1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/nsproxy.h> 10 #include <linux/sched/mm.h> 11 #include <linux/slab.h> 12 #include <linux/socket.h> 13 #include <linux/string.h> 14 #ifdef CONFIG_BLOCK 15 #include <linux/bio.h> 16 #endif /* CONFIG_BLOCK */ 17 #include <linux/dns_resolver.h> 18 #include <net/tcp.h> 19 20 #include <linux/ceph/ceph_features.h> 21 #include <linux/ceph/libceph.h> 22 #include <linux/ceph/messenger.h> 23 #include <linux/ceph/decode.h> 24 #include <linux/ceph/pagelist.h> 25 #include <linux/export.h> 26 27 /* 28 * Ceph uses the messenger to exchange ceph_msg messages with other 29 * hosts in the system. The messenger provides ordered and reliable 30 * delivery. We tolerate TCP disconnects by reconnecting (with 31 * exponential backoff) in the case of a fault (disconnection, bad 32 * crc, protocol error). Acks allow sent messages to be discarded by 33 * the sender. 34 */ 35 36 /* 37 * We track the state of the socket on a given connection using 38 * values defined below. The transition to a new socket state is 39 * handled by a function which verifies we aren't coming from an 40 * unexpected state. 41 * 42 * -------- 43 * | NEW* | transient initial state 44 * -------- 45 * | con_sock_state_init() 46 * v 47 * ---------- 48 * | CLOSED | initialized, but no socket (and no 49 * ---------- TCP connection) 50 * ^ \ 51 * | \ con_sock_state_connecting() 52 * | ---------------------- 53 * | \ 54 * + con_sock_state_closed() \ 55 * |+--------------------------- \ 56 * | \ \ \ 57 * | ----------- \ \ 58 * | | CLOSING | socket event; \ \ 59 * | ----------- await close \ \ 60 * | ^ \ | 61 * | | \ | 62 * | + con_sock_state_closing() \ | 63 * | / \ | | 64 * | / --------------- | | 65 * | / \ v v 66 * | / -------------- 67 * | / -----------------| CONNECTING | socket created, TCP 68 * | | / -------------- connect initiated 69 * | | | con_sock_state_connected() 70 * | | v 71 * ------------- 72 * | CONNECTED | TCP connection established 73 * ------------- 74 * 75 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 76 */ 77 78 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 79 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 80 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 81 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 82 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 83 84 /* 85 * connection states 86 */ 87 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 88 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 89 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 90 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 91 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 92 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 93 94 /* 95 * ceph_connection flag bits 96 */ 97 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 98 * messages on errors */ 99 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 100 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 101 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 102 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 103 104 static bool con_flag_valid(unsigned long con_flag) 105 { 106 switch (con_flag) { 107 case CON_FLAG_LOSSYTX: 108 case CON_FLAG_KEEPALIVE_PENDING: 109 case CON_FLAG_WRITE_PENDING: 110 case CON_FLAG_SOCK_CLOSED: 111 case CON_FLAG_BACKOFF: 112 return true; 113 default: 114 return false; 115 } 116 } 117 118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 119 { 120 BUG_ON(!con_flag_valid(con_flag)); 121 122 clear_bit(con_flag, &con->flags); 123 } 124 125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 126 { 127 BUG_ON(!con_flag_valid(con_flag)); 128 129 set_bit(con_flag, &con->flags); 130 } 131 132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 133 { 134 BUG_ON(!con_flag_valid(con_flag)); 135 136 return test_bit(con_flag, &con->flags); 137 } 138 139 static bool con_flag_test_and_clear(struct ceph_connection *con, 140 unsigned long con_flag) 141 { 142 BUG_ON(!con_flag_valid(con_flag)); 143 144 return test_and_clear_bit(con_flag, &con->flags); 145 } 146 147 static bool con_flag_test_and_set(struct ceph_connection *con, 148 unsigned long con_flag) 149 { 150 BUG_ON(!con_flag_valid(con_flag)); 151 152 return test_and_set_bit(con_flag, &con->flags); 153 } 154 155 /* Slab caches for frequently-allocated structures */ 156 157 static struct kmem_cache *ceph_msg_cache; 158 static struct kmem_cache *ceph_msg_data_cache; 159 160 /* static tag bytes (protocol control messages) */ 161 static char tag_msg = CEPH_MSGR_TAG_MSG; 162 static char tag_ack = CEPH_MSGR_TAG_ACK; 163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 /* 171 * When skipping (ignoring) a block of input we read it into a "skip 172 * buffer," which is this many bytes in size. 173 */ 174 #define SKIP_BUF_SIZE 1024 175 176 static void queue_con(struct ceph_connection *con); 177 static void cancel_con(struct ceph_connection *con); 178 static void ceph_con_workfn(struct work_struct *); 179 static void con_fault(struct ceph_connection *con); 180 181 /* 182 * Nicely render a sockaddr as a string. An array of formatted 183 * strings is used, to approximate reentrancy. 184 */ 185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 189 190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 191 static atomic_t addr_str_seq = ATOMIC_INIT(0); 192 193 static struct page *zero_page; /* used in certain error cases */ 194 195 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 196 { 197 int i; 198 char *s; 199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 201 202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 203 s = addr_str[i]; 204 205 switch (ss->ss_family) { 206 case AF_INET: 207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 208 ntohs(in4->sin_port)); 209 break; 210 211 case AF_INET6: 212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 213 ntohs(in6->sin6_port)); 214 break; 215 216 default: 217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 218 ss->ss_family); 219 } 220 221 return s; 222 } 223 EXPORT_SYMBOL(ceph_pr_addr); 224 225 static void encode_my_addr(struct ceph_messenger *msgr) 226 { 227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 228 ceph_encode_addr(&msgr->my_enc_addr); 229 } 230 231 /* 232 * work queue for all reading and writing to/from the socket. 233 */ 234 static struct workqueue_struct *ceph_msgr_wq; 235 236 static int ceph_msgr_slab_init(void) 237 { 238 BUG_ON(ceph_msg_cache); 239 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 240 if (!ceph_msg_cache) 241 return -ENOMEM; 242 243 BUG_ON(ceph_msg_data_cache); 244 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0); 245 if (ceph_msg_data_cache) 246 return 0; 247 248 kmem_cache_destroy(ceph_msg_cache); 249 ceph_msg_cache = NULL; 250 251 return -ENOMEM; 252 } 253 254 static void ceph_msgr_slab_exit(void) 255 { 256 BUG_ON(!ceph_msg_data_cache); 257 kmem_cache_destroy(ceph_msg_data_cache); 258 ceph_msg_data_cache = NULL; 259 260 BUG_ON(!ceph_msg_cache); 261 kmem_cache_destroy(ceph_msg_cache); 262 ceph_msg_cache = NULL; 263 } 264 265 static void _ceph_msgr_exit(void) 266 { 267 if (ceph_msgr_wq) { 268 destroy_workqueue(ceph_msgr_wq); 269 ceph_msgr_wq = NULL; 270 } 271 272 BUG_ON(zero_page == NULL); 273 put_page(zero_page); 274 zero_page = NULL; 275 276 ceph_msgr_slab_exit(); 277 } 278 279 int ceph_msgr_init(void) 280 { 281 if (ceph_msgr_slab_init()) 282 return -ENOMEM; 283 284 BUG_ON(zero_page != NULL); 285 zero_page = ZERO_PAGE(0); 286 get_page(zero_page); 287 288 /* 289 * The number of active work items is limited by the number of 290 * connections, so leave @max_active at default. 291 */ 292 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 293 if (ceph_msgr_wq) 294 return 0; 295 296 pr_err("msgr_init failed to create workqueue\n"); 297 _ceph_msgr_exit(); 298 299 return -ENOMEM; 300 } 301 EXPORT_SYMBOL(ceph_msgr_init); 302 303 void ceph_msgr_exit(void) 304 { 305 BUG_ON(ceph_msgr_wq == NULL); 306 307 _ceph_msgr_exit(); 308 } 309 EXPORT_SYMBOL(ceph_msgr_exit); 310 311 void ceph_msgr_flush(void) 312 { 313 flush_workqueue(ceph_msgr_wq); 314 } 315 EXPORT_SYMBOL(ceph_msgr_flush); 316 317 /* Connection socket state transition functions */ 318 319 static void con_sock_state_init(struct ceph_connection *con) 320 { 321 int old_state; 322 323 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 324 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 325 printk("%s: unexpected old state %d\n", __func__, old_state); 326 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 327 CON_SOCK_STATE_CLOSED); 328 } 329 330 static void con_sock_state_connecting(struct ceph_connection *con) 331 { 332 int old_state; 333 334 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 335 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 336 printk("%s: unexpected old state %d\n", __func__, old_state); 337 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 338 CON_SOCK_STATE_CONNECTING); 339 } 340 341 static void con_sock_state_connected(struct ceph_connection *con) 342 { 343 int old_state; 344 345 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 346 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 347 printk("%s: unexpected old state %d\n", __func__, old_state); 348 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 349 CON_SOCK_STATE_CONNECTED); 350 } 351 352 static void con_sock_state_closing(struct ceph_connection *con) 353 { 354 int old_state; 355 356 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 357 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 358 old_state != CON_SOCK_STATE_CONNECTED && 359 old_state != CON_SOCK_STATE_CLOSING)) 360 printk("%s: unexpected old state %d\n", __func__, old_state); 361 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 362 CON_SOCK_STATE_CLOSING); 363 } 364 365 static void con_sock_state_closed(struct ceph_connection *con) 366 { 367 int old_state; 368 369 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 370 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 371 old_state != CON_SOCK_STATE_CLOSING && 372 old_state != CON_SOCK_STATE_CONNECTING && 373 old_state != CON_SOCK_STATE_CLOSED)) 374 printk("%s: unexpected old state %d\n", __func__, old_state); 375 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 376 CON_SOCK_STATE_CLOSED); 377 } 378 379 /* 380 * socket callback functions 381 */ 382 383 /* data available on socket, or listen socket received a connect */ 384 static void ceph_sock_data_ready(struct sock *sk) 385 { 386 struct ceph_connection *con = sk->sk_user_data; 387 if (atomic_read(&con->msgr->stopping)) { 388 return; 389 } 390 391 if (sk->sk_state != TCP_CLOSE_WAIT) { 392 dout("%s on %p state = %lu, queueing work\n", __func__, 393 con, con->state); 394 queue_con(con); 395 } 396 } 397 398 /* socket has buffer space for writing */ 399 static void ceph_sock_write_space(struct sock *sk) 400 { 401 struct ceph_connection *con = sk->sk_user_data; 402 403 /* only queue to workqueue if there is data we want to write, 404 * and there is sufficient space in the socket buffer to accept 405 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 406 * doesn't get called again until try_write() fills the socket 407 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 408 * and net/core/stream.c:sk_stream_write_space(). 409 */ 410 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 411 if (sk_stream_is_writeable(sk)) { 412 dout("%s %p queueing write work\n", __func__, con); 413 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 414 queue_con(con); 415 } 416 } else { 417 dout("%s %p nothing to write\n", __func__, con); 418 } 419 } 420 421 /* socket's state has changed */ 422 static void ceph_sock_state_change(struct sock *sk) 423 { 424 struct ceph_connection *con = sk->sk_user_data; 425 426 dout("%s %p state = %lu sk_state = %u\n", __func__, 427 con, con->state, sk->sk_state); 428 429 switch (sk->sk_state) { 430 case TCP_CLOSE: 431 dout("%s TCP_CLOSE\n", __func__); 432 case TCP_CLOSE_WAIT: 433 dout("%s TCP_CLOSE_WAIT\n", __func__); 434 con_sock_state_closing(con); 435 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 436 queue_con(con); 437 break; 438 case TCP_ESTABLISHED: 439 dout("%s TCP_ESTABLISHED\n", __func__); 440 con_sock_state_connected(con); 441 queue_con(con); 442 break; 443 default: /* Everything else is uninteresting */ 444 break; 445 } 446 } 447 448 /* 449 * set up socket callbacks 450 */ 451 static void set_sock_callbacks(struct socket *sock, 452 struct ceph_connection *con) 453 { 454 struct sock *sk = sock->sk; 455 sk->sk_user_data = con; 456 sk->sk_data_ready = ceph_sock_data_ready; 457 sk->sk_write_space = ceph_sock_write_space; 458 sk->sk_state_change = ceph_sock_state_change; 459 } 460 461 462 /* 463 * socket helpers 464 */ 465 466 /* 467 * initiate connection to a remote socket. 468 */ 469 static int ceph_tcp_connect(struct ceph_connection *con) 470 { 471 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 472 struct socket *sock; 473 unsigned int noio_flag; 474 int ret; 475 476 BUG_ON(con->sock); 477 478 /* sock_create_kern() allocates with GFP_KERNEL */ 479 noio_flag = memalloc_noio_save(); 480 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family, 481 SOCK_STREAM, IPPROTO_TCP, &sock); 482 memalloc_noio_restore(noio_flag); 483 if (ret) 484 return ret; 485 sock->sk->sk_allocation = GFP_NOFS; 486 487 #ifdef CONFIG_LOCKDEP 488 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 489 #endif 490 491 set_sock_callbacks(sock, con); 492 493 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 494 495 con_sock_state_connecting(con); 496 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 497 O_NONBLOCK); 498 if (ret == -EINPROGRESS) { 499 dout("connect %s EINPROGRESS sk_state = %u\n", 500 ceph_pr_addr(&con->peer_addr.in_addr), 501 sock->sk->sk_state); 502 } else if (ret < 0) { 503 pr_err("connect %s error %d\n", 504 ceph_pr_addr(&con->peer_addr.in_addr), ret); 505 sock_release(sock); 506 return ret; 507 } 508 509 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) { 510 int optval = 1; 511 512 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 513 (char *)&optval, sizeof(optval)); 514 if (ret) 515 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 516 ret); 517 } 518 519 con->sock = sock; 520 return 0; 521 } 522 523 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 524 { 525 struct kvec iov = {buf, len}; 526 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 527 int r; 528 529 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len); 530 r = sock_recvmsg(sock, &msg, msg.msg_flags); 531 if (r == -EAGAIN) 532 r = 0; 533 return r; 534 } 535 536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 537 int page_offset, size_t length) 538 { 539 struct bio_vec bvec = { 540 .bv_page = page, 541 .bv_offset = page_offset, 542 .bv_len = length 543 }; 544 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 545 int r; 546 547 BUG_ON(page_offset + length > PAGE_SIZE); 548 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length); 549 r = sock_recvmsg(sock, &msg, msg.msg_flags); 550 if (r == -EAGAIN) 551 r = 0; 552 return r; 553 } 554 555 /* 556 * write something. @more is true if caller will be sending more data 557 * shortly. 558 */ 559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 560 size_t kvlen, size_t len, int more) 561 { 562 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 563 int r; 564 565 if (more) 566 msg.msg_flags |= MSG_MORE; 567 else 568 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 569 570 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 571 if (r == -EAGAIN) 572 r = 0; 573 return r; 574 } 575 576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 577 int offset, size_t size, bool more) 578 { 579 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 580 int ret; 581 582 ret = kernel_sendpage(sock, page, offset, size, flags); 583 if (ret == -EAGAIN) 584 ret = 0; 585 586 return ret; 587 } 588 589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 590 int offset, size_t size, bool more) 591 { 592 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 593 struct bio_vec bvec; 594 int ret; 595 596 /* sendpage cannot properly handle pages with page_count == 0, 597 * we need to fallback to sendmsg if that's the case */ 598 if (page_count(page) >= 1) 599 return __ceph_tcp_sendpage(sock, page, offset, size, more); 600 601 bvec.bv_page = page; 602 bvec.bv_offset = offset; 603 bvec.bv_len = size; 604 605 if (more) 606 msg.msg_flags |= MSG_MORE; 607 else 608 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 609 610 iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size); 611 ret = sock_sendmsg(sock, &msg); 612 if (ret == -EAGAIN) 613 ret = 0; 614 615 return ret; 616 } 617 618 /* 619 * Shutdown/close the socket for the given connection. 620 */ 621 static int con_close_socket(struct ceph_connection *con) 622 { 623 int rc = 0; 624 625 dout("con_close_socket on %p sock %p\n", con, con->sock); 626 if (con->sock) { 627 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 628 sock_release(con->sock); 629 con->sock = NULL; 630 } 631 632 /* 633 * Forcibly clear the SOCK_CLOSED flag. It gets set 634 * independent of the connection mutex, and we could have 635 * received a socket close event before we had the chance to 636 * shut the socket down. 637 */ 638 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 639 640 con_sock_state_closed(con); 641 return rc; 642 } 643 644 /* 645 * Reset a connection. Discard all incoming and outgoing messages 646 * and clear *_seq state. 647 */ 648 static void ceph_msg_remove(struct ceph_msg *msg) 649 { 650 list_del_init(&msg->list_head); 651 652 ceph_msg_put(msg); 653 } 654 static void ceph_msg_remove_list(struct list_head *head) 655 { 656 while (!list_empty(head)) { 657 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 658 list_head); 659 ceph_msg_remove(msg); 660 } 661 } 662 663 static void reset_connection(struct ceph_connection *con) 664 { 665 /* reset connection, out_queue, msg_ and connect_seq */ 666 /* discard existing out_queue and msg_seq */ 667 dout("reset_connection %p\n", con); 668 ceph_msg_remove_list(&con->out_queue); 669 ceph_msg_remove_list(&con->out_sent); 670 671 if (con->in_msg) { 672 BUG_ON(con->in_msg->con != con); 673 ceph_msg_put(con->in_msg); 674 con->in_msg = NULL; 675 } 676 677 con->connect_seq = 0; 678 con->out_seq = 0; 679 if (con->out_msg) { 680 BUG_ON(con->out_msg->con != con); 681 ceph_msg_put(con->out_msg); 682 con->out_msg = NULL; 683 } 684 con->in_seq = 0; 685 con->in_seq_acked = 0; 686 687 con->out_skip = 0; 688 } 689 690 /* 691 * mark a peer down. drop any open connections. 692 */ 693 void ceph_con_close(struct ceph_connection *con) 694 { 695 mutex_lock(&con->mutex); 696 dout("con_close %p peer %s\n", con, 697 ceph_pr_addr(&con->peer_addr.in_addr)); 698 con->state = CON_STATE_CLOSED; 699 700 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 701 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 702 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 703 con_flag_clear(con, CON_FLAG_BACKOFF); 704 705 reset_connection(con); 706 con->peer_global_seq = 0; 707 cancel_con(con); 708 con_close_socket(con); 709 mutex_unlock(&con->mutex); 710 } 711 EXPORT_SYMBOL(ceph_con_close); 712 713 /* 714 * Reopen a closed connection, with a new peer address. 715 */ 716 void ceph_con_open(struct ceph_connection *con, 717 __u8 entity_type, __u64 entity_num, 718 struct ceph_entity_addr *addr) 719 { 720 mutex_lock(&con->mutex); 721 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 722 723 WARN_ON(con->state != CON_STATE_CLOSED); 724 con->state = CON_STATE_PREOPEN; 725 726 con->peer_name.type = (__u8) entity_type; 727 con->peer_name.num = cpu_to_le64(entity_num); 728 729 memcpy(&con->peer_addr, addr, sizeof(*addr)); 730 con->delay = 0; /* reset backoff memory */ 731 mutex_unlock(&con->mutex); 732 queue_con(con); 733 } 734 EXPORT_SYMBOL(ceph_con_open); 735 736 /* 737 * return true if this connection ever successfully opened 738 */ 739 bool ceph_con_opened(struct ceph_connection *con) 740 { 741 return con->connect_seq > 0; 742 } 743 744 /* 745 * initialize a new connection. 746 */ 747 void ceph_con_init(struct ceph_connection *con, void *private, 748 const struct ceph_connection_operations *ops, 749 struct ceph_messenger *msgr) 750 { 751 dout("con_init %p\n", con); 752 memset(con, 0, sizeof(*con)); 753 con->private = private; 754 con->ops = ops; 755 con->msgr = msgr; 756 757 con_sock_state_init(con); 758 759 mutex_init(&con->mutex); 760 INIT_LIST_HEAD(&con->out_queue); 761 INIT_LIST_HEAD(&con->out_sent); 762 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 763 764 con->state = CON_STATE_CLOSED; 765 } 766 EXPORT_SYMBOL(ceph_con_init); 767 768 769 /* 770 * We maintain a global counter to order connection attempts. Get 771 * a unique seq greater than @gt. 772 */ 773 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 774 { 775 u32 ret; 776 777 spin_lock(&msgr->global_seq_lock); 778 if (msgr->global_seq < gt) 779 msgr->global_seq = gt; 780 ret = ++msgr->global_seq; 781 spin_unlock(&msgr->global_seq_lock); 782 return ret; 783 } 784 785 static void con_out_kvec_reset(struct ceph_connection *con) 786 { 787 BUG_ON(con->out_skip); 788 789 con->out_kvec_left = 0; 790 con->out_kvec_bytes = 0; 791 con->out_kvec_cur = &con->out_kvec[0]; 792 } 793 794 static void con_out_kvec_add(struct ceph_connection *con, 795 size_t size, void *data) 796 { 797 int index = con->out_kvec_left; 798 799 BUG_ON(con->out_skip); 800 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 801 802 con->out_kvec[index].iov_len = size; 803 con->out_kvec[index].iov_base = data; 804 con->out_kvec_left++; 805 con->out_kvec_bytes += size; 806 } 807 808 /* 809 * Chop off a kvec from the end. Return residual number of bytes for 810 * that kvec, i.e. how many bytes would have been written if the kvec 811 * hadn't been nuked. 812 */ 813 static int con_out_kvec_skip(struct ceph_connection *con) 814 { 815 int off = con->out_kvec_cur - con->out_kvec; 816 int skip = 0; 817 818 if (con->out_kvec_bytes > 0) { 819 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len; 820 BUG_ON(con->out_kvec_bytes < skip); 821 BUG_ON(!con->out_kvec_left); 822 con->out_kvec_bytes -= skip; 823 con->out_kvec_left--; 824 } 825 826 return skip; 827 } 828 829 #ifdef CONFIG_BLOCK 830 831 /* 832 * For a bio data item, a piece is whatever remains of the next 833 * entry in the current bio iovec, or the first entry in the next 834 * bio in the list. 835 */ 836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 837 size_t length) 838 { 839 struct ceph_msg_data *data = cursor->data; 840 struct bio *bio; 841 842 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 843 844 bio = data->bio; 845 BUG_ON(!bio); 846 847 cursor->resid = min(length, data->bio_length); 848 cursor->bio = bio; 849 cursor->bvec_iter = bio->bi_iter; 850 cursor->last_piece = 851 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); 852 } 853 854 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 855 size_t *page_offset, 856 size_t *length) 857 { 858 struct ceph_msg_data *data = cursor->data; 859 struct bio *bio; 860 struct bio_vec bio_vec; 861 862 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 863 864 bio = cursor->bio; 865 BUG_ON(!bio); 866 867 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 868 869 *page_offset = (size_t) bio_vec.bv_offset; 870 BUG_ON(*page_offset >= PAGE_SIZE); 871 if (cursor->last_piece) /* pagelist offset is always 0 */ 872 *length = cursor->resid; 873 else 874 *length = (size_t) bio_vec.bv_len; 875 BUG_ON(*length > cursor->resid); 876 BUG_ON(*page_offset + *length > PAGE_SIZE); 877 878 return bio_vec.bv_page; 879 } 880 881 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 882 size_t bytes) 883 { 884 struct bio *bio; 885 struct bio_vec bio_vec; 886 887 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 888 889 bio = cursor->bio; 890 BUG_ON(!bio); 891 892 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 893 894 /* Advance the cursor offset */ 895 896 BUG_ON(cursor->resid < bytes); 897 cursor->resid -= bytes; 898 899 bio_advance_iter(bio, &cursor->bvec_iter, bytes); 900 901 if (bytes < bio_vec.bv_len) 902 return false; /* more bytes to process in this segment */ 903 904 /* Move on to the next segment, and possibly the next bio */ 905 906 if (!cursor->bvec_iter.bi_size) { 907 bio = bio->bi_next; 908 cursor->bio = bio; 909 if (bio) 910 cursor->bvec_iter = bio->bi_iter; 911 else 912 memset(&cursor->bvec_iter, 0, 913 sizeof(cursor->bvec_iter)); 914 } 915 916 if (!cursor->last_piece) { 917 BUG_ON(!cursor->resid); 918 BUG_ON(!bio); 919 /* A short read is OK, so use <= rather than == */ 920 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) 921 cursor->last_piece = true; 922 } 923 924 return true; 925 } 926 #endif /* CONFIG_BLOCK */ 927 928 /* 929 * For a page array, a piece comes from the first page in the array 930 * that has not already been fully consumed. 931 */ 932 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 933 size_t length) 934 { 935 struct ceph_msg_data *data = cursor->data; 936 int page_count; 937 938 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 939 940 BUG_ON(!data->pages); 941 BUG_ON(!data->length); 942 943 cursor->resid = min(length, data->length); 944 page_count = calc_pages_for(data->alignment, (u64)data->length); 945 cursor->page_offset = data->alignment & ~PAGE_MASK; 946 cursor->page_index = 0; 947 BUG_ON(page_count > (int)USHRT_MAX); 948 cursor->page_count = (unsigned short)page_count; 949 BUG_ON(length > SIZE_MAX - cursor->page_offset); 950 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 951 } 952 953 static struct page * 954 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 955 size_t *page_offset, size_t *length) 956 { 957 struct ceph_msg_data *data = cursor->data; 958 959 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 960 961 BUG_ON(cursor->page_index >= cursor->page_count); 962 BUG_ON(cursor->page_offset >= PAGE_SIZE); 963 964 *page_offset = cursor->page_offset; 965 if (cursor->last_piece) 966 *length = cursor->resid; 967 else 968 *length = PAGE_SIZE - *page_offset; 969 970 return data->pages[cursor->page_index]; 971 } 972 973 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 974 size_t bytes) 975 { 976 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 977 978 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 979 980 /* Advance the cursor page offset */ 981 982 cursor->resid -= bytes; 983 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 984 if (!bytes || cursor->page_offset) 985 return false; /* more bytes to process in the current page */ 986 987 if (!cursor->resid) 988 return false; /* no more data */ 989 990 /* Move on to the next page; offset is already at 0 */ 991 992 BUG_ON(cursor->page_index >= cursor->page_count); 993 cursor->page_index++; 994 cursor->last_piece = cursor->resid <= PAGE_SIZE; 995 996 return true; 997 } 998 999 /* 1000 * For a pagelist, a piece is whatever remains to be consumed in the 1001 * first page in the list, or the front of the next page. 1002 */ 1003 static void 1004 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 1005 size_t length) 1006 { 1007 struct ceph_msg_data *data = cursor->data; 1008 struct ceph_pagelist *pagelist; 1009 struct page *page; 1010 1011 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1012 1013 pagelist = data->pagelist; 1014 BUG_ON(!pagelist); 1015 1016 if (!length) 1017 return; /* pagelist can be assigned but empty */ 1018 1019 BUG_ON(list_empty(&pagelist->head)); 1020 page = list_first_entry(&pagelist->head, struct page, lru); 1021 1022 cursor->resid = min(length, pagelist->length); 1023 cursor->page = page; 1024 cursor->offset = 0; 1025 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1026 } 1027 1028 static struct page * 1029 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 1030 size_t *page_offset, size_t *length) 1031 { 1032 struct ceph_msg_data *data = cursor->data; 1033 struct ceph_pagelist *pagelist; 1034 1035 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1036 1037 pagelist = data->pagelist; 1038 BUG_ON(!pagelist); 1039 1040 BUG_ON(!cursor->page); 1041 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1042 1043 /* offset of first page in pagelist is always 0 */ 1044 *page_offset = cursor->offset & ~PAGE_MASK; 1045 if (cursor->last_piece) 1046 *length = cursor->resid; 1047 else 1048 *length = PAGE_SIZE - *page_offset; 1049 1050 return cursor->page; 1051 } 1052 1053 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1054 size_t bytes) 1055 { 1056 struct ceph_msg_data *data = cursor->data; 1057 struct ceph_pagelist *pagelist; 1058 1059 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1060 1061 pagelist = data->pagelist; 1062 BUG_ON(!pagelist); 1063 1064 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1065 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1066 1067 /* Advance the cursor offset */ 1068 1069 cursor->resid -= bytes; 1070 cursor->offset += bytes; 1071 /* offset of first page in pagelist is always 0 */ 1072 if (!bytes || cursor->offset & ~PAGE_MASK) 1073 return false; /* more bytes to process in the current page */ 1074 1075 if (!cursor->resid) 1076 return false; /* no more data */ 1077 1078 /* Move on to the next page */ 1079 1080 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1081 cursor->page = list_next_entry(cursor->page, lru); 1082 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1083 1084 return true; 1085 } 1086 1087 /* 1088 * Message data is handled (sent or received) in pieces, where each 1089 * piece resides on a single page. The network layer might not 1090 * consume an entire piece at once. A data item's cursor keeps 1091 * track of which piece is next to process and how much remains to 1092 * be processed in that piece. It also tracks whether the current 1093 * piece is the last one in the data item. 1094 */ 1095 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1096 { 1097 size_t length = cursor->total_resid; 1098 1099 switch (cursor->data->type) { 1100 case CEPH_MSG_DATA_PAGELIST: 1101 ceph_msg_data_pagelist_cursor_init(cursor, length); 1102 break; 1103 case CEPH_MSG_DATA_PAGES: 1104 ceph_msg_data_pages_cursor_init(cursor, length); 1105 break; 1106 #ifdef CONFIG_BLOCK 1107 case CEPH_MSG_DATA_BIO: 1108 ceph_msg_data_bio_cursor_init(cursor, length); 1109 break; 1110 #endif /* CONFIG_BLOCK */ 1111 case CEPH_MSG_DATA_NONE: 1112 default: 1113 /* BUG(); */ 1114 break; 1115 } 1116 cursor->need_crc = true; 1117 } 1118 1119 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1120 { 1121 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1122 struct ceph_msg_data *data; 1123 1124 BUG_ON(!length); 1125 BUG_ON(length > msg->data_length); 1126 BUG_ON(list_empty(&msg->data)); 1127 1128 cursor->data_head = &msg->data; 1129 cursor->total_resid = length; 1130 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1131 cursor->data = data; 1132 1133 __ceph_msg_data_cursor_init(cursor); 1134 } 1135 1136 /* 1137 * Return the page containing the next piece to process for a given 1138 * data item, and supply the page offset and length of that piece. 1139 * Indicate whether this is the last piece in this data item. 1140 */ 1141 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1142 size_t *page_offset, size_t *length, 1143 bool *last_piece) 1144 { 1145 struct page *page; 1146 1147 switch (cursor->data->type) { 1148 case CEPH_MSG_DATA_PAGELIST: 1149 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1150 break; 1151 case CEPH_MSG_DATA_PAGES: 1152 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1153 break; 1154 #ifdef CONFIG_BLOCK 1155 case CEPH_MSG_DATA_BIO: 1156 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1157 break; 1158 #endif /* CONFIG_BLOCK */ 1159 case CEPH_MSG_DATA_NONE: 1160 default: 1161 page = NULL; 1162 break; 1163 } 1164 BUG_ON(!page); 1165 BUG_ON(*page_offset + *length > PAGE_SIZE); 1166 BUG_ON(!*length); 1167 if (last_piece) 1168 *last_piece = cursor->last_piece; 1169 1170 return page; 1171 } 1172 1173 /* 1174 * Returns true if the result moves the cursor on to the next piece 1175 * of the data item. 1176 */ 1177 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1178 size_t bytes) 1179 { 1180 bool new_piece; 1181 1182 BUG_ON(bytes > cursor->resid); 1183 switch (cursor->data->type) { 1184 case CEPH_MSG_DATA_PAGELIST: 1185 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1186 break; 1187 case CEPH_MSG_DATA_PAGES: 1188 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1189 break; 1190 #ifdef CONFIG_BLOCK 1191 case CEPH_MSG_DATA_BIO: 1192 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1193 break; 1194 #endif /* CONFIG_BLOCK */ 1195 case CEPH_MSG_DATA_NONE: 1196 default: 1197 BUG(); 1198 break; 1199 } 1200 cursor->total_resid -= bytes; 1201 1202 if (!cursor->resid && cursor->total_resid) { 1203 WARN_ON(!cursor->last_piece); 1204 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1205 cursor->data = list_next_entry(cursor->data, links); 1206 __ceph_msg_data_cursor_init(cursor); 1207 new_piece = true; 1208 } 1209 cursor->need_crc = new_piece; 1210 } 1211 1212 static size_t sizeof_footer(struct ceph_connection *con) 1213 { 1214 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ? 1215 sizeof(struct ceph_msg_footer) : 1216 sizeof(struct ceph_msg_footer_old); 1217 } 1218 1219 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1220 { 1221 BUG_ON(!msg); 1222 BUG_ON(!data_len); 1223 1224 /* Initialize data cursor */ 1225 1226 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1227 } 1228 1229 /* 1230 * Prepare footer for currently outgoing message, and finish things 1231 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1232 */ 1233 static void prepare_write_message_footer(struct ceph_connection *con) 1234 { 1235 struct ceph_msg *m = con->out_msg; 1236 1237 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1238 1239 dout("prepare_write_message_footer %p\n", con); 1240 con_out_kvec_add(con, sizeof_footer(con), &m->footer); 1241 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1242 if (con->ops->sign_message) 1243 con->ops->sign_message(m); 1244 else 1245 m->footer.sig = 0; 1246 } else { 1247 m->old_footer.flags = m->footer.flags; 1248 } 1249 con->out_more = m->more_to_follow; 1250 con->out_msg_done = true; 1251 } 1252 1253 /* 1254 * Prepare headers for the next outgoing message. 1255 */ 1256 static void prepare_write_message(struct ceph_connection *con) 1257 { 1258 struct ceph_msg *m; 1259 u32 crc; 1260 1261 con_out_kvec_reset(con); 1262 con->out_msg_done = false; 1263 1264 /* Sneak an ack in there first? If we can get it into the same 1265 * TCP packet that's a good thing. */ 1266 if (con->in_seq > con->in_seq_acked) { 1267 con->in_seq_acked = con->in_seq; 1268 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1269 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1270 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1271 &con->out_temp_ack); 1272 } 1273 1274 BUG_ON(list_empty(&con->out_queue)); 1275 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1276 con->out_msg = m; 1277 BUG_ON(m->con != con); 1278 1279 /* put message on sent list */ 1280 ceph_msg_get(m); 1281 list_move_tail(&m->list_head, &con->out_sent); 1282 1283 /* 1284 * only assign outgoing seq # if we haven't sent this message 1285 * yet. if it is requeued, resend with it's original seq. 1286 */ 1287 if (m->needs_out_seq) { 1288 m->hdr.seq = cpu_to_le64(++con->out_seq); 1289 m->needs_out_seq = false; 1290 } 1291 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1292 1293 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1294 m, con->out_seq, le16_to_cpu(m->hdr.type), 1295 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1296 m->data_length); 1297 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 1298 1299 /* tag + hdr + front + middle */ 1300 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1301 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr); 1302 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1303 1304 if (m->middle) 1305 con_out_kvec_add(con, m->middle->vec.iov_len, 1306 m->middle->vec.iov_base); 1307 1308 /* fill in hdr crc and finalize hdr */ 1309 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1310 con->out_msg->hdr.crc = cpu_to_le32(crc); 1311 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr)); 1312 1313 /* fill in front and middle crc, footer */ 1314 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1315 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1316 if (m->middle) { 1317 crc = crc32c(0, m->middle->vec.iov_base, 1318 m->middle->vec.iov_len); 1319 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1320 } else 1321 con->out_msg->footer.middle_crc = 0; 1322 dout("%s front_crc %u middle_crc %u\n", __func__, 1323 le32_to_cpu(con->out_msg->footer.front_crc), 1324 le32_to_cpu(con->out_msg->footer.middle_crc)); 1325 con->out_msg->footer.flags = 0; 1326 1327 /* is there a data payload? */ 1328 con->out_msg->footer.data_crc = 0; 1329 if (m->data_length) { 1330 prepare_message_data(con->out_msg, m->data_length); 1331 con->out_more = 1; /* data + footer will follow */ 1332 } else { 1333 /* no, queue up footer too and be done */ 1334 prepare_write_message_footer(con); 1335 } 1336 1337 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1338 } 1339 1340 /* 1341 * Prepare an ack. 1342 */ 1343 static void prepare_write_ack(struct ceph_connection *con) 1344 { 1345 dout("prepare_write_ack %p %llu -> %llu\n", con, 1346 con->in_seq_acked, con->in_seq); 1347 con->in_seq_acked = con->in_seq; 1348 1349 con_out_kvec_reset(con); 1350 1351 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1352 1353 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1354 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1355 &con->out_temp_ack); 1356 1357 con->out_more = 1; /* more will follow.. eventually.. */ 1358 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1359 } 1360 1361 /* 1362 * Prepare to share the seq during handshake 1363 */ 1364 static void prepare_write_seq(struct ceph_connection *con) 1365 { 1366 dout("prepare_write_seq %p %llu -> %llu\n", con, 1367 con->in_seq_acked, con->in_seq); 1368 con->in_seq_acked = con->in_seq; 1369 1370 con_out_kvec_reset(con); 1371 1372 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1373 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1374 &con->out_temp_ack); 1375 1376 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1377 } 1378 1379 /* 1380 * Prepare to write keepalive byte. 1381 */ 1382 static void prepare_write_keepalive(struct ceph_connection *con) 1383 { 1384 dout("prepare_write_keepalive %p\n", con); 1385 con_out_kvec_reset(con); 1386 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) { 1387 struct timespec now; 1388 1389 ktime_get_real_ts(&now); 1390 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2); 1391 ceph_encode_timespec(&con->out_temp_keepalive2, &now); 1392 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2), 1393 &con->out_temp_keepalive2); 1394 } else { 1395 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive); 1396 } 1397 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1398 } 1399 1400 /* 1401 * Connection negotiation. 1402 */ 1403 1404 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1405 int *auth_proto) 1406 { 1407 struct ceph_auth_handshake *auth; 1408 1409 if (!con->ops->get_authorizer) { 1410 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1411 con->out_connect.authorizer_len = 0; 1412 return NULL; 1413 } 1414 1415 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1416 if (IS_ERR(auth)) 1417 return auth; 1418 1419 con->auth_reply_buf = auth->authorizer_reply_buf; 1420 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1421 return auth; 1422 } 1423 1424 /* 1425 * We connected to a peer and are saying hello. 1426 */ 1427 static void prepare_write_banner(struct ceph_connection *con) 1428 { 1429 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1430 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1431 &con->msgr->my_enc_addr); 1432 1433 con->out_more = 0; 1434 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1435 } 1436 1437 static int prepare_write_connect(struct ceph_connection *con) 1438 { 1439 unsigned int global_seq = get_global_seq(con->msgr, 0); 1440 int proto; 1441 int auth_proto; 1442 struct ceph_auth_handshake *auth; 1443 1444 switch (con->peer_name.type) { 1445 case CEPH_ENTITY_TYPE_MON: 1446 proto = CEPH_MONC_PROTOCOL; 1447 break; 1448 case CEPH_ENTITY_TYPE_OSD: 1449 proto = CEPH_OSDC_PROTOCOL; 1450 break; 1451 case CEPH_ENTITY_TYPE_MDS: 1452 proto = CEPH_MDSC_PROTOCOL; 1453 break; 1454 default: 1455 BUG(); 1456 } 1457 1458 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1459 con->connect_seq, global_seq, proto); 1460 1461 con->out_connect.features = 1462 cpu_to_le64(from_msgr(con->msgr)->supported_features); 1463 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1464 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1465 con->out_connect.global_seq = cpu_to_le32(global_seq); 1466 con->out_connect.protocol_version = cpu_to_le32(proto); 1467 con->out_connect.flags = 0; 1468 1469 auth_proto = CEPH_AUTH_UNKNOWN; 1470 auth = get_connect_authorizer(con, &auth_proto); 1471 if (IS_ERR(auth)) 1472 return PTR_ERR(auth); 1473 1474 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1475 con->out_connect.authorizer_len = auth ? 1476 cpu_to_le32(auth->authorizer_buf_len) : 0; 1477 1478 con_out_kvec_add(con, sizeof (con->out_connect), 1479 &con->out_connect); 1480 if (auth && auth->authorizer_buf_len) 1481 con_out_kvec_add(con, auth->authorizer_buf_len, 1482 auth->authorizer_buf); 1483 1484 con->out_more = 0; 1485 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1486 1487 return 0; 1488 } 1489 1490 /* 1491 * write as much of pending kvecs to the socket as we can. 1492 * 1 -> done 1493 * 0 -> socket full, but more to do 1494 * <0 -> error 1495 */ 1496 static int write_partial_kvec(struct ceph_connection *con) 1497 { 1498 int ret; 1499 1500 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1501 while (con->out_kvec_bytes > 0) { 1502 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1503 con->out_kvec_left, con->out_kvec_bytes, 1504 con->out_more); 1505 if (ret <= 0) 1506 goto out; 1507 con->out_kvec_bytes -= ret; 1508 if (con->out_kvec_bytes == 0) 1509 break; /* done */ 1510 1511 /* account for full iov entries consumed */ 1512 while (ret >= con->out_kvec_cur->iov_len) { 1513 BUG_ON(!con->out_kvec_left); 1514 ret -= con->out_kvec_cur->iov_len; 1515 con->out_kvec_cur++; 1516 con->out_kvec_left--; 1517 } 1518 /* and for a partially-consumed entry */ 1519 if (ret) { 1520 con->out_kvec_cur->iov_len -= ret; 1521 con->out_kvec_cur->iov_base += ret; 1522 } 1523 } 1524 con->out_kvec_left = 0; 1525 ret = 1; 1526 out: 1527 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1528 con->out_kvec_bytes, con->out_kvec_left, ret); 1529 return ret; /* done! */ 1530 } 1531 1532 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1533 unsigned int page_offset, 1534 unsigned int length) 1535 { 1536 char *kaddr; 1537 1538 kaddr = kmap(page); 1539 BUG_ON(kaddr == NULL); 1540 crc = crc32c(crc, kaddr + page_offset, length); 1541 kunmap(page); 1542 1543 return crc; 1544 } 1545 /* 1546 * Write as much message data payload as we can. If we finish, queue 1547 * up the footer. 1548 * 1 -> done, footer is now queued in out_kvec[]. 1549 * 0 -> socket full, but more to do 1550 * <0 -> error 1551 */ 1552 static int write_partial_message_data(struct ceph_connection *con) 1553 { 1554 struct ceph_msg *msg = con->out_msg; 1555 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1556 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 1557 u32 crc; 1558 1559 dout("%s %p msg %p\n", __func__, con, msg); 1560 1561 if (list_empty(&msg->data)) 1562 return -EINVAL; 1563 1564 /* 1565 * Iterate through each page that contains data to be 1566 * written, and send as much as possible for each. 1567 * 1568 * If we are calculating the data crc (the default), we will 1569 * need to map the page. If we have no pages, they have 1570 * been revoked, so use the zero page. 1571 */ 1572 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1573 while (cursor->resid) { 1574 struct page *page; 1575 size_t page_offset; 1576 size_t length; 1577 bool last_piece; 1578 int ret; 1579 1580 page = ceph_msg_data_next(cursor, &page_offset, &length, 1581 &last_piece); 1582 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1583 length, !last_piece); 1584 if (ret <= 0) { 1585 if (do_datacrc) 1586 msg->footer.data_crc = cpu_to_le32(crc); 1587 1588 return ret; 1589 } 1590 if (do_datacrc && cursor->need_crc) 1591 crc = ceph_crc32c_page(crc, page, page_offset, length); 1592 ceph_msg_data_advance(cursor, (size_t)ret); 1593 } 1594 1595 dout("%s %p msg %p done\n", __func__, con, msg); 1596 1597 /* prepare and queue up footer, too */ 1598 if (do_datacrc) 1599 msg->footer.data_crc = cpu_to_le32(crc); 1600 else 1601 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1602 con_out_kvec_reset(con); 1603 prepare_write_message_footer(con); 1604 1605 return 1; /* must return > 0 to indicate success */ 1606 } 1607 1608 /* 1609 * write some zeros 1610 */ 1611 static int write_partial_skip(struct ceph_connection *con) 1612 { 1613 int ret; 1614 1615 dout("%s %p %d left\n", __func__, con, con->out_skip); 1616 while (con->out_skip > 0) { 1617 size_t size = min(con->out_skip, (int) PAGE_SIZE); 1618 1619 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1620 if (ret <= 0) 1621 goto out; 1622 con->out_skip -= ret; 1623 } 1624 ret = 1; 1625 out: 1626 return ret; 1627 } 1628 1629 /* 1630 * Prepare to read connection handshake, or an ack. 1631 */ 1632 static void prepare_read_banner(struct ceph_connection *con) 1633 { 1634 dout("prepare_read_banner %p\n", con); 1635 con->in_base_pos = 0; 1636 } 1637 1638 static void prepare_read_connect(struct ceph_connection *con) 1639 { 1640 dout("prepare_read_connect %p\n", con); 1641 con->in_base_pos = 0; 1642 } 1643 1644 static void prepare_read_ack(struct ceph_connection *con) 1645 { 1646 dout("prepare_read_ack %p\n", con); 1647 con->in_base_pos = 0; 1648 } 1649 1650 static void prepare_read_seq(struct ceph_connection *con) 1651 { 1652 dout("prepare_read_seq %p\n", con); 1653 con->in_base_pos = 0; 1654 con->in_tag = CEPH_MSGR_TAG_SEQ; 1655 } 1656 1657 static void prepare_read_tag(struct ceph_connection *con) 1658 { 1659 dout("prepare_read_tag %p\n", con); 1660 con->in_base_pos = 0; 1661 con->in_tag = CEPH_MSGR_TAG_READY; 1662 } 1663 1664 static void prepare_read_keepalive_ack(struct ceph_connection *con) 1665 { 1666 dout("prepare_read_keepalive_ack %p\n", con); 1667 con->in_base_pos = 0; 1668 } 1669 1670 /* 1671 * Prepare to read a message. 1672 */ 1673 static int prepare_read_message(struct ceph_connection *con) 1674 { 1675 dout("prepare_read_message %p\n", con); 1676 BUG_ON(con->in_msg != NULL); 1677 con->in_base_pos = 0; 1678 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1679 return 0; 1680 } 1681 1682 1683 static int read_partial(struct ceph_connection *con, 1684 int end, int size, void *object) 1685 { 1686 while (con->in_base_pos < end) { 1687 int left = end - con->in_base_pos; 1688 int have = size - left; 1689 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1690 if (ret <= 0) 1691 return ret; 1692 con->in_base_pos += ret; 1693 } 1694 return 1; 1695 } 1696 1697 1698 /* 1699 * Read all or part of the connect-side handshake on a new connection 1700 */ 1701 static int read_partial_banner(struct ceph_connection *con) 1702 { 1703 int size; 1704 int end; 1705 int ret; 1706 1707 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1708 1709 /* peer's banner */ 1710 size = strlen(CEPH_BANNER); 1711 end = size; 1712 ret = read_partial(con, end, size, con->in_banner); 1713 if (ret <= 0) 1714 goto out; 1715 1716 size = sizeof (con->actual_peer_addr); 1717 end += size; 1718 ret = read_partial(con, end, size, &con->actual_peer_addr); 1719 if (ret <= 0) 1720 goto out; 1721 1722 size = sizeof (con->peer_addr_for_me); 1723 end += size; 1724 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1725 if (ret <= 0) 1726 goto out; 1727 1728 out: 1729 return ret; 1730 } 1731 1732 static int read_partial_connect(struct ceph_connection *con) 1733 { 1734 int size; 1735 int end; 1736 int ret; 1737 1738 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1739 1740 size = sizeof (con->in_reply); 1741 end = size; 1742 ret = read_partial(con, end, size, &con->in_reply); 1743 if (ret <= 0) 1744 goto out; 1745 1746 size = le32_to_cpu(con->in_reply.authorizer_len); 1747 end += size; 1748 ret = read_partial(con, end, size, con->auth_reply_buf); 1749 if (ret <= 0) 1750 goto out; 1751 1752 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1753 con, (int)con->in_reply.tag, 1754 le32_to_cpu(con->in_reply.connect_seq), 1755 le32_to_cpu(con->in_reply.global_seq)); 1756 out: 1757 return ret; 1758 1759 } 1760 1761 /* 1762 * Verify the hello banner looks okay. 1763 */ 1764 static int verify_hello(struct ceph_connection *con) 1765 { 1766 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1767 pr_err("connect to %s got bad banner\n", 1768 ceph_pr_addr(&con->peer_addr.in_addr)); 1769 con->error_msg = "protocol error, bad banner"; 1770 return -1; 1771 } 1772 return 0; 1773 } 1774 1775 static bool addr_is_blank(struct sockaddr_storage *ss) 1776 { 1777 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr; 1778 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr; 1779 1780 switch (ss->ss_family) { 1781 case AF_INET: 1782 return addr->s_addr == htonl(INADDR_ANY); 1783 case AF_INET6: 1784 return ipv6_addr_any(addr6); 1785 default: 1786 return true; 1787 } 1788 } 1789 1790 static int addr_port(struct sockaddr_storage *ss) 1791 { 1792 switch (ss->ss_family) { 1793 case AF_INET: 1794 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1795 case AF_INET6: 1796 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1797 } 1798 return 0; 1799 } 1800 1801 static void addr_set_port(struct sockaddr_storage *ss, int p) 1802 { 1803 switch (ss->ss_family) { 1804 case AF_INET: 1805 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1806 break; 1807 case AF_INET6: 1808 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1809 break; 1810 } 1811 } 1812 1813 /* 1814 * Unlike other *_pton function semantics, zero indicates success. 1815 */ 1816 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1817 char delim, const char **ipend) 1818 { 1819 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1820 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1821 1822 memset(ss, 0, sizeof(*ss)); 1823 1824 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1825 ss->ss_family = AF_INET; 1826 return 0; 1827 } 1828 1829 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1830 ss->ss_family = AF_INET6; 1831 return 0; 1832 } 1833 1834 return -EINVAL; 1835 } 1836 1837 /* 1838 * Extract hostname string and resolve using kernel DNS facility. 1839 */ 1840 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1841 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1842 struct sockaddr_storage *ss, char delim, const char **ipend) 1843 { 1844 const char *end, *delim_p; 1845 char *colon_p, *ip_addr = NULL; 1846 int ip_len, ret; 1847 1848 /* 1849 * The end of the hostname occurs immediately preceding the delimiter or 1850 * the port marker (':') where the delimiter takes precedence. 1851 */ 1852 delim_p = memchr(name, delim, namelen); 1853 colon_p = memchr(name, ':', namelen); 1854 1855 if (delim_p && colon_p) 1856 end = delim_p < colon_p ? delim_p : colon_p; 1857 else if (!delim_p && colon_p) 1858 end = colon_p; 1859 else { 1860 end = delim_p; 1861 if (!end) /* case: hostname:/ */ 1862 end = name + namelen; 1863 } 1864 1865 if (end <= name) 1866 return -EINVAL; 1867 1868 /* do dns_resolve upcall */ 1869 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1870 if (ip_len > 0) 1871 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1872 else 1873 ret = -ESRCH; 1874 1875 kfree(ip_addr); 1876 1877 *ipend = end; 1878 1879 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1880 ret, ret ? "failed" : ceph_pr_addr(ss)); 1881 1882 return ret; 1883 } 1884 #else 1885 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1886 struct sockaddr_storage *ss, char delim, const char **ipend) 1887 { 1888 return -EINVAL; 1889 } 1890 #endif 1891 1892 /* 1893 * Parse a server name (IP or hostname). If a valid IP address is not found 1894 * then try to extract a hostname to resolve using userspace DNS upcall. 1895 */ 1896 static int ceph_parse_server_name(const char *name, size_t namelen, 1897 struct sockaddr_storage *ss, char delim, const char **ipend) 1898 { 1899 int ret; 1900 1901 ret = ceph_pton(name, namelen, ss, delim, ipend); 1902 if (ret) 1903 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1904 1905 return ret; 1906 } 1907 1908 /* 1909 * Parse an ip[:port] list into an addr array. Use the default 1910 * monitor port if a port isn't specified. 1911 */ 1912 int ceph_parse_ips(const char *c, const char *end, 1913 struct ceph_entity_addr *addr, 1914 int max_count, int *count) 1915 { 1916 int i, ret = -EINVAL; 1917 const char *p = c; 1918 1919 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1920 for (i = 0; i < max_count; i++) { 1921 const char *ipend; 1922 struct sockaddr_storage *ss = &addr[i].in_addr; 1923 int port; 1924 char delim = ','; 1925 1926 if (*p == '[') { 1927 delim = ']'; 1928 p++; 1929 } 1930 1931 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1932 if (ret) 1933 goto bad; 1934 ret = -EINVAL; 1935 1936 p = ipend; 1937 1938 if (delim == ']') { 1939 if (*p != ']') { 1940 dout("missing matching ']'\n"); 1941 goto bad; 1942 } 1943 p++; 1944 } 1945 1946 /* port? */ 1947 if (p < end && *p == ':') { 1948 port = 0; 1949 p++; 1950 while (p < end && *p >= '0' && *p <= '9') { 1951 port = (port * 10) + (*p - '0'); 1952 p++; 1953 } 1954 if (port == 0) 1955 port = CEPH_MON_PORT; 1956 else if (port > 65535) 1957 goto bad; 1958 } else { 1959 port = CEPH_MON_PORT; 1960 } 1961 1962 addr_set_port(ss, port); 1963 1964 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1965 1966 if (p == end) 1967 break; 1968 if (*p != ',') 1969 goto bad; 1970 p++; 1971 } 1972 1973 if (p != end) 1974 goto bad; 1975 1976 if (count) 1977 *count = i + 1; 1978 return 0; 1979 1980 bad: 1981 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1982 return ret; 1983 } 1984 EXPORT_SYMBOL(ceph_parse_ips); 1985 1986 static int process_banner(struct ceph_connection *con) 1987 { 1988 dout("process_banner on %p\n", con); 1989 1990 if (verify_hello(con) < 0) 1991 return -1; 1992 1993 ceph_decode_addr(&con->actual_peer_addr); 1994 ceph_decode_addr(&con->peer_addr_for_me); 1995 1996 /* 1997 * Make sure the other end is who we wanted. note that the other 1998 * end may not yet know their ip address, so if it's 0.0.0.0, give 1999 * them the benefit of the doubt. 2000 */ 2001 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 2002 sizeof(con->peer_addr)) != 0 && 2003 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 2004 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 2005 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 2006 ceph_pr_addr(&con->peer_addr.in_addr), 2007 (int)le32_to_cpu(con->peer_addr.nonce), 2008 ceph_pr_addr(&con->actual_peer_addr.in_addr), 2009 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 2010 con->error_msg = "wrong peer at address"; 2011 return -1; 2012 } 2013 2014 /* 2015 * did we learn our address? 2016 */ 2017 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 2018 int port = addr_port(&con->msgr->inst.addr.in_addr); 2019 2020 memcpy(&con->msgr->inst.addr.in_addr, 2021 &con->peer_addr_for_me.in_addr, 2022 sizeof(con->peer_addr_for_me.in_addr)); 2023 addr_set_port(&con->msgr->inst.addr.in_addr, port); 2024 encode_my_addr(con->msgr); 2025 dout("process_banner learned my addr is %s\n", 2026 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 2027 } 2028 2029 return 0; 2030 } 2031 2032 static int process_connect(struct ceph_connection *con) 2033 { 2034 u64 sup_feat = from_msgr(con->msgr)->supported_features; 2035 u64 req_feat = from_msgr(con->msgr)->required_features; 2036 u64 server_feat = ceph_sanitize_features( 2037 le64_to_cpu(con->in_reply.features)); 2038 int ret; 2039 2040 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 2041 2042 if (con->auth_reply_buf) { 2043 /* 2044 * Any connection that defines ->get_authorizer() 2045 * should also define ->verify_authorizer_reply(). 2046 * See get_connect_authorizer(). 2047 */ 2048 ret = con->ops->verify_authorizer_reply(con); 2049 if (ret < 0) { 2050 con->error_msg = "bad authorize reply"; 2051 return ret; 2052 } 2053 } 2054 2055 switch (con->in_reply.tag) { 2056 case CEPH_MSGR_TAG_FEATURES: 2057 pr_err("%s%lld %s feature set mismatch," 2058 " my %llx < server's %llx, missing %llx\n", 2059 ENTITY_NAME(con->peer_name), 2060 ceph_pr_addr(&con->peer_addr.in_addr), 2061 sup_feat, server_feat, server_feat & ~sup_feat); 2062 con->error_msg = "missing required protocol features"; 2063 reset_connection(con); 2064 return -1; 2065 2066 case CEPH_MSGR_TAG_BADPROTOVER: 2067 pr_err("%s%lld %s protocol version mismatch," 2068 " my %d != server's %d\n", 2069 ENTITY_NAME(con->peer_name), 2070 ceph_pr_addr(&con->peer_addr.in_addr), 2071 le32_to_cpu(con->out_connect.protocol_version), 2072 le32_to_cpu(con->in_reply.protocol_version)); 2073 con->error_msg = "protocol version mismatch"; 2074 reset_connection(con); 2075 return -1; 2076 2077 case CEPH_MSGR_TAG_BADAUTHORIZER: 2078 con->auth_retry++; 2079 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2080 con->auth_retry); 2081 if (con->auth_retry == 2) { 2082 con->error_msg = "connect authorization failure"; 2083 return -1; 2084 } 2085 con_out_kvec_reset(con); 2086 ret = prepare_write_connect(con); 2087 if (ret < 0) 2088 return ret; 2089 prepare_read_connect(con); 2090 break; 2091 2092 case CEPH_MSGR_TAG_RESETSESSION: 2093 /* 2094 * If we connected with a large connect_seq but the peer 2095 * has no record of a session with us (no connection, or 2096 * connect_seq == 0), they will send RESETSESION to indicate 2097 * that they must have reset their session, and may have 2098 * dropped messages. 2099 */ 2100 dout("process_connect got RESET peer seq %u\n", 2101 le32_to_cpu(con->in_reply.connect_seq)); 2102 pr_err("%s%lld %s connection reset\n", 2103 ENTITY_NAME(con->peer_name), 2104 ceph_pr_addr(&con->peer_addr.in_addr)); 2105 reset_connection(con); 2106 con_out_kvec_reset(con); 2107 ret = prepare_write_connect(con); 2108 if (ret < 0) 2109 return ret; 2110 prepare_read_connect(con); 2111 2112 /* Tell ceph about it. */ 2113 mutex_unlock(&con->mutex); 2114 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2115 if (con->ops->peer_reset) 2116 con->ops->peer_reset(con); 2117 mutex_lock(&con->mutex); 2118 if (con->state != CON_STATE_NEGOTIATING) 2119 return -EAGAIN; 2120 break; 2121 2122 case CEPH_MSGR_TAG_RETRY_SESSION: 2123 /* 2124 * If we sent a smaller connect_seq than the peer has, try 2125 * again with a larger value. 2126 */ 2127 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2128 le32_to_cpu(con->out_connect.connect_seq), 2129 le32_to_cpu(con->in_reply.connect_seq)); 2130 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2131 con_out_kvec_reset(con); 2132 ret = prepare_write_connect(con); 2133 if (ret < 0) 2134 return ret; 2135 prepare_read_connect(con); 2136 break; 2137 2138 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2139 /* 2140 * If we sent a smaller global_seq than the peer has, try 2141 * again with a larger value. 2142 */ 2143 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2144 con->peer_global_seq, 2145 le32_to_cpu(con->in_reply.global_seq)); 2146 get_global_seq(con->msgr, 2147 le32_to_cpu(con->in_reply.global_seq)); 2148 con_out_kvec_reset(con); 2149 ret = prepare_write_connect(con); 2150 if (ret < 0) 2151 return ret; 2152 prepare_read_connect(con); 2153 break; 2154 2155 case CEPH_MSGR_TAG_SEQ: 2156 case CEPH_MSGR_TAG_READY: 2157 if (req_feat & ~server_feat) { 2158 pr_err("%s%lld %s protocol feature mismatch," 2159 " my required %llx > server's %llx, need %llx\n", 2160 ENTITY_NAME(con->peer_name), 2161 ceph_pr_addr(&con->peer_addr.in_addr), 2162 req_feat, server_feat, req_feat & ~server_feat); 2163 con->error_msg = "missing required protocol features"; 2164 reset_connection(con); 2165 return -1; 2166 } 2167 2168 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2169 con->state = CON_STATE_OPEN; 2170 con->auth_retry = 0; /* we authenticated; clear flag */ 2171 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2172 con->connect_seq++; 2173 con->peer_features = server_feat; 2174 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2175 con->peer_global_seq, 2176 le32_to_cpu(con->in_reply.connect_seq), 2177 con->connect_seq); 2178 WARN_ON(con->connect_seq != 2179 le32_to_cpu(con->in_reply.connect_seq)); 2180 2181 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2182 con_flag_set(con, CON_FLAG_LOSSYTX); 2183 2184 con->delay = 0; /* reset backoff memory */ 2185 2186 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2187 prepare_write_seq(con); 2188 prepare_read_seq(con); 2189 } else { 2190 prepare_read_tag(con); 2191 } 2192 break; 2193 2194 case CEPH_MSGR_TAG_WAIT: 2195 /* 2196 * If there is a connection race (we are opening 2197 * connections to each other), one of us may just have 2198 * to WAIT. This shouldn't happen if we are the 2199 * client. 2200 */ 2201 con->error_msg = "protocol error, got WAIT as client"; 2202 return -1; 2203 2204 default: 2205 con->error_msg = "protocol error, garbage tag during connect"; 2206 return -1; 2207 } 2208 return 0; 2209 } 2210 2211 2212 /* 2213 * read (part of) an ack 2214 */ 2215 static int read_partial_ack(struct ceph_connection *con) 2216 { 2217 int size = sizeof (con->in_temp_ack); 2218 int end = size; 2219 2220 return read_partial(con, end, size, &con->in_temp_ack); 2221 } 2222 2223 /* 2224 * We can finally discard anything that's been acked. 2225 */ 2226 static void process_ack(struct ceph_connection *con) 2227 { 2228 struct ceph_msg *m; 2229 u64 ack = le64_to_cpu(con->in_temp_ack); 2230 u64 seq; 2231 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ); 2232 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent; 2233 2234 /* 2235 * In the reconnect case, con_fault() has requeued messages 2236 * in out_sent. We should cleanup old messages according to 2237 * the reconnect seq. 2238 */ 2239 while (!list_empty(list)) { 2240 m = list_first_entry(list, struct ceph_msg, list_head); 2241 if (reconnect && m->needs_out_seq) 2242 break; 2243 seq = le64_to_cpu(m->hdr.seq); 2244 if (seq > ack) 2245 break; 2246 dout("got ack for seq %llu type %d at %p\n", seq, 2247 le16_to_cpu(m->hdr.type), m); 2248 m->ack_stamp = jiffies; 2249 ceph_msg_remove(m); 2250 } 2251 2252 prepare_read_tag(con); 2253 } 2254 2255 2256 static int read_partial_message_section(struct ceph_connection *con, 2257 struct kvec *section, 2258 unsigned int sec_len, u32 *crc) 2259 { 2260 int ret, left; 2261 2262 BUG_ON(!section); 2263 2264 while (section->iov_len < sec_len) { 2265 BUG_ON(section->iov_base == NULL); 2266 left = sec_len - section->iov_len; 2267 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2268 section->iov_len, left); 2269 if (ret <= 0) 2270 return ret; 2271 section->iov_len += ret; 2272 } 2273 if (section->iov_len == sec_len) 2274 *crc = crc32c(0, section->iov_base, section->iov_len); 2275 2276 return 1; 2277 } 2278 2279 static int read_partial_msg_data(struct ceph_connection *con) 2280 { 2281 struct ceph_msg *msg = con->in_msg; 2282 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2283 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2284 struct page *page; 2285 size_t page_offset; 2286 size_t length; 2287 u32 crc = 0; 2288 int ret; 2289 2290 BUG_ON(!msg); 2291 if (list_empty(&msg->data)) 2292 return -EIO; 2293 2294 if (do_datacrc) 2295 crc = con->in_data_crc; 2296 while (cursor->resid) { 2297 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 2298 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2299 if (ret <= 0) { 2300 if (do_datacrc) 2301 con->in_data_crc = crc; 2302 2303 return ret; 2304 } 2305 2306 if (do_datacrc) 2307 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2308 ceph_msg_data_advance(cursor, (size_t)ret); 2309 } 2310 if (do_datacrc) 2311 con->in_data_crc = crc; 2312 2313 return 1; /* must return > 0 to indicate success */ 2314 } 2315 2316 /* 2317 * read (part of) a message. 2318 */ 2319 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2320 2321 static int read_partial_message(struct ceph_connection *con) 2322 { 2323 struct ceph_msg *m = con->in_msg; 2324 int size; 2325 int end; 2326 int ret; 2327 unsigned int front_len, middle_len, data_len; 2328 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2329 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2330 u64 seq; 2331 u32 crc; 2332 2333 dout("read_partial_message con %p msg %p\n", con, m); 2334 2335 /* header */ 2336 size = sizeof (con->in_hdr); 2337 end = size; 2338 ret = read_partial(con, end, size, &con->in_hdr); 2339 if (ret <= 0) 2340 return ret; 2341 2342 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2343 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2344 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2345 crc, con->in_hdr.crc); 2346 return -EBADMSG; 2347 } 2348 2349 front_len = le32_to_cpu(con->in_hdr.front_len); 2350 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2351 return -EIO; 2352 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2353 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2354 return -EIO; 2355 data_len = le32_to_cpu(con->in_hdr.data_len); 2356 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2357 return -EIO; 2358 2359 /* verify seq# */ 2360 seq = le64_to_cpu(con->in_hdr.seq); 2361 if ((s64)seq - (s64)con->in_seq < 1) { 2362 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2363 ENTITY_NAME(con->peer_name), 2364 ceph_pr_addr(&con->peer_addr.in_addr), 2365 seq, con->in_seq + 1); 2366 con->in_base_pos = -front_len - middle_len - data_len - 2367 sizeof_footer(con); 2368 con->in_tag = CEPH_MSGR_TAG_READY; 2369 return 1; 2370 } else if ((s64)seq - (s64)con->in_seq > 1) { 2371 pr_err("read_partial_message bad seq %lld expected %lld\n", 2372 seq, con->in_seq + 1); 2373 con->error_msg = "bad message sequence # for incoming message"; 2374 return -EBADE; 2375 } 2376 2377 /* allocate message? */ 2378 if (!con->in_msg) { 2379 int skip = 0; 2380 2381 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2382 front_len, data_len); 2383 ret = ceph_con_in_msg_alloc(con, &skip); 2384 if (ret < 0) 2385 return ret; 2386 2387 BUG_ON(!con->in_msg ^ skip); 2388 if (skip) { 2389 /* skip this message */ 2390 dout("alloc_msg said skip message\n"); 2391 con->in_base_pos = -front_len - middle_len - data_len - 2392 sizeof_footer(con); 2393 con->in_tag = CEPH_MSGR_TAG_READY; 2394 con->in_seq++; 2395 return 1; 2396 } 2397 2398 BUG_ON(!con->in_msg); 2399 BUG_ON(con->in_msg->con != con); 2400 m = con->in_msg; 2401 m->front.iov_len = 0; /* haven't read it yet */ 2402 if (m->middle) 2403 m->middle->vec.iov_len = 0; 2404 2405 /* prepare for data payload, if any */ 2406 2407 if (data_len) 2408 prepare_message_data(con->in_msg, data_len); 2409 } 2410 2411 /* front */ 2412 ret = read_partial_message_section(con, &m->front, front_len, 2413 &con->in_front_crc); 2414 if (ret <= 0) 2415 return ret; 2416 2417 /* middle */ 2418 if (m->middle) { 2419 ret = read_partial_message_section(con, &m->middle->vec, 2420 middle_len, 2421 &con->in_middle_crc); 2422 if (ret <= 0) 2423 return ret; 2424 } 2425 2426 /* (page) data */ 2427 if (data_len) { 2428 ret = read_partial_msg_data(con); 2429 if (ret <= 0) 2430 return ret; 2431 } 2432 2433 /* footer */ 2434 size = sizeof_footer(con); 2435 end += size; 2436 ret = read_partial(con, end, size, &m->footer); 2437 if (ret <= 0) 2438 return ret; 2439 2440 if (!need_sign) { 2441 m->footer.flags = m->old_footer.flags; 2442 m->footer.sig = 0; 2443 } 2444 2445 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2446 m, front_len, m->footer.front_crc, middle_len, 2447 m->footer.middle_crc, data_len, m->footer.data_crc); 2448 2449 /* crc ok? */ 2450 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2451 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2452 m, con->in_front_crc, m->footer.front_crc); 2453 return -EBADMSG; 2454 } 2455 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2456 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2457 m, con->in_middle_crc, m->footer.middle_crc); 2458 return -EBADMSG; 2459 } 2460 if (do_datacrc && 2461 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2462 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2463 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2464 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2465 return -EBADMSG; 2466 } 2467 2468 if (need_sign && con->ops->check_message_signature && 2469 con->ops->check_message_signature(m)) { 2470 pr_err("read_partial_message %p signature check failed\n", m); 2471 return -EBADMSG; 2472 } 2473 2474 return 1; /* done! */ 2475 } 2476 2477 /* 2478 * Process message. This happens in the worker thread. The callback should 2479 * be careful not to do anything that waits on other incoming messages or it 2480 * may deadlock. 2481 */ 2482 static void process_message(struct ceph_connection *con) 2483 { 2484 struct ceph_msg *msg = con->in_msg; 2485 2486 BUG_ON(con->in_msg->con != con); 2487 con->in_msg = NULL; 2488 2489 /* if first message, set peer_name */ 2490 if (con->peer_name.type == 0) 2491 con->peer_name = msg->hdr.src; 2492 2493 con->in_seq++; 2494 mutex_unlock(&con->mutex); 2495 2496 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2497 msg, le64_to_cpu(msg->hdr.seq), 2498 ENTITY_NAME(msg->hdr.src), 2499 le16_to_cpu(msg->hdr.type), 2500 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2501 le32_to_cpu(msg->hdr.front_len), 2502 le32_to_cpu(msg->hdr.data_len), 2503 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2504 con->ops->dispatch(con, msg); 2505 2506 mutex_lock(&con->mutex); 2507 } 2508 2509 static int read_keepalive_ack(struct ceph_connection *con) 2510 { 2511 struct ceph_timespec ceph_ts; 2512 size_t size = sizeof(ceph_ts); 2513 int ret = read_partial(con, size, size, &ceph_ts); 2514 if (ret <= 0) 2515 return ret; 2516 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts); 2517 prepare_read_tag(con); 2518 return 1; 2519 } 2520 2521 /* 2522 * Write something to the socket. Called in a worker thread when the 2523 * socket appears to be writeable and we have something ready to send. 2524 */ 2525 static int try_write(struct ceph_connection *con) 2526 { 2527 int ret = 1; 2528 2529 dout("try_write start %p state %lu\n", con, con->state); 2530 2531 more: 2532 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2533 2534 /* open the socket first? */ 2535 if (con->state == CON_STATE_PREOPEN) { 2536 BUG_ON(con->sock); 2537 con->state = CON_STATE_CONNECTING; 2538 2539 con_out_kvec_reset(con); 2540 prepare_write_banner(con); 2541 prepare_read_banner(con); 2542 2543 BUG_ON(con->in_msg); 2544 con->in_tag = CEPH_MSGR_TAG_READY; 2545 dout("try_write initiating connect on %p new state %lu\n", 2546 con, con->state); 2547 ret = ceph_tcp_connect(con); 2548 if (ret < 0) { 2549 con->error_msg = "connect error"; 2550 goto out; 2551 } 2552 } 2553 2554 more_kvec: 2555 /* kvec data queued? */ 2556 if (con->out_kvec_left) { 2557 ret = write_partial_kvec(con); 2558 if (ret <= 0) 2559 goto out; 2560 } 2561 if (con->out_skip) { 2562 ret = write_partial_skip(con); 2563 if (ret <= 0) 2564 goto out; 2565 } 2566 2567 /* msg pages? */ 2568 if (con->out_msg) { 2569 if (con->out_msg_done) { 2570 ceph_msg_put(con->out_msg); 2571 con->out_msg = NULL; /* we're done with this one */ 2572 goto do_next; 2573 } 2574 2575 ret = write_partial_message_data(con); 2576 if (ret == 1) 2577 goto more_kvec; /* we need to send the footer, too! */ 2578 if (ret == 0) 2579 goto out; 2580 if (ret < 0) { 2581 dout("try_write write_partial_message_data err %d\n", 2582 ret); 2583 goto out; 2584 } 2585 } 2586 2587 do_next: 2588 if (con->state == CON_STATE_OPEN) { 2589 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2590 prepare_write_keepalive(con); 2591 goto more; 2592 } 2593 /* is anything else pending? */ 2594 if (!list_empty(&con->out_queue)) { 2595 prepare_write_message(con); 2596 goto more; 2597 } 2598 if (con->in_seq > con->in_seq_acked) { 2599 prepare_write_ack(con); 2600 goto more; 2601 } 2602 } 2603 2604 /* Nothing to do! */ 2605 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2606 dout("try_write nothing else to write.\n"); 2607 ret = 0; 2608 out: 2609 dout("try_write done on %p ret %d\n", con, ret); 2610 return ret; 2611 } 2612 2613 2614 2615 /* 2616 * Read what we can from the socket. 2617 */ 2618 static int try_read(struct ceph_connection *con) 2619 { 2620 int ret = -1; 2621 2622 more: 2623 dout("try_read start on %p state %lu\n", con, con->state); 2624 if (con->state != CON_STATE_CONNECTING && 2625 con->state != CON_STATE_NEGOTIATING && 2626 con->state != CON_STATE_OPEN) 2627 return 0; 2628 2629 BUG_ON(!con->sock); 2630 2631 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2632 con->in_base_pos); 2633 2634 if (con->state == CON_STATE_CONNECTING) { 2635 dout("try_read connecting\n"); 2636 ret = read_partial_banner(con); 2637 if (ret <= 0) 2638 goto out; 2639 ret = process_banner(con); 2640 if (ret < 0) 2641 goto out; 2642 2643 con->state = CON_STATE_NEGOTIATING; 2644 2645 /* 2646 * Received banner is good, exchange connection info. 2647 * Do not reset out_kvec, as sending our banner raced 2648 * with receiving peer banner after connect completed. 2649 */ 2650 ret = prepare_write_connect(con); 2651 if (ret < 0) 2652 goto out; 2653 prepare_read_connect(con); 2654 2655 /* Send connection info before awaiting response */ 2656 goto out; 2657 } 2658 2659 if (con->state == CON_STATE_NEGOTIATING) { 2660 dout("try_read negotiating\n"); 2661 ret = read_partial_connect(con); 2662 if (ret <= 0) 2663 goto out; 2664 ret = process_connect(con); 2665 if (ret < 0) 2666 goto out; 2667 goto more; 2668 } 2669 2670 WARN_ON(con->state != CON_STATE_OPEN); 2671 2672 if (con->in_base_pos < 0) { 2673 /* 2674 * skipping + discarding content. 2675 * 2676 * FIXME: there must be a better way to do this! 2677 */ 2678 static char buf[SKIP_BUF_SIZE]; 2679 int skip = min((int) sizeof (buf), -con->in_base_pos); 2680 2681 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2682 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2683 if (ret <= 0) 2684 goto out; 2685 con->in_base_pos += ret; 2686 if (con->in_base_pos) 2687 goto more; 2688 } 2689 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2690 /* 2691 * what's next? 2692 */ 2693 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2694 if (ret <= 0) 2695 goto out; 2696 dout("try_read got tag %d\n", (int)con->in_tag); 2697 switch (con->in_tag) { 2698 case CEPH_MSGR_TAG_MSG: 2699 prepare_read_message(con); 2700 break; 2701 case CEPH_MSGR_TAG_ACK: 2702 prepare_read_ack(con); 2703 break; 2704 case CEPH_MSGR_TAG_KEEPALIVE2_ACK: 2705 prepare_read_keepalive_ack(con); 2706 break; 2707 case CEPH_MSGR_TAG_CLOSE: 2708 con_close_socket(con); 2709 con->state = CON_STATE_CLOSED; 2710 goto out; 2711 default: 2712 goto bad_tag; 2713 } 2714 } 2715 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2716 ret = read_partial_message(con); 2717 if (ret <= 0) { 2718 switch (ret) { 2719 case -EBADMSG: 2720 con->error_msg = "bad crc/signature"; 2721 /* fall through */ 2722 case -EBADE: 2723 ret = -EIO; 2724 break; 2725 case -EIO: 2726 con->error_msg = "io error"; 2727 break; 2728 } 2729 goto out; 2730 } 2731 if (con->in_tag == CEPH_MSGR_TAG_READY) 2732 goto more; 2733 process_message(con); 2734 if (con->state == CON_STATE_OPEN) 2735 prepare_read_tag(con); 2736 goto more; 2737 } 2738 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2739 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2740 /* 2741 * the final handshake seq exchange is semantically 2742 * equivalent to an ACK 2743 */ 2744 ret = read_partial_ack(con); 2745 if (ret <= 0) 2746 goto out; 2747 process_ack(con); 2748 goto more; 2749 } 2750 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) { 2751 ret = read_keepalive_ack(con); 2752 if (ret <= 0) 2753 goto out; 2754 goto more; 2755 } 2756 2757 out: 2758 dout("try_read done on %p ret %d\n", con, ret); 2759 return ret; 2760 2761 bad_tag: 2762 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2763 con->error_msg = "protocol error, garbage tag"; 2764 ret = -1; 2765 goto out; 2766 } 2767 2768 2769 /* 2770 * Atomically queue work on a connection after the specified delay. 2771 * Bump @con reference to avoid races with connection teardown. 2772 * Returns 0 if work was queued, or an error code otherwise. 2773 */ 2774 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2775 { 2776 if (!con->ops->get(con)) { 2777 dout("%s %p ref count 0\n", __func__, con); 2778 return -ENOENT; 2779 } 2780 2781 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2782 dout("%s %p - already queued\n", __func__, con); 2783 con->ops->put(con); 2784 return -EBUSY; 2785 } 2786 2787 dout("%s %p %lu\n", __func__, con, delay); 2788 return 0; 2789 } 2790 2791 static void queue_con(struct ceph_connection *con) 2792 { 2793 (void) queue_con_delay(con, 0); 2794 } 2795 2796 static void cancel_con(struct ceph_connection *con) 2797 { 2798 if (cancel_delayed_work(&con->work)) { 2799 dout("%s %p\n", __func__, con); 2800 con->ops->put(con); 2801 } 2802 } 2803 2804 static bool con_sock_closed(struct ceph_connection *con) 2805 { 2806 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2807 return false; 2808 2809 #define CASE(x) \ 2810 case CON_STATE_ ## x: \ 2811 con->error_msg = "socket closed (con state " #x ")"; \ 2812 break; 2813 2814 switch (con->state) { 2815 CASE(CLOSED); 2816 CASE(PREOPEN); 2817 CASE(CONNECTING); 2818 CASE(NEGOTIATING); 2819 CASE(OPEN); 2820 CASE(STANDBY); 2821 default: 2822 pr_warn("%s con %p unrecognized state %lu\n", 2823 __func__, con, con->state); 2824 con->error_msg = "unrecognized con state"; 2825 BUG(); 2826 break; 2827 } 2828 #undef CASE 2829 2830 return true; 2831 } 2832 2833 static bool con_backoff(struct ceph_connection *con) 2834 { 2835 int ret; 2836 2837 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2838 return false; 2839 2840 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2841 if (ret) { 2842 dout("%s: con %p FAILED to back off %lu\n", __func__, 2843 con, con->delay); 2844 BUG_ON(ret == -ENOENT); 2845 con_flag_set(con, CON_FLAG_BACKOFF); 2846 } 2847 2848 return true; 2849 } 2850 2851 /* Finish fault handling; con->mutex must *not* be held here */ 2852 2853 static void con_fault_finish(struct ceph_connection *con) 2854 { 2855 dout("%s %p\n", __func__, con); 2856 2857 /* 2858 * in case we faulted due to authentication, invalidate our 2859 * current tickets so that we can get new ones. 2860 */ 2861 if (con->auth_retry) { 2862 dout("auth_retry %d, invalidating\n", con->auth_retry); 2863 if (con->ops->invalidate_authorizer) 2864 con->ops->invalidate_authorizer(con); 2865 con->auth_retry = 0; 2866 } 2867 2868 if (con->ops->fault) 2869 con->ops->fault(con); 2870 } 2871 2872 /* 2873 * Do some work on a connection. Drop a connection ref when we're done. 2874 */ 2875 static void ceph_con_workfn(struct work_struct *work) 2876 { 2877 struct ceph_connection *con = container_of(work, struct ceph_connection, 2878 work.work); 2879 bool fault; 2880 2881 mutex_lock(&con->mutex); 2882 while (true) { 2883 int ret; 2884 2885 if ((fault = con_sock_closed(con))) { 2886 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2887 break; 2888 } 2889 if (con_backoff(con)) { 2890 dout("%s: con %p BACKOFF\n", __func__, con); 2891 break; 2892 } 2893 if (con->state == CON_STATE_STANDBY) { 2894 dout("%s: con %p STANDBY\n", __func__, con); 2895 break; 2896 } 2897 if (con->state == CON_STATE_CLOSED) { 2898 dout("%s: con %p CLOSED\n", __func__, con); 2899 BUG_ON(con->sock); 2900 break; 2901 } 2902 if (con->state == CON_STATE_PREOPEN) { 2903 dout("%s: con %p PREOPEN\n", __func__, con); 2904 BUG_ON(con->sock); 2905 } 2906 2907 ret = try_read(con); 2908 if (ret < 0) { 2909 if (ret == -EAGAIN) 2910 continue; 2911 if (!con->error_msg) 2912 con->error_msg = "socket error on read"; 2913 fault = true; 2914 break; 2915 } 2916 2917 ret = try_write(con); 2918 if (ret < 0) { 2919 if (ret == -EAGAIN) 2920 continue; 2921 if (!con->error_msg) 2922 con->error_msg = "socket error on write"; 2923 fault = true; 2924 } 2925 2926 break; /* If we make it to here, we're done */ 2927 } 2928 if (fault) 2929 con_fault(con); 2930 mutex_unlock(&con->mutex); 2931 2932 if (fault) 2933 con_fault_finish(con); 2934 2935 con->ops->put(con); 2936 } 2937 2938 /* 2939 * Generic error/fault handler. A retry mechanism is used with 2940 * exponential backoff 2941 */ 2942 static void con_fault(struct ceph_connection *con) 2943 { 2944 dout("fault %p state %lu to peer %s\n", 2945 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2946 2947 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2948 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2949 con->error_msg = NULL; 2950 2951 WARN_ON(con->state != CON_STATE_CONNECTING && 2952 con->state != CON_STATE_NEGOTIATING && 2953 con->state != CON_STATE_OPEN); 2954 2955 con_close_socket(con); 2956 2957 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2958 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2959 con->state = CON_STATE_CLOSED; 2960 return; 2961 } 2962 2963 if (con->in_msg) { 2964 BUG_ON(con->in_msg->con != con); 2965 ceph_msg_put(con->in_msg); 2966 con->in_msg = NULL; 2967 } 2968 2969 /* Requeue anything that hasn't been acked */ 2970 list_splice_init(&con->out_sent, &con->out_queue); 2971 2972 /* If there are no messages queued or keepalive pending, place 2973 * the connection in a STANDBY state */ 2974 if (list_empty(&con->out_queue) && 2975 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2976 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2977 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2978 con->state = CON_STATE_STANDBY; 2979 } else { 2980 /* retry after a delay. */ 2981 con->state = CON_STATE_PREOPEN; 2982 if (con->delay == 0) 2983 con->delay = BASE_DELAY_INTERVAL; 2984 else if (con->delay < MAX_DELAY_INTERVAL) 2985 con->delay *= 2; 2986 con_flag_set(con, CON_FLAG_BACKOFF); 2987 queue_con(con); 2988 } 2989 } 2990 2991 2992 2993 /* 2994 * initialize a new messenger instance 2995 */ 2996 void ceph_messenger_init(struct ceph_messenger *msgr, 2997 struct ceph_entity_addr *myaddr) 2998 { 2999 spin_lock_init(&msgr->global_seq_lock); 3000 3001 if (myaddr) 3002 msgr->inst.addr = *myaddr; 3003 3004 /* select a random nonce */ 3005 msgr->inst.addr.type = 0; 3006 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 3007 encode_my_addr(msgr); 3008 3009 atomic_set(&msgr->stopping, 0); 3010 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 3011 3012 dout("%s %p\n", __func__, msgr); 3013 } 3014 EXPORT_SYMBOL(ceph_messenger_init); 3015 3016 void ceph_messenger_fini(struct ceph_messenger *msgr) 3017 { 3018 put_net(read_pnet(&msgr->net)); 3019 } 3020 EXPORT_SYMBOL(ceph_messenger_fini); 3021 3022 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 3023 { 3024 if (msg->con) 3025 msg->con->ops->put(msg->con); 3026 3027 msg->con = con ? con->ops->get(con) : NULL; 3028 BUG_ON(msg->con != con); 3029 } 3030 3031 static void clear_standby(struct ceph_connection *con) 3032 { 3033 /* come back from STANDBY? */ 3034 if (con->state == CON_STATE_STANDBY) { 3035 dout("clear_standby %p and ++connect_seq\n", con); 3036 con->state = CON_STATE_PREOPEN; 3037 con->connect_seq++; 3038 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 3039 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 3040 } 3041 } 3042 3043 /* 3044 * Queue up an outgoing message on the given connection. 3045 */ 3046 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 3047 { 3048 /* set src+dst */ 3049 msg->hdr.src = con->msgr->inst.name; 3050 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 3051 msg->needs_out_seq = true; 3052 3053 mutex_lock(&con->mutex); 3054 3055 if (con->state == CON_STATE_CLOSED) { 3056 dout("con_send %p closed, dropping %p\n", con, msg); 3057 ceph_msg_put(msg); 3058 mutex_unlock(&con->mutex); 3059 return; 3060 } 3061 3062 msg_con_set(msg, con); 3063 3064 BUG_ON(!list_empty(&msg->list_head)); 3065 list_add_tail(&msg->list_head, &con->out_queue); 3066 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 3067 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 3068 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 3069 le32_to_cpu(msg->hdr.front_len), 3070 le32_to_cpu(msg->hdr.middle_len), 3071 le32_to_cpu(msg->hdr.data_len)); 3072 3073 clear_standby(con); 3074 mutex_unlock(&con->mutex); 3075 3076 /* if there wasn't anything waiting to send before, queue 3077 * new work */ 3078 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3079 queue_con(con); 3080 } 3081 EXPORT_SYMBOL(ceph_con_send); 3082 3083 /* 3084 * Revoke a message that was previously queued for send 3085 */ 3086 void ceph_msg_revoke(struct ceph_msg *msg) 3087 { 3088 struct ceph_connection *con = msg->con; 3089 3090 if (!con) { 3091 dout("%s msg %p null con\n", __func__, msg); 3092 return; /* Message not in our possession */ 3093 } 3094 3095 mutex_lock(&con->mutex); 3096 if (!list_empty(&msg->list_head)) { 3097 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3098 list_del_init(&msg->list_head); 3099 msg->hdr.seq = 0; 3100 3101 ceph_msg_put(msg); 3102 } 3103 if (con->out_msg == msg) { 3104 BUG_ON(con->out_skip); 3105 /* footer */ 3106 if (con->out_msg_done) { 3107 con->out_skip += con_out_kvec_skip(con); 3108 } else { 3109 BUG_ON(!msg->data_length); 3110 con->out_skip += sizeof_footer(con); 3111 } 3112 /* data, middle, front */ 3113 if (msg->data_length) 3114 con->out_skip += msg->cursor.total_resid; 3115 if (msg->middle) 3116 con->out_skip += con_out_kvec_skip(con); 3117 con->out_skip += con_out_kvec_skip(con); 3118 3119 dout("%s %p msg %p - was sending, will write %d skip %d\n", 3120 __func__, con, msg, con->out_kvec_bytes, con->out_skip); 3121 msg->hdr.seq = 0; 3122 con->out_msg = NULL; 3123 ceph_msg_put(msg); 3124 } 3125 3126 mutex_unlock(&con->mutex); 3127 } 3128 3129 /* 3130 * Revoke a message that we may be reading data into 3131 */ 3132 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3133 { 3134 struct ceph_connection *con = msg->con; 3135 3136 if (!con) { 3137 dout("%s msg %p null con\n", __func__, msg); 3138 return; /* Message not in our possession */ 3139 } 3140 3141 mutex_lock(&con->mutex); 3142 if (con->in_msg == msg) { 3143 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3144 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3145 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3146 3147 /* skip rest of message */ 3148 dout("%s %p msg %p revoked\n", __func__, con, msg); 3149 con->in_base_pos = con->in_base_pos - 3150 sizeof(struct ceph_msg_header) - 3151 front_len - 3152 middle_len - 3153 data_len - 3154 sizeof(struct ceph_msg_footer); 3155 ceph_msg_put(con->in_msg); 3156 con->in_msg = NULL; 3157 con->in_tag = CEPH_MSGR_TAG_READY; 3158 con->in_seq++; 3159 } else { 3160 dout("%s %p in_msg %p msg %p no-op\n", 3161 __func__, con, con->in_msg, msg); 3162 } 3163 mutex_unlock(&con->mutex); 3164 } 3165 3166 /* 3167 * Queue a keepalive byte to ensure the tcp connection is alive. 3168 */ 3169 void ceph_con_keepalive(struct ceph_connection *con) 3170 { 3171 dout("con_keepalive %p\n", con); 3172 mutex_lock(&con->mutex); 3173 clear_standby(con); 3174 mutex_unlock(&con->mutex); 3175 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3176 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3177 queue_con(con); 3178 } 3179 EXPORT_SYMBOL(ceph_con_keepalive); 3180 3181 bool ceph_con_keepalive_expired(struct ceph_connection *con, 3182 unsigned long interval) 3183 { 3184 if (interval > 0 && 3185 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 3186 struct timespec now; 3187 struct timespec ts; 3188 ktime_get_real_ts(&now); 3189 jiffies_to_timespec(interval, &ts); 3190 ts = timespec_add(con->last_keepalive_ack, ts); 3191 return timespec_compare(&now, &ts) >= 0; 3192 } 3193 return false; 3194 } 3195 3196 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3197 { 3198 struct ceph_msg_data *data; 3199 3200 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3201 return NULL; 3202 3203 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3204 if (data) 3205 data->type = type; 3206 INIT_LIST_HEAD(&data->links); 3207 3208 return data; 3209 } 3210 3211 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3212 { 3213 if (!data) 3214 return; 3215 3216 WARN_ON(!list_empty(&data->links)); 3217 if (data->type == CEPH_MSG_DATA_PAGELIST) 3218 ceph_pagelist_release(data->pagelist); 3219 kmem_cache_free(ceph_msg_data_cache, data); 3220 } 3221 3222 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3223 size_t length, size_t alignment) 3224 { 3225 struct ceph_msg_data *data; 3226 3227 BUG_ON(!pages); 3228 BUG_ON(!length); 3229 3230 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3231 BUG_ON(!data); 3232 data->pages = pages; 3233 data->length = length; 3234 data->alignment = alignment & ~PAGE_MASK; 3235 3236 list_add_tail(&data->links, &msg->data); 3237 msg->data_length += length; 3238 } 3239 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3240 3241 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3242 struct ceph_pagelist *pagelist) 3243 { 3244 struct ceph_msg_data *data; 3245 3246 BUG_ON(!pagelist); 3247 BUG_ON(!pagelist->length); 3248 3249 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3250 BUG_ON(!data); 3251 data->pagelist = pagelist; 3252 3253 list_add_tail(&data->links, &msg->data); 3254 msg->data_length += pagelist->length; 3255 } 3256 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3257 3258 #ifdef CONFIG_BLOCK 3259 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3260 size_t length) 3261 { 3262 struct ceph_msg_data *data; 3263 3264 BUG_ON(!bio); 3265 3266 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3267 BUG_ON(!data); 3268 data->bio = bio; 3269 data->bio_length = length; 3270 3271 list_add_tail(&data->links, &msg->data); 3272 msg->data_length += length; 3273 } 3274 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3275 #endif /* CONFIG_BLOCK */ 3276 3277 /* 3278 * construct a new message with given type, size 3279 * the new msg has a ref count of 1. 3280 */ 3281 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3282 bool can_fail) 3283 { 3284 struct ceph_msg *m; 3285 3286 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3287 if (m == NULL) 3288 goto out; 3289 3290 m->hdr.type = cpu_to_le16(type); 3291 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3292 m->hdr.front_len = cpu_to_le32(front_len); 3293 3294 INIT_LIST_HEAD(&m->list_head); 3295 kref_init(&m->kref); 3296 INIT_LIST_HEAD(&m->data); 3297 3298 /* front */ 3299 if (front_len) { 3300 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3301 if (m->front.iov_base == NULL) { 3302 dout("ceph_msg_new can't allocate %d bytes\n", 3303 front_len); 3304 goto out2; 3305 } 3306 } else { 3307 m->front.iov_base = NULL; 3308 } 3309 m->front_alloc_len = m->front.iov_len = front_len; 3310 3311 dout("ceph_msg_new %p front %d\n", m, front_len); 3312 return m; 3313 3314 out2: 3315 ceph_msg_put(m); 3316 out: 3317 if (!can_fail) { 3318 pr_err("msg_new can't create type %d front %d\n", type, 3319 front_len); 3320 WARN_ON(1); 3321 } else { 3322 dout("msg_new can't create type %d front %d\n", type, 3323 front_len); 3324 } 3325 return NULL; 3326 } 3327 EXPORT_SYMBOL(ceph_msg_new); 3328 3329 /* 3330 * Allocate "middle" portion of a message, if it is needed and wasn't 3331 * allocated by alloc_msg. This allows us to read a small fixed-size 3332 * per-type header in the front and then gracefully fail (i.e., 3333 * propagate the error to the caller based on info in the front) when 3334 * the middle is too large. 3335 */ 3336 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3337 { 3338 int type = le16_to_cpu(msg->hdr.type); 3339 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3340 3341 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3342 ceph_msg_type_name(type), middle_len); 3343 BUG_ON(!middle_len); 3344 BUG_ON(msg->middle); 3345 3346 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3347 if (!msg->middle) 3348 return -ENOMEM; 3349 return 0; 3350 } 3351 3352 /* 3353 * Allocate a message for receiving an incoming message on a 3354 * connection, and save the result in con->in_msg. Uses the 3355 * connection's private alloc_msg op if available. 3356 * 3357 * Returns 0 on success, or a negative error code. 3358 * 3359 * On success, if we set *skip = 1: 3360 * - the next message should be skipped and ignored. 3361 * - con->in_msg == NULL 3362 * or if we set *skip = 0: 3363 * - con->in_msg is non-null. 3364 * On error (ENOMEM, EAGAIN, ...), 3365 * - con->in_msg == NULL 3366 */ 3367 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3368 { 3369 struct ceph_msg_header *hdr = &con->in_hdr; 3370 int middle_len = le32_to_cpu(hdr->middle_len); 3371 struct ceph_msg *msg; 3372 int ret = 0; 3373 3374 BUG_ON(con->in_msg != NULL); 3375 BUG_ON(!con->ops->alloc_msg); 3376 3377 mutex_unlock(&con->mutex); 3378 msg = con->ops->alloc_msg(con, hdr, skip); 3379 mutex_lock(&con->mutex); 3380 if (con->state != CON_STATE_OPEN) { 3381 if (msg) 3382 ceph_msg_put(msg); 3383 return -EAGAIN; 3384 } 3385 if (msg) { 3386 BUG_ON(*skip); 3387 msg_con_set(msg, con); 3388 con->in_msg = msg; 3389 } else { 3390 /* 3391 * Null message pointer means either we should skip 3392 * this message or we couldn't allocate memory. The 3393 * former is not an error. 3394 */ 3395 if (*skip) 3396 return 0; 3397 3398 con->error_msg = "error allocating memory for incoming message"; 3399 return -ENOMEM; 3400 } 3401 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3402 3403 if (middle_len && !con->in_msg->middle) { 3404 ret = ceph_alloc_middle(con, con->in_msg); 3405 if (ret < 0) { 3406 ceph_msg_put(con->in_msg); 3407 con->in_msg = NULL; 3408 } 3409 } 3410 3411 return ret; 3412 } 3413 3414 3415 /* 3416 * Free a generically kmalloc'd message. 3417 */ 3418 static void ceph_msg_free(struct ceph_msg *m) 3419 { 3420 dout("%s %p\n", __func__, m); 3421 kvfree(m->front.iov_base); 3422 kmem_cache_free(ceph_msg_cache, m); 3423 } 3424 3425 static void ceph_msg_release(struct kref *kref) 3426 { 3427 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3428 struct ceph_msg_data *data, *next; 3429 3430 dout("%s %p\n", __func__, m); 3431 WARN_ON(!list_empty(&m->list_head)); 3432 3433 msg_con_set(m, NULL); 3434 3435 /* drop middle, data, if any */ 3436 if (m->middle) { 3437 ceph_buffer_put(m->middle); 3438 m->middle = NULL; 3439 } 3440 3441 list_for_each_entry_safe(data, next, &m->data, links) { 3442 list_del_init(&data->links); 3443 ceph_msg_data_destroy(data); 3444 } 3445 m->data_length = 0; 3446 3447 if (m->pool) 3448 ceph_msgpool_put(m->pool, m); 3449 else 3450 ceph_msg_free(m); 3451 } 3452 3453 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3454 { 3455 dout("%s %p (was %d)\n", __func__, msg, 3456 kref_read(&msg->kref)); 3457 kref_get(&msg->kref); 3458 return msg; 3459 } 3460 EXPORT_SYMBOL(ceph_msg_get); 3461 3462 void ceph_msg_put(struct ceph_msg *msg) 3463 { 3464 dout("%s %p (was %d)\n", __func__, msg, 3465 kref_read(&msg->kref)); 3466 kref_put(&msg->kref, ceph_msg_release); 3467 } 3468 EXPORT_SYMBOL(ceph_msg_put); 3469 3470 void ceph_msg_dump(struct ceph_msg *msg) 3471 { 3472 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3473 msg->front_alloc_len, msg->data_length); 3474 print_hex_dump(KERN_DEBUG, "header: ", 3475 DUMP_PREFIX_OFFSET, 16, 1, 3476 &msg->hdr, sizeof(msg->hdr), true); 3477 print_hex_dump(KERN_DEBUG, " front: ", 3478 DUMP_PREFIX_OFFSET, 16, 1, 3479 msg->front.iov_base, msg->front.iov_len, true); 3480 if (msg->middle) 3481 print_hex_dump(KERN_DEBUG, "middle: ", 3482 DUMP_PREFIX_OFFSET, 16, 1, 3483 msg->middle->vec.iov_base, 3484 msg->middle->vec.iov_len, true); 3485 print_hex_dump(KERN_DEBUG, "footer: ", 3486 DUMP_PREFIX_OFFSET, 16, 1, 3487 &msg->footer, sizeof(msg->footer), true); 3488 } 3489 EXPORT_SYMBOL(ceph_msg_dump); 3490