1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/crc32c.h> 5 #include <linux/ctype.h> 6 #include <linux/highmem.h> 7 #include <linux/inet.h> 8 #include <linux/kthread.h> 9 #include <linux/net.h> 10 #include <linux/nsproxy.h> 11 #include <linux/sched/mm.h> 12 #include <linux/slab.h> 13 #include <linux/socket.h> 14 #include <linux/string.h> 15 #ifdef CONFIG_BLOCK 16 #include <linux/bio.h> 17 #endif /* CONFIG_BLOCK */ 18 #include <linux/dns_resolver.h> 19 #include <net/tcp.h> 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/libceph.h> 23 #include <linux/ceph/messenger.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/pagelist.h> 26 #include <linux/export.h> 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 static struct kmem_cache *ceph_msg_data_cache; 160 161 /* static tag bytes (protocol control messages) */ 162 static char tag_msg = CEPH_MSGR_TAG_MSG; 163 static char tag_ack = CEPH_MSGR_TAG_ACK; 164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2; 166 167 #ifdef CONFIG_LOCKDEP 168 static struct lock_class_key socket_class; 169 #endif 170 171 static void queue_con(struct ceph_connection *con); 172 static void cancel_con(struct ceph_connection *con); 173 static void ceph_con_workfn(struct work_struct *); 174 static void con_fault(struct ceph_connection *con); 175 176 /* 177 * Nicely render a sockaddr as a string. An array of formatted 178 * strings is used, to approximate reentrancy. 179 */ 180 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 181 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 182 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 183 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 184 185 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 186 static atomic_t addr_str_seq = ATOMIC_INIT(0); 187 188 static struct page *zero_page; /* used in certain error cases */ 189 190 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 191 { 192 int i; 193 char *s; 194 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 195 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 196 197 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 198 s = addr_str[i]; 199 200 switch (ss->ss_family) { 201 case AF_INET: 202 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 203 ntohs(in4->sin_port)); 204 break; 205 206 case AF_INET6: 207 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 208 ntohs(in6->sin6_port)); 209 break; 210 211 default: 212 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 213 ss->ss_family); 214 } 215 216 return s; 217 } 218 EXPORT_SYMBOL(ceph_pr_addr); 219 220 static void encode_my_addr(struct ceph_messenger *msgr) 221 { 222 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 223 ceph_encode_addr(&msgr->my_enc_addr); 224 } 225 226 /* 227 * work queue for all reading and writing to/from the socket. 228 */ 229 static struct workqueue_struct *ceph_msgr_wq; 230 231 static int ceph_msgr_slab_init(void) 232 { 233 BUG_ON(ceph_msg_cache); 234 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 235 if (!ceph_msg_cache) 236 return -ENOMEM; 237 238 BUG_ON(ceph_msg_data_cache); 239 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0); 240 if (ceph_msg_data_cache) 241 return 0; 242 243 kmem_cache_destroy(ceph_msg_cache); 244 ceph_msg_cache = NULL; 245 246 return -ENOMEM; 247 } 248 249 static void ceph_msgr_slab_exit(void) 250 { 251 BUG_ON(!ceph_msg_data_cache); 252 kmem_cache_destroy(ceph_msg_data_cache); 253 ceph_msg_data_cache = NULL; 254 255 BUG_ON(!ceph_msg_cache); 256 kmem_cache_destroy(ceph_msg_cache); 257 ceph_msg_cache = NULL; 258 } 259 260 static void _ceph_msgr_exit(void) 261 { 262 if (ceph_msgr_wq) { 263 destroy_workqueue(ceph_msgr_wq); 264 ceph_msgr_wq = NULL; 265 } 266 267 BUG_ON(zero_page == NULL); 268 put_page(zero_page); 269 zero_page = NULL; 270 271 ceph_msgr_slab_exit(); 272 } 273 274 int __init ceph_msgr_init(void) 275 { 276 if (ceph_msgr_slab_init()) 277 return -ENOMEM; 278 279 BUG_ON(zero_page != NULL); 280 zero_page = ZERO_PAGE(0); 281 get_page(zero_page); 282 283 /* 284 * The number of active work items is limited by the number of 285 * connections, so leave @max_active at default. 286 */ 287 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 288 if (ceph_msgr_wq) 289 return 0; 290 291 pr_err("msgr_init failed to create workqueue\n"); 292 _ceph_msgr_exit(); 293 294 return -ENOMEM; 295 } 296 297 void ceph_msgr_exit(void) 298 { 299 BUG_ON(ceph_msgr_wq == NULL); 300 301 _ceph_msgr_exit(); 302 } 303 304 void ceph_msgr_flush(void) 305 { 306 flush_workqueue(ceph_msgr_wq); 307 } 308 EXPORT_SYMBOL(ceph_msgr_flush); 309 310 /* Connection socket state transition functions */ 311 312 static void con_sock_state_init(struct ceph_connection *con) 313 { 314 int old_state; 315 316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 317 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 318 printk("%s: unexpected old state %d\n", __func__, old_state); 319 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 320 CON_SOCK_STATE_CLOSED); 321 } 322 323 static void con_sock_state_connecting(struct ceph_connection *con) 324 { 325 int old_state; 326 327 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 328 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 329 printk("%s: unexpected old state %d\n", __func__, old_state); 330 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 331 CON_SOCK_STATE_CONNECTING); 332 } 333 334 static void con_sock_state_connected(struct ceph_connection *con) 335 { 336 int old_state; 337 338 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 339 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 340 printk("%s: unexpected old state %d\n", __func__, old_state); 341 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 342 CON_SOCK_STATE_CONNECTED); 343 } 344 345 static void con_sock_state_closing(struct ceph_connection *con) 346 { 347 int old_state; 348 349 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 350 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 351 old_state != CON_SOCK_STATE_CONNECTED && 352 old_state != CON_SOCK_STATE_CLOSING)) 353 printk("%s: unexpected old state %d\n", __func__, old_state); 354 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 355 CON_SOCK_STATE_CLOSING); 356 } 357 358 static void con_sock_state_closed(struct ceph_connection *con) 359 { 360 int old_state; 361 362 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 363 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 364 old_state != CON_SOCK_STATE_CLOSING && 365 old_state != CON_SOCK_STATE_CONNECTING && 366 old_state != CON_SOCK_STATE_CLOSED)) 367 printk("%s: unexpected old state %d\n", __func__, old_state); 368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 369 CON_SOCK_STATE_CLOSED); 370 } 371 372 /* 373 * socket callback functions 374 */ 375 376 /* data available on socket, or listen socket received a connect */ 377 static void ceph_sock_data_ready(struct sock *sk) 378 { 379 struct ceph_connection *con = sk->sk_user_data; 380 if (atomic_read(&con->msgr->stopping)) { 381 return; 382 } 383 384 if (sk->sk_state != TCP_CLOSE_WAIT) { 385 dout("%s on %p state = %lu, queueing work\n", __func__, 386 con, con->state); 387 queue_con(con); 388 } 389 } 390 391 /* socket has buffer space for writing */ 392 static void ceph_sock_write_space(struct sock *sk) 393 { 394 struct ceph_connection *con = sk->sk_user_data; 395 396 /* only queue to workqueue if there is data we want to write, 397 * and there is sufficient space in the socket buffer to accept 398 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 399 * doesn't get called again until try_write() fills the socket 400 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 401 * and net/core/stream.c:sk_stream_write_space(). 402 */ 403 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 404 if (sk_stream_is_writeable(sk)) { 405 dout("%s %p queueing write work\n", __func__, con); 406 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 407 queue_con(con); 408 } 409 } else { 410 dout("%s %p nothing to write\n", __func__, con); 411 } 412 } 413 414 /* socket's state has changed */ 415 static void ceph_sock_state_change(struct sock *sk) 416 { 417 struct ceph_connection *con = sk->sk_user_data; 418 419 dout("%s %p state = %lu sk_state = %u\n", __func__, 420 con, con->state, sk->sk_state); 421 422 switch (sk->sk_state) { 423 case TCP_CLOSE: 424 dout("%s TCP_CLOSE\n", __func__); 425 /* fall through */ 426 case TCP_CLOSE_WAIT: 427 dout("%s TCP_CLOSE_WAIT\n", __func__); 428 con_sock_state_closing(con); 429 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 430 queue_con(con); 431 break; 432 case TCP_ESTABLISHED: 433 dout("%s TCP_ESTABLISHED\n", __func__); 434 con_sock_state_connected(con); 435 queue_con(con); 436 break; 437 default: /* Everything else is uninteresting */ 438 break; 439 } 440 } 441 442 /* 443 * set up socket callbacks 444 */ 445 static void set_sock_callbacks(struct socket *sock, 446 struct ceph_connection *con) 447 { 448 struct sock *sk = sock->sk; 449 sk->sk_user_data = con; 450 sk->sk_data_ready = ceph_sock_data_ready; 451 sk->sk_write_space = ceph_sock_write_space; 452 sk->sk_state_change = ceph_sock_state_change; 453 } 454 455 456 /* 457 * socket helpers 458 */ 459 460 /* 461 * initiate connection to a remote socket. 462 */ 463 static int ceph_tcp_connect(struct ceph_connection *con) 464 { 465 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 466 struct socket *sock; 467 unsigned int noio_flag; 468 int ret; 469 470 BUG_ON(con->sock); 471 472 /* sock_create_kern() allocates with GFP_KERNEL */ 473 noio_flag = memalloc_noio_save(); 474 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family, 475 SOCK_STREAM, IPPROTO_TCP, &sock); 476 memalloc_noio_restore(noio_flag); 477 if (ret) 478 return ret; 479 sock->sk->sk_allocation = GFP_NOFS; 480 481 #ifdef CONFIG_LOCKDEP 482 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 483 #endif 484 485 set_sock_callbacks(sock, con); 486 487 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 488 489 con_sock_state_connecting(con); 490 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 491 O_NONBLOCK); 492 if (ret == -EINPROGRESS) { 493 dout("connect %s EINPROGRESS sk_state = %u\n", 494 ceph_pr_addr(&con->peer_addr.in_addr), 495 sock->sk->sk_state); 496 } else if (ret < 0) { 497 pr_err("connect %s error %d\n", 498 ceph_pr_addr(&con->peer_addr.in_addr), ret); 499 sock_release(sock); 500 return ret; 501 } 502 503 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) { 504 int optval = 1; 505 506 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 507 (char *)&optval, sizeof(optval)); 508 if (ret) 509 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 510 ret); 511 } 512 513 con->sock = sock; 514 return 0; 515 } 516 517 /* 518 * If @buf is NULL, discard up to @len bytes. 519 */ 520 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 521 { 522 struct kvec iov = {buf, len}; 523 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 524 int r; 525 526 if (!buf) 527 msg.msg_flags |= MSG_TRUNC; 528 529 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len); 530 r = sock_recvmsg(sock, &msg, msg.msg_flags); 531 if (r == -EAGAIN) 532 r = 0; 533 return r; 534 } 535 536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 537 int page_offset, size_t length) 538 { 539 struct bio_vec bvec = { 540 .bv_page = page, 541 .bv_offset = page_offset, 542 .bv_len = length 543 }; 544 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 545 int r; 546 547 BUG_ON(page_offset + length > PAGE_SIZE); 548 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length); 549 r = sock_recvmsg(sock, &msg, msg.msg_flags); 550 if (r == -EAGAIN) 551 r = 0; 552 return r; 553 } 554 555 /* 556 * write something. @more is true if caller will be sending more data 557 * shortly. 558 */ 559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 560 size_t kvlen, size_t len, int more) 561 { 562 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 563 int r; 564 565 if (more) 566 msg.msg_flags |= MSG_MORE; 567 else 568 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 569 570 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 571 if (r == -EAGAIN) 572 r = 0; 573 return r; 574 } 575 576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 577 int offset, size_t size, bool more) 578 { 579 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 580 int ret; 581 582 ret = kernel_sendpage(sock, page, offset, size, flags); 583 if (ret == -EAGAIN) 584 ret = 0; 585 586 return ret; 587 } 588 589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 590 int offset, size_t size, bool more) 591 { 592 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 593 struct bio_vec bvec; 594 int ret; 595 596 /* sendpage cannot properly handle pages with page_count == 0, 597 * we need to fallback to sendmsg if that's the case */ 598 if (page_count(page) >= 1) 599 return __ceph_tcp_sendpage(sock, page, offset, size, more); 600 601 bvec.bv_page = page; 602 bvec.bv_offset = offset; 603 bvec.bv_len = size; 604 605 if (more) 606 msg.msg_flags |= MSG_MORE; 607 else 608 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 609 610 iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size); 611 ret = sock_sendmsg(sock, &msg); 612 if (ret == -EAGAIN) 613 ret = 0; 614 615 return ret; 616 } 617 618 /* 619 * Shutdown/close the socket for the given connection. 620 */ 621 static int con_close_socket(struct ceph_connection *con) 622 { 623 int rc = 0; 624 625 dout("con_close_socket on %p sock %p\n", con, con->sock); 626 if (con->sock) { 627 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 628 sock_release(con->sock); 629 con->sock = NULL; 630 } 631 632 /* 633 * Forcibly clear the SOCK_CLOSED flag. It gets set 634 * independent of the connection mutex, and we could have 635 * received a socket close event before we had the chance to 636 * shut the socket down. 637 */ 638 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 639 640 con_sock_state_closed(con); 641 return rc; 642 } 643 644 /* 645 * Reset a connection. Discard all incoming and outgoing messages 646 * and clear *_seq state. 647 */ 648 static void ceph_msg_remove(struct ceph_msg *msg) 649 { 650 list_del_init(&msg->list_head); 651 652 ceph_msg_put(msg); 653 } 654 static void ceph_msg_remove_list(struct list_head *head) 655 { 656 while (!list_empty(head)) { 657 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 658 list_head); 659 ceph_msg_remove(msg); 660 } 661 } 662 663 static void reset_connection(struct ceph_connection *con) 664 { 665 /* reset connection, out_queue, msg_ and connect_seq */ 666 /* discard existing out_queue and msg_seq */ 667 dout("reset_connection %p\n", con); 668 ceph_msg_remove_list(&con->out_queue); 669 ceph_msg_remove_list(&con->out_sent); 670 671 if (con->in_msg) { 672 BUG_ON(con->in_msg->con != con); 673 ceph_msg_put(con->in_msg); 674 con->in_msg = NULL; 675 } 676 677 con->connect_seq = 0; 678 con->out_seq = 0; 679 if (con->out_msg) { 680 BUG_ON(con->out_msg->con != con); 681 ceph_msg_put(con->out_msg); 682 con->out_msg = NULL; 683 } 684 con->in_seq = 0; 685 con->in_seq_acked = 0; 686 687 con->out_skip = 0; 688 } 689 690 /* 691 * mark a peer down. drop any open connections. 692 */ 693 void ceph_con_close(struct ceph_connection *con) 694 { 695 mutex_lock(&con->mutex); 696 dout("con_close %p peer %s\n", con, 697 ceph_pr_addr(&con->peer_addr.in_addr)); 698 con->state = CON_STATE_CLOSED; 699 700 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 701 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 702 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 703 con_flag_clear(con, CON_FLAG_BACKOFF); 704 705 reset_connection(con); 706 con->peer_global_seq = 0; 707 cancel_con(con); 708 con_close_socket(con); 709 mutex_unlock(&con->mutex); 710 } 711 EXPORT_SYMBOL(ceph_con_close); 712 713 /* 714 * Reopen a closed connection, with a new peer address. 715 */ 716 void ceph_con_open(struct ceph_connection *con, 717 __u8 entity_type, __u64 entity_num, 718 struct ceph_entity_addr *addr) 719 { 720 mutex_lock(&con->mutex); 721 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 722 723 WARN_ON(con->state != CON_STATE_CLOSED); 724 con->state = CON_STATE_PREOPEN; 725 726 con->peer_name.type = (__u8) entity_type; 727 con->peer_name.num = cpu_to_le64(entity_num); 728 729 memcpy(&con->peer_addr, addr, sizeof(*addr)); 730 con->delay = 0; /* reset backoff memory */ 731 mutex_unlock(&con->mutex); 732 queue_con(con); 733 } 734 EXPORT_SYMBOL(ceph_con_open); 735 736 /* 737 * return true if this connection ever successfully opened 738 */ 739 bool ceph_con_opened(struct ceph_connection *con) 740 { 741 return con->connect_seq > 0; 742 } 743 744 /* 745 * initialize a new connection. 746 */ 747 void ceph_con_init(struct ceph_connection *con, void *private, 748 const struct ceph_connection_operations *ops, 749 struct ceph_messenger *msgr) 750 { 751 dout("con_init %p\n", con); 752 memset(con, 0, sizeof(*con)); 753 con->private = private; 754 con->ops = ops; 755 con->msgr = msgr; 756 757 con_sock_state_init(con); 758 759 mutex_init(&con->mutex); 760 INIT_LIST_HEAD(&con->out_queue); 761 INIT_LIST_HEAD(&con->out_sent); 762 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 763 764 con->state = CON_STATE_CLOSED; 765 } 766 EXPORT_SYMBOL(ceph_con_init); 767 768 769 /* 770 * We maintain a global counter to order connection attempts. Get 771 * a unique seq greater than @gt. 772 */ 773 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 774 { 775 u32 ret; 776 777 spin_lock(&msgr->global_seq_lock); 778 if (msgr->global_seq < gt) 779 msgr->global_seq = gt; 780 ret = ++msgr->global_seq; 781 spin_unlock(&msgr->global_seq_lock); 782 return ret; 783 } 784 785 static void con_out_kvec_reset(struct ceph_connection *con) 786 { 787 BUG_ON(con->out_skip); 788 789 con->out_kvec_left = 0; 790 con->out_kvec_bytes = 0; 791 con->out_kvec_cur = &con->out_kvec[0]; 792 } 793 794 static void con_out_kvec_add(struct ceph_connection *con, 795 size_t size, void *data) 796 { 797 int index = con->out_kvec_left; 798 799 BUG_ON(con->out_skip); 800 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 801 802 con->out_kvec[index].iov_len = size; 803 con->out_kvec[index].iov_base = data; 804 con->out_kvec_left++; 805 con->out_kvec_bytes += size; 806 } 807 808 /* 809 * Chop off a kvec from the end. Return residual number of bytes for 810 * that kvec, i.e. how many bytes would have been written if the kvec 811 * hadn't been nuked. 812 */ 813 static int con_out_kvec_skip(struct ceph_connection *con) 814 { 815 int off = con->out_kvec_cur - con->out_kvec; 816 int skip = 0; 817 818 if (con->out_kvec_bytes > 0) { 819 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len; 820 BUG_ON(con->out_kvec_bytes < skip); 821 BUG_ON(!con->out_kvec_left); 822 con->out_kvec_bytes -= skip; 823 con->out_kvec_left--; 824 } 825 826 return skip; 827 } 828 829 #ifdef CONFIG_BLOCK 830 831 /* 832 * For a bio data item, a piece is whatever remains of the next 833 * entry in the current bio iovec, or the first entry in the next 834 * bio in the list. 835 */ 836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 837 size_t length) 838 { 839 struct ceph_msg_data *data = cursor->data; 840 struct ceph_bio_iter *it = &cursor->bio_iter; 841 842 cursor->resid = min_t(size_t, length, data->bio_length); 843 *it = data->bio_pos; 844 if (cursor->resid < it->iter.bi_size) 845 it->iter.bi_size = cursor->resid; 846 847 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 848 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 849 } 850 851 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 852 size_t *page_offset, 853 size_t *length) 854 { 855 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, 856 cursor->bio_iter.iter); 857 858 *page_offset = bv.bv_offset; 859 *length = bv.bv_len; 860 return bv.bv_page; 861 } 862 863 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 864 size_t bytes) 865 { 866 struct ceph_bio_iter *it = &cursor->bio_iter; 867 868 BUG_ON(bytes > cursor->resid); 869 BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); 870 cursor->resid -= bytes; 871 bio_advance_iter(it->bio, &it->iter, bytes); 872 873 if (!cursor->resid) { 874 BUG_ON(!cursor->last_piece); 875 return false; /* no more data */ 876 } 877 878 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done)) 879 return false; /* more bytes to process in this segment */ 880 881 if (!it->iter.bi_size) { 882 it->bio = it->bio->bi_next; 883 it->iter = it->bio->bi_iter; 884 if (cursor->resid < it->iter.bi_size) 885 it->iter.bi_size = cursor->resid; 886 } 887 888 BUG_ON(cursor->last_piece); 889 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 890 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 891 return true; 892 } 893 #endif /* CONFIG_BLOCK */ 894 895 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, 896 size_t length) 897 { 898 struct ceph_msg_data *data = cursor->data; 899 struct bio_vec *bvecs = data->bvec_pos.bvecs; 900 901 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); 902 cursor->bvec_iter = data->bvec_pos.iter; 903 cursor->bvec_iter.bi_size = cursor->resid; 904 905 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 906 cursor->last_piece = 907 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 908 } 909 910 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, 911 size_t *page_offset, 912 size_t *length) 913 { 914 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, 915 cursor->bvec_iter); 916 917 *page_offset = bv.bv_offset; 918 *length = bv.bv_len; 919 return bv.bv_page; 920 } 921 922 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, 923 size_t bytes) 924 { 925 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; 926 927 BUG_ON(bytes > cursor->resid); 928 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); 929 cursor->resid -= bytes; 930 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); 931 932 if (!cursor->resid) { 933 BUG_ON(!cursor->last_piece); 934 return false; /* no more data */ 935 } 936 937 if (!bytes || cursor->bvec_iter.bi_bvec_done) 938 return false; /* more bytes to process in this segment */ 939 940 BUG_ON(cursor->last_piece); 941 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 942 cursor->last_piece = 943 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 944 return true; 945 } 946 947 /* 948 * For a page array, a piece comes from the first page in the array 949 * that has not already been fully consumed. 950 */ 951 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 952 size_t length) 953 { 954 struct ceph_msg_data *data = cursor->data; 955 int page_count; 956 957 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 958 959 BUG_ON(!data->pages); 960 BUG_ON(!data->length); 961 962 cursor->resid = min(length, data->length); 963 page_count = calc_pages_for(data->alignment, (u64)data->length); 964 cursor->page_offset = data->alignment & ~PAGE_MASK; 965 cursor->page_index = 0; 966 BUG_ON(page_count > (int)USHRT_MAX); 967 cursor->page_count = (unsigned short)page_count; 968 BUG_ON(length > SIZE_MAX - cursor->page_offset); 969 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 970 } 971 972 static struct page * 973 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 974 size_t *page_offset, size_t *length) 975 { 976 struct ceph_msg_data *data = cursor->data; 977 978 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 979 980 BUG_ON(cursor->page_index >= cursor->page_count); 981 BUG_ON(cursor->page_offset >= PAGE_SIZE); 982 983 *page_offset = cursor->page_offset; 984 if (cursor->last_piece) 985 *length = cursor->resid; 986 else 987 *length = PAGE_SIZE - *page_offset; 988 989 return data->pages[cursor->page_index]; 990 } 991 992 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 993 size_t bytes) 994 { 995 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 996 997 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 998 999 /* Advance the cursor page offset */ 1000 1001 cursor->resid -= bytes; 1002 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 1003 if (!bytes || cursor->page_offset) 1004 return false; /* more bytes to process in the current page */ 1005 1006 if (!cursor->resid) 1007 return false; /* no more data */ 1008 1009 /* Move on to the next page; offset is already at 0 */ 1010 1011 BUG_ON(cursor->page_index >= cursor->page_count); 1012 cursor->page_index++; 1013 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1014 1015 return true; 1016 } 1017 1018 /* 1019 * For a pagelist, a piece is whatever remains to be consumed in the 1020 * first page in the list, or the front of the next page. 1021 */ 1022 static void 1023 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 1024 size_t length) 1025 { 1026 struct ceph_msg_data *data = cursor->data; 1027 struct ceph_pagelist *pagelist; 1028 struct page *page; 1029 1030 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1031 1032 pagelist = data->pagelist; 1033 BUG_ON(!pagelist); 1034 1035 if (!length) 1036 return; /* pagelist can be assigned but empty */ 1037 1038 BUG_ON(list_empty(&pagelist->head)); 1039 page = list_first_entry(&pagelist->head, struct page, lru); 1040 1041 cursor->resid = min(length, pagelist->length); 1042 cursor->page = page; 1043 cursor->offset = 0; 1044 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1045 } 1046 1047 static struct page * 1048 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 1049 size_t *page_offset, size_t *length) 1050 { 1051 struct ceph_msg_data *data = cursor->data; 1052 struct ceph_pagelist *pagelist; 1053 1054 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1055 1056 pagelist = data->pagelist; 1057 BUG_ON(!pagelist); 1058 1059 BUG_ON(!cursor->page); 1060 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1061 1062 /* offset of first page in pagelist is always 0 */ 1063 *page_offset = cursor->offset & ~PAGE_MASK; 1064 if (cursor->last_piece) 1065 *length = cursor->resid; 1066 else 1067 *length = PAGE_SIZE - *page_offset; 1068 1069 return cursor->page; 1070 } 1071 1072 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1073 size_t bytes) 1074 { 1075 struct ceph_msg_data *data = cursor->data; 1076 struct ceph_pagelist *pagelist; 1077 1078 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1079 1080 pagelist = data->pagelist; 1081 BUG_ON(!pagelist); 1082 1083 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1084 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1085 1086 /* Advance the cursor offset */ 1087 1088 cursor->resid -= bytes; 1089 cursor->offset += bytes; 1090 /* offset of first page in pagelist is always 0 */ 1091 if (!bytes || cursor->offset & ~PAGE_MASK) 1092 return false; /* more bytes to process in the current page */ 1093 1094 if (!cursor->resid) 1095 return false; /* no more data */ 1096 1097 /* Move on to the next page */ 1098 1099 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1100 cursor->page = list_next_entry(cursor->page, lru); 1101 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1102 1103 return true; 1104 } 1105 1106 /* 1107 * Message data is handled (sent or received) in pieces, where each 1108 * piece resides on a single page. The network layer might not 1109 * consume an entire piece at once. A data item's cursor keeps 1110 * track of which piece is next to process and how much remains to 1111 * be processed in that piece. It also tracks whether the current 1112 * piece is the last one in the data item. 1113 */ 1114 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1115 { 1116 size_t length = cursor->total_resid; 1117 1118 switch (cursor->data->type) { 1119 case CEPH_MSG_DATA_PAGELIST: 1120 ceph_msg_data_pagelist_cursor_init(cursor, length); 1121 break; 1122 case CEPH_MSG_DATA_PAGES: 1123 ceph_msg_data_pages_cursor_init(cursor, length); 1124 break; 1125 #ifdef CONFIG_BLOCK 1126 case CEPH_MSG_DATA_BIO: 1127 ceph_msg_data_bio_cursor_init(cursor, length); 1128 break; 1129 #endif /* CONFIG_BLOCK */ 1130 case CEPH_MSG_DATA_BVECS: 1131 ceph_msg_data_bvecs_cursor_init(cursor, length); 1132 break; 1133 case CEPH_MSG_DATA_NONE: 1134 default: 1135 /* BUG(); */ 1136 break; 1137 } 1138 cursor->need_crc = true; 1139 } 1140 1141 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1142 { 1143 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1144 struct ceph_msg_data *data; 1145 1146 BUG_ON(!length); 1147 BUG_ON(length > msg->data_length); 1148 BUG_ON(list_empty(&msg->data)); 1149 1150 cursor->data_head = &msg->data; 1151 cursor->total_resid = length; 1152 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1153 cursor->data = data; 1154 1155 __ceph_msg_data_cursor_init(cursor); 1156 } 1157 1158 /* 1159 * Return the page containing the next piece to process for a given 1160 * data item, and supply the page offset and length of that piece. 1161 * Indicate whether this is the last piece in this data item. 1162 */ 1163 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1164 size_t *page_offset, size_t *length, 1165 bool *last_piece) 1166 { 1167 struct page *page; 1168 1169 switch (cursor->data->type) { 1170 case CEPH_MSG_DATA_PAGELIST: 1171 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1172 break; 1173 case CEPH_MSG_DATA_PAGES: 1174 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1175 break; 1176 #ifdef CONFIG_BLOCK 1177 case CEPH_MSG_DATA_BIO: 1178 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1179 break; 1180 #endif /* CONFIG_BLOCK */ 1181 case CEPH_MSG_DATA_BVECS: 1182 page = ceph_msg_data_bvecs_next(cursor, page_offset, length); 1183 break; 1184 case CEPH_MSG_DATA_NONE: 1185 default: 1186 page = NULL; 1187 break; 1188 } 1189 1190 BUG_ON(!page); 1191 BUG_ON(*page_offset + *length > PAGE_SIZE); 1192 BUG_ON(!*length); 1193 BUG_ON(*length > cursor->resid); 1194 if (last_piece) 1195 *last_piece = cursor->last_piece; 1196 1197 return page; 1198 } 1199 1200 /* 1201 * Returns true if the result moves the cursor on to the next piece 1202 * of the data item. 1203 */ 1204 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1205 size_t bytes) 1206 { 1207 bool new_piece; 1208 1209 BUG_ON(bytes > cursor->resid); 1210 switch (cursor->data->type) { 1211 case CEPH_MSG_DATA_PAGELIST: 1212 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1213 break; 1214 case CEPH_MSG_DATA_PAGES: 1215 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1216 break; 1217 #ifdef CONFIG_BLOCK 1218 case CEPH_MSG_DATA_BIO: 1219 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1220 break; 1221 #endif /* CONFIG_BLOCK */ 1222 case CEPH_MSG_DATA_BVECS: 1223 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); 1224 break; 1225 case CEPH_MSG_DATA_NONE: 1226 default: 1227 BUG(); 1228 break; 1229 } 1230 cursor->total_resid -= bytes; 1231 1232 if (!cursor->resid && cursor->total_resid) { 1233 WARN_ON(!cursor->last_piece); 1234 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1235 cursor->data = list_next_entry(cursor->data, links); 1236 __ceph_msg_data_cursor_init(cursor); 1237 new_piece = true; 1238 } 1239 cursor->need_crc = new_piece; 1240 } 1241 1242 static size_t sizeof_footer(struct ceph_connection *con) 1243 { 1244 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ? 1245 sizeof(struct ceph_msg_footer) : 1246 sizeof(struct ceph_msg_footer_old); 1247 } 1248 1249 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1250 { 1251 BUG_ON(!msg); 1252 BUG_ON(!data_len); 1253 1254 /* Initialize data cursor */ 1255 1256 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1257 } 1258 1259 /* 1260 * Prepare footer for currently outgoing message, and finish things 1261 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1262 */ 1263 static void prepare_write_message_footer(struct ceph_connection *con) 1264 { 1265 struct ceph_msg *m = con->out_msg; 1266 1267 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1268 1269 dout("prepare_write_message_footer %p\n", con); 1270 con_out_kvec_add(con, sizeof_footer(con), &m->footer); 1271 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1272 if (con->ops->sign_message) 1273 con->ops->sign_message(m); 1274 else 1275 m->footer.sig = 0; 1276 } else { 1277 m->old_footer.flags = m->footer.flags; 1278 } 1279 con->out_more = m->more_to_follow; 1280 con->out_msg_done = true; 1281 } 1282 1283 /* 1284 * Prepare headers for the next outgoing message. 1285 */ 1286 static void prepare_write_message(struct ceph_connection *con) 1287 { 1288 struct ceph_msg *m; 1289 u32 crc; 1290 1291 con_out_kvec_reset(con); 1292 con->out_msg_done = false; 1293 1294 /* Sneak an ack in there first? If we can get it into the same 1295 * TCP packet that's a good thing. */ 1296 if (con->in_seq > con->in_seq_acked) { 1297 con->in_seq_acked = con->in_seq; 1298 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1299 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1300 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1301 &con->out_temp_ack); 1302 } 1303 1304 BUG_ON(list_empty(&con->out_queue)); 1305 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1306 con->out_msg = m; 1307 BUG_ON(m->con != con); 1308 1309 /* put message on sent list */ 1310 ceph_msg_get(m); 1311 list_move_tail(&m->list_head, &con->out_sent); 1312 1313 /* 1314 * only assign outgoing seq # if we haven't sent this message 1315 * yet. if it is requeued, resend with it's original seq. 1316 */ 1317 if (m->needs_out_seq) { 1318 m->hdr.seq = cpu_to_le64(++con->out_seq); 1319 m->needs_out_seq = false; 1320 1321 if (con->ops->reencode_message) 1322 con->ops->reencode_message(m); 1323 } 1324 1325 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1326 m, con->out_seq, le16_to_cpu(m->hdr.type), 1327 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1328 m->data_length); 1329 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len)); 1330 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1331 1332 /* tag + hdr + front + middle */ 1333 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1334 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr); 1335 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1336 1337 if (m->middle) 1338 con_out_kvec_add(con, m->middle->vec.iov_len, 1339 m->middle->vec.iov_base); 1340 1341 /* fill in hdr crc and finalize hdr */ 1342 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1343 con->out_msg->hdr.crc = cpu_to_le32(crc); 1344 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr)); 1345 1346 /* fill in front and middle crc, footer */ 1347 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1348 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1349 if (m->middle) { 1350 crc = crc32c(0, m->middle->vec.iov_base, 1351 m->middle->vec.iov_len); 1352 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1353 } else 1354 con->out_msg->footer.middle_crc = 0; 1355 dout("%s front_crc %u middle_crc %u\n", __func__, 1356 le32_to_cpu(con->out_msg->footer.front_crc), 1357 le32_to_cpu(con->out_msg->footer.middle_crc)); 1358 con->out_msg->footer.flags = 0; 1359 1360 /* is there a data payload? */ 1361 con->out_msg->footer.data_crc = 0; 1362 if (m->data_length) { 1363 prepare_message_data(con->out_msg, m->data_length); 1364 con->out_more = 1; /* data + footer will follow */ 1365 } else { 1366 /* no, queue up footer too and be done */ 1367 prepare_write_message_footer(con); 1368 } 1369 1370 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1371 } 1372 1373 /* 1374 * Prepare an ack. 1375 */ 1376 static void prepare_write_ack(struct ceph_connection *con) 1377 { 1378 dout("prepare_write_ack %p %llu -> %llu\n", con, 1379 con->in_seq_acked, con->in_seq); 1380 con->in_seq_acked = con->in_seq; 1381 1382 con_out_kvec_reset(con); 1383 1384 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1385 1386 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1387 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1388 &con->out_temp_ack); 1389 1390 con->out_more = 1; /* more will follow.. eventually.. */ 1391 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1392 } 1393 1394 /* 1395 * Prepare to share the seq during handshake 1396 */ 1397 static void prepare_write_seq(struct ceph_connection *con) 1398 { 1399 dout("prepare_write_seq %p %llu -> %llu\n", con, 1400 con->in_seq_acked, con->in_seq); 1401 con->in_seq_acked = con->in_seq; 1402 1403 con_out_kvec_reset(con); 1404 1405 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1406 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1407 &con->out_temp_ack); 1408 1409 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1410 } 1411 1412 /* 1413 * Prepare to write keepalive byte. 1414 */ 1415 static void prepare_write_keepalive(struct ceph_connection *con) 1416 { 1417 dout("prepare_write_keepalive %p\n", con); 1418 con_out_kvec_reset(con); 1419 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) { 1420 struct timespec64 now; 1421 1422 ktime_get_real_ts64(&now); 1423 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2); 1424 ceph_encode_timespec64(&con->out_temp_keepalive2, &now); 1425 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2), 1426 &con->out_temp_keepalive2); 1427 } else { 1428 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive); 1429 } 1430 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1431 } 1432 1433 /* 1434 * Connection negotiation. 1435 */ 1436 1437 static int get_connect_authorizer(struct ceph_connection *con) 1438 { 1439 struct ceph_auth_handshake *auth; 1440 int auth_proto; 1441 1442 if (!con->ops->get_authorizer) { 1443 con->auth = NULL; 1444 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1445 con->out_connect.authorizer_len = 0; 1446 return 0; 1447 } 1448 1449 auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry); 1450 if (IS_ERR(auth)) 1451 return PTR_ERR(auth); 1452 1453 con->auth = auth; 1454 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1455 con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len); 1456 return 0; 1457 } 1458 1459 /* 1460 * We connected to a peer and are saying hello. 1461 */ 1462 static void prepare_write_banner(struct ceph_connection *con) 1463 { 1464 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1465 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1466 &con->msgr->my_enc_addr); 1467 1468 con->out_more = 0; 1469 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1470 } 1471 1472 static void __prepare_write_connect(struct ceph_connection *con) 1473 { 1474 con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect); 1475 if (con->auth) 1476 con_out_kvec_add(con, con->auth->authorizer_buf_len, 1477 con->auth->authorizer_buf); 1478 1479 con->out_more = 0; 1480 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1481 } 1482 1483 static int prepare_write_connect(struct ceph_connection *con) 1484 { 1485 unsigned int global_seq = get_global_seq(con->msgr, 0); 1486 int proto; 1487 int ret; 1488 1489 switch (con->peer_name.type) { 1490 case CEPH_ENTITY_TYPE_MON: 1491 proto = CEPH_MONC_PROTOCOL; 1492 break; 1493 case CEPH_ENTITY_TYPE_OSD: 1494 proto = CEPH_OSDC_PROTOCOL; 1495 break; 1496 case CEPH_ENTITY_TYPE_MDS: 1497 proto = CEPH_MDSC_PROTOCOL; 1498 break; 1499 default: 1500 BUG(); 1501 } 1502 1503 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1504 con->connect_seq, global_seq, proto); 1505 1506 con->out_connect.features = 1507 cpu_to_le64(from_msgr(con->msgr)->supported_features); 1508 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1509 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1510 con->out_connect.global_seq = cpu_to_le32(global_seq); 1511 con->out_connect.protocol_version = cpu_to_le32(proto); 1512 con->out_connect.flags = 0; 1513 1514 ret = get_connect_authorizer(con); 1515 if (ret) 1516 return ret; 1517 1518 __prepare_write_connect(con); 1519 return 0; 1520 } 1521 1522 /* 1523 * write as much of pending kvecs to the socket as we can. 1524 * 1 -> done 1525 * 0 -> socket full, but more to do 1526 * <0 -> error 1527 */ 1528 static int write_partial_kvec(struct ceph_connection *con) 1529 { 1530 int ret; 1531 1532 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1533 while (con->out_kvec_bytes > 0) { 1534 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1535 con->out_kvec_left, con->out_kvec_bytes, 1536 con->out_more); 1537 if (ret <= 0) 1538 goto out; 1539 con->out_kvec_bytes -= ret; 1540 if (con->out_kvec_bytes == 0) 1541 break; /* done */ 1542 1543 /* account for full iov entries consumed */ 1544 while (ret >= con->out_kvec_cur->iov_len) { 1545 BUG_ON(!con->out_kvec_left); 1546 ret -= con->out_kvec_cur->iov_len; 1547 con->out_kvec_cur++; 1548 con->out_kvec_left--; 1549 } 1550 /* and for a partially-consumed entry */ 1551 if (ret) { 1552 con->out_kvec_cur->iov_len -= ret; 1553 con->out_kvec_cur->iov_base += ret; 1554 } 1555 } 1556 con->out_kvec_left = 0; 1557 ret = 1; 1558 out: 1559 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1560 con->out_kvec_bytes, con->out_kvec_left, ret); 1561 return ret; /* done! */ 1562 } 1563 1564 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1565 unsigned int page_offset, 1566 unsigned int length) 1567 { 1568 char *kaddr; 1569 1570 kaddr = kmap(page); 1571 BUG_ON(kaddr == NULL); 1572 crc = crc32c(crc, kaddr + page_offset, length); 1573 kunmap(page); 1574 1575 return crc; 1576 } 1577 /* 1578 * Write as much message data payload as we can. If we finish, queue 1579 * up the footer. 1580 * 1 -> done, footer is now queued in out_kvec[]. 1581 * 0 -> socket full, but more to do 1582 * <0 -> error 1583 */ 1584 static int write_partial_message_data(struct ceph_connection *con) 1585 { 1586 struct ceph_msg *msg = con->out_msg; 1587 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1588 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 1589 u32 crc; 1590 1591 dout("%s %p msg %p\n", __func__, con, msg); 1592 1593 if (list_empty(&msg->data)) 1594 return -EINVAL; 1595 1596 /* 1597 * Iterate through each page that contains data to be 1598 * written, and send as much as possible for each. 1599 * 1600 * If we are calculating the data crc (the default), we will 1601 * need to map the page. If we have no pages, they have 1602 * been revoked, so use the zero page. 1603 */ 1604 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1605 while (cursor->total_resid) { 1606 struct page *page; 1607 size_t page_offset; 1608 size_t length; 1609 bool last_piece; 1610 int ret; 1611 1612 if (!cursor->resid) { 1613 ceph_msg_data_advance(cursor, 0); 1614 continue; 1615 } 1616 1617 page = ceph_msg_data_next(cursor, &page_offset, &length, 1618 &last_piece); 1619 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1620 length, !last_piece); 1621 if (ret <= 0) { 1622 if (do_datacrc) 1623 msg->footer.data_crc = cpu_to_le32(crc); 1624 1625 return ret; 1626 } 1627 if (do_datacrc && cursor->need_crc) 1628 crc = ceph_crc32c_page(crc, page, page_offset, length); 1629 ceph_msg_data_advance(cursor, (size_t)ret); 1630 } 1631 1632 dout("%s %p msg %p done\n", __func__, con, msg); 1633 1634 /* prepare and queue up footer, too */ 1635 if (do_datacrc) 1636 msg->footer.data_crc = cpu_to_le32(crc); 1637 else 1638 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1639 con_out_kvec_reset(con); 1640 prepare_write_message_footer(con); 1641 1642 return 1; /* must return > 0 to indicate success */ 1643 } 1644 1645 /* 1646 * write some zeros 1647 */ 1648 static int write_partial_skip(struct ceph_connection *con) 1649 { 1650 int ret; 1651 1652 dout("%s %p %d left\n", __func__, con, con->out_skip); 1653 while (con->out_skip > 0) { 1654 size_t size = min(con->out_skip, (int) PAGE_SIZE); 1655 1656 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1657 if (ret <= 0) 1658 goto out; 1659 con->out_skip -= ret; 1660 } 1661 ret = 1; 1662 out: 1663 return ret; 1664 } 1665 1666 /* 1667 * Prepare to read connection handshake, or an ack. 1668 */ 1669 static void prepare_read_banner(struct ceph_connection *con) 1670 { 1671 dout("prepare_read_banner %p\n", con); 1672 con->in_base_pos = 0; 1673 } 1674 1675 static void prepare_read_connect(struct ceph_connection *con) 1676 { 1677 dout("prepare_read_connect %p\n", con); 1678 con->in_base_pos = 0; 1679 } 1680 1681 static void prepare_read_ack(struct ceph_connection *con) 1682 { 1683 dout("prepare_read_ack %p\n", con); 1684 con->in_base_pos = 0; 1685 } 1686 1687 static void prepare_read_seq(struct ceph_connection *con) 1688 { 1689 dout("prepare_read_seq %p\n", con); 1690 con->in_base_pos = 0; 1691 con->in_tag = CEPH_MSGR_TAG_SEQ; 1692 } 1693 1694 static void prepare_read_tag(struct ceph_connection *con) 1695 { 1696 dout("prepare_read_tag %p\n", con); 1697 con->in_base_pos = 0; 1698 con->in_tag = CEPH_MSGR_TAG_READY; 1699 } 1700 1701 static void prepare_read_keepalive_ack(struct ceph_connection *con) 1702 { 1703 dout("prepare_read_keepalive_ack %p\n", con); 1704 con->in_base_pos = 0; 1705 } 1706 1707 /* 1708 * Prepare to read a message. 1709 */ 1710 static int prepare_read_message(struct ceph_connection *con) 1711 { 1712 dout("prepare_read_message %p\n", con); 1713 BUG_ON(con->in_msg != NULL); 1714 con->in_base_pos = 0; 1715 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1716 return 0; 1717 } 1718 1719 1720 static int read_partial(struct ceph_connection *con, 1721 int end, int size, void *object) 1722 { 1723 while (con->in_base_pos < end) { 1724 int left = end - con->in_base_pos; 1725 int have = size - left; 1726 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1727 if (ret <= 0) 1728 return ret; 1729 con->in_base_pos += ret; 1730 } 1731 return 1; 1732 } 1733 1734 1735 /* 1736 * Read all or part of the connect-side handshake on a new connection 1737 */ 1738 static int read_partial_banner(struct ceph_connection *con) 1739 { 1740 int size; 1741 int end; 1742 int ret; 1743 1744 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1745 1746 /* peer's banner */ 1747 size = strlen(CEPH_BANNER); 1748 end = size; 1749 ret = read_partial(con, end, size, con->in_banner); 1750 if (ret <= 0) 1751 goto out; 1752 1753 size = sizeof (con->actual_peer_addr); 1754 end += size; 1755 ret = read_partial(con, end, size, &con->actual_peer_addr); 1756 if (ret <= 0) 1757 goto out; 1758 1759 size = sizeof (con->peer_addr_for_me); 1760 end += size; 1761 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1762 if (ret <= 0) 1763 goto out; 1764 1765 out: 1766 return ret; 1767 } 1768 1769 static int read_partial_connect(struct ceph_connection *con) 1770 { 1771 int size; 1772 int end; 1773 int ret; 1774 1775 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1776 1777 size = sizeof (con->in_reply); 1778 end = size; 1779 ret = read_partial(con, end, size, &con->in_reply); 1780 if (ret <= 0) 1781 goto out; 1782 1783 if (con->auth) { 1784 size = le32_to_cpu(con->in_reply.authorizer_len); 1785 if (size > con->auth->authorizer_reply_buf_len) { 1786 pr_err("authorizer reply too big: %d > %zu\n", size, 1787 con->auth->authorizer_reply_buf_len); 1788 ret = -EINVAL; 1789 goto out; 1790 } 1791 1792 end += size; 1793 ret = read_partial(con, end, size, 1794 con->auth->authorizer_reply_buf); 1795 if (ret <= 0) 1796 goto out; 1797 } 1798 1799 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1800 con, (int)con->in_reply.tag, 1801 le32_to_cpu(con->in_reply.connect_seq), 1802 le32_to_cpu(con->in_reply.global_seq)); 1803 out: 1804 return ret; 1805 } 1806 1807 /* 1808 * Verify the hello banner looks okay. 1809 */ 1810 static int verify_hello(struct ceph_connection *con) 1811 { 1812 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1813 pr_err("connect to %s got bad banner\n", 1814 ceph_pr_addr(&con->peer_addr.in_addr)); 1815 con->error_msg = "protocol error, bad banner"; 1816 return -1; 1817 } 1818 return 0; 1819 } 1820 1821 static bool addr_is_blank(struct sockaddr_storage *ss) 1822 { 1823 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr; 1824 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr; 1825 1826 switch (ss->ss_family) { 1827 case AF_INET: 1828 return addr->s_addr == htonl(INADDR_ANY); 1829 case AF_INET6: 1830 return ipv6_addr_any(addr6); 1831 default: 1832 return true; 1833 } 1834 } 1835 1836 static int addr_port(struct sockaddr_storage *ss) 1837 { 1838 switch (ss->ss_family) { 1839 case AF_INET: 1840 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1841 case AF_INET6: 1842 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1843 } 1844 return 0; 1845 } 1846 1847 static void addr_set_port(struct sockaddr_storage *ss, int p) 1848 { 1849 switch (ss->ss_family) { 1850 case AF_INET: 1851 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1852 break; 1853 case AF_INET6: 1854 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1855 break; 1856 } 1857 } 1858 1859 /* 1860 * Unlike other *_pton function semantics, zero indicates success. 1861 */ 1862 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1863 char delim, const char **ipend) 1864 { 1865 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1866 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1867 1868 memset(ss, 0, sizeof(*ss)); 1869 1870 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1871 ss->ss_family = AF_INET; 1872 return 0; 1873 } 1874 1875 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1876 ss->ss_family = AF_INET6; 1877 return 0; 1878 } 1879 1880 return -EINVAL; 1881 } 1882 1883 /* 1884 * Extract hostname string and resolve using kernel DNS facility. 1885 */ 1886 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1887 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1888 struct sockaddr_storage *ss, char delim, const char **ipend) 1889 { 1890 const char *end, *delim_p; 1891 char *colon_p, *ip_addr = NULL; 1892 int ip_len, ret; 1893 1894 /* 1895 * The end of the hostname occurs immediately preceding the delimiter or 1896 * the port marker (':') where the delimiter takes precedence. 1897 */ 1898 delim_p = memchr(name, delim, namelen); 1899 colon_p = memchr(name, ':', namelen); 1900 1901 if (delim_p && colon_p) 1902 end = delim_p < colon_p ? delim_p : colon_p; 1903 else if (!delim_p && colon_p) 1904 end = colon_p; 1905 else { 1906 end = delim_p; 1907 if (!end) /* case: hostname:/ */ 1908 end = name + namelen; 1909 } 1910 1911 if (end <= name) 1912 return -EINVAL; 1913 1914 /* do dns_resolve upcall */ 1915 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1916 if (ip_len > 0) 1917 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1918 else 1919 ret = -ESRCH; 1920 1921 kfree(ip_addr); 1922 1923 *ipend = end; 1924 1925 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1926 ret, ret ? "failed" : ceph_pr_addr(ss)); 1927 1928 return ret; 1929 } 1930 #else 1931 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1932 struct sockaddr_storage *ss, char delim, const char **ipend) 1933 { 1934 return -EINVAL; 1935 } 1936 #endif 1937 1938 /* 1939 * Parse a server name (IP or hostname). If a valid IP address is not found 1940 * then try to extract a hostname to resolve using userspace DNS upcall. 1941 */ 1942 static int ceph_parse_server_name(const char *name, size_t namelen, 1943 struct sockaddr_storage *ss, char delim, const char **ipend) 1944 { 1945 int ret; 1946 1947 ret = ceph_pton(name, namelen, ss, delim, ipend); 1948 if (ret) 1949 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1950 1951 return ret; 1952 } 1953 1954 /* 1955 * Parse an ip[:port] list into an addr array. Use the default 1956 * monitor port if a port isn't specified. 1957 */ 1958 int ceph_parse_ips(const char *c, const char *end, 1959 struct ceph_entity_addr *addr, 1960 int max_count, int *count) 1961 { 1962 int i, ret = -EINVAL; 1963 const char *p = c; 1964 1965 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1966 for (i = 0; i < max_count; i++) { 1967 const char *ipend; 1968 struct sockaddr_storage *ss = &addr[i].in_addr; 1969 int port; 1970 char delim = ','; 1971 1972 if (*p == '[') { 1973 delim = ']'; 1974 p++; 1975 } 1976 1977 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1978 if (ret) 1979 goto bad; 1980 ret = -EINVAL; 1981 1982 p = ipend; 1983 1984 if (delim == ']') { 1985 if (*p != ']') { 1986 dout("missing matching ']'\n"); 1987 goto bad; 1988 } 1989 p++; 1990 } 1991 1992 /* port? */ 1993 if (p < end && *p == ':') { 1994 port = 0; 1995 p++; 1996 while (p < end && *p >= '0' && *p <= '9') { 1997 port = (port * 10) + (*p - '0'); 1998 p++; 1999 } 2000 if (port == 0) 2001 port = CEPH_MON_PORT; 2002 else if (port > 65535) 2003 goto bad; 2004 } else { 2005 port = CEPH_MON_PORT; 2006 } 2007 2008 addr_set_port(ss, port); 2009 2010 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 2011 2012 if (p == end) 2013 break; 2014 if (*p != ',') 2015 goto bad; 2016 p++; 2017 } 2018 2019 if (p != end) 2020 goto bad; 2021 2022 if (count) 2023 *count = i + 1; 2024 return 0; 2025 2026 bad: 2027 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 2028 return ret; 2029 } 2030 EXPORT_SYMBOL(ceph_parse_ips); 2031 2032 static int process_banner(struct ceph_connection *con) 2033 { 2034 dout("process_banner on %p\n", con); 2035 2036 if (verify_hello(con) < 0) 2037 return -1; 2038 2039 ceph_decode_addr(&con->actual_peer_addr); 2040 ceph_decode_addr(&con->peer_addr_for_me); 2041 2042 /* 2043 * Make sure the other end is who we wanted. note that the other 2044 * end may not yet know their ip address, so if it's 0.0.0.0, give 2045 * them the benefit of the doubt. 2046 */ 2047 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 2048 sizeof(con->peer_addr)) != 0 && 2049 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 2050 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 2051 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 2052 ceph_pr_addr(&con->peer_addr.in_addr), 2053 (int)le32_to_cpu(con->peer_addr.nonce), 2054 ceph_pr_addr(&con->actual_peer_addr.in_addr), 2055 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 2056 con->error_msg = "wrong peer at address"; 2057 return -1; 2058 } 2059 2060 /* 2061 * did we learn our address? 2062 */ 2063 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 2064 int port = addr_port(&con->msgr->inst.addr.in_addr); 2065 2066 memcpy(&con->msgr->inst.addr.in_addr, 2067 &con->peer_addr_for_me.in_addr, 2068 sizeof(con->peer_addr_for_me.in_addr)); 2069 addr_set_port(&con->msgr->inst.addr.in_addr, port); 2070 encode_my_addr(con->msgr); 2071 dout("process_banner learned my addr is %s\n", 2072 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 2073 } 2074 2075 return 0; 2076 } 2077 2078 static int process_connect(struct ceph_connection *con) 2079 { 2080 u64 sup_feat = from_msgr(con->msgr)->supported_features; 2081 u64 req_feat = from_msgr(con->msgr)->required_features; 2082 u64 server_feat = le64_to_cpu(con->in_reply.features); 2083 int ret; 2084 2085 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 2086 2087 if (con->auth) { 2088 /* 2089 * Any connection that defines ->get_authorizer() 2090 * should also define ->add_authorizer_challenge() and 2091 * ->verify_authorizer_reply(). 2092 * 2093 * See get_connect_authorizer(). 2094 */ 2095 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) { 2096 ret = con->ops->add_authorizer_challenge( 2097 con, con->auth->authorizer_reply_buf, 2098 le32_to_cpu(con->in_reply.authorizer_len)); 2099 if (ret < 0) 2100 return ret; 2101 2102 con_out_kvec_reset(con); 2103 __prepare_write_connect(con); 2104 prepare_read_connect(con); 2105 return 0; 2106 } 2107 2108 ret = con->ops->verify_authorizer_reply(con); 2109 if (ret < 0) { 2110 con->error_msg = "bad authorize reply"; 2111 return ret; 2112 } 2113 } 2114 2115 switch (con->in_reply.tag) { 2116 case CEPH_MSGR_TAG_FEATURES: 2117 pr_err("%s%lld %s feature set mismatch," 2118 " my %llx < server's %llx, missing %llx\n", 2119 ENTITY_NAME(con->peer_name), 2120 ceph_pr_addr(&con->peer_addr.in_addr), 2121 sup_feat, server_feat, server_feat & ~sup_feat); 2122 con->error_msg = "missing required protocol features"; 2123 reset_connection(con); 2124 return -1; 2125 2126 case CEPH_MSGR_TAG_BADPROTOVER: 2127 pr_err("%s%lld %s protocol version mismatch," 2128 " my %d != server's %d\n", 2129 ENTITY_NAME(con->peer_name), 2130 ceph_pr_addr(&con->peer_addr.in_addr), 2131 le32_to_cpu(con->out_connect.protocol_version), 2132 le32_to_cpu(con->in_reply.protocol_version)); 2133 con->error_msg = "protocol version mismatch"; 2134 reset_connection(con); 2135 return -1; 2136 2137 case CEPH_MSGR_TAG_BADAUTHORIZER: 2138 con->auth_retry++; 2139 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2140 con->auth_retry); 2141 if (con->auth_retry == 2) { 2142 con->error_msg = "connect authorization failure"; 2143 return -1; 2144 } 2145 con_out_kvec_reset(con); 2146 ret = prepare_write_connect(con); 2147 if (ret < 0) 2148 return ret; 2149 prepare_read_connect(con); 2150 break; 2151 2152 case CEPH_MSGR_TAG_RESETSESSION: 2153 /* 2154 * If we connected with a large connect_seq but the peer 2155 * has no record of a session with us (no connection, or 2156 * connect_seq == 0), they will send RESETSESION to indicate 2157 * that they must have reset their session, and may have 2158 * dropped messages. 2159 */ 2160 dout("process_connect got RESET peer seq %u\n", 2161 le32_to_cpu(con->in_reply.connect_seq)); 2162 pr_err("%s%lld %s connection reset\n", 2163 ENTITY_NAME(con->peer_name), 2164 ceph_pr_addr(&con->peer_addr.in_addr)); 2165 reset_connection(con); 2166 con_out_kvec_reset(con); 2167 ret = prepare_write_connect(con); 2168 if (ret < 0) 2169 return ret; 2170 prepare_read_connect(con); 2171 2172 /* Tell ceph about it. */ 2173 mutex_unlock(&con->mutex); 2174 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2175 if (con->ops->peer_reset) 2176 con->ops->peer_reset(con); 2177 mutex_lock(&con->mutex); 2178 if (con->state != CON_STATE_NEGOTIATING) 2179 return -EAGAIN; 2180 break; 2181 2182 case CEPH_MSGR_TAG_RETRY_SESSION: 2183 /* 2184 * If we sent a smaller connect_seq than the peer has, try 2185 * again with a larger value. 2186 */ 2187 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2188 le32_to_cpu(con->out_connect.connect_seq), 2189 le32_to_cpu(con->in_reply.connect_seq)); 2190 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2191 con_out_kvec_reset(con); 2192 ret = prepare_write_connect(con); 2193 if (ret < 0) 2194 return ret; 2195 prepare_read_connect(con); 2196 break; 2197 2198 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2199 /* 2200 * If we sent a smaller global_seq than the peer has, try 2201 * again with a larger value. 2202 */ 2203 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2204 con->peer_global_seq, 2205 le32_to_cpu(con->in_reply.global_seq)); 2206 get_global_seq(con->msgr, 2207 le32_to_cpu(con->in_reply.global_seq)); 2208 con_out_kvec_reset(con); 2209 ret = prepare_write_connect(con); 2210 if (ret < 0) 2211 return ret; 2212 prepare_read_connect(con); 2213 break; 2214 2215 case CEPH_MSGR_TAG_SEQ: 2216 case CEPH_MSGR_TAG_READY: 2217 if (req_feat & ~server_feat) { 2218 pr_err("%s%lld %s protocol feature mismatch," 2219 " my required %llx > server's %llx, need %llx\n", 2220 ENTITY_NAME(con->peer_name), 2221 ceph_pr_addr(&con->peer_addr.in_addr), 2222 req_feat, server_feat, req_feat & ~server_feat); 2223 con->error_msg = "missing required protocol features"; 2224 reset_connection(con); 2225 return -1; 2226 } 2227 2228 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2229 con->state = CON_STATE_OPEN; 2230 con->auth_retry = 0; /* we authenticated; clear flag */ 2231 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2232 con->connect_seq++; 2233 con->peer_features = server_feat; 2234 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2235 con->peer_global_seq, 2236 le32_to_cpu(con->in_reply.connect_seq), 2237 con->connect_seq); 2238 WARN_ON(con->connect_seq != 2239 le32_to_cpu(con->in_reply.connect_seq)); 2240 2241 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2242 con_flag_set(con, CON_FLAG_LOSSYTX); 2243 2244 con->delay = 0; /* reset backoff memory */ 2245 2246 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2247 prepare_write_seq(con); 2248 prepare_read_seq(con); 2249 } else { 2250 prepare_read_tag(con); 2251 } 2252 break; 2253 2254 case CEPH_MSGR_TAG_WAIT: 2255 /* 2256 * If there is a connection race (we are opening 2257 * connections to each other), one of us may just have 2258 * to WAIT. This shouldn't happen if we are the 2259 * client. 2260 */ 2261 con->error_msg = "protocol error, got WAIT as client"; 2262 return -1; 2263 2264 default: 2265 con->error_msg = "protocol error, garbage tag during connect"; 2266 return -1; 2267 } 2268 return 0; 2269 } 2270 2271 2272 /* 2273 * read (part of) an ack 2274 */ 2275 static int read_partial_ack(struct ceph_connection *con) 2276 { 2277 int size = sizeof (con->in_temp_ack); 2278 int end = size; 2279 2280 return read_partial(con, end, size, &con->in_temp_ack); 2281 } 2282 2283 /* 2284 * We can finally discard anything that's been acked. 2285 */ 2286 static void process_ack(struct ceph_connection *con) 2287 { 2288 struct ceph_msg *m; 2289 u64 ack = le64_to_cpu(con->in_temp_ack); 2290 u64 seq; 2291 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ); 2292 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent; 2293 2294 /* 2295 * In the reconnect case, con_fault() has requeued messages 2296 * in out_sent. We should cleanup old messages according to 2297 * the reconnect seq. 2298 */ 2299 while (!list_empty(list)) { 2300 m = list_first_entry(list, struct ceph_msg, list_head); 2301 if (reconnect && m->needs_out_seq) 2302 break; 2303 seq = le64_to_cpu(m->hdr.seq); 2304 if (seq > ack) 2305 break; 2306 dout("got ack for seq %llu type %d at %p\n", seq, 2307 le16_to_cpu(m->hdr.type), m); 2308 m->ack_stamp = jiffies; 2309 ceph_msg_remove(m); 2310 } 2311 2312 prepare_read_tag(con); 2313 } 2314 2315 2316 static int read_partial_message_section(struct ceph_connection *con, 2317 struct kvec *section, 2318 unsigned int sec_len, u32 *crc) 2319 { 2320 int ret, left; 2321 2322 BUG_ON(!section); 2323 2324 while (section->iov_len < sec_len) { 2325 BUG_ON(section->iov_base == NULL); 2326 left = sec_len - section->iov_len; 2327 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2328 section->iov_len, left); 2329 if (ret <= 0) 2330 return ret; 2331 section->iov_len += ret; 2332 } 2333 if (section->iov_len == sec_len) 2334 *crc = crc32c(0, section->iov_base, section->iov_len); 2335 2336 return 1; 2337 } 2338 2339 static int read_partial_msg_data(struct ceph_connection *con) 2340 { 2341 struct ceph_msg *msg = con->in_msg; 2342 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2343 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2344 struct page *page; 2345 size_t page_offset; 2346 size_t length; 2347 u32 crc = 0; 2348 int ret; 2349 2350 BUG_ON(!msg); 2351 if (list_empty(&msg->data)) 2352 return -EIO; 2353 2354 if (do_datacrc) 2355 crc = con->in_data_crc; 2356 while (cursor->total_resid) { 2357 if (!cursor->resid) { 2358 ceph_msg_data_advance(cursor, 0); 2359 continue; 2360 } 2361 2362 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 2363 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2364 if (ret <= 0) { 2365 if (do_datacrc) 2366 con->in_data_crc = crc; 2367 2368 return ret; 2369 } 2370 2371 if (do_datacrc) 2372 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2373 ceph_msg_data_advance(cursor, (size_t)ret); 2374 } 2375 if (do_datacrc) 2376 con->in_data_crc = crc; 2377 2378 return 1; /* must return > 0 to indicate success */ 2379 } 2380 2381 /* 2382 * read (part of) a message. 2383 */ 2384 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2385 2386 static int read_partial_message(struct ceph_connection *con) 2387 { 2388 struct ceph_msg *m = con->in_msg; 2389 int size; 2390 int end; 2391 int ret; 2392 unsigned int front_len, middle_len, data_len; 2393 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2394 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2395 u64 seq; 2396 u32 crc; 2397 2398 dout("read_partial_message con %p msg %p\n", con, m); 2399 2400 /* header */ 2401 size = sizeof (con->in_hdr); 2402 end = size; 2403 ret = read_partial(con, end, size, &con->in_hdr); 2404 if (ret <= 0) 2405 return ret; 2406 2407 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2408 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2409 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2410 crc, con->in_hdr.crc); 2411 return -EBADMSG; 2412 } 2413 2414 front_len = le32_to_cpu(con->in_hdr.front_len); 2415 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2416 return -EIO; 2417 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2418 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2419 return -EIO; 2420 data_len = le32_to_cpu(con->in_hdr.data_len); 2421 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2422 return -EIO; 2423 2424 /* verify seq# */ 2425 seq = le64_to_cpu(con->in_hdr.seq); 2426 if ((s64)seq - (s64)con->in_seq < 1) { 2427 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2428 ENTITY_NAME(con->peer_name), 2429 ceph_pr_addr(&con->peer_addr.in_addr), 2430 seq, con->in_seq + 1); 2431 con->in_base_pos = -front_len - middle_len - data_len - 2432 sizeof_footer(con); 2433 con->in_tag = CEPH_MSGR_TAG_READY; 2434 return 1; 2435 } else if ((s64)seq - (s64)con->in_seq > 1) { 2436 pr_err("read_partial_message bad seq %lld expected %lld\n", 2437 seq, con->in_seq + 1); 2438 con->error_msg = "bad message sequence # for incoming message"; 2439 return -EBADE; 2440 } 2441 2442 /* allocate message? */ 2443 if (!con->in_msg) { 2444 int skip = 0; 2445 2446 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2447 front_len, data_len); 2448 ret = ceph_con_in_msg_alloc(con, &skip); 2449 if (ret < 0) 2450 return ret; 2451 2452 BUG_ON(!con->in_msg ^ skip); 2453 if (skip) { 2454 /* skip this message */ 2455 dout("alloc_msg said skip message\n"); 2456 con->in_base_pos = -front_len - middle_len - data_len - 2457 sizeof_footer(con); 2458 con->in_tag = CEPH_MSGR_TAG_READY; 2459 con->in_seq++; 2460 return 1; 2461 } 2462 2463 BUG_ON(!con->in_msg); 2464 BUG_ON(con->in_msg->con != con); 2465 m = con->in_msg; 2466 m->front.iov_len = 0; /* haven't read it yet */ 2467 if (m->middle) 2468 m->middle->vec.iov_len = 0; 2469 2470 /* prepare for data payload, if any */ 2471 2472 if (data_len) 2473 prepare_message_data(con->in_msg, data_len); 2474 } 2475 2476 /* front */ 2477 ret = read_partial_message_section(con, &m->front, front_len, 2478 &con->in_front_crc); 2479 if (ret <= 0) 2480 return ret; 2481 2482 /* middle */ 2483 if (m->middle) { 2484 ret = read_partial_message_section(con, &m->middle->vec, 2485 middle_len, 2486 &con->in_middle_crc); 2487 if (ret <= 0) 2488 return ret; 2489 } 2490 2491 /* (page) data */ 2492 if (data_len) { 2493 ret = read_partial_msg_data(con); 2494 if (ret <= 0) 2495 return ret; 2496 } 2497 2498 /* footer */ 2499 size = sizeof_footer(con); 2500 end += size; 2501 ret = read_partial(con, end, size, &m->footer); 2502 if (ret <= 0) 2503 return ret; 2504 2505 if (!need_sign) { 2506 m->footer.flags = m->old_footer.flags; 2507 m->footer.sig = 0; 2508 } 2509 2510 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2511 m, front_len, m->footer.front_crc, middle_len, 2512 m->footer.middle_crc, data_len, m->footer.data_crc); 2513 2514 /* crc ok? */ 2515 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2516 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2517 m, con->in_front_crc, m->footer.front_crc); 2518 return -EBADMSG; 2519 } 2520 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2521 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2522 m, con->in_middle_crc, m->footer.middle_crc); 2523 return -EBADMSG; 2524 } 2525 if (do_datacrc && 2526 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2527 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2528 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2529 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2530 return -EBADMSG; 2531 } 2532 2533 if (need_sign && con->ops->check_message_signature && 2534 con->ops->check_message_signature(m)) { 2535 pr_err("read_partial_message %p signature check failed\n", m); 2536 return -EBADMSG; 2537 } 2538 2539 return 1; /* done! */ 2540 } 2541 2542 /* 2543 * Process message. This happens in the worker thread. The callback should 2544 * be careful not to do anything that waits on other incoming messages or it 2545 * may deadlock. 2546 */ 2547 static void process_message(struct ceph_connection *con) 2548 { 2549 struct ceph_msg *msg = con->in_msg; 2550 2551 BUG_ON(con->in_msg->con != con); 2552 con->in_msg = NULL; 2553 2554 /* if first message, set peer_name */ 2555 if (con->peer_name.type == 0) 2556 con->peer_name = msg->hdr.src; 2557 2558 con->in_seq++; 2559 mutex_unlock(&con->mutex); 2560 2561 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2562 msg, le64_to_cpu(msg->hdr.seq), 2563 ENTITY_NAME(msg->hdr.src), 2564 le16_to_cpu(msg->hdr.type), 2565 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2566 le32_to_cpu(msg->hdr.front_len), 2567 le32_to_cpu(msg->hdr.data_len), 2568 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2569 con->ops->dispatch(con, msg); 2570 2571 mutex_lock(&con->mutex); 2572 } 2573 2574 static int read_keepalive_ack(struct ceph_connection *con) 2575 { 2576 struct ceph_timespec ceph_ts; 2577 size_t size = sizeof(ceph_ts); 2578 int ret = read_partial(con, size, size, &ceph_ts); 2579 if (ret <= 0) 2580 return ret; 2581 ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts); 2582 prepare_read_tag(con); 2583 return 1; 2584 } 2585 2586 /* 2587 * Write something to the socket. Called in a worker thread when the 2588 * socket appears to be writeable and we have something ready to send. 2589 */ 2590 static int try_write(struct ceph_connection *con) 2591 { 2592 int ret = 1; 2593 2594 dout("try_write start %p state %lu\n", con, con->state); 2595 if (con->state != CON_STATE_PREOPEN && 2596 con->state != CON_STATE_CONNECTING && 2597 con->state != CON_STATE_NEGOTIATING && 2598 con->state != CON_STATE_OPEN) 2599 return 0; 2600 2601 /* open the socket first? */ 2602 if (con->state == CON_STATE_PREOPEN) { 2603 BUG_ON(con->sock); 2604 con->state = CON_STATE_CONNECTING; 2605 2606 con_out_kvec_reset(con); 2607 prepare_write_banner(con); 2608 prepare_read_banner(con); 2609 2610 BUG_ON(con->in_msg); 2611 con->in_tag = CEPH_MSGR_TAG_READY; 2612 dout("try_write initiating connect on %p new state %lu\n", 2613 con, con->state); 2614 ret = ceph_tcp_connect(con); 2615 if (ret < 0) { 2616 con->error_msg = "connect error"; 2617 goto out; 2618 } 2619 } 2620 2621 more: 2622 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2623 BUG_ON(!con->sock); 2624 2625 /* kvec data queued? */ 2626 if (con->out_kvec_left) { 2627 ret = write_partial_kvec(con); 2628 if (ret <= 0) 2629 goto out; 2630 } 2631 if (con->out_skip) { 2632 ret = write_partial_skip(con); 2633 if (ret <= 0) 2634 goto out; 2635 } 2636 2637 /* msg pages? */ 2638 if (con->out_msg) { 2639 if (con->out_msg_done) { 2640 ceph_msg_put(con->out_msg); 2641 con->out_msg = NULL; /* we're done with this one */ 2642 goto do_next; 2643 } 2644 2645 ret = write_partial_message_data(con); 2646 if (ret == 1) 2647 goto more; /* we need to send the footer, too! */ 2648 if (ret == 0) 2649 goto out; 2650 if (ret < 0) { 2651 dout("try_write write_partial_message_data err %d\n", 2652 ret); 2653 goto out; 2654 } 2655 } 2656 2657 do_next: 2658 if (con->state == CON_STATE_OPEN) { 2659 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2660 prepare_write_keepalive(con); 2661 goto more; 2662 } 2663 /* is anything else pending? */ 2664 if (!list_empty(&con->out_queue)) { 2665 prepare_write_message(con); 2666 goto more; 2667 } 2668 if (con->in_seq > con->in_seq_acked) { 2669 prepare_write_ack(con); 2670 goto more; 2671 } 2672 } 2673 2674 /* Nothing to do! */ 2675 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2676 dout("try_write nothing else to write.\n"); 2677 ret = 0; 2678 out: 2679 dout("try_write done on %p ret %d\n", con, ret); 2680 return ret; 2681 } 2682 2683 /* 2684 * Read what we can from the socket. 2685 */ 2686 static int try_read(struct ceph_connection *con) 2687 { 2688 int ret = -1; 2689 2690 more: 2691 dout("try_read start on %p state %lu\n", con, con->state); 2692 if (con->state != CON_STATE_CONNECTING && 2693 con->state != CON_STATE_NEGOTIATING && 2694 con->state != CON_STATE_OPEN) 2695 return 0; 2696 2697 BUG_ON(!con->sock); 2698 2699 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2700 con->in_base_pos); 2701 2702 if (con->state == CON_STATE_CONNECTING) { 2703 dout("try_read connecting\n"); 2704 ret = read_partial_banner(con); 2705 if (ret <= 0) 2706 goto out; 2707 ret = process_banner(con); 2708 if (ret < 0) 2709 goto out; 2710 2711 con->state = CON_STATE_NEGOTIATING; 2712 2713 /* 2714 * Received banner is good, exchange connection info. 2715 * Do not reset out_kvec, as sending our banner raced 2716 * with receiving peer banner after connect completed. 2717 */ 2718 ret = prepare_write_connect(con); 2719 if (ret < 0) 2720 goto out; 2721 prepare_read_connect(con); 2722 2723 /* Send connection info before awaiting response */ 2724 goto out; 2725 } 2726 2727 if (con->state == CON_STATE_NEGOTIATING) { 2728 dout("try_read negotiating\n"); 2729 ret = read_partial_connect(con); 2730 if (ret <= 0) 2731 goto out; 2732 ret = process_connect(con); 2733 if (ret < 0) 2734 goto out; 2735 goto more; 2736 } 2737 2738 WARN_ON(con->state != CON_STATE_OPEN); 2739 2740 if (con->in_base_pos < 0) { 2741 /* 2742 * skipping + discarding content. 2743 */ 2744 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos); 2745 if (ret <= 0) 2746 goto out; 2747 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos); 2748 con->in_base_pos += ret; 2749 if (con->in_base_pos) 2750 goto more; 2751 } 2752 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2753 /* 2754 * what's next? 2755 */ 2756 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2757 if (ret <= 0) 2758 goto out; 2759 dout("try_read got tag %d\n", (int)con->in_tag); 2760 switch (con->in_tag) { 2761 case CEPH_MSGR_TAG_MSG: 2762 prepare_read_message(con); 2763 break; 2764 case CEPH_MSGR_TAG_ACK: 2765 prepare_read_ack(con); 2766 break; 2767 case CEPH_MSGR_TAG_KEEPALIVE2_ACK: 2768 prepare_read_keepalive_ack(con); 2769 break; 2770 case CEPH_MSGR_TAG_CLOSE: 2771 con_close_socket(con); 2772 con->state = CON_STATE_CLOSED; 2773 goto out; 2774 default: 2775 goto bad_tag; 2776 } 2777 } 2778 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2779 ret = read_partial_message(con); 2780 if (ret <= 0) { 2781 switch (ret) { 2782 case -EBADMSG: 2783 con->error_msg = "bad crc/signature"; 2784 /* fall through */ 2785 case -EBADE: 2786 ret = -EIO; 2787 break; 2788 case -EIO: 2789 con->error_msg = "io error"; 2790 break; 2791 } 2792 goto out; 2793 } 2794 if (con->in_tag == CEPH_MSGR_TAG_READY) 2795 goto more; 2796 process_message(con); 2797 if (con->state == CON_STATE_OPEN) 2798 prepare_read_tag(con); 2799 goto more; 2800 } 2801 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2802 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2803 /* 2804 * the final handshake seq exchange is semantically 2805 * equivalent to an ACK 2806 */ 2807 ret = read_partial_ack(con); 2808 if (ret <= 0) 2809 goto out; 2810 process_ack(con); 2811 goto more; 2812 } 2813 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) { 2814 ret = read_keepalive_ack(con); 2815 if (ret <= 0) 2816 goto out; 2817 goto more; 2818 } 2819 2820 out: 2821 dout("try_read done on %p ret %d\n", con, ret); 2822 return ret; 2823 2824 bad_tag: 2825 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2826 con->error_msg = "protocol error, garbage tag"; 2827 ret = -1; 2828 goto out; 2829 } 2830 2831 2832 /* 2833 * Atomically queue work on a connection after the specified delay. 2834 * Bump @con reference to avoid races with connection teardown. 2835 * Returns 0 if work was queued, or an error code otherwise. 2836 */ 2837 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2838 { 2839 if (!con->ops->get(con)) { 2840 dout("%s %p ref count 0\n", __func__, con); 2841 return -ENOENT; 2842 } 2843 2844 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2845 dout("%s %p - already queued\n", __func__, con); 2846 con->ops->put(con); 2847 return -EBUSY; 2848 } 2849 2850 dout("%s %p %lu\n", __func__, con, delay); 2851 return 0; 2852 } 2853 2854 static void queue_con(struct ceph_connection *con) 2855 { 2856 (void) queue_con_delay(con, 0); 2857 } 2858 2859 static void cancel_con(struct ceph_connection *con) 2860 { 2861 if (cancel_delayed_work(&con->work)) { 2862 dout("%s %p\n", __func__, con); 2863 con->ops->put(con); 2864 } 2865 } 2866 2867 static bool con_sock_closed(struct ceph_connection *con) 2868 { 2869 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2870 return false; 2871 2872 #define CASE(x) \ 2873 case CON_STATE_ ## x: \ 2874 con->error_msg = "socket closed (con state " #x ")"; \ 2875 break; 2876 2877 switch (con->state) { 2878 CASE(CLOSED); 2879 CASE(PREOPEN); 2880 CASE(CONNECTING); 2881 CASE(NEGOTIATING); 2882 CASE(OPEN); 2883 CASE(STANDBY); 2884 default: 2885 pr_warn("%s con %p unrecognized state %lu\n", 2886 __func__, con, con->state); 2887 con->error_msg = "unrecognized con state"; 2888 BUG(); 2889 break; 2890 } 2891 #undef CASE 2892 2893 return true; 2894 } 2895 2896 static bool con_backoff(struct ceph_connection *con) 2897 { 2898 int ret; 2899 2900 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2901 return false; 2902 2903 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2904 if (ret) { 2905 dout("%s: con %p FAILED to back off %lu\n", __func__, 2906 con, con->delay); 2907 BUG_ON(ret == -ENOENT); 2908 con_flag_set(con, CON_FLAG_BACKOFF); 2909 } 2910 2911 return true; 2912 } 2913 2914 /* Finish fault handling; con->mutex must *not* be held here */ 2915 2916 static void con_fault_finish(struct ceph_connection *con) 2917 { 2918 dout("%s %p\n", __func__, con); 2919 2920 /* 2921 * in case we faulted due to authentication, invalidate our 2922 * current tickets so that we can get new ones. 2923 */ 2924 if (con->auth_retry) { 2925 dout("auth_retry %d, invalidating\n", con->auth_retry); 2926 if (con->ops->invalidate_authorizer) 2927 con->ops->invalidate_authorizer(con); 2928 con->auth_retry = 0; 2929 } 2930 2931 if (con->ops->fault) 2932 con->ops->fault(con); 2933 } 2934 2935 /* 2936 * Do some work on a connection. Drop a connection ref when we're done. 2937 */ 2938 static void ceph_con_workfn(struct work_struct *work) 2939 { 2940 struct ceph_connection *con = container_of(work, struct ceph_connection, 2941 work.work); 2942 bool fault; 2943 2944 mutex_lock(&con->mutex); 2945 while (true) { 2946 int ret; 2947 2948 if ((fault = con_sock_closed(con))) { 2949 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2950 break; 2951 } 2952 if (con_backoff(con)) { 2953 dout("%s: con %p BACKOFF\n", __func__, con); 2954 break; 2955 } 2956 if (con->state == CON_STATE_STANDBY) { 2957 dout("%s: con %p STANDBY\n", __func__, con); 2958 break; 2959 } 2960 if (con->state == CON_STATE_CLOSED) { 2961 dout("%s: con %p CLOSED\n", __func__, con); 2962 BUG_ON(con->sock); 2963 break; 2964 } 2965 if (con->state == CON_STATE_PREOPEN) { 2966 dout("%s: con %p PREOPEN\n", __func__, con); 2967 BUG_ON(con->sock); 2968 } 2969 2970 ret = try_read(con); 2971 if (ret < 0) { 2972 if (ret == -EAGAIN) 2973 continue; 2974 if (!con->error_msg) 2975 con->error_msg = "socket error on read"; 2976 fault = true; 2977 break; 2978 } 2979 2980 ret = try_write(con); 2981 if (ret < 0) { 2982 if (ret == -EAGAIN) 2983 continue; 2984 if (!con->error_msg) 2985 con->error_msg = "socket error on write"; 2986 fault = true; 2987 } 2988 2989 break; /* If we make it to here, we're done */ 2990 } 2991 if (fault) 2992 con_fault(con); 2993 mutex_unlock(&con->mutex); 2994 2995 if (fault) 2996 con_fault_finish(con); 2997 2998 con->ops->put(con); 2999 } 3000 3001 /* 3002 * Generic error/fault handler. A retry mechanism is used with 3003 * exponential backoff 3004 */ 3005 static void con_fault(struct ceph_connection *con) 3006 { 3007 dout("fault %p state %lu to peer %s\n", 3008 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 3009 3010 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 3011 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 3012 con->error_msg = NULL; 3013 3014 WARN_ON(con->state != CON_STATE_CONNECTING && 3015 con->state != CON_STATE_NEGOTIATING && 3016 con->state != CON_STATE_OPEN); 3017 3018 con_close_socket(con); 3019 3020 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 3021 dout("fault on LOSSYTX channel, marking CLOSED\n"); 3022 con->state = CON_STATE_CLOSED; 3023 return; 3024 } 3025 3026 if (con->in_msg) { 3027 BUG_ON(con->in_msg->con != con); 3028 ceph_msg_put(con->in_msg); 3029 con->in_msg = NULL; 3030 } 3031 3032 /* Requeue anything that hasn't been acked */ 3033 list_splice_init(&con->out_sent, &con->out_queue); 3034 3035 /* If there are no messages queued or keepalive pending, place 3036 * the connection in a STANDBY state */ 3037 if (list_empty(&con->out_queue) && 3038 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 3039 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 3040 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 3041 con->state = CON_STATE_STANDBY; 3042 } else { 3043 /* retry after a delay. */ 3044 con->state = CON_STATE_PREOPEN; 3045 if (con->delay == 0) 3046 con->delay = BASE_DELAY_INTERVAL; 3047 else if (con->delay < MAX_DELAY_INTERVAL) 3048 con->delay *= 2; 3049 con_flag_set(con, CON_FLAG_BACKOFF); 3050 queue_con(con); 3051 } 3052 } 3053 3054 3055 3056 /* 3057 * initialize a new messenger instance 3058 */ 3059 void ceph_messenger_init(struct ceph_messenger *msgr, 3060 struct ceph_entity_addr *myaddr) 3061 { 3062 spin_lock_init(&msgr->global_seq_lock); 3063 3064 if (myaddr) 3065 msgr->inst.addr = *myaddr; 3066 3067 /* select a random nonce */ 3068 msgr->inst.addr.type = 0; 3069 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 3070 encode_my_addr(msgr); 3071 3072 atomic_set(&msgr->stopping, 0); 3073 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 3074 3075 dout("%s %p\n", __func__, msgr); 3076 } 3077 EXPORT_SYMBOL(ceph_messenger_init); 3078 3079 void ceph_messenger_fini(struct ceph_messenger *msgr) 3080 { 3081 put_net(read_pnet(&msgr->net)); 3082 } 3083 EXPORT_SYMBOL(ceph_messenger_fini); 3084 3085 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 3086 { 3087 if (msg->con) 3088 msg->con->ops->put(msg->con); 3089 3090 msg->con = con ? con->ops->get(con) : NULL; 3091 BUG_ON(msg->con != con); 3092 } 3093 3094 static void clear_standby(struct ceph_connection *con) 3095 { 3096 /* come back from STANDBY? */ 3097 if (con->state == CON_STATE_STANDBY) { 3098 dout("clear_standby %p and ++connect_seq\n", con); 3099 con->state = CON_STATE_PREOPEN; 3100 con->connect_seq++; 3101 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 3102 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 3103 } 3104 } 3105 3106 /* 3107 * Queue up an outgoing message on the given connection. 3108 */ 3109 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 3110 { 3111 /* set src+dst */ 3112 msg->hdr.src = con->msgr->inst.name; 3113 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 3114 msg->needs_out_seq = true; 3115 3116 mutex_lock(&con->mutex); 3117 3118 if (con->state == CON_STATE_CLOSED) { 3119 dout("con_send %p closed, dropping %p\n", con, msg); 3120 ceph_msg_put(msg); 3121 mutex_unlock(&con->mutex); 3122 return; 3123 } 3124 3125 msg_con_set(msg, con); 3126 3127 BUG_ON(!list_empty(&msg->list_head)); 3128 list_add_tail(&msg->list_head, &con->out_queue); 3129 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 3130 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 3131 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 3132 le32_to_cpu(msg->hdr.front_len), 3133 le32_to_cpu(msg->hdr.middle_len), 3134 le32_to_cpu(msg->hdr.data_len)); 3135 3136 clear_standby(con); 3137 mutex_unlock(&con->mutex); 3138 3139 /* if there wasn't anything waiting to send before, queue 3140 * new work */ 3141 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3142 queue_con(con); 3143 } 3144 EXPORT_SYMBOL(ceph_con_send); 3145 3146 /* 3147 * Revoke a message that was previously queued for send 3148 */ 3149 void ceph_msg_revoke(struct ceph_msg *msg) 3150 { 3151 struct ceph_connection *con = msg->con; 3152 3153 if (!con) { 3154 dout("%s msg %p null con\n", __func__, msg); 3155 return; /* Message not in our possession */ 3156 } 3157 3158 mutex_lock(&con->mutex); 3159 if (!list_empty(&msg->list_head)) { 3160 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3161 list_del_init(&msg->list_head); 3162 msg->hdr.seq = 0; 3163 3164 ceph_msg_put(msg); 3165 } 3166 if (con->out_msg == msg) { 3167 BUG_ON(con->out_skip); 3168 /* footer */ 3169 if (con->out_msg_done) { 3170 con->out_skip += con_out_kvec_skip(con); 3171 } else { 3172 BUG_ON(!msg->data_length); 3173 con->out_skip += sizeof_footer(con); 3174 } 3175 /* data, middle, front */ 3176 if (msg->data_length) 3177 con->out_skip += msg->cursor.total_resid; 3178 if (msg->middle) 3179 con->out_skip += con_out_kvec_skip(con); 3180 con->out_skip += con_out_kvec_skip(con); 3181 3182 dout("%s %p msg %p - was sending, will write %d skip %d\n", 3183 __func__, con, msg, con->out_kvec_bytes, con->out_skip); 3184 msg->hdr.seq = 0; 3185 con->out_msg = NULL; 3186 ceph_msg_put(msg); 3187 } 3188 3189 mutex_unlock(&con->mutex); 3190 } 3191 3192 /* 3193 * Revoke a message that we may be reading data into 3194 */ 3195 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3196 { 3197 struct ceph_connection *con = msg->con; 3198 3199 if (!con) { 3200 dout("%s msg %p null con\n", __func__, msg); 3201 return; /* Message not in our possession */ 3202 } 3203 3204 mutex_lock(&con->mutex); 3205 if (con->in_msg == msg) { 3206 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3207 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3208 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3209 3210 /* skip rest of message */ 3211 dout("%s %p msg %p revoked\n", __func__, con, msg); 3212 con->in_base_pos = con->in_base_pos - 3213 sizeof(struct ceph_msg_header) - 3214 front_len - 3215 middle_len - 3216 data_len - 3217 sizeof(struct ceph_msg_footer); 3218 ceph_msg_put(con->in_msg); 3219 con->in_msg = NULL; 3220 con->in_tag = CEPH_MSGR_TAG_READY; 3221 con->in_seq++; 3222 } else { 3223 dout("%s %p in_msg %p msg %p no-op\n", 3224 __func__, con, con->in_msg, msg); 3225 } 3226 mutex_unlock(&con->mutex); 3227 } 3228 3229 /* 3230 * Queue a keepalive byte to ensure the tcp connection is alive. 3231 */ 3232 void ceph_con_keepalive(struct ceph_connection *con) 3233 { 3234 dout("con_keepalive %p\n", con); 3235 mutex_lock(&con->mutex); 3236 clear_standby(con); 3237 mutex_unlock(&con->mutex); 3238 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3239 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3240 queue_con(con); 3241 } 3242 EXPORT_SYMBOL(ceph_con_keepalive); 3243 3244 bool ceph_con_keepalive_expired(struct ceph_connection *con, 3245 unsigned long interval) 3246 { 3247 if (interval > 0 && 3248 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 3249 struct timespec64 now; 3250 struct timespec64 ts; 3251 ktime_get_real_ts64(&now); 3252 jiffies_to_timespec64(interval, &ts); 3253 ts = timespec64_add(con->last_keepalive_ack, ts); 3254 return timespec64_compare(&now, &ts) >= 0; 3255 } 3256 return false; 3257 } 3258 3259 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3260 { 3261 struct ceph_msg_data *data; 3262 3263 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3264 return NULL; 3265 3266 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3267 if (!data) 3268 return NULL; 3269 3270 data->type = type; 3271 INIT_LIST_HEAD(&data->links); 3272 3273 return data; 3274 } 3275 3276 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3277 { 3278 if (!data) 3279 return; 3280 3281 WARN_ON(!list_empty(&data->links)); 3282 if (data->type == CEPH_MSG_DATA_PAGELIST) 3283 ceph_pagelist_release(data->pagelist); 3284 kmem_cache_free(ceph_msg_data_cache, data); 3285 } 3286 3287 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3288 size_t length, size_t alignment) 3289 { 3290 struct ceph_msg_data *data; 3291 3292 BUG_ON(!pages); 3293 BUG_ON(!length); 3294 3295 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3296 BUG_ON(!data); 3297 data->pages = pages; 3298 data->length = length; 3299 data->alignment = alignment & ~PAGE_MASK; 3300 3301 list_add_tail(&data->links, &msg->data); 3302 msg->data_length += length; 3303 } 3304 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3305 3306 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3307 struct ceph_pagelist *pagelist) 3308 { 3309 struct ceph_msg_data *data; 3310 3311 BUG_ON(!pagelist); 3312 BUG_ON(!pagelist->length); 3313 3314 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3315 BUG_ON(!data); 3316 data->pagelist = pagelist; 3317 3318 list_add_tail(&data->links, &msg->data); 3319 msg->data_length += pagelist->length; 3320 } 3321 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3322 3323 #ifdef CONFIG_BLOCK 3324 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, 3325 u32 length) 3326 { 3327 struct ceph_msg_data *data; 3328 3329 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3330 BUG_ON(!data); 3331 data->bio_pos = *bio_pos; 3332 data->bio_length = length; 3333 3334 list_add_tail(&data->links, &msg->data); 3335 msg->data_length += length; 3336 } 3337 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3338 #endif /* CONFIG_BLOCK */ 3339 3340 void ceph_msg_data_add_bvecs(struct ceph_msg *msg, 3341 struct ceph_bvec_iter *bvec_pos) 3342 { 3343 struct ceph_msg_data *data; 3344 3345 data = ceph_msg_data_create(CEPH_MSG_DATA_BVECS); 3346 BUG_ON(!data); 3347 data->bvec_pos = *bvec_pos; 3348 3349 list_add_tail(&data->links, &msg->data); 3350 msg->data_length += bvec_pos->iter.bi_size; 3351 } 3352 EXPORT_SYMBOL(ceph_msg_data_add_bvecs); 3353 3354 /* 3355 * construct a new message with given type, size 3356 * the new msg has a ref count of 1. 3357 */ 3358 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3359 bool can_fail) 3360 { 3361 struct ceph_msg *m; 3362 3363 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3364 if (m == NULL) 3365 goto out; 3366 3367 m->hdr.type = cpu_to_le16(type); 3368 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3369 m->hdr.front_len = cpu_to_le32(front_len); 3370 3371 INIT_LIST_HEAD(&m->list_head); 3372 kref_init(&m->kref); 3373 INIT_LIST_HEAD(&m->data); 3374 3375 /* front */ 3376 if (front_len) { 3377 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3378 if (m->front.iov_base == NULL) { 3379 dout("ceph_msg_new can't allocate %d bytes\n", 3380 front_len); 3381 goto out2; 3382 } 3383 } else { 3384 m->front.iov_base = NULL; 3385 } 3386 m->front_alloc_len = m->front.iov_len = front_len; 3387 3388 dout("ceph_msg_new %p front %d\n", m, front_len); 3389 return m; 3390 3391 out2: 3392 ceph_msg_put(m); 3393 out: 3394 if (!can_fail) { 3395 pr_err("msg_new can't create type %d front %d\n", type, 3396 front_len); 3397 WARN_ON(1); 3398 } else { 3399 dout("msg_new can't create type %d front %d\n", type, 3400 front_len); 3401 } 3402 return NULL; 3403 } 3404 EXPORT_SYMBOL(ceph_msg_new); 3405 3406 /* 3407 * Allocate "middle" portion of a message, if it is needed and wasn't 3408 * allocated by alloc_msg. This allows us to read a small fixed-size 3409 * per-type header in the front and then gracefully fail (i.e., 3410 * propagate the error to the caller based on info in the front) when 3411 * the middle is too large. 3412 */ 3413 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3414 { 3415 int type = le16_to_cpu(msg->hdr.type); 3416 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3417 3418 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3419 ceph_msg_type_name(type), middle_len); 3420 BUG_ON(!middle_len); 3421 BUG_ON(msg->middle); 3422 3423 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3424 if (!msg->middle) 3425 return -ENOMEM; 3426 return 0; 3427 } 3428 3429 /* 3430 * Allocate a message for receiving an incoming message on a 3431 * connection, and save the result in con->in_msg. Uses the 3432 * connection's private alloc_msg op if available. 3433 * 3434 * Returns 0 on success, or a negative error code. 3435 * 3436 * On success, if we set *skip = 1: 3437 * - the next message should be skipped and ignored. 3438 * - con->in_msg == NULL 3439 * or if we set *skip = 0: 3440 * - con->in_msg is non-null. 3441 * On error (ENOMEM, EAGAIN, ...), 3442 * - con->in_msg == NULL 3443 */ 3444 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3445 { 3446 struct ceph_msg_header *hdr = &con->in_hdr; 3447 int middle_len = le32_to_cpu(hdr->middle_len); 3448 struct ceph_msg *msg; 3449 int ret = 0; 3450 3451 BUG_ON(con->in_msg != NULL); 3452 BUG_ON(!con->ops->alloc_msg); 3453 3454 mutex_unlock(&con->mutex); 3455 msg = con->ops->alloc_msg(con, hdr, skip); 3456 mutex_lock(&con->mutex); 3457 if (con->state != CON_STATE_OPEN) { 3458 if (msg) 3459 ceph_msg_put(msg); 3460 return -EAGAIN; 3461 } 3462 if (msg) { 3463 BUG_ON(*skip); 3464 msg_con_set(msg, con); 3465 con->in_msg = msg; 3466 } else { 3467 /* 3468 * Null message pointer means either we should skip 3469 * this message or we couldn't allocate memory. The 3470 * former is not an error. 3471 */ 3472 if (*skip) 3473 return 0; 3474 3475 con->error_msg = "error allocating memory for incoming message"; 3476 return -ENOMEM; 3477 } 3478 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3479 3480 if (middle_len && !con->in_msg->middle) { 3481 ret = ceph_alloc_middle(con, con->in_msg); 3482 if (ret < 0) { 3483 ceph_msg_put(con->in_msg); 3484 con->in_msg = NULL; 3485 } 3486 } 3487 3488 return ret; 3489 } 3490 3491 3492 /* 3493 * Free a generically kmalloc'd message. 3494 */ 3495 static void ceph_msg_free(struct ceph_msg *m) 3496 { 3497 dout("%s %p\n", __func__, m); 3498 kvfree(m->front.iov_base); 3499 kmem_cache_free(ceph_msg_cache, m); 3500 } 3501 3502 static void ceph_msg_release(struct kref *kref) 3503 { 3504 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3505 struct ceph_msg_data *data, *next; 3506 3507 dout("%s %p\n", __func__, m); 3508 WARN_ON(!list_empty(&m->list_head)); 3509 3510 msg_con_set(m, NULL); 3511 3512 /* drop middle, data, if any */ 3513 if (m->middle) { 3514 ceph_buffer_put(m->middle); 3515 m->middle = NULL; 3516 } 3517 3518 list_for_each_entry_safe(data, next, &m->data, links) { 3519 list_del_init(&data->links); 3520 ceph_msg_data_destroy(data); 3521 } 3522 m->data_length = 0; 3523 3524 if (m->pool) 3525 ceph_msgpool_put(m->pool, m); 3526 else 3527 ceph_msg_free(m); 3528 } 3529 3530 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3531 { 3532 dout("%s %p (was %d)\n", __func__, msg, 3533 kref_read(&msg->kref)); 3534 kref_get(&msg->kref); 3535 return msg; 3536 } 3537 EXPORT_SYMBOL(ceph_msg_get); 3538 3539 void ceph_msg_put(struct ceph_msg *msg) 3540 { 3541 dout("%s %p (was %d)\n", __func__, msg, 3542 kref_read(&msg->kref)); 3543 kref_put(&msg->kref, ceph_msg_release); 3544 } 3545 EXPORT_SYMBOL(ceph_msg_put); 3546 3547 void ceph_msg_dump(struct ceph_msg *msg) 3548 { 3549 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3550 msg->front_alloc_len, msg->data_length); 3551 print_hex_dump(KERN_DEBUG, "header: ", 3552 DUMP_PREFIX_OFFSET, 16, 1, 3553 &msg->hdr, sizeof(msg->hdr), true); 3554 print_hex_dump(KERN_DEBUG, " front: ", 3555 DUMP_PREFIX_OFFSET, 16, 1, 3556 msg->front.iov_base, msg->front.iov_len, true); 3557 if (msg->middle) 3558 print_hex_dump(KERN_DEBUG, "middle: ", 3559 DUMP_PREFIX_OFFSET, 16, 1, 3560 msg->middle->vec.iov_base, 3561 msg->middle->vec.iov_len, true); 3562 print_hex_dump(KERN_DEBUG, "footer: ", 3563 DUMP_PREFIX_OFFSET, 16, 1, 3564 &msg->footer, sizeof(msg->footer), true); 3565 } 3566 EXPORT_SYMBOL(ceph_msg_dump); 3567