1);
1972 			con->in_data_crc = crc32c(con->in_data_crc,
1973 						  con->v2.in_kvecs[0].iov_base,
1974 						  con->v2.in_kvecs[0].iov_len);
1975 		}
1976 	} else {
1977 		return -EIO;
1978 	}
1979 
1980 	/* get next extent */
1981 	ret = con->ops->sparse_read(con, cursor, &buf);
1982 	if (ret <= 0) {
1983 		if (ret < 0)
1984 			return ret;
1985 
1986 		reset_in_kvecs(con);
1987 		add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
1988 		con->v2.in_state = IN_S_HANDLE_EPILOGUE;
1989 		return 0;
1990 	}
1991 
1992 	if (buf) {
1993 		/* receive into buffer */
1994 		reset_in_kvecs(con);
1995 		add_in_kvec(con, buf, ret);
1996 		con->v2.data_len_remain -= ret;
1997 		return 0;
1998 	}
1999 
2000 	if (ret > cursor->total_resid) {
2001 		pr_warn("%s: ret 0x%x total_resid 0x%zx resid 0x%zx\n",
2002 			__func__, ret, cursor->total_resid, cursor->resid);
2003 		return -EIO;
2004 	}
2005 	get_bvec_at(cursor, &bv);
2006 	if (bv.bv_len > cursor->sr_resid)
2007 		bv.bv_len = cursor->sr_resid;
2008 	if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
2009 		if (unlikely(!con->bounce_page)) {
2010 			con->bounce_page = alloc_page(GFP_NOIO);
2011 			if (!con->bounce_page) {
2012 				pr_err("failed to allocate bounce page\n");
2013 				return -ENOMEM;
2014 			}
2015 		}
2016 
2017 		bv.bv_page = con->bounce_page;
2018 		bv.bv_offset = 0;
2019 	}
2020 	set_in_bvec(con, &bv);
2021 	con->v2.data_len_remain -= ret;
2022 	return ret;
2023 }
2024 
2025 static int prepare_sparse_read_data(struct ceph_connection *con)
2026 {
2027 	struct ceph_msg *msg = con->in_msg;
2028 
2029 	dout("%s: starting sparse read\n", __func__);
2030 
2031 	if (WARN_ON_ONCE(!con->ops->sparse_read))
2032 		return -EOPNOTSUPP;
2033 
2034 	if (!con_secure(con))
2035 		con->in_data_crc = -1;
2036 
2037 	reset_in_kvecs(con);
2038 	con->v2.in_state = IN_S_PREPARE_SPARSE_DATA_CONT;
2039 	con->v2.data_len_remain = data_len(msg);
2040 	return prepare_sparse_read_cont(con);
2041 }
2042 
2043 static int prepare_read_tail_plain(struct ceph_connection *con)
2044 {
2045 	struct ceph_msg *msg = con->in_msg;
2046 
2047 	if (!front_len(msg) && !middle_len(msg)) {
2048 		WARN_ON(!data_len(msg));
2049 		return prepare_read_data(con);
2050 	}
2051 
2052 	reset_in_kvecs(con);
2053 	if (front_len(msg)) {
2054 		add_in_kvec(con, msg->front.iov_base, front_len(msg));
2055 		WARN_ON(msg->front.iov_len != front_len(msg));
2056 	}
2057 	if (middle_len(msg)) {
2058 		add_in_kvec(con, msg->middle->vec.iov_base, middle_len(msg));
2059 		WARN_ON(msg->middle->vec.iov_len != middle_len(msg));
2060 	}
2061 
2062 	if (data_len(msg)) {
2063 		if (msg->sparse_read_total)
2064 			con->v2.in_state = IN_S_PREPARE_SPARSE_DATA;
2065 		else
2066 			con->v2.in_state = IN_S_PREPARE_READ_DATA;
2067 	} else {
2068 		add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
2069 		con->v2.in_state = IN_S_HANDLE_EPILOGUE;
2070 	}
2071 	return 0;
2072 }
2073 
2074 static void prepare_read_enc_page(struct ceph_connection *con)
2075 {
2076 	struct bio_vec bv;
2077 
2078 	dout("%s con %p i %d resid %d\n", __func__, con, con->v2.in_enc_i,
2079 	     con->v2.in_enc_resid);
2080 	WARN_ON(!con->v2.in_enc_resid);
2081 
2082 	bvec_set_page(&bv, con->v2.in_enc_pages[con->v2.in_enc_i],
2083 		      min(con->v2.in_enc_resid, (int)PAGE_SIZE), 0);
2084 
2085 	set_in_bvec(con, &bv);
2086 	con->v2.in_enc_i++;
2087 	con->v2.in_enc_resid -= bv.bv_len;
2088 
2089 	if (con->v2.in_enc_resid) {
2090 		con->v2.in_state = IN_S_PREPARE_READ_ENC_PAGE;
2091 		return;
2092 	}
2093 
2094 	/*
2095 	 * We are set to read the last piece of ciphertext (ending
2096 	 * with epilogue) + auth tag.
2097 	 */
2098 	WARN_ON(con->v2.in_enc_i != con->v2.in_enc_page_cnt);
2099 	con->v2.in_state = IN_S_HANDLE_EPILOGUE;
2100 }
2101 
2102 static int prepare_read_tail_secure(struct ceph_connection *con)
2103 {
2104 	struct page **enc_pages;
2105 	int enc_page_cnt;
2106 	int tail_len;
2107 
2108 	tail_len = tail_onwire_len(con->in_msg, true);
2109 	WARN_ON(!tail_len);
2110 
2111 	enc_page_cnt = calc_pages_for(0, tail_len);
2112 	enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO);
2113 	if (IS_ERR(enc_pages))
2114 		return PTR_ERR(enc_pages);
2115 
2116 	WARN_ON(con->v2.in_enc_pages || con->v2.in_enc_page_cnt);
2117 	con->v2.in_enc_pages = enc_pages;
2118 	con->v2.in_enc_page_cnt = enc_page_cnt;
2119 	con->v2.in_enc_resid = tail_len;
2120 	con->v2.in_enc_i = 0;
2121 
2122 	prepare_read_enc_page(con);
2123 	return 0;
2124 }
2125 
2126 static void __finish_skip(struct ceph_connection *con)
2127 {
2128 	con->in_seq++;
2129 	prepare_read_preamble(con);
2130 }
2131 
2132 static void prepare_skip_message(struct ceph_connection *con)
2133 {
2134 	struct ceph_frame_desc *desc = &con->v2.in_desc;
2135 	int tail_len;
2136 
2137 	dout("%s con %p %d+%d+%d\n", __func__, con, desc->fd_lens[1],
2138 	     desc->fd_lens[2], desc->fd_lens[3]);
2139 
2140 	tail_len = __tail_onwire_len(desc->fd_lens[1], desc->fd_lens[2],
2141 				     desc->fd_lens[3], con_secure(con));
2142 	if (!tail_len) {
2143 		__finish_skip(con);
2144 	} else {
2145 		set_in_skip(con, tail_len);
2146 		con->v2.in_state = IN_S_FINISH_SKIP;
2147 	}
2148 }
2149 
2150 static int process_banner_prefix(struct ceph_connection *con)
2151 {
2152 	int payload_len;
2153 	void *p;
2154 
2155 	WARN_ON(con->v2.in_kvecs[0].iov_len != CEPH_BANNER_V2_PREFIX_LEN);
2156 
2157 	p = con->v2.in_kvecs[0].iov_base;
2158 	if (memcmp(p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN)) {
2159 		if (!memcmp(p, CEPH_BANNER, CEPH_BANNER_LEN))
2160 			con->error_msg = "server is speaking msgr1 protocol";
2161 		else
2162 			con->error_msg = "protocol error, bad banner";
2163 		return -EINVAL;
2164 	}
2165 
2166 	p += CEPH_BANNER_V2_LEN;
2167 	payload_len = ceph_decode_16(&p);
2168 	dout("%s con %p payload_len %d\n", __func__, con, payload_len);
2169 
2170 	return prepare_read_banner_payload(con, payload_len);
2171 }
2172 
2173 static int process_banner_payload(struct ceph_connection *con)
2174 {
2175 	void *end = con->v2.in_kvecs[0].iov_base + con->v2.in_kvecs[0].iov_len;
2176 	u64 feat = CEPH_MSGR2_SUPPORTED_FEATURES;
2177 	u64 req_feat = CEPH_MSGR2_REQUIRED_FEATURES;
2178 	u64 server_feat, server_req_feat;
2179 	void *p;
2180 	int ret;
2181 
2182 	p = con->v2.in_kvecs[0].iov_base;
2183 	ceph_decode_64_safe(&p, end, server_feat, bad);
2184 	ceph_decode_64_safe(&p, end, server_req_feat, bad);
2185 
2186 	dout("%s con %p server_feat 0x%llx server_req_feat 0x%llx\n",
2187 	     __func__, con, server_feat, server_req_feat);
2188 
2189 	if (req_feat & ~server_feat) {
2190 		pr_err("msgr2 feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n",
2191 		       server_feat, req_feat & ~server_feat);
2192 		con->error_msg = "missing required protocol features";
2193 		return -EINVAL;
2194 	}
2195 	if (server_req_feat & ~feat) {
2196 		pr_err("msgr2 feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n",
2197 		       feat, server_req_feat & ~feat);
2198 		con->error_msg = "missing required protocol features";
2199 		return -EINVAL;
2200 	}
2201 
2202 	/* no reset_out_kvecs() as our banner may still be pending */
2203 	ret = prepare_hello(con);
2204 	if (ret) {
2205 		pr_err("prepare_hello failed: %d\n", ret);
2206 		return ret;
2207 	}
2208 
2209 	con->state = CEPH_CON_S_V2_HELLO;
2210 	prepare_read_preamble(con);
2211 	return 0;
2212 
2213 bad:
2214 	pr_err("failed to decode banner payload\n");
2215 	return -EINVAL;
2216 }
2217 
2218 static int process_hello(struct ceph_connection *con, void *p, void *end)
2219 {
2220 	struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
2221 	struct ceph_entity_addr addr_for_me;
2222 	u8 entity_type;
2223 	int ret;
2224 
2225 	if (con->state != CEPH_CON_S_V2_HELLO) {
2226 		con->error_msg = "protocol error, unexpected hello";
2227 		return -EINVAL;
2228 	}
2229 
2230 	ceph_decode_8_safe(&p, end, entity_type, bad);
2231 	ret = ceph_decode_entity_addr(&p, end, &addr_for_me);
2232 	if (ret) {
2233 		pr_err("failed to decode addr_for_me: %d\n", ret);
2234 		return ret;
2235 	}
2236 
2237 	dout("%s con %p entity_type %d addr_for_me %s\n", __func__, con,
2238 	     entity_type, ceph_pr_addr(&addr_for_me));
2239 
2240 	if (entity_type != con->peer_name.type) {
2241 		pr_err("bad peer type, want %d, got %d\n",
2242 		       con->peer_name.type, entity_type);
2243 		con->error_msg = "wrong peer at address";
2244 		return -EINVAL;
2245 	}
2246 
2247 	/*
2248 	 * Set our address to the address our first peer (i.e. monitor)
2249 	 * sees that we are connecting from.  If we are behind some sort
2250 	 * of NAT and want to be identified by some private (not NATed)
2251 	 * address, ip option should be used.
2252 	 */
2253 	if (ceph_addr_is_blank(my_addr)) {
2254 		memcpy(&my_addr->in_addr, &addr_for_me.in_addr,
2255 		       sizeof(my_addr->in_addr));
2256 		ceph_addr_set_port(my_addr, 0);
2257 		dout("%s con %p set my addr %s, as seen by peer %s\n",
2258 		     __func__, con, ceph_pr_addr(my_addr),
2259 		     ceph_pr_addr(&con->peer_addr));
2260 	} else {
2261 		dout("%s con %p my addr already set %s\n",
2262 		     __func__, con, ceph_pr_addr(my_addr));
2263 	}
2264 
2265 	WARN_ON(ceph_addr_is_blank(my_addr) || ceph_addr_port(my_addr));
2266 	WARN_ON(my_addr->type != CEPH_ENTITY_ADDR_TYPE_ANY);
2267 	WARN_ON(!my_addr->nonce);
2268 
2269 	/* no reset_out_kvecs() as our hello may still be pending */
2270 	ret = prepare_auth_request(con);
2271 	if (ret) {
2272 		if (ret != -EAGAIN)
2273 			pr_err("prepare_auth_request failed: %d\n", ret);
2274 		return ret;
2275 	}
2276 
2277 	con->state = CEPH_CON_S_V2_AUTH;
2278 	return 0;
2279 
2280 bad:
2281 	pr_err("failed to decode hello\n");
2282 	return -EINVAL;
2283 }
2284 
2285 static int process_auth_bad_method(struct ceph_connection *con,
2286 				   void *p, void *end)
2287 {
2288 	int allowed_protos[8], allowed_modes[8];
2289 	int allowed_proto_cnt, allowed_mode_cnt;
2290 	int used_proto, result;
2291 	int ret;
2292 	int i;
2293 
2294 	if (con->state != CEPH_CON_S_V2_AUTH) {
2295 		con->error_msg = "protocol error, unexpected auth_bad_method";
2296 		return -EINVAL;
2297 	}
2298 
2299 	ceph_decode_32_safe(&p, end, used_proto, bad);
2300 	ceph_decode_32_safe(&p, end, result, bad);
2301 	dout("%s con %p used_proto %d result %d\n", __func__, con, used_proto,
2302 	     result);
2303 
2304 	ceph_decode_32_safe(&p, end, allowed_proto_cnt, bad);
2305 	if (allowed_proto_cnt > ARRAY_SIZE(allowed_protos)) {
2306 		pr_err("allowed_protos too big %d\n", allowed_proto_cnt);
2307 		return -EINVAL;
2308 	}
2309 	for (i = 0; i < allowed_proto_cnt; i++) {
2310 		ceph_decode_32_safe(&p, end, allowed_protos[i], bad);
2311 		dout("%s con %p allowed_protos[%d] %d\n", __func__, con,
2312 		     i, allowed_protos[i]);
2313 	}
2314 
2315 	ceph_decode_32_safe(&p, end, allowed_mode_cnt, bad);
2316 	if (allowed_mode_cnt > ARRAY_SIZE(allowed_modes)) {
2317 		pr_err("allowed_modes too big %d\n", allowed_mode_cnt);
2318 		return -EINVAL;
2319 	}
2320 	for (i = 0; i < allowed_mode_cnt; i++) {
2321 		ceph_decode_32_safe(&p, end, allowed_modes[i], bad);
2322 		dout("%s con %p allowed_modes[%d] %d\n", __func__, con,
2323 		     i, allowed_modes[i]);
2324 	}
2325 
2326 	mutex_unlock(&con->mutex);
2327 	ret = con->ops->handle_auth_bad_method(con, used_proto, result,
2328 					       allowed_protos,
2329 					       allowed_proto_cnt,
2330 					       allowed_modes,
2331 					       allowed_mode_cnt);
2332 	mutex_lock(&con->mutex);
2333 	if (con->state != CEPH_CON_S_V2_AUTH) {
2334 		dout("%s con %p state changed to %d\n", __func__, con,
2335 		     con->state);
2336 		return -EAGAIN;
2337 	}
2338 
2339 	dout("%s con %p handle_auth_bad_method ret %d\n", __func__, con, ret);
2340 	return ret;
2341 
2342 bad:
2343 	pr_err("failed to decode auth_bad_method\n");
2344 	return -EINVAL;
2345 }
2346 
2347 static int process_auth_reply_more(struct ceph_connection *con,
2348 				   void *p, void *end)
2349 {
2350 	int payload_len;
2351 	int ret;
2352 
2353 	if (con->state != CEPH_CON_S_V2_AUTH) {
2354 		con->error_msg = "protocol error, unexpected auth_reply_more";
2355 		return -EINVAL;
2356 	}
2357 
2358 	ceph_decode_32_safe(&p, end, payload_len, bad);
2359 	ceph_decode_need(&p, end, payload_len, bad);
2360 
2361 	dout("%s con %p payload_len %d\n", __func__, con, payload_len);
2362 
2363 	reset_out_kvecs(con);
2364 	ret = prepare_auth_request_more(con, p, payload_len);
2365 	if (ret) {
2366 		if (ret != -EAGAIN)
2367 			pr_err("prepare_auth_request_more failed: %d\n", ret);
2368 		return ret;
2369 	}
2370 
2371 	return 0;
2372 
2373 bad:
2374 	pr_err("failed to decode auth_reply_more\n");
2375 	return -EINVAL;
2376 }
2377 
2378 /*
2379  * Align session_key and con_secret to avoid GFP_ATOMIC allocation
2380  * inside crypto_shash_setkey() and crypto_aead_setkey() called from
2381  * setup_crypto().  __aligned(16) isn't guaranteed to work for stack
2382  * objects, so do it by hand.
2383  */
2384 static int process_auth_done(struct ceph_connection *con, void *p, void *end)
2385 {
2386 	u8 session_key_buf[CEPH_KEY_LEN + 16];
2387 	u8 con_secret_buf[CEPH_MAX_CON_SECRET_LEN + 16];
2388 	u8 *session_key = PTR_ALIGN(&session_key_buf[0], 16);
2389 	u8 *con_secret = PTR_ALIGN(&con_secret_buf[0], 16);
2390 	int session_key_len, con_secret_len;
2391 	int payload_len;
2392 	u64 global_id;
2393 	int ret;
2394 
2395 	if (con->state != CEPH_CON_S_V2_AUTH) {
2396 		con->error_msg = "protocol error, unexpected auth_done";
2397 		return -EINVAL;
2398 	}
2399 
2400 	ceph_decode_64_safe(&p, end, global_id, bad);
2401 	ceph_decode_32_safe(&p, end, con->v2.con_mode, bad);
2402 	ceph_decode_32_safe(&p, end, payload_len, bad);
2403 
2404 	dout("%s con %p global_id %llu con_mode %d payload_len %d\n",
2405 	     __func__, con, global_id, con->v2.con_mode, payload_len);
2406 
2407 	mutex_unlock(&con->mutex);
2408 	session_key_len = 0;
2409 	con_secret_len = 0;
2410 	ret = con->ops->handle_auth_done(con, global_id, p, payload_len,
2411 					 session_key, &session_key_len,
2412 					 con_secret, &con_secret_len);
2413 	mutex_lock(&con->mutex);
2414 	if (con->state != CEPH_CON_S_V2_AUTH) {
2415 		dout("%s con %p state changed to %d\n", __func__, con,
2416 		     con->state);
2417 		ret = -EAGAIN;
2418 		goto out;
2419 	}
2420 
2421 	dout("%s con %p handle_auth_done ret %d\n", __func__, con, ret);
2422 	if (ret)
2423 		goto out;
2424 
2425 	ret = setup_crypto(con, session_key, session_key_len, con_secret,
2426 			   con_secret_len);
2427 	if (ret)
2428 		goto out;
2429 
2430 	reset_out_kvecs(con);
2431 	ret = prepare_auth_signature(con);
2432 	if (ret) {
2433 		pr_err("prepare_auth_signature failed: %d\n", ret);
2434 		goto out;
2435 	}
2436 
2437 	con->state = CEPH_CON_S_V2_AUTH_SIGNATURE;
2438 
2439 out:
2440 	memzero_explicit(session_key_buf, sizeof(session_key_buf));
2441 	memzero_explicit(con_secret_buf, sizeof(con_secret_buf));
2442 	return ret;
2443 
2444 bad:
2445 	pr_err("failed to decode auth_done\n");
2446 	return -EINVAL;
2447 }
2448 
2449 static int process_auth_signature(struct ceph_connection *con,
2450 				  void *p, void *end)
2451 {
2452 	u8 hmac[SHA256_DIGEST_SIZE];
2453 	int ret;
2454 
2455 	if (con->state != CEPH_CON_S_V2_AUTH_SIGNATURE) {
2456 		con->error_msg = "protocol error, unexpected auth_signature";
2457 		return -EINVAL;
2458 	}
2459 
2460 	ret = hmac_sha256(con, con->v2.out_sign_kvecs,
2461 			  con->v2.out_sign_kvec_cnt, hmac);
2462 	if (ret)
2463 		return ret;
2464 
2465 	ceph_decode_need(&p, end, SHA256_DIGEST_SIZE, bad);
2466 	if (crypto_memneq(p, hmac, SHA256_DIGEST_SIZE)) {
2467 		con->error_msg = "integrity error, bad auth signature";
2468 		return -EBADMSG;
2469 	}
2470 
2471 	dout("%s con %p auth signature ok\n", __func__, con);
2472 
2473 	/* no reset_out_kvecs() as our auth_signature may still be pending */
2474 	if (!con->v2.server_cookie) {
2475 		ret = prepare_client_ident(con);
2476 		if (ret) {
2477 			pr_err("prepare_client_ident failed: %d\n", ret);
2478 			return ret;
2479 		}
2480 
2481 		con->state = CEPH_CON_S_V2_SESSION_CONNECT;
2482 	} else {
2483 		ret = prepare_session_reconnect(con);
2484 		if (ret) {
2485 			pr_err("prepare_session_reconnect failed: %d\n", ret);
2486 			return ret;
2487 		}
2488 
2489 		con->state = CEPH_CON_S_V2_SESSION_RECONNECT;
2490 	}
2491 
2492 	return 0;
2493 
2494 bad:
2495 	pr_err("failed to decode auth_signature\n");
2496 	return -EINVAL;
2497 }
2498 
2499 static int process_server_ident(struct ceph_connection *con,
2500 				void *p, void *end)
2501 {
2502 	struct ceph_client *client = from_msgr(con->msgr);
2503 	u64 features, required_features;
2504 	struct ceph_entity_addr addr;
2505 	u64 global_seq;
2506 	u64 global_id;
2507 	u64 cookie;
2508 	u64 flags;
2509 	int ret;
2510 
2511 	if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) {
2512 		con->error_msg = "protocol error, unexpected server_ident";
2513 		return -EINVAL;
2514 	}
2515 
2516 	ret = ceph_decode_entity_addrvec(&p, end, true, &addr);
2517 	if (ret) {
2518 		pr_err("failed to decode server addrs: %d\n", ret);
2519 		return ret;
2520 	}
2521 
2522 	ceph_decode_64_safe(&p, end, global_id, bad);
2523 	ceph_decode_64_safe(&p, end, global_seq, bad);
2524 	ceph_decode_64_safe(&p, end, features, bad);
2525 	ceph_decode_64_safe(&p, end, required_features, bad);
2526 	ceph_decode_64_safe(&p, end, flags, bad);
2527 	ceph_decode_64_safe(&p, end, cookie, bad);
2528 
2529 	dout("%s con %p addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx flags 0x%llx cookie 0x%llx\n",
2530 	     __func__, con, ceph_pr_addr(&addr), le32_to_cpu(addr.nonce),
2531 	     global_id, global_seq, features, required_features, flags, cookie);
2532 
2533 	/* is this who we intended to talk to? */
2534 	if (memcmp(&addr, &con->peer_addr, sizeof(con->peer_addr))) {
2535 		pr_err("bad peer addr/nonce, want %s/%u, got %s/%u\n",
2536 		       ceph_pr_addr(&con->peer_addr),
2537 		       le32_to_cpu(con->peer_addr.nonce),
2538 		       ceph_pr_addr(&addr), le32_to_cpu(addr.nonce));
2539 		con->error_msg = "wrong peer at address";
2540 		return -EINVAL;
2541 	}
2542 
2543 	if (client->required_features & ~features) {
2544 		pr_err("RADOS feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n",
2545 		       features, client->required_features & ~features);
2546 		con->error_msg = "missing required protocol features";
2547 		return -EINVAL;
2548 	}
2549 
2550 	/*
2551 	 * Both name->type and name->num are set in ceph_con_open() but
2552 	 * name->num may be bogus in the initial monmap.  name->type is
2553 	 * verified in handle_hello().
2554 	 */
2555 	WARN_ON(!con->peer_name.type);
2556 	con->peer_name.num = cpu_to_le64(global_id);
2557 	con->v2.peer_global_seq = global_seq;
2558 	con->peer_features = features;
2559 	WARN_ON(required_features & ~client->supported_features);
2560 	con->v2.server_cookie = cookie;
2561 
2562 	if (flags & CEPH_MSG_CONNECT_LOSSY) {
2563 		ceph_con_flag_set(con, CEPH_CON_F_LOSSYTX);
2564 		WARN_ON(con->v2.server_cookie);
2565 	} else {
2566 		WARN_ON(!con->v2.server_cookie);
2567 	}
2568 
2569 	clear_in_sign_kvecs(con);
2570 	clear_out_sign_kvecs(con);
2571 	free_conn_bufs(con);
2572 	con->delay = 0;  /* reset backoff memory */
2573 
2574 	con->state = CEPH_CON_S_OPEN;
2575 	con->v2.out_state = OUT_S_GET_NEXT;
2576 	return 0;
2577 
2578 bad:
2579 	pr_err("failed to decode server_ident\n");
2580 	return -EINVAL;
2581 }
2582 
2583 static int process_ident_missing_features(struct ceph_connection *con,
2584 					  void *p, void *end)
2585 {
2586 	struct ceph_client *client = from_msgr(con->msgr);
2587 	u64 missing_features;
2588 
2589 	if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) {
2590 		con->error_msg = "protocol error, unexpected ident_missing_features";
2591 		return -EINVAL;
2592 	}
2593 
2594 	ceph_decode_64_safe(&p, end, missing_features, bad);
2595 	pr_err("RADOS feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n",
2596 	       client->supported_features, missing_features);
2597 	con->error_msg = "missing required protocol features";
2598 	return -EINVAL;
2599 
2600 bad:
2601 	pr_err("failed to decode ident_missing_features\n");
2602 	return -EINVAL;
2603 }
2604 
2605 static int process_session_reconnect_ok(struct ceph_connection *con,
2606 					void *p, void *end)
2607 {
2608 	u64 seq;
2609 
2610 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2611 		con->error_msg = "protocol error, unexpected session_reconnect_ok";
2612 		return -EINVAL;
2613 	}
2614 
2615 	ceph_decode_64_safe(&p, end, seq, bad);
2616 
2617 	dout("%s con %p seq %llu\n", __func__, con, seq);
2618 	ceph_con_discard_requeued(con, seq);
2619 
2620 	clear_in_sign_kvecs(con);
2621 	clear_out_sign_kvecs(con);
2622 	free_conn_bufs(con);
2623 	con->delay = 0;  /* reset backoff memory */
2624 
2625 	con->state = CEPH_CON_S_OPEN;
2626 	con->v2.out_state = OUT_S_GET_NEXT;
2627 	return 0;
2628 
2629 bad:
2630 	pr_err("failed to decode session_reconnect_ok\n");
2631 	return -EINVAL;
2632 }
2633 
2634 static int process_session_retry(struct ceph_connection *con,
2635 				 void *p, void *end)
2636 {
2637 	u64 connect_seq;
2638 	int ret;
2639 
2640 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2641 		con->error_msg = "protocol error, unexpected session_retry";
2642 		return -EINVAL;
2643 	}
2644 
2645 	ceph_decode_64_safe(&p, end, connect_seq, bad);
2646 
2647 	dout("%s con %p connect_seq %llu\n", __func__, con, connect_seq);
2648 	WARN_ON(connect_seq <= con->v2.connect_seq);
2649 	con->v2.connect_seq = connect_seq + 1;
2650 
2651 	free_conn_bufs(con);
2652 
2653 	reset_out_kvecs(con);
2654 	ret = prepare_session_reconnect(con);
2655 	if (ret) {
2656 		pr_err("prepare_session_reconnect (cseq) failed: %d\n", ret);
2657 		return ret;
2658 	}
2659 
2660 	return 0;
2661 
2662 bad:
2663 	pr_err("failed to decode session_retry\n");
2664 	return -EINVAL;
2665 }
2666 
2667 static int process_session_retry_global(struct ceph_connection *con,
2668 					void *p, void *end)
2669 {
2670 	u64 global_seq;
2671 	int ret;
2672 
2673 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2674 		con->error_msg = "protocol error, unexpected session_retry_global";
2675 		return -EINVAL;
2676 	}
2677 
2678 	ceph_decode_64_safe(&p, end, global_seq, bad);
2679 
2680 	dout("%s con %p global_seq %llu\n", __func__, con, global_seq);
2681 	WARN_ON(global_seq <= con->v2.global_seq);
2682 	con->v2.global_seq = ceph_get_global_seq(con->msgr, global_seq);
2683 
2684 	free_conn_bufs(con);
2685 
2686 	reset_out_kvecs(con);
2687 	ret = prepare_session_reconnect(con);
2688 	if (ret) {
2689 		pr_err("prepare_session_reconnect (gseq) failed: %d\n", ret);
2690 		return ret;
2691 	}
2692 
2693 	return 0;
2694 
2695 bad:
2696 	pr_err("failed to decode session_retry_global\n");
2697 	return -EINVAL;
2698 }
2699 
2700 static int process_session_reset(struct ceph_connection *con,
2701 				 void *p, void *end)
2702 {
2703 	bool full;
2704 	int ret;
2705 
2706 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2707 		con->error_msg = "protocol error, unexpected session_reset";
2708 		return -EINVAL;
2709 	}
2710 
2711 	ceph_decode_8_safe(&p, end, full, bad);
2712 	if (!full) {
2713 		con->error_msg = "protocol error, bad session_reset";
2714 		return -EINVAL;
2715 	}
2716 
2717 	pr_info("%s%lld %s session reset\n", ENTITY_NAME(con->peer_name),
2718 		ceph_pr_addr(&con->peer_addr));
2719 	ceph_con_reset_session(con);
2720 
2721 	mutex_unlock(&con->mutex);
2722 	if (con->ops->peer_reset)
2723 		con->ops->peer_reset(con);
2724 	mutex_lock(&con->mutex);
2725 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2726 		dout("%s con %p state changed to %d\n", __func__, con,
2727 		     con->state);
2728 		return -EAGAIN;
2729 	}
2730 
2731 	free_conn_bufs(con);
2732 
2733 	reset_out_kvecs(con);
2734 	ret = prepare_client_ident(con);
2735 	if (ret) {
2736 		pr_err("prepare_client_ident (rst) failed: %d\n", ret);
2737 		return ret;
2738 	}
2739 
2740 	con->state = CEPH_CON_S_V2_SESSION_CONNECT;
2741 	return 0;
2742 
2743 bad:
2744 	pr_err("failed to decode session_reset\n");
2745 	return -EINVAL;
2746 }
2747 
2748 static int process_keepalive2_ack(struct ceph_connection *con,
2749 				  void *p, void *end)
2750 {
2751 	if (con->state != CEPH_CON_S_OPEN) {
2752 		con->error_msg = "protocol error, unexpected keepalive2_ack";
2753 		return -EINVAL;
2754 	}
2755 
2756 	ceph_decode_need(&p, end, sizeof(struct ceph_timespec), bad);
2757 	ceph_decode_timespec64(&con->last_keepalive_ack, p);
2758 
2759 	dout("%s con %p timestamp %lld.%09ld\n", __func__, con,
2760 	     con->last_keepalive_ack.tv_sec, con->last_keepalive_ack.tv_nsec);
2761 
2762 	return 0;
2763 
2764 bad:
2765 	pr_err("failed to decode keepalive2_ack\n");
2766 	return -EINVAL;
2767 }
2768 
2769 static int process_ack(struct ceph_connection *con, void *p, void *end)
2770 {
2771 	u64 seq;
2772 
2773 	if (con->state != CEPH_CON_S_OPEN) {
2774 		con->error_msg = "protocol error, unexpected ack";
2775 		return -EINVAL;
2776 	}
2777 
2778 	ceph_decode_64_safe(&p, end, seq, bad);
2779 
2780 	dout("%s con %p seq %llu\n", __func__, con, seq);
2781 	ceph_con_discard_sent(con, seq);
2782 	return 0;
2783 
2784 bad:
2785 	pr_err("failed to decode ack\n");
2786 	return -EINVAL;
2787 }
2788 
2789 static int process_control(struct ceph_connection *con, void *p, void *end)
2790 {
2791 	int tag = con->v2.in_desc.fd_tag;
2792 	int ret;
2793 
2794 	dout("%s con %p tag %d len %d\n", __func__, con, tag, (int)(end - p));
2795 
2796 	switch (tag) {
2797 	case FRAME_TAG_HELLO:
2798 		ret = process_hello(con, p, end);
2799 		break;
2800 	case FRAME_TAG_AUTH_BAD_METHOD:
2801 		ret = process_auth_bad_method(con, p, end);
2802 		break;
2803 	case FRAME_TAG_AUTH_REPLY_MORE:
2804 		ret = process_auth_reply_more(con, p, end);
2805 		break;
2806 	case FRAME_TAG_AUTH_DONE:
2807 		ret = process_auth_done(con, p, end);
2808 		break;
2809 	case FRAME_TAG_AUTH_SIGNATURE:
2810 		ret = process_auth_signature(con, p, end);
2811 		break;
2812 	case FRAME_TAG_SERVER_IDENT:
2813 		ret = process_server_ident(con, p, end);
2814 		break;
2815 	case FRAME_TAG_IDENT_MISSING_FEATURES:
2816 		ret = process_ident_missing_features(con, p, end);
2817 		break;
2818 	case FRAME_TAG_SESSION_RECONNECT_OK:
2819 		ret = process_session_reconnect_ok(con, p, end);
2820 		break;
2821 	case FRAME_TAG_SESSION_RETRY:
2822 		ret = process_session_retry(con, p, end);
2823 		break;
2824 	case FRAME_TAG_SESSION_RETRY_GLOBAL:
2825 		ret = process_session_retry_global(con, p, end);
2826 		break;
2827 	case FRAME_TAG_SESSION_RESET:
2828 		ret = process_session_reset(con, p, end);
2829 		break;
2830 	case FRAME_TAG_KEEPALIVE2_ACK:
2831 		ret = process_keepalive2_ack(con, p, end);
2832 		break;
2833 	case FRAME_TAG_ACK:
2834 		ret = process_ack(con, p, end);
2835 		break;
2836 	default:
2837 		pr_err("bad tag %d\n", tag);
2838 		con->error_msg = "protocol error, bad tag";
2839 		return -EINVAL;
2840 	}
2841 	if (ret) {
2842 		dout("%s con %p error %d\n", __func__, con, ret);
2843 		return ret;
2844 	}
2845 
2846 	prepare_read_preamble(con);
2847 	return 0;
2848 }
2849 
2850 /*
2851  * Return:
2852  *   1 - con->in_msg set, read message
2853  *   0 - skip message
2854  *  <0 - error
2855  */
2856 static int process_message_header(struct ceph_connection *con,
2857 				  void *p, void *end)
2858 {
2859 	struct ceph_frame_desc *desc = &con->v2.in_desc;
2860 	struct ceph_msg_header2 *hdr2 = p;
2861 	struct ceph_msg_header hdr;
2862 	int skip;
2863 	int ret;
2864 	u64 seq;
2865 
2866 	/* verify seq# */
2867 	seq = le64_to_cpu(hdr2->seq);
2868 	if ((s64)seq - (s64)con->in_seq < 1) {
2869 		pr_info("%s%lld %s skipping old message: seq %llu, expected %llu\n",
2870 			ENTITY_NAME(con->peer_name),
2871 			ceph_pr_addr(&con->peer_addr),
2872 			seq, con->in_seq + 1);
2873 		return 0;
2874 	}
2875 	if ((s64)seq - (s64)con->in_seq > 1) {
2876 		pr_err("bad seq %llu, expected %llu\n", seq, con->in_seq + 1);
2877 		con->error_msg = "bad message sequence # for incoming message";
2878 		return -EBADE;
2879 	}
2880 
2881 	ceph_con_discard_sent(con, le64_to_cpu(hdr2->ack_seq));
2882 
2883 	fill_header(&hdr, hdr2, desc->fd_lens[1], desc->fd_lens[2],
2884 		    desc->fd_lens[3], &con->peer_name);
2885 	ret = ceph_con_in_msg_alloc(con, &hdr, &skip);
2886 	if (ret)
2887 		return ret;
2888 
2889 	WARN_ON(!con->in_msg ^ skip);
2890 	if (skip)
2891 		return 0;
2892 
2893 	WARN_ON(!con->in_msg);
2894 	WARN_ON(con->in_msg->con != con);
2895 	return 1;
2896 }
2897 
2898 static int process_message(struct ceph_connection *con)
2899 {
2900 	ceph_con_process_message(con);
2901 
2902 	/*
2903 	 * We could have been closed by ceph_con_close() because
2904 	 * ceph_con_process_message() temporarily drops con->mutex.
2905 	 */
2906 	if (con->state != CEPH_CON_S_OPEN) {
2907 		dout("%s con %p state changed to %d\n", __func__, con,
2908 		     con->state);
2909 		return -EAGAIN;
2910 	}
2911 
2912 	prepare_read_preamble(con);
2913 	return 0;
2914 }
2915 
2916 static int __handle_control(struct ceph_connection *con, void *p)
2917 {
2918 	void *end = p + con->v2.in_desc.fd_lens[0];
2919 	struct ceph_msg *msg;
2920 	int ret;
2921 
2922 	if (con->v2.in_desc.fd_tag != FRAME_TAG_MESSAGE)
2923 		return process_control(con, p, end);
2924 
2925 	ret = process_message_header(con, p, end);
2926 	if (ret < 0)
2927 		return ret;
2928 	if (ret == 0) {
2929 		prepare_skip_message(con);
2930 		return 0;
2931 	}
2932 
2933 	msg = con->in_msg;  /* set in process_message_header() */
2934 	if (front_len(msg)) {
2935 		WARN_ON(front_len(msg) > msg->front_alloc_len);
2936 		msg->front.iov_len = front_len(msg);
2937 	} else {
2938 		msg->front.iov_len = 0;
2939 	}
2940 	if (middle_len(msg)) {
2941 		WARN_ON(middle_len(msg) > msg->middle->alloc_len);
2942 		msg->middle->vec.iov_len = middle_len(msg);
2943 	} else if (msg->middle) {
2944 		msg->middle->vec.iov_len = 0;
2945 	}
2946 
2947 	if (!front_len(msg) && !middle_len(msg) && !data_len(msg))
2948 		return process_message(con);
2949 
2950 	if (con_secure(con))
2951 		return prepare_read_tail_secure(con);
2952 
2953 	return prepare_read_tail_plain(con);
2954 }
2955 
2956 static int handle_preamble(struct ceph_connection *con)
2957 {
2958 	struct ceph_frame_desc *desc = &con->v2.in_desc;
2959 	int ret;
2960 
2961 	if (con_secure(con)) {
2962 		ret = decrypt_preamble(con);
2963 		if (ret) {
2964 			if (ret == -EBADMSG)
2965 				con->error_msg = "integrity error, bad preamble auth tag";
2966 			return ret;
2967 		}
2968 	}
2969 
2970 	ret = decode_preamble(con->v2.in_buf, desc);
2971 	if (ret) {
2972 		if (ret == -EBADMSG)
2973 			con->error_msg = "integrity error, bad crc";
2974 		else
2975 			con->error_msg = "protocol error, bad preamble";
2976 		return ret;
2977 	}
2978 
2979 	dout("%s con %p tag %d seg_cnt %d %d+%d+%d+%d\n", __func__,
2980 	     con, desc->fd_tag, desc->fd_seg_cnt, desc->fd_lens[0],
2981 	     desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3]);
2982 
2983 	if (!con_secure(con))
2984 		return prepare_read_control(con);
2985 
2986 	if (desc->fd_lens[0] > CEPH_PREAMBLE_INLINE_LEN)
2987 		return prepare_read_control_remainder(con);
2988 
2989 	return __handle_control(con, CTRL_BODY(con->v2.in_buf));
2990 }
2991 
2992 static int handle_control(struct ceph_connection *con)
2993 {
2994 	int ctrl_len = con->v2.in_desc.fd_lens[0];
2995 	void *buf;
2996 	int ret;
2997 
2998 	WARN_ON(con_secure(con));
2999 
3000 	ret = verify_control_crc(con);
3001 	if (ret) {
3002 		con->error_msg = "integrity error, bad crc";
3003 		return ret;
3004 	}
3005 
3006 	if (con->state == CEPH_CON_S_V2_AUTH) {
3007 		buf = alloc_conn_buf(con, ctrl_len);
3008 		if (!buf)
3009 			return -ENOMEM;
3010 
3011 		memcpy(buf, con->v2.in_kvecs[0].iov_base, ctrl_len);
3012 		return __handle_control(con, buf);
3013 	}
3014 
3015 	return __handle_control(con, con->v2.in_kvecs[0].iov_base);
3016 }
3017 
3018 static int handle_control_remainder(struct ceph_connection *con)
3019 {
3020 	int ret;
3021 
3022 	WARN_ON(!con_secure(con));
3023 
3024 	ret = decrypt_control_remainder(con);
3025 	if (ret) {
3026 		if (ret == -EBADMSG)
3027 			con->error_msg = "integrity error, bad control remainder auth tag";
3028 		return ret;
3029 	}
3030 
3031 	return __handle_control(con, con->v2.in_kvecs[0].iov_base -
3032 				     CEPH_PREAMBLE_INLINE_LEN);
3033 }
3034 
3035 static int handle_epilogue(struct ceph_connection *con)
3036 {
3037 	u32 front_crc, middle_crc, data_crc;
3038 	int ret;
3039 
3040 	if (con_secure(con)) {
3041 		ret = decrypt_tail(con);
3042 		if (ret) {
3043 			if (ret == -EBADMSG)
3044 				con->error_msg = "integrity error, bad epilogue auth tag";
3045 			return ret;
3046 		}
3047 
3048 		/* just late_status */
3049 		ret = decode_epilogue(con->v2.in_buf, NULL, NULL, NULL);
3050 		if (ret) {
3051 			con->error_msg = "protocol error, bad epilogue";
3052 			return ret;
3053 		}
3054 	} else {
3055 		ret = decode_epilogue(con->v2.in_buf, &front_crc,
3056 				      &middle_crc, &data_crc);
3057 		if (ret) {
3058 			con->error_msg = "protocol error, bad epilogue";
3059 			return ret;
3060 		}
3061 
3062 		ret = verify_epilogue_crcs(con, front_crc, middle_crc,
3063 					   data_crc);
3064 		if (ret) {
3065 			con->error_msg = "integrity error, bad crc";
3066 			return ret;
3067 		}
3068 	}
3069 
3070 	return process_message(con);
3071 }
3072 
3073 static void finish_skip(struct ceph_connection *con)
3074 {
3075 	dout("%s con %p\n", __func__, con);
3076 
3077 	if (con_secure(con))
3078 		gcm_inc_nonce(&con->v2.in_gcm_nonce);
3079 
3080 	__finish_skip(con);
3081 }
3082 
3083 static int populate_in_iter(struct ceph_connection *con)
3084 {
3085 	int ret;
3086 
3087 	dout("%s con %p state %d in_state %d\n", __func__, con, con->state,
3088 	     con->v2.in_state);
3089 	WARN_ON(iov_iter_count(&con->v2.in_iter));
3090 
3091 	if (con->state == CEPH_CON_S_V2_BANNER_PREFIX) {
3092 		ret = process_banner_prefix(con);
3093 	} else if (con->state == CEPH_CON_S_V2_BANNER_PAYLOAD) {
3094 		ret = process_banner_payload(con);
3095 	} else if ((con->state >= CEPH_CON_S_V2_HELLO &&
3096 		    con->state <= CEPH_CON_S_V2_SESSION_RECONNECT) ||
3097 		   con->state == CEPH_CON_S_OPEN) {
3098 		switch (con->v2.in_state) {
3099 		case IN_S_HANDLE_PREAMBLE:
3100 			ret = handle_preamble(con);
3101 			break;
3102 		case IN_S_HANDLE_CONTROL:
3103 			ret = handle_control(con);
3104 			break;
3105 		case IN_S_HANDLE_CONTROL_REMAINDER:
3106 			ret = handle_control_remainder(con);
3107 			break;
3108 		case IN_S_PREPARE_READ_DATA:
3109 			ret = prepare_read_data(con);
3110 			break;
3111 		case IN_S_PREPARE_READ_DATA_CONT:
3112 			prepare_read_data_cont(con);
3113 			ret = 0;
3114 			break;
3115 		case IN_S_PREPARE_READ_ENC_PAGE:
3116 			prepare_read_enc_page(con);
3117 			ret = 0;
3118 			break;
3119 		case IN_S_PREPARE_SPARSE_DATA:
3120 			ret = prepare_sparse_read_data(con);
3121 			break;
3122 		case IN_S_PREPARE_SPARSE_DATA_CONT:
3123 			ret = prepare_sparse_read_cont(con);
3124 			break;
3125 		case IN_S_HANDLE_EPILOGUE:
3126 			ret = handle_epilogue(con);
3127 			break;
3128 		case IN_S_FINISH_SKIP:
3129 			finish_skip(con);
3130 			ret = 0;
3131 			break;
3132 		default:
3133 			WARN(1, "bad in_state %d", con->v2.in_state);
3134 			return -EINVAL;
3135 		}
3136 	} else {
3137 		WARN(1, "bad state %d", con->state);
3138 		return -EINVAL;
3139 	}
3140 	if (ret) {
3141 		dout("%s con %p error %d\n", __func__, con, ret);
3142 		return ret;
3143 	}
3144 
3145 	if (WARN_ON(!iov_iter_count(&con->v2.in_iter)))
3146 		return -ENODATA;
3147 	dout("%s con %p populated %zu\n", __func__, con,
3148 	     iov_iter_count(&con->v2.in_iter));
3149 	return 1;
3150 }
3151 
3152 int ceph_con_v2_try_read(struct ceph_connection *con)
3153 {
3154 	int ret;
3155 
3156 	dout("%s con %p state %d need %zu\n", __func__, con, con->state,
3157 	     iov_iter_count(&con->v2.in_iter));
3158 
3159 	if (con->state == CEPH_CON_S_PREOPEN)
3160 		return 0;
3161 
3162 	/*
3163 	 * We should always have something pending here.  If not,
3164 	 * avoid calling populate_in_iter() as if we read something
3165 	 * (ceph_tcp_recv() would immediately return 1).
3166 	 */
3167 	if (WARN_ON(!iov_iter_count(&con->v2.in_iter)))
3168 		return -ENODATA;
3169 
3170 	for (;;) {
3171 		ret = ceph_tcp_recv(con);
3172 		if (ret <= 0)
3173 			return ret;
3174 
3175 		ret = populate_in_iter(con);
3176 		if (ret <= 0) {
3177 			if (ret && ret != -EAGAIN && !con->error_msg)
3178 				con->error_msg = "read processing error";
3179 			return ret;
3180 		}
3181 	}
3182 }
3183 
3184 static void queue_data(struct ceph_connection *con)
3185 {
3186 	struct bio_vec bv;
3187 
3188 	con->v2.out_epil.data_crc = -1;
3189 	ceph_msg_data_cursor_init(&con->v2.out_cursor, con->out_msg,
3190 				  data_len(con->out_msg));
3191 
3192 	get_bvec_at(&con->v2.out_cursor, &bv);
3193 	set_out_bvec(con, &bv, true);
3194 	con->v2.out_state = OUT_S_QUEUE_DATA_CONT;
3195 }
3196 
3197 static void queue_data_cont(struct ceph_connection *con)
3198 {
3199 	struct bio_vec bv;
3200 
3201 	con->v2.out_epil.data_crc = ceph_crc32c_page(
3202 		con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page,
3203 		con->v2.out_bvec.bv_offset, con->v2.out_bvec.bv_len);
3204 
3205 	ceph_msg_data_advance(&con->v2.out_cursor, con->v2.out_bvec.bv_len);
3206 	if (con->v2.out_cursor.total_resid) {
3207 		get_bvec_at(&con->v2.out_cursor, &bv);
3208 		set_out_bvec(con, &bv, true);
3209 		WARN_ON(con->v2.out_state != OUT_S_QUEUE_DATA_CONT);
3210 		return;
3211 	}
3212 
3213 	/*
3214 	 * We've written all data.  Queue epilogue.  Once it's written,
3215 	 * we are done.
3216 	 */
3217 	reset_out_kvecs(con);
3218 	prepare_epilogue_plain(con, false);
3219 	con->v2.out_state = OUT_S_FINISH_MESSAGE;
3220 }
3221 
3222 static void queue_enc_page(struct ceph_connection *con)
3223 {
3224 	struct bio_vec bv;
3225 
3226 	dout("%s con %p i %d resid %d\n", __func__, con, con->v2.out_enc_i,
3227 	     con->v2.out_enc_resid);
3228 	WARN_ON(!con->v2.out_enc_resid);
3229 
3230 	bvec_set_page(&bv, con->v2.out_enc_pages[con->v2.out_enc_i],
3231 		      min(con->v2.out_enc_resid, (int)PAGE_SIZE), 0);
3232 
3233 	set_out_bvec(con, &bv, false);
3234 	con->v2.out_enc_i++;
3235 	con->v2.out_enc_resid -= bv.bv_len;
3236 
3237 	if (con->v2.out_enc_resid) {
3238 		WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE);
3239 		return;
3240 	}
3241 
3242 	/*
3243 	 * We've queued the last piece of ciphertext (ending with
3244 	 * epilogue) + auth tag.  Once it's written, we are done.
3245 	 */
3246 	WARN_ON(con->v2.out_enc_i != con->v2.out_enc_page_cnt);
3247 	con->v2.out_state = OUT_S_FINISH_MESSAGE;
3248 }
3249 
3250 static void queue_zeros(struct ceph_connection *con)
3251 {
3252 	dout("%s con %p out_zero %d\n", __func__, con, con->v2.out_zero);
3253 
3254 	if (con->v2.out_zero) {
3255 		set_out_bvec_zero(con);
3256 		con->v2.out_zero -= con->v2.out_bvec.bv_len;
3257 		con->v2.out_state = OUT_S_QUEUE_ZEROS;
3258 		return;
3259 	}
3260 
3261 	/*
3262 	 * We've zero-filled everything up to epilogue.  Queue epilogue
3263 	 * with late_status set to ABORTED and crcs adjusted for zeros.
3264 	 * Once it's written, we are done patching up for the revoke.
3265 	 */
3266 	reset_out_kvecs(con);
3267 	prepare_epilogue_plain(con, true);
3268 	con->v2.out_state = OUT_S_FINISH_MESSAGE;
3269 }
3270 
3271 static void finish_message(struct ceph_connection *con)
3272 {
3273 	dout("%s con %p msg %p\n", __func__, con, con->out_msg);
3274 
3275 	/* we end up here both plain and secure modes */
3276 	if (con->v2.out_enc_pages) {
3277 		WARN_ON(!con->v2.out_enc_page_cnt);
3278 		ceph_release_page_vector(con->v2.out_enc_pages,
3279 					 con->v2.out_enc_page_cnt);
3280 		con->v2.out_enc_pages = NULL;
3281 		con->v2.out_enc_page_cnt = 0;
3282 	}
3283 	/* message may have been revoked */
3284 	if (con->out_msg) {
3285 		ceph_msg_put(con->out_msg);
3286 		con->out_msg = NULL;
3287 	}
3288 
3289 	con->v2.out_state = OUT_S_GET_NEXT;
3290 }
3291 
3292 static int populate_out_iter(struct ceph_connection *con)
3293 {
3294 	int ret;
3295 
3296 	dout("%s con %p state %d out_state %d\n", __func__, con, con->state,
3297 	     con->v2.out_state);
3298 	WARN_ON(iov_iter_count(&con->v2.out_iter));
3299 
3300 	if (con->state != CEPH_CON_S_OPEN) {
3301 		WARN_ON(con->state < CEPH_CON_S_V2_BANNER_PREFIX ||
3302 			con->state > CEPH_CON_S_V2_SESSION_RECONNECT);
3303 		goto nothing_pending;
3304 	}
3305 
3306 	switch (con->v2.out_state) {
3307 	case OUT_S_QUEUE_DATA:
3308 		WARN_ON(!con->out_msg);
3309 		queue_data(con);
3310 		goto populated;
3311 	case OUT_S_QUEUE_DATA_CONT:
3312 		WARN_ON(!con->out_msg);
3313 		queue_data_cont(con);
3314 		goto populated;
3315 	case OUT_S_QUEUE_ENC_PAGE:
3316 		queue_enc_page(con);
3317 		goto populated;
3318 	case OUT_S_QUEUE_ZEROS:
3319 		WARN_ON(con->out_msg);  /* revoked */
3320 		queue_zeros(con);
3321 		goto populated;
3322 	case OUT_S_FINISH_MESSAGE:
3323 		finish_message(con);
3324 		break;
3325 	case OUT_S_GET_NEXT:
3326 		break;
3327 	default:
3328 		WARN(1, "bad out_state %d", con->v2.out_state);
3329 		return -EINVAL;
3330 	}
3331 
3332 	WARN_ON(con->v2.out_state != OUT_S_GET_NEXT);
3333 	if (ceph_con_flag_test_and_clear(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
3334 		ret = prepare_keepalive2(con);
3335 		if (ret) {
3336 			pr_err("prepare_keepalive2 failed: %d\n", ret);
3337 			return ret;
3338 		}
3339 	} else if (!list_empty(&con->out_queue)) {
3340 		ceph_con_get_out_msg(con);
3341 		ret = prepare_message(con);
3342 		if (ret) {
3343 			pr_err("prepare_message failed: %d\n", ret);
3344 			return ret;
3345 		}
3346 	} else if (con->in_seq > con->in_seq_acked) {
3347 		ret = prepare_ack(con);
3348 		if (ret) {
3349 			pr_err("prepare_ack failed: %d\n", ret);
3350 			return ret;
3351 		}
3352 	} else {
3353 		goto nothing_pending;
3354 	}
3355 
3356 populated:
3357 	if (WARN_ON(!iov_iter_count(&con->v2.out_iter)))
3358 		return -ENODATA;
3359 	dout("%s con %p populated %zu\n", __func__, con,
3360 	     iov_iter_count(&con->v2.out_iter));
3361 	return 1;
3362 
3363 nothing_pending:
3364 	WARN_ON(iov_iter_count(&con->v2.out_iter));
3365 	dout("%s con %p nothing pending\n", __func__, con);
3366 	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
3367 	return 0;
3368 }
3369 
3370 int ceph_con_v2_try_write(struct ceph_connection *con)
3371 {
3372 	int ret;
3373 
3374 	dout("%s con %p state %d have %zu\n", __func__, con, con->state,
3375 	     iov_iter_count(&con->v2.out_iter));
3376 
3377 	/* open the socket first? */
3378 	if (con->state == CEPH_CON_S_PREOPEN) {
3379 		WARN_ON(con->peer_addr.type != CEPH_ENTITY_ADDR_TYPE_MSGR2);
3380 
3381 		/*
3382 		 * Always bump global_seq.  Bump connect_seq only if
3383 		 * there is a session (i.e. we are reconnecting and will
3384 		 * send session_reconnect instead of client_ident).
3385 		 */
3386 		con->v2.global_seq = ceph_get_global_seq(con->msgr, 0);
3387 		if (con->v2.server_cookie)
3388 			con->v2.connect_seq++;
3389 
3390 		ret = prepare_read_banner_prefix(con);
3391 		if (ret) {
3392 			pr_err("prepare_read_banner_prefix failed: %d\n", ret);
3393 			con->error_msg = "connect error";
3394 			return ret;
3395 		}
3396 
3397 		reset_out_kvecs(con);
3398 		ret = prepare_banner(con);
3399 		if (ret) {
3400 			pr_err("prepare_banner failed: %d\n", ret);
3401 			con->error_msg = "connect error";
3402 			return ret;
3403 		}
3404 
3405 		ret = ceph_tcp_connect(con);
3406 		if (ret) {
3407 			pr_err("ceph_tcp_connect failed: %d\n", ret);
3408 			con->error_msg = "connect error";
3409 			return ret;
3410 		}
3411 	}
3412 
3413 	if (!iov_iter_count(&con->v2.out_iter)) {
3414 		ret = populate_out_iter(con);
3415 		if (ret <= 0) {
3416 			if (ret && ret != -EAGAIN && !con->error_msg)
3417 				con->error_msg = "write processing error";
3418 			return ret;
3419 		}
3420 	}
3421 
3422 	tcp_sock_set_cork(con->sock->sk, true);
3423 	for (;;) {
3424 		ret = ceph_tcp_send(con);
3425 		if (ret <= 0)
3426 			break;
3427 
3428 		ret = populate_out_iter(con);
3429 		if (ret <= 0) {
3430 			if (ret && ret != -EAGAIN && !con->error_msg)
3431 				con->error_msg = "write processing error";
3432 			break;
3433 		}
3434 	}
3435 
3436 	tcp_sock_set_cork(con->sock->sk, false);
3437 	return ret;
3438 }
3439 
3440 static u32 crc32c_zeros(u32 crc, int zero_len)
3441 {
3442 	int len;
3443 
3444 	while (zero_len) {
3445 		len = min(zero_len, (int)PAGE_SIZE);
3446 		crc = crc32c(crc, page_address(ceph_zero_page), len);
3447 		zero_len -= len;
3448 	}
3449 
3450 	return crc;
3451 }
3452 
3453 static void prepare_zero_front(struct ceph_connection *con, int resid)
3454 {
3455 	int sent;
3456 
3457 	WARN_ON(!resid || resid > front_len(con->out_msg));
3458 	sent = front_len(con->out_msg) - resid;
3459 	dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3460 
3461 	if (sent) {
3462 		con->v2.out_epil.front_crc =
3463 			crc32c(-1, con->out_msg->front.iov_base, sent);
3464 		con->v2.out_epil.front_crc =
3465 			crc32c_zeros(con->v2.out_epil.front_crc, resid);
3466 	} else {
3467 		con->v2.out_epil.front_crc = crc32c_zeros(-1, resid);
3468 	}
3469 
3470 	con->v2.out_iter.count -= resid;
3471 	out_zero_add(con, resid);
3472 }
3473 
3474 static void prepare_zero_middle(struct ceph_connection *con, int resid)
3475 {
3476 	int sent;
3477 
3478 	WARN_ON(!resid || resid > middle_len(con->out_msg));
3479 	sent = middle_len(con->out_msg) - resid;
3480 	dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3481 
3482 	if (sent) {
3483 		con->v2.out_epil.middle_crc =
3484 			crc32c(-1, con->out_msg->middle->vec.iov_base, sent);
3485 		con->v2.out_epil.middle_crc =
3486 			crc32c_zeros(con->v2.out_epil.middle_crc, resid);
3487 	} else {
3488 		con->v2.out_epil.middle_crc = crc32c_zeros(-1, resid);
3489 	}
3490 
3491 	con->v2.out_iter.count -= resid;
3492 	out_zero_add(con, resid);
3493 }
3494 
3495 static void prepare_zero_data(struct ceph_connection *con)
3496 {
3497 	dout("%s con %p\n", __func__, con);
3498 	con->v2.out_epil.data_crc = crc32c_zeros(-1, data_len(con->out_msg));
3499 	out_zero_add(con, data_len(con->out_msg));
3500 }
3501 
3502 static void revoke_at_queue_data(struct ceph_connection *con)
3503 {
3504 	int boundary;
3505 	int resid;
3506 
3507 	WARN_ON(!data_len(con->out_msg));
3508 	WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
3509 	resid = iov_iter_count(&con->v2.out_iter);
3510 
3511 	boundary = front_len(con->out_msg) + middle_len(con->out_msg);
3512 	if (resid > boundary) {
3513 		resid -= boundary;
3514 		WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN);
3515 		dout("%s con %p was sending head\n", __func__, con);
3516 		if (front_len(con->out_msg))
3517 			prepare_zero_front(con, front_len(con->out_msg));
3518 		if (middle_len(con->out_msg))
3519 			prepare_zero_middle(con, middle_len(con->out_msg));
3520 		prepare_zero_data(con);
3521 		WARN_ON(iov_iter_count(&con->v2.out_iter) != resid);
3522 		con->v2.out_state = OUT_S_QUEUE_ZEROS;
3523 		return;
3524 	}
3525 
3526 	boundary = middle_len(con->out_msg);
3527 	if (resid > boundary) {
3528 		resid -= boundary;
3529 		dout("%s con %p was sending front\n", __func__, con);
3530 		prepare_zero_front(con, resid);
3531 		if (middle_len(con->out_msg))
3532 			prepare_zero_middle(con, middle_len(con->out_msg));
3533 		prepare_zero_data(con);
3534 		queue_zeros(con);
3535 		return;
3536 	}
3537 
3538 	WARN_ON(!resid);
3539 	dout("%s con %p was sending middle\n", __func__, con);
3540 	prepare_zero_middle(con, resid);
3541 	prepare_zero_data(con);
3542 	queue_zeros(con);
3543 }
3544 
3545 static void revoke_at_queue_data_cont(struct ceph_connection *con)
3546 {
3547 	int sent, resid;  /* current piece of data */
3548 
3549 	WARN_ON(!data_len(con->out_msg));
3550 	WARN_ON(!iov_iter_is_bvec(&con->v2.out_iter));
3551 	resid = iov_iter_count(&con->v2.out_iter);
3552 	WARN_ON(!resid || resid > con->v2.out_bvec.bv_len);
3553 	sent = con->v2.out_bvec.bv_len - resid;
3554 	dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3555 
3556 	if (sent) {
3557 		con->v2.out_epil.data_crc = ceph_crc32c_page(
3558 			con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page,
3559 			con->v2.out_bvec.bv_offset, sent);
3560 		ceph_msg_data_advance(&con->v2.out_cursor, sent);
3561 	}
3562 	WARN_ON(resid > con->v2.out_cursor.total_resid);
3563 	con->v2.out_epil.data_crc = crc32c_zeros(con->v2.out_epil.data_crc,
3564 						con->v2.out_cursor.total_resid);
3565 
3566 	con->v2.out_iter.count -= resid;
3567 	out_zero_add(con, con->v2.out_cursor.total_resid);
3568 	queue_zeros(con);
3569 }
3570 
3571 static void revoke_at_finish_message(struct ceph_connection *con)
3572 {
3573 	int boundary;
3574 	int resid;
3575 
3576 	WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
3577 	resid = iov_iter_count(&con->v2.out_iter);
3578 
3579 	if (!front_len(con->out_msg) && !middle_len(con->out_msg) &&
3580 	    !data_len(con->out_msg)) {
3581 		WARN_ON(!resid || resid > MESSAGE_HEAD_PLAIN_LEN);
3582 		dout("%s con %p was sending head (empty message) - noop\n",
3583 		     __func__, con);
3584 		return;
3585 	}
3586 
3587 	boundary = front_len(con->out_msg) + middle_len(con->out_msg) +
3588 		   CEPH_EPILOGUE_PLAIN_LEN;
3589 	if (resid > boundary) {
3590 		resid -= boundary;
3591 		WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN);
3592 		dout("%s con %p was sending head\n", __func__, con);
3593 		if (front_len(con->out_msg))
3594 			prepare_zero_front(con, front_len(con->out_msg));
3595 		if (middle_len(con->out_msg))
3596 			prepare_zero_middle(con, middle_len(con->out_msg));
3597 		con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3598 		WARN_ON(iov_iter_count(&con->v2.out_iter) != resid);
3599 		con->v2.out_state = OUT_S_QUEUE_ZEROS;
3600 		return;
3601 	}
3602 
3603 	boundary = middle_len(con->out_msg) + CEPH_EPILOGUE_PLAIN_LEN;
3604 	if (resid > boundary) {
3605 		resid -= boundary;
3606 		dout("%s con %p was sending front\n", __func__, con);
3607 		prepare_zero_front(con, resid);
3608 		if (middle_len(con->out_msg))
3609 			prepare_zero_middle(con, middle_len(con->out_msg));
3610 		con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3611 		queue_zeros(con);
3612 		return;
3613 	}
3614 
3615 	boundary = CEPH_EPILOGUE_PLAIN_LEN;
3616 	if (resid > boundary) {
3617 		resid -= boundary;
3618 		dout("%s con %p was sending middle\n", __func__, con);
3619 		prepare_zero_middle(con, resid);
3620 		con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3621 		queue_zeros(con);
3622 		return;
3623 	}
3624 
3625 	WARN_ON(!resid);
3626 	dout("%s con %p was sending epilogue - noop\n", __func__, con);
3627 }
3628 
3629 void ceph_con_v2_revoke(struct ceph_connection *con)
3630 {
3631 	WARN_ON(con->v2.out_zero);
3632 
3633 	if (con_secure(con)) {
3634 		WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE &&
3635 			con->v2.out_state != OUT_S_FINISH_MESSAGE);
3636 		dout("%s con %p secure - noop\n", __func__, con);
3637 		return;
3638 	}
3639 
3640 	switch (con->v2.out_state) {
3641 	case OUT_S_QUEUE_DATA:
3642 		revoke_at_queue_data(con);
3643 		break;
3644 	case OUT_S_QUEUE_DATA_CONT:
3645 		revoke_at_queue_data_cont(con);
3646 		break;
3647 	case OUT_S_FINISH_MESSAGE:
3648 		revoke_at_finish_message(con);
3649 		break;
3650 	default:
3651 		WARN(1, "bad out_state %d", con->v2.out_state);
3652 		break;
3653 	}
3654 }
3655 
3656 static void revoke_at_prepare_read_data(struct ceph_connection *con)
3657 {
3658 	int remaining;
3659 	int resid;
3660 
3661 	WARN_ON(con_secure(con));
3662 	WARN_ON(!data_len(con->in_msg));
3663 	WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
3664 	resid = iov_iter_count(&con->v2.in_iter);
3665 	WARN_ON(!resid);
3666 
3667 	remaining = data_len(con->in_msg) + CEPH_EPILOGUE_PLAIN_LEN;
3668 	dout("%s con %p resid %d remaining %d\n", __func__, con, resid,
3669 	     remaining);
3670 	con->v2.in_iter.count -= resid;
3671 	set_in_skip(con, resid + remaining);
3672 	con->v2.in_state = IN_S_FINISH_SKIP;
3673 }
3674 
3675 static void revoke_at_prepare_read_data_cont(struct ceph_connection *con)
3676 {
3677 	int recved, resid;  /* current piece of data */
3678 	int remaining;
3679 
3680 	WARN_ON(con_secure(con));
3681 	WARN_ON(!data_len(con->in_msg));
3682 	WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
3683 	resid = iov_iter_count(&con->v2.in_iter);
3684 	WARN_ON(!resid || resid > con->v2.in_bvec.bv_len);
3685 	recved = con->v2.in_bvec.bv_len - resid;
3686 	dout("%s con %p recved %d resid %d\n", __func__, con, recved, resid);
3687 
3688 	if (recved)
3689 		ceph_msg_data_advance(&con->v2.in_cursor, recved);
3690 	WARN_ON(resid > con->v2.in_cursor.total_resid);
3691 
3692 	remaining = CEPH_EPILOGUE_PLAIN_LEN;
3693 	dout("%s con %p total_resid %zu remaining %d\n", __func__, con,
3694 	     con->v2.in_cursor.total_resid, remaining);
3695 	con->v2.in_iter.count -= resid;
3696 	set_in_skip(con, con->v2.in_cursor.total_resid + remaining);
3697 	con->v2.in_state = IN_S_FINISH_SKIP;
3698 }
3699 
3700 static void revoke_at_prepare_read_enc_page(struct ceph_connection *con)
3701 {
3702 	int resid;  /* current enc page (not necessarily data) */
3703 
3704 	WARN_ON(!con_secure(con));
3705 	WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
3706 	resid = iov_iter_count(&con->v2.in_iter);
3707 	WARN_ON(!resid || resid > con->v2.in_bvec.bv_len);
3708 
3709 	dout("%s con %p resid %d enc_resid %d\n", __func__, con, resid,
3710 	     con->v2.in_enc_resid);
3711 	con->v2.in_iter.count -= resid;
3712 	set_in_skip(con, resid + con->v2.in_enc_resid);
3713 	con->v2.in_state = IN_S_FINISH_SKIP;
3714 }
3715 
3716 static void revoke_at_prepare_sparse_data(struct ceph_connection *con)
3717 {
3718 	int resid;  /* current piece of data */
3719 	int remaining;
3720 
3721 	WARN_ON(con_secure(con));
3722 	WARN_ON(!data_len(con->in_msg));
3723 	WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
3724 	resid = iov_iter_count(&con->v2.in_iter);
3725 	dout("%s con %p resid %d\n", __func__, con, resid);
3726 
3727 	remaining = CEPH_EPILOGUE_PLAIN_LEN + con->v2.data_len_remain;
3728 	con->v2.in_iter.count -= resid;
3729 	set_in_skip(con, resid + remaining);
3730 	con->v2.in_state = IN_S_FINISH_SKIP;
3731 }
3732 
3733 static void revoke_at_handle_epilogue(struct ceph_connection *con)
3734 {
3735 	int resid;
3736 
3737 	resid = iov_iter_count(&con->v2.in_iter);
3738 	WARN_ON(!resid);
3739 
3740 	dout("%s con %p resid %d\n", __func__, con, resid);
3741 	con->v2.in_iter.count -= resid;
3742 	set_in_skip(con, resid);
3743 	con->v2.in_state = IN_S_FINISH_SKIP;
3744 }
3745 
3746 void ceph_con_v2_revoke_incoming(struct ceph_connection *con)
3747 {
3748 	switch (con->v2.in_state) {
3749 	case IN_S_PREPARE_SPARSE_DATA:
3750 	case IN_S_PREPARE_READ_DATA:
3751 		revoke_at_prepare_read_data(con);
3752 		break;
3753 	case IN_S_PREPARE_READ_DATA_CONT:
3754 		revoke_at_prepare_read_data_cont(con);
3755 		break;
3756 	case IN_S_PREPARE_READ_ENC_PAGE:
3757 		revoke_at_prepare_read_enc_page(con);
3758 		break;
3759 	case IN_S_PREPARE_SPARSE_DATA_CONT:
3760 		revoke_at_prepare_sparse_data(con);
3761 		break;
3762 	case IN_S_HANDLE_EPILOGUE:
3763 		revoke_at_handle_epilogue(con);
3764 		break;
3765 	default:
3766 		WARN(1, "bad in_state %d", con->v2.in_state);
3767 		break;
3768 	}
3769 }
3770 
3771 bool ceph_con_v2_opened(struct ceph_connection *con)
3772 {
3773 	return con->v2.peer_global_seq;
3774 }
3775 
3776 void ceph_con_v2_reset_session(struct ceph_connection *con)
3777 {
3778 	con->v2.client_cookie = 0;
3779 	con->v2.server_cookie = 0;
3780 	con->v2.global_seq = 0;
3781 	con->v2.connect_seq = 0;
3782 	con->v2.peer_global_seq = 0;
3783 }
3784 
3785 void ceph_con_v2_reset_protocol(struct ceph_connection *con)
3786 {
3787 	iov_iter_truncate(&con->v2.in_iter, 0);
3788 	iov_iter_truncate(&con->v2.out_iter, 0);
3789 	con->v2.out_zero = 0;
3790 
3791 	clear_in_sign_kvecs(con);
3792 	clear_out_sign_kvecs(con);
3793 	free_conn_bufs(con);
3794 
3795 	if (con->v2.in_enc_pages) {
3796 		WARN_ON(!con->v2.in_enc_page_cnt);
3797 		ceph_release_page_vector(con->v2.in_enc_pages,
3798 					 con->v2.in_enc_page_cnt);
3799 		con->v2.in_enc_pages = NULL;
3800 		con->v2.in_enc_page_cnt = 0;
3801 	}
3802 	if (con->v2.out_enc_pages) {
3803 		WARN_ON(!con->v2.out_enc_page_cnt);
3804 		ceph_release_page_vector(con->v2.out_enc_pages,
3805 					 con->v2.out_enc_page_cnt);
3806 		con->v2.out_enc_pages = NULL;
3807 		con->v2.out_enc_page_cnt = 0;
3808 	}
3809 
3810 	con->v2.con_mode = CEPH_CON_MODE_UNKNOWN;
3811 	memzero_explicit(&con->v2.in_gcm_nonce, CEPH_GCM_IV_LEN);
3812 	memzero_explicit(&con->v2.out_gcm_nonce, CEPH_GCM_IV_LEN);
3813 
3814 	if (con->v2.hmac_tfm) {
3815 		crypto_free_shash(con->v2.hmac_tfm);
3816 		con->v2.hmac_tfm = NULL;
3817 	}
3818 	if (con->v2.gcm_req) {
3819 		aead_request_free(con->v2.gcm_req);
3820 		con->v2.gcm_req = NULL;
3821 	}
3822 	if (con->v2.gcm_tfm) {
3823 		crypto_free_aead(con->v2.gcm_tfm);
3824 		con->v2.gcm_tfm = NULL;
3825 	}
3826 }
3827