xref: /linux/net/ceph/messenger.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef	CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif	/* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18 
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25 
26 #define list_entry_next(pos, member)					\
27 	list_entry(pos->member.next, typeof(*pos), member)
28 
29 /*
30  * Ceph uses the messenger to exchange ceph_msg messages with other
31  * hosts in the system.  The messenger provides ordered and reliable
32  * delivery.  We tolerate TCP disconnects by reconnecting (with
33  * exponential backoff) in the case of a fault (disconnection, bad
34  * crc, protocol error).  Acks allow sent messages to be discarded by
35  * the sender.
36  */
37 
38 /*
39  * We track the state of the socket on a given connection using
40  * values defined below.  The transition to a new socket state is
41  * handled by a function which verifies we aren't coming from an
42  * unexpected state.
43  *
44  *      --------
45  *      | NEW* |  transient initial state
46  *      --------
47  *          | con_sock_state_init()
48  *          v
49  *      ----------
50  *      | CLOSED |  initialized, but no socket (and no
51  *      ----------  TCP connection)
52  *       ^      \
53  *       |       \ con_sock_state_connecting()
54  *       |        ----------------------
55  *       |                              \
56  *       + con_sock_state_closed()       \
57  *       |+---------------------------    \
58  *       | \                          \    \
59  *       |  -----------                \    \
60  *       |  | CLOSING |  socket event;  \    \
61  *       |  -----------  await close     \    \
62  *       |       ^                        \   |
63  *       |       |                         \  |
64  *       |       + con_sock_state_closing() \ |
65  *       |      / \                         | |
66  *       |     /   ---------------          | |
67  *       |    /                   \         v v
68  *       |   /                    --------------
69  *       |  /    -----------------| CONNECTING |  socket created, TCP
70  *       |  |   /                 --------------  connect initiated
71  *       |  |   | con_sock_state_connected()
72  *       |  |   v
73  *      -------------
74  *      | CONNECTED |  TCP connection established
75  *      -------------
76  *
77  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78  */
79 
80 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
81 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
82 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
83 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
84 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
85 
86 /*
87  * connection states
88  */
89 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
90 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
91 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
92 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
93 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
94 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
95 
96 /*
97  * ceph_connection flag bits
98  */
99 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
100 				       * messages on errors */
101 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
102 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
103 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
104 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
105 
106 static bool con_flag_valid(unsigned long con_flag)
107 {
108 	switch (con_flag) {
109 	case CON_FLAG_LOSSYTX:
110 	case CON_FLAG_KEEPALIVE_PENDING:
111 	case CON_FLAG_WRITE_PENDING:
112 	case CON_FLAG_SOCK_CLOSED:
113 	case CON_FLAG_BACKOFF:
114 		return true;
115 	default:
116 		return false;
117 	}
118 }
119 
120 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
121 {
122 	BUG_ON(!con_flag_valid(con_flag));
123 
124 	clear_bit(con_flag, &con->flags);
125 }
126 
127 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
128 {
129 	BUG_ON(!con_flag_valid(con_flag));
130 
131 	set_bit(con_flag, &con->flags);
132 }
133 
134 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
135 {
136 	BUG_ON(!con_flag_valid(con_flag));
137 
138 	return test_bit(con_flag, &con->flags);
139 }
140 
141 static bool con_flag_test_and_clear(struct ceph_connection *con,
142 					unsigned long con_flag)
143 {
144 	BUG_ON(!con_flag_valid(con_flag));
145 
146 	return test_and_clear_bit(con_flag, &con->flags);
147 }
148 
149 static bool con_flag_test_and_set(struct ceph_connection *con,
150 					unsigned long con_flag)
151 {
152 	BUG_ON(!con_flag_valid(con_flag));
153 
154 	return test_and_set_bit(con_flag, &con->flags);
155 }
156 
157 /* Slab caches for frequently-allocated structures */
158 
159 static struct kmem_cache	*ceph_msg_cache;
160 static struct kmem_cache	*ceph_msg_data_cache;
161 
162 /* static tag bytes (protocol control messages) */
163 static char tag_msg = CEPH_MSGR_TAG_MSG;
164 static char tag_ack = CEPH_MSGR_TAG_ACK;
165 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
166 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
167 
168 #ifdef CONFIG_LOCKDEP
169 static struct lock_class_key socket_class;
170 #endif
171 
172 /*
173  * When skipping (ignoring) a block of input we read it into a "skip
174  * buffer," which is this many bytes in size.
175  */
176 #define SKIP_BUF_SIZE	1024
177 
178 static void queue_con(struct ceph_connection *con);
179 static void cancel_con(struct ceph_connection *con);
180 static void ceph_con_workfn(struct work_struct *);
181 static void con_fault(struct ceph_connection *con);
182 
183 /*
184  * Nicely render a sockaddr as a string.  An array of formatted
185  * strings is used, to approximate reentrancy.
186  */
187 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
188 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
189 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
190 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
191 
192 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
193 static atomic_t addr_str_seq = ATOMIC_INIT(0);
194 
195 static struct page *zero_page;		/* used in certain error cases */
196 
197 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
198 {
199 	int i;
200 	char *s;
201 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
202 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
203 
204 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
205 	s = addr_str[i];
206 
207 	switch (ss->ss_family) {
208 	case AF_INET:
209 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
210 			 ntohs(in4->sin_port));
211 		break;
212 
213 	case AF_INET6:
214 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
215 			 ntohs(in6->sin6_port));
216 		break;
217 
218 	default:
219 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
220 			 ss->ss_family);
221 	}
222 
223 	return s;
224 }
225 EXPORT_SYMBOL(ceph_pr_addr);
226 
227 static void encode_my_addr(struct ceph_messenger *msgr)
228 {
229 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
230 	ceph_encode_addr(&msgr->my_enc_addr);
231 }
232 
233 /*
234  * work queue for all reading and writing to/from the socket.
235  */
236 static struct workqueue_struct *ceph_msgr_wq;
237 
238 static int ceph_msgr_slab_init(void)
239 {
240 	BUG_ON(ceph_msg_cache);
241 	ceph_msg_cache = kmem_cache_create("ceph_msg",
242 					sizeof (struct ceph_msg),
243 					__alignof__(struct ceph_msg), 0, NULL);
244 
245 	if (!ceph_msg_cache)
246 		return -ENOMEM;
247 
248 	BUG_ON(ceph_msg_data_cache);
249 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
250 					sizeof (struct ceph_msg_data),
251 					__alignof__(struct ceph_msg_data),
252 					0, NULL);
253 	if (ceph_msg_data_cache)
254 		return 0;
255 
256 	kmem_cache_destroy(ceph_msg_cache);
257 	ceph_msg_cache = NULL;
258 
259 	return -ENOMEM;
260 }
261 
262 static void ceph_msgr_slab_exit(void)
263 {
264 	BUG_ON(!ceph_msg_data_cache);
265 	kmem_cache_destroy(ceph_msg_data_cache);
266 	ceph_msg_data_cache = NULL;
267 
268 	BUG_ON(!ceph_msg_cache);
269 	kmem_cache_destroy(ceph_msg_cache);
270 	ceph_msg_cache = NULL;
271 }
272 
273 static void _ceph_msgr_exit(void)
274 {
275 	if (ceph_msgr_wq) {
276 		destroy_workqueue(ceph_msgr_wq);
277 		ceph_msgr_wq = NULL;
278 	}
279 
280 	BUG_ON(zero_page == NULL);
281 	page_cache_release(zero_page);
282 	zero_page = NULL;
283 
284 	ceph_msgr_slab_exit();
285 }
286 
287 int ceph_msgr_init(void)
288 {
289 	if (ceph_msgr_slab_init())
290 		return -ENOMEM;
291 
292 	BUG_ON(zero_page != NULL);
293 	zero_page = ZERO_PAGE(0);
294 	page_cache_get(zero_page);
295 
296 	/*
297 	 * The number of active work items is limited by the number of
298 	 * connections, so leave @max_active at default.
299 	 */
300 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
301 	if (ceph_msgr_wq)
302 		return 0;
303 
304 	pr_err("msgr_init failed to create workqueue\n");
305 	_ceph_msgr_exit();
306 
307 	return -ENOMEM;
308 }
309 EXPORT_SYMBOL(ceph_msgr_init);
310 
311 void ceph_msgr_exit(void)
312 {
313 	BUG_ON(ceph_msgr_wq == NULL);
314 
315 	_ceph_msgr_exit();
316 }
317 EXPORT_SYMBOL(ceph_msgr_exit);
318 
319 void ceph_msgr_flush(void)
320 {
321 	flush_workqueue(ceph_msgr_wq);
322 }
323 EXPORT_SYMBOL(ceph_msgr_flush);
324 
325 /* Connection socket state transition functions */
326 
327 static void con_sock_state_init(struct ceph_connection *con)
328 {
329 	int old_state;
330 
331 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
332 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
333 		printk("%s: unexpected old state %d\n", __func__, old_state);
334 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
335 	     CON_SOCK_STATE_CLOSED);
336 }
337 
338 static void con_sock_state_connecting(struct ceph_connection *con)
339 {
340 	int old_state;
341 
342 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
343 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
344 		printk("%s: unexpected old state %d\n", __func__, old_state);
345 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
346 	     CON_SOCK_STATE_CONNECTING);
347 }
348 
349 static void con_sock_state_connected(struct ceph_connection *con)
350 {
351 	int old_state;
352 
353 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
354 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
355 		printk("%s: unexpected old state %d\n", __func__, old_state);
356 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
357 	     CON_SOCK_STATE_CONNECTED);
358 }
359 
360 static void con_sock_state_closing(struct ceph_connection *con)
361 {
362 	int old_state;
363 
364 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
365 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
366 			old_state != CON_SOCK_STATE_CONNECTED &&
367 			old_state != CON_SOCK_STATE_CLOSING))
368 		printk("%s: unexpected old state %d\n", __func__, old_state);
369 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
370 	     CON_SOCK_STATE_CLOSING);
371 }
372 
373 static void con_sock_state_closed(struct ceph_connection *con)
374 {
375 	int old_state;
376 
377 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
378 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
379 		    old_state != CON_SOCK_STATE_CLOSING &&
380 		    old_state != CON_SOCK_STATE_CONNECTING &&
381 		    old_state != CON_SOCK_STATE_CLOSED))
382 		printk("%s: unexpected old state %d\n", __func__, old_state);
383 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
384 	     CON_SOCK_STATE_CLOSED);
385 }
386 
387 /*
388  * socket callback functions
389  */
390 
391 /* data available on socket, or listen socket received a connect */
392 static void ceph_sock_data_ready(struct sock *sk)
393 {
394 	struct ceph_connection *con = sk->sk_user_data;
395 	if (atomic_read(&con->msgr->stopping)) {
396 		return;
397 	}
398 
399 	if (sk->sk_state != TCP_CLOSE_WAIT) {
400 		dout("%s on %p state = %lu, queueing work\n", __func__,
401 		     con, con->state);
402 		queue_con(con);
403 	}
404 }
405 
406 /* socket has buffer space for writing */
407 static void ceph_sock_write_space(struct sock *sk)
408 {
409 	struct ceph_connection *con = sk->sk_user_data;
410 
411 	/* only queue to workqueue if there is data we want to write,
412 	 * and there is sufficient space in the socket buffer to accept
413 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
414 	 * doesn't get called again until try_write() fills the socket
415 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
416 	 * and net/core/stream.c:sk_stream_write_space().
417 	 */
418 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
419 		if (sk_stream_is_writeable(sk)) {
420 			dout("%s %p queueing write work\n", __func__, con);
421 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
422 			queue_con(con);
423 		}
424 	} else {
425 		dout("%s %p nothing to write\n", __func__, con);
426 	}
427 }
428 
429 /* socket's state has changed */
430 static void ceph_sock_state_change(struct sock *sk)
431 {
432 	struct ceph_connection *con = sk->sk_user_data;
433 
434 	dout("%s %p state = %lu sk_state = %u\n", __func__,
435 	     con, con->state, sk->sk_state);
436 
437 	switch (sk->sk_state) {
438 	case TCP_CLOSE:
439 		dout("%s TCP_CLOSE\n", __func__);
440 	case TCP_CLOSE_WAIT:
441 		dout("%s TCP_CLOSE_WAIT\n", __func__);
442 		con_sock_state_closing(con);
443 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
444 		queue_con(con);
445 		break;
446 	case TCP_ESTABLISHED:
447 		dout("%s TCP_ESTABLISHED\n", __func__);
448 		con_sock_state_connected(con);
449 		queue_con(con);
450 		break;
451 	default:	/* Everything else is uninteresting */
452 		break;
453 	}
454 }
455 
456 /*
457  * set up socket callbacks
458  */
459 static void set_sock_callbacks(struct socket *sock,
460 			       struct ceph_connection *con)
461 {
462 	struct sock *sk = sock->sk;
463 	sk->sk_user_data = con;
464 	sk->sk_data_ready = ceph_sock_data_ready;
465 	sk->sk_write_space = ceph_sock_write_space;
466 	sk->sk_state_change = ceph_sock_state_change;
467 }
468 
469 
470 /*
471  * socket helpers
472  */
473 
474 /*
475  * initiate connection to a remote socket.
476  */
477 static int ceph_tcp_connect(struct ceph_connection *con)
478 {
479 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
480 	struct socket *sock;
481 	int ret;
482 
483 	BUG_ON(con->sock);
484 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
485 			       SOCK_STREAM, IPPROTO_TCP, &sock);
486 	if (ret)
487 		return ret;
488 	sock->sk->sk_allocation = GFP_NOFS;
489 
490 #ifdef CONFIG_LOCKDEP
491 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
492 #endif
493 
494 	set_sock_callbacks(sock, con);
495 
496 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
497 
498 	con_sock_state_connecting(con);
499 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
500 				 O_NONBLOCK);
501 	if (ret == -EINPROGRESS) {
502 		dout("connect %s EINPROGRESS sk_state = %u\n",
503 		     ceph_pr_addr(&con->peer_addr.in_addr),
504 		     sock->sk->sk_state);
505 	} else if (ret < 0) {
506 		pr_err("connect %s error %d\n",
507 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
508 		sock_release(sock);
509 		return ret;
510 	}
511 
512 	if (con->msgr->tcp_nodelay) {
513 		int optval = 1;
514 
515 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
516 					(char *)&optval, sizeof(optval));
517 		if (ret)
518 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
519 			       ret);
520 	}
521 
522 	con->sock = sock;
523 	return 0;
524 }
525 
526 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
527 {
528 	struct kvec iov = {buf, len};
529 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
530 	int r;
531 
532 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
533 	if (r == -EAGAIN)
534 		r = 0;
535 	return r;
536 }
537 
538 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
539 		     int page_offset, size_t length)
540 {
541 	void *kaddr;
542 	int ret;
543 
544 	BUG_ON(page_offset + length > PAGE_SIZE);
545 
546 	kaddr = kmap(page);
547 	BUG_ON(!kaddr);
548 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
549 	kunmap(page);
550 
551 	return ret;
552 }
553 
554 /*
555  * write something.  @more is true if caller will be sending more data
556  * shortly.
557  */
558 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
559 		     size_t kvlen, size_t len, int more)
560 {
561 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
562 	int r;
563 
564 	if (more)
565 		msg.msg_flags |= MSG_MORE;
566 	else
567 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
568 
569 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
570 	if (r == -EAGAIN)
571 		r = 0;
572 	return r;
573 }
574 
575 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
576 		     int offset, size_t size, bool more)
577 {
578 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
579 	int ret;
580 
581 	ret = kernel_sendpage(sock, page, offset, size, flags);
582 	if (ret == -EAGAIN)
583 		ret = 0;
584 
585 	return ret;
586 }
587 
588 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
589 		     int offset, size_t size, bool more)
590 {
591 	int ret;
592 	struct kvec iov;
593 
594 	/* sendpage cannot properly handle pages with page_count == 0,
595 	 * we need to fallback to sendmsg if that's the case */
596 	if (page_count(page) >= 1)
597 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
598 
599 	iov.iov_base = kmap(page) + offset;
600 	iov.iov_len = size;
601 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
602 	kunmap(page);
603 
604 	return ret;
605 }
606 
607 /*
608  * Shutdown/close the socket for the given connection.
609  */
610 static int con_close_socket(struct ceph_connection *con)
611 {
612 	int rc = 0;
613 
614 	dout("con_close_socket on %p sock %p\n", con, con->sock);
615 	if (con->sock) {
616 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
617 		sock_release(con->sock);
618 		con->sock = NULL;
619 	}
620 
621 	/*
622 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
623 	 * independent of the connection mutex, and we could have
624 	 * received a socket close event before we had the chance to
625 	 * shut the socket down.
626 	 */
627 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
628 
629 	con_sock_state_closed(con);
630 	return rc;
631 }
632 
633 /*
634  * Reset a connection.  Discard all incoming and outgoing messages
635  * and clear *_seq state.
636  */
637 static void ceph_msg_remove(struct ceph_msg *msg)
638 {
639 	list_del_init(&msg->list_head);
640 	BUG_ON(msg->con == NULL);
641 	msg->con->ops->put(msg->con);
642 	msg->con = NULL;
643 
644 	ceph_msg_put(msg);
645 }
646 static void ceph_msg_remove_list(struct list_head *head)
647 {
648 	while (!list_empty(head)) {
649 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
650 							list_head);
651 		ceph_msg_remove(msg);
652 	}
653 }
654 
655 static void reset_connection(struct ceph_connection *con)
656 {
657 	/* reset connection, out_queue, msg_ and connect_seq */
658 	/* discard existing out_queue and msg_seq */
659 	dout("reset_connection %p\n", con);
660 	ceph_msg_remove_list(&con->out_queue);
661 	ceph_msg_remove_list(&con->out_sent);
662 
663 	if (con->in_msg) {
664 		BUG_ON(con->in_msg->con != con);
665 		con->in_msg->con = NULL;
666 		ceph_msg_put(con->in_msg);
667 		con->in_msg = NULL;
668 		con->ops->put(con);
669 	}
670 
671 	con->connect_seq = 0;
672 	con->out_seq = 0;
673 	if (con->out_msg) {
674 		ceph_msg_put(con->out_msg);
675 		con->out_msg = NULL;
676 	}
677 	con->in_seq = 0;
678 	con->in_seq_acked = 0;
679 }
680 
681 /*
682  * mark a peer down.  drop any open connections.
683  */
684 void ceph_con_close(struct ceph_connection *con)
685 {
686 	mutex_lock(&con->mutex);
687 	dout("con_close %p peer %s\n", con,
688 	     ceph_pr_addr(&con->peer_addr.in_addr));
689 	con->state = CON_STATE_CLOSED;
690 
691 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
692 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
693 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
694 	con_flag_clear(con, CON_FLAG_BACKOFF);
695 
696 	reset_connection(con);
697 	con->peer_global_seq = 0;
698 	cancel_con(con);
699 	con_close_socket(con);
700 	mutex_unlock(&con->mutex);
701 }
702 EXPORT_SYMBOL(ceph_con_close);
703 
704 /*
705  * Reopen a closed connection, with a new peer address.
706  */
707 void ceph_con_open(struct ceph_connection *con,
708 		   __u8 entity_type, __u64 entity_num,
709 		   struct ceph_entity_addr *addr)
710 {
711 	mutex_lock(&con->mutex);
712 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
713 
714 	WARN_ON(con->state != CON_STATE_CLOSED);
715 	con->state = CON_STATE_PREOPEN;
716 
717 	con->peer_name.type = (__u8) entity_type;
718 	con->peer_name.num = cpu_to_le64(entity_num);
719 
720 	memcpy(&con->peer_addr, addr, sizeof(*addr));
721 	con->delay = 0;      /* reset backoff memory */
722 	mutex_unlock(&con->mutex);
723 	queue_con(con);
724 }
725 EXPORT_SYMBOL(ceph_con_open);
726 
727 /*
728  * return true if this connection ever successfully opened
729  */
730 bool ceph_con_opened(struct ceph_connection *con)
731 {
732 	return con->connect_seq > 0;
733 }
734 
735 /*
736  * initialize a new connection.
737  */
738 void ceph_con_init(struct ceph_connection *con, void *private,
739 	const struct ceph_connection_operations *ops,
740 	struct ceph_messenger *msgr)
741 {
742 	dout("con_init %p\n", con);
743 	memset(con, 0, sizeof(*con));
744 	con->private = private;
745 	con->ops = ops;
746 	con->msgr = msgr;
747 
748 	con_sock_state_init(con);
749 
750 	mutex_init(&con->mutex);
751 	INIT_LIST_HEAD(&con->out_queue);
752 	INIT_LIST_HEAD(&con->out_sent);
753 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
754 
755 	con->state = CON_STATE_CLOSED;
756 }
757 EXPORT_SYMBOL(ceph_con_init);
758 
759 
760 /*
761  * We maintain a global counter to order connection attempts.  Get
762  * a unique seq greater than @gt.
763  */
764 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
765 {
766 	u32 ret;
767 
768 	spin_lock(&msgr->global_seq_lock);
769 	if (msgr->global_seq < gt)
770 		msgr->global_seq = gt;
771 	ret = ++msgr->global_seq;
772 	spin_unlock(&msgr->global_seq_lock);
773 	return ret;
774 }
775 
776 static void con_out_kvec_reset(struct ceph_connection *con)
777 {
778 	con->out_kvec_left = 0;
779 	con->out_kvec_bytes = 0;
780 	con->out_kvec_cur = &con->out_kvec[0];
781 }
782 
783 static void con_out_kvec_add(struct ceph_connection *con,
784 				size_t size, void *data)
785 {
786 	int index;
787 
788 	index = con->out_kvec_left;
789 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
790 
791 	con->out_kvec[index].iov_len = size;
792 	con->out_kvec[index].iov_base = data;
793 	con->out_kvec_left++;
794 	con->out_kvec_bytes += size;
795 }
796 
797 #ifdef CONFIG_BLOCK
798 
799 /*
800  * For a bio data item, a piece is whatever remains of the next
801  * entry in the current bio iovec, or the first entry in the next
802  * bio in the list.
803  */
804 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
805 					size_t length)
806 {
807 	struct ceph_msg_data *data = cursor->data;
808 	struct bio *bio;
809 
810 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
811 
812 	bio = data->bio;
813 	BUG_ON(!bio);
814 
815 	cursor->resid = min(length, data->bio_length);
816 	cursor->bio = bio;
817 	cursor->bvec_iter = bio->bi_iter;
818 	cursor->last_piece =
819 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
820 }
821 
822 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
823 						size_t *page_offset,
824 						size_t *length)
825 {
826 	struct ceph_msg_data *data = cursor->data;
827 	struct bio *bio;
828 	struct bio_vec bio_vec;
829 
830 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
831 
832 	bio = cursor->bio;
833 	BUG_ON(!bio);
834 
835 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
836 
837 	*page_offset = (size_t) bio_vec.bv_offset;
838 	BUG_ON(*page_offset >= PAGE_SIZE);
839 	if (cursor->last_piece) /* pagelist offset is always 0 */
840 		*length = cursor->resid;
841 	else
842 		*length = (size_t) bio_vec.bv_len;
843 	BUG_ON(*length > cursor->resid);
844 	BUG_ON(*page_offset + *length > PAGE_SIZE);
845 
846 	return bio_vec.bv_page;
847 }
848 
849 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
850 					size_t bytes)
851 {
852 	struct bio *bio;
853 	struct bio_vec bio_vec;
854 
855 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
856 
857 	bio = cursor->bio;
858 	BUG_ON(!bio);
859 
860 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
861 
862 	/* Advance the cursor offset */
863 
864 	BUG_ON(cursor->resid < bytes);
865 	cursor->resid -= bytes;
866 
867 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
868 
869 	if (bytes < bio_vec.bv_len)
870 		return false;	/* more bytes to process in this segment */
871 
872 	/* Move on to the next segment, and possibly the next bio */
873 
874 	if (!cursor->bvec_iter.bi_size) {
875 		bio = bio->bi_next;
876 		cursor->bio = bio;
877 		if (bio)
878 			cursor->bvec_iter = bio->bi_iter;
879 		else
880 			memset(&cursor->bvec_iter, 0,
881 			       sizeof(cursor->bvec_iter));
882 	}
883 
884 	if (!cursor->last_piece) {
885 		BUG_ON(!cursor->resid);
886 		BUG_ON(!bio);
887 		/* A short read is OK, so use <= rather than == */
888 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
889 			cursor->last_piece = true;
890 	}
891 
892 	return true;
893 }
894 #endif /* CONFIG_BLOCK */
895 
896 /*
897  * For a page array, a piece comes from the first page in the array
898  * that has not already been fully consumed.
899  */
900 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
901 					size_t length)
902 {
903 	struct ceph_msg_data *data = cursor->data;
904 	int page_count;
905 
906 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
907 
908 	BUG_ON(!data->pages);
909 	BUG_ON(!data->length);
910 
911 	cursor->resid = min(length, data->length);
912 	page_count = calc_pages_for(data->alignment, (u64)data->length);
913 	cursor->page_offset = data->alignment & ~PAGE_MASK;
914 	cursor->page_index = 0;
915 	BUG_ON(page_count > (int)USHRT_MAX);
916 	cursor->page_count = (unsigned short)page_count;
917 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
918 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
919 }
920 
921 static struct page *
922 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
923 					size_t *page_offset, size_t *length)
924 {
925 	struct ceph_msg_data *data = cursor->data;
926 
927 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
928 
929 	BUG_ON(cursor->page_index >= cursor->page_count);
930 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
931 
932 	*page_offset = cursor->page_offset;
933 	if (cursor->last_piece)
934 		*length = cursor->resid;
935 	else
936 		*length = PAGE_SIZE - *page_offset;
937 
938 	return data->pages[cursor->page_index];
939 }
940 
941 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
942 						size_t bytes)
943 {
944 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
945 
946 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
947 
948 	/* Advance the cursor page offset */
949 
950 	cursor->resid -= bytes;
951 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
952 	if (!bytes || cursor->page_offset)
953 		return false;	/* more bytes to process in the current page */
954 
955 	if (!cursor->resid)
956 		return false;   /* no more data */
957 
958 	/* Move on to the next page; offset is already at 0 */
959 
960 	BUG_ON(cursor->page_index >= cursor->page_count);
961 	cursor->page_index++;
962 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
963 
964 	return true;
965 }
966 
967 /*
968  * For a pagelist, a piece is whatever remains to be consumed in the
969  * first page in the list, or the front of the next page.
970  */
971 static void
972 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
973 					size_t length)
974 {
975 	struct ceph_msg_data *data = cursor->data;
976 	struct ceph_pagelist *pagelist;
977 	struct page *page;
978 
979 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
980 
981 	pagelist = data->pagelist;
982 	BUG_ON(!pagelist);
983 
984 	if (!length)
985 		return;		/* pagelist can be assigned but empty */
986 
987 	BUG_ON(list_empty(&pagelist->head));
988 	page = list_first_entry(&pagelist->head, struct page, lru);
989 
990 	cursor->resid = min(length, pagelist->length);
991 	cursor->page = page;
992 	cursor->offset = 0;
993 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
994 }
995 
996 static struct page *
997 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
998 				size_t *page_offset, size_t *length)
999 {
1000 	struct ceph_msg_data *data = cursor->data;
1001 	struct ceph_pagelist *pagelist;
1002 
1003 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1004 
1005 	pagelist = data->pagelist;
1006 	BUG_ON(!pagelist);
1007 
1008 	BUG_ON(!cursor->page);
1009 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1010 
1011 	/* offset of first page in pagelist is always 0 */
1012 	*page_offset = cursor->offset & ~PAGE_MASK;
1013 	if (cursor->last_piece)
1014 		*length = cursor->resid;
1015 	else
1016 		*length = PAGE_SIZE - *page_offset;
1017 
1018 	return cursor->page;
1019 }
1020 
1021 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1022 						size_t bytes)
1023 {
1024 	struct ceph_msg_data *data = cursor->data;
1025 	struct ceph_pagelist *pagelist;
1026 
1027 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1028 
1029 	pagelist = data->pagelist;
1030 	BUG_ON(!pagelist);
1031 
1032 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1033 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1034 
1035 	/* Advance the cursor offset */
1036 
1037 	cursor->resid -= bytes;
1038 	cursor->offset += bytes;
1039 	/* offset of first page in pagelist is always 0 */
1040 	if (!bytes || cursor->offset & ~PAGE_MASK)
1041 		return false;	/* more bytes to process in the current page */
1042 
1043 	if (!cursor->resid)
1044 		return false;   /* no more data */
1045 
1046 	/* Move on to the next page */
1047 
1048 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1049 	cursor->page = list_entry_next(cursor->page, lru);
1050 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1051 
1052 	return true;
1053 }
1054 
1055 /*
1056  * Message data is handled (sent or received) in pieces, where each
1057  * piece resides on a single page.  The network layer might not
1058  * consume an entire piece at once.  A data item's cursor keeps
1059  * track of which piece is next to process and how much remains to
1060  * be processed in that piece.  It also tracks whether the current
1061  * piece is the last one in the data item.
1062  */
1063 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1064 {
1065 	size_t length = cursor->total_resid;
1066 
1067 	switch (cursor->data->type) {
1068 	case CEPH_MSG_DATA_PAGELIST:
1069 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1070 		break;
1071 	case CEPH_MSG_DATA_PAGES:
1072 		ceph_msg_data_pages_cursor_init(cursor, length);
1073 		break;
1074 #ifdef CONFIG_BLOCK
1075 	case CEPH_MSG_DATA_BIO:
1076 		ceph_msg_data_bio_cursor_init(cursor, length);
1077 		break;
1078 #endif /* CONFIG_BLOCK */
1079 	case CEPH_MSG_DATA_NONE:
1080 	default:
1081 		/* BUG(); */
1082 		break;
1083 	}
1084 	cursor->need_crc = true;
1085 }
1086 
1087 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1088 {
1089 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1090 	struct ceph_msg_data *data;
1091 
1092 	BUG_ON(!length);
1093 	BUG_ON(length > msg->data_length);
1094 	BUG_ON(list_empty(&msg->data));
1095 
1096 	cursor->data_head = &msg->data;
1097 	cursor->total_resid = length;
1098 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1099 	cursor->data = data;
1100 
1101 	__ceph_msg_data_cursor_init(cursor);
1102 }
1103 
1104 /*
1105  * Return the page containing the next piece to process for a given
1106  * data item, and supply the page offset and length of that piece.
1107  * Indicate whether this is the last piece in this data item.
1108  */
1109 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1110 					size_t *page_offset, size_t *length,
1111 					bool *last_piece)
1112 {
1113 	struct page *page;
1114 
1115 	switch (cursor->data->type) {
1116 	case CEPH_MSG_DATA_PAGELIST:
1117 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1118 		break;
1119 	case CEPH_MSG_DATA_PAGES:
1120 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1121 		break;
1122 #ifdef CONFIG_BLOCK
1123 	case CEPH_MSG_DATA_BIO:
1124 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1125 		break;
1126 #endif /* CONFIG_BLOCK */
1127 	case CEPH_MSG_DATA_NONE:
1128 	default:
1129 		page = NULL;
1130 		break;
1131 	}
1132 	BUG_ON(!page);
1133 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1134 	BUG_ON(!*length);
1135 	if (last_piece)
1136 		*last_piece = cursor->last_piece;
1137 
1138 	return page;
1139 }
1140 
1141 /*
1142  * Returns true if the result moves the cursor on to the next piece
1143  * of the data item.
1144  */
1145 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1146 				size_t bytes)
1147 {
1148 	bool new_piece;
1149 
1150 	BUG_ON(bytes > cursor->resid);
1151 	switch (cursor->data->type) {
1152 	case CEPH_MSG_DATA_PAGELIST:
1153 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1154 		break;
1155 	case CEPH_MSG_DATA_PAGES:
1156 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1157 		break;
1158 #ifdef CONFIG_BLOCK
1159 	case CEPH_MSG_DATA_BIO:
1160 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1161 		break;
1162 #endif /* CONFIG_BLOCK */
1163 	case CEPH_MSG_DATA_NONE:
1164 	default:
1165 		BUG();
1166 		break;
1167 	}
1168 	cursor->total_resid -= bytes;
1169 
1170 	if (!cursor->resid && cursor->total_resid) {
1171 		WARN_ON(!cursor->last_piece);
1172 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1173 		cursor->data = list_entry_next(cursor->data, links);
1174 		__ceph_msg_data_cursor_init(cursor);
1175 		new_piece = true;
1176 	}
1177 	cursor->need_crc = new_piece;
1178 
1179 	return new_piece;
1180 }
1181 
1182 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1183 {
1184 	BUG_ON(!msg);
1185 	BUG_ON(!data_len);
1186 
1187 	/* Initialize data cursor */
1188 
1189 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1190 }
1191 
1192 /*
1193  * Prepare footer for currently outgoing message, and finish things
1194  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1195  */
1196 static void prepare_write_message_footer(struct ceph_connection *con)
1197 {
1198 	struct ceph_msg *m = con->out_msg;
1199 	int v = con->out_kvec_left;
1200 
1201 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1202 
1203 	dout("prepare_write_message_footer %p\n", con);
1204 	con->out_kvec_is_msg = true;
1205 	con->out_kvec[v].iov_base = &m->footer;
1206 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1207 		if (con->ops->sign_message)
1208 			con->ops->sign_message(con, m);
1209 		else
1210 			m->footer.sig = 0;
1211 		con->out_kvec[v].iov_len = sizeof(m->footer);
1212 		con->out_kvec_bytes += sizeof(m->footer);
1213 	} else {
1214 		m->old_footer.flags = m->footer.flags;
1215 		con->out_kvec[v].iov_len = sizeof(m->old_footer);
1216 		con->out_kvec_bytes += sizeof(m->old_footer);
1217 	}
1218 	con->out_kvec_left++;
1219 	con->out_more = m->more_to_follow;
1220 	con->out_msg_done = true;
1221 }
1222 
1223 /*
1224  * Prepare headers for the next outgoing message.
1225  */
1226 static void prepare_write_message(struct ceph_connection *con)
1227 {
1228 	struct ceph_msg *m;
1229 	u32 crc;
1230 
1231 	con_out_kvec_reset(con);
1232 	con->out_kvec_is_msg = true;
1233 	con->out_msg_done = false;
1234 
1235 	/* Sneak an ack in there first?  If we can get it into the same
1236 	 * TCP packet that's a good thing. */
1237 	if (con->in_seq > con->in_seq_acked) {
1238 		con->in_seq_acked = con->in_seq;
1239 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1240 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1241 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1242 			&con->out_temp_ack);
1243 	}
1244 
1245 	BUG_ON(list_empty(&con->out_queue));
1246 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1247 	con->out_msg = m;
1248 	BUG_ON(m->con != con);
1249 
1250 	/* put message on sent list */
1251 	ceph_msg_get(m);
1252 	list_move_tail(&m->list_head, &con->out_sent);
1253 
1254 	/*
1255 	 * only assign outgoing seq # if we haven't sent this message
1256 	 * yet.  if it is requeued, resend with it's original seq.
1257 	 */
1258 	if (m->needs_out_seq) {
1259 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1260 		m->needs_out_seq = false;
1261 	}
1262 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1263 
1264 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1265 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1266 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1267 	     m->data_length);
1268 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1269 
1270 	/* tag + hdr + front + middle */
1271 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1272 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1273 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1274 
1275 	if (m->middle)
1276 		con_out_kvec_add(con, m->middle->vec.iov_len,
1277 			m->middle->vec.iov_base);
1278 
1279 	/* fill in crc (except data pages), footer */
1280 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1281 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1282 	con->out_msg->footer.flags = 0;
1283 
1284 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1285 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1286 	if (m->middle) {
1287 		crc = crc32c(0, m->middle->vec.iov_base,
1288 				m->middle->vec.iov_len);
1289 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1290 	} else
1291 		con->out_msg->footer.middle_crc = 0;
1292 	dout("%s front_crc %u middle_crc %u\n", __func__,
1293 	     le32_to_cpu(con->out_msg->footer.front_crc),
1294 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1295 
1296 	/* is there a data payload? */
1297 	con->out_msg->footer.data_crc = 0;
1298 	if (m->data_length) {
1299 		prepare_message_data(con->out_msg, m->data_length);
1300 		con->out_more = 1;  /* data + footer will follow */
1301 	} else {
1302 		/* no, queue up footer too and be done */
1303 		prepare_write_message_footer(con);
1304 	}
1305 
1306 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1307 }
1308 
1309 /*
1310  * Prepare an ack.
1311  */
1312 static void prepare_write_ack(struct ceph_connection *con)
1313 {
1314 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1315 	     con->in_seq_acked, con->in_seq);
1316 	con->in_seq_acked = con->in_seq;
1317 
1318 	con_out_kvec_reset(con);
1319 
1320 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1321 
1322 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1323 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1324 				&con->out_temp_ack);
1325 
1326 	con->out_more = 1;  /* more will follow.. eventually.. */
1327 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1328 }
1329 
1330 /*
1331  * Prepare to share the seq during handshake
1332  */
1333 static void prepare_write_seq(struct ceph_connection *con)
1334 {
1335 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1336 	     con->in_seq_acked, con->in_seq);
1337 	con->in_seq_acked = con->in_seq;
1338 
1339 	con_out_kvec_reset(con);
1340 
1341 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1342 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1343 			 &con->out_temp_ack);
1344 
1345 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1346 }
1347 
1348 /*
1349  * Prepare to write keepalive byte.
1350  */
1351 static void prepare_write_keepalive(struct ceph_connection *con)
1352 {
1353 	dout("prepare_write_keepalive %p\n", con);
1354 	con_out_kvec_reset(con);
1355 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1356 		struct timespec now = CURRENT_TIME;
1357 
1358 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1359 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1360 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1361 				 &con->out_temp_keepalive2);
1362 	} else {
1363 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1364 	}
1365 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1366 }
1367 
1368 /*
1369  * Connection negotiation.
1370  */
1371 
1372 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1373 						int *auth_proto)
1374 {
1375 	struct ceph_auth_handshake *auth;
1376 
1377 	if (!con->ops->get_authorizer) {
1378 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1379 		con->out_connect.authorizer_len = 0;
1380 		return NULL;
1381 	}
1382 
1383 	/* Can't hold the mutex while getting authorizer */
1384 	mutex_unlock(&con->mutex);
1385 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1386 	mutex_lock(&con->mutex);
1387 
1388 	if (IS_ERR(auth))
1389 		return auth;
1390 	if (con->state != CON_STATE_NEGOTIATING)
1391 		return ERR_PTR(-EAGAIN);
1392 
1393 	con->auth_reply_buf = auth->authorizer_reply_buf;
1394 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1395 	return auth;
1396 }
1397 
1398 /*
1399  * We connected to a peer and are saying hello.
1400  */
1401 static void prepare_write_banner(struct ceph_connection *con)
1402 {
1403 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1404 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1405 					&con->msgr->my_enc_addr);
1406 
1407 	con->out_more = 0;
1408 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1409 }
1410 
1411 static int prepare_write_connect(struct ceph_connection *con)
1412 {
1413 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1414 	int proto;
1415 	int auth_proto;
1416 	struct ceph_auth_handshake *auth;
1417 
1418 	switch (con->peer_name.type) {
1419 	case CEPH_ENTITY_TYPE_MON:
1420 		proto = CEPH_MONC_PROTOCOL;
1421 		break;
1422 	case CEPH_ENTITY_TYPE_OSD:
1423 		proto = CEPH_OSDC_PROTOCOL;
1424 		break;
1425 	case CEPH_ENTITY_TYPE_MDS:
1426 		proto = CEPH_MDSC_PROTOCOL;
1427 		break;
1428 	default:
1429 		BUG();
1430 	}
1431 
1432 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1433 	     con->connect_seq, global_seq, proto);
1434 
1435 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1436 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1437 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1438 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1439 	con->out_connect.protocol_version = cpu_to_le32(proto);
1440 	con->out_connect.flags = 0;
1441 
1442 	auth_proto = CEPH_AUTH_UNKNOWN;
1443 	auth = get_connect_authorizer(con, &auth_proto);
1444 	if (IS_ERR(auth))
1445 		return PTR_ERR(auth);
1446 
1447 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1448 	con->out_connect.authorizer_len = auth ?
1449 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1450 
1451 	con_out_kvec_add(con, sizeof (con->out_connect),
1452 					&con->out_connect);
1453 	if (auth && auth->authorizer_buf_len)
1454 		con_out_kvec_add(con, auth->authorizer_buf_len,
1455 					auth->authorizer_buf);
1456 
1457 	con->out_more = 0;
1458 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1459 
1460 	return 0;
1461 }
1462 
1463 /*
1464  * write as much of pending kvecs to the socket as we can.
1465  *  1 -> done
1466  *  0 -> socket full, but more to do
1467  * <0 -> error
1468  */
1469 static int write_partial_kvec(struct ceph_connection *con)
1470 {
1471 	int ret;
1472 
1473 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1474 	while (con->out_kvec_bytes > 0) {
1475 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1476 				       con->out_kvec_left, con->out_kvec_bytes,
1477 				       con->out_more);
1478 		if (ret <= 0)
1479 			goto out;
1480 		con->out_kvec_bytes -= ret;
1481 		if (con->out_kvec_bytes == 0)
1482 			break;            /* done */
1483 
1484 		/* account for full iov entries consumed */
1485 		while (ret >= con->out_kvec_cur->iov_len) {
1486 			BUG_ON(!con->out_kvec_left);
1487 			ret -= con->out_kvec_cur->iov_len;
1488 			con->out_kvec_cur++;
1489 			con->out_kvec_left--;
1490 		}
1491 		/* and for a partially-consumed entry */
1492 		if (ret) {
1493 			con->out_kvec_cur->iov_len -= ret;
1494 			con->out_kvec_cur->iov_base += ret;
1495 		}
1496 	}
1497 	con->out_kvec_left = 0;
1498 	con->out_kvec_is_msg = false;
1499 	ret = 1;
1500 out:
1501 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1502 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1503 	return ret;  /* done! */
1504 }
1505 
1506 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1507 				unsigned int page_offset,
1508 				unsigned int length)
1509 {
1510 	char *kaddr;
1511 
1512 	kaddr = kmap(page);
1513 	BUG_ON(kaddr == NULL);
1514 	crc = crc32c(crc, kaddr + page_offset, length);
1515 	kunmap(page);
1516 
1517 	return crc;
1518 }
1519 /*
1520  * Write as much message data payload as we can.  If we finish, queue
1521  * up the footer.
1522  *  1 -> done, footer is now queued in out_kvec[].
1523  *  0 -> socket full, but more to do
1524  * <0 -> error
1525  */
1526 static int write_partial_message_data(struct ceph_connection *con)
1527 {
1528 	struct ceph_msg *msg = con->out_msg;
1529 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1530 	bool do_datacrc = !con->msgr->nocrc;
1531 	u32 crc;
1532 
1533 	dout("%s %p msg %p\n", __func__, con, msg);
1534 
1535 	if (list_empty(&msg->data))
1536 		return -EINVAL;
1537 
1538 	/*
1539 	 * Iterate through each page that contains data to be
1540 	 * written, and send as much as possible for each.
1541 	 *
1542 	 * If we are calculating the data crc (the default), we will
1543 	 * need to map the page.  If we have no pages, they have
1544 	 * been revoked, so use the zero page.
1545 	 */
1546 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1547 	while (cursor->resid) {
1548 		struct page *page;
1549 		size_t page_offset;
1550 		size_t length;
1551 		bool last_piece;
1552 		bool need_crc;
1553 		int ret;
1554 
1555 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1556 							&last_piece);
1557 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1558 					length, !last_piece);
1559 		if (ret <= 0) {
1560 			if (do_datacrc)
1561 				msg->footer.data_crc = cpu_to_le32(crc);
1562 
1563 			return ret;
1564 		}
1565 		if (do_datacrc && cursor->need_crc)
1566 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1567 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1568 	}
1569 
1570 	dout("%s %p msg %p done\n", __func__, con, msg);
1571 
1572 	/* prepare and queue up footer, too */
1573 	if (do_datacrc)
1574 		msg->footer.data_crc = cpu_to_le32(crc);
1575 	else
1576 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1577 	con_out_kvec_reset(con);
1578 	prepare_write_message_footer(con);
1579 
1580 	return 1;	/* must return > 0 to indicate success */
1581 }
1582 
1583 /*
1584  * write some zeros
1585  */
1586 static int write_partial_skip(struct ceph_connection *con)
1587 {
1588 	int ret;
1589 
1590 	while (con->out_skip > 0) {
1591 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1592 
1593 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1594 		if (ret <= 0)
1595 			goto out;
1596 		con->out_skip -= ret;
1597 	}
1598 	ret = 1;
1599 out:
1600 	return ret;
1601 }
1602 
1603 /*
1604  * Prepare to read connection handshake, or an ack.
1605  */
1606 static void prepare_read_banner(struct ceph_connection *con)
1607 {
1608 	dout("prepare_read_banner %p\n", con);
1609 	con->in_base_pos = 0;
1610 }
1611 
1612 static void prepare_read_connect(struct ceph_connection *con)
1613 {
1614 	dout("prepare_read_connect %p\n", con);
1615 	con->in_base_pos = 0;
1616 }
1617 
1618 static void prepare_read_ack(struct ceph_connection *con)
1619 {
1620 	dout("prepare_read_ack %p\n", con);
1621 	con->in_base_pos = 0;
1622 }
1623 
1624 static void prepare_read_seq(struct ceph_connection *con)
1625 {
1626 	dout("prepare_read_seq %p\n", con);
1627 	con->in_base_pos = 0;
1628 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1629 }
1630 
1631 static void prepare_read_tag(struct ceph_connection *con)
1632 {
1633 	dout("prepare_read_tag %p\n", con);
1634 	con->in_base_pos = 0;
1635 	con->in_tag = CEPH_MSGR_TAG_READY;
1636 }
1637 
1638 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1639 {
1640 	dout("prepare_read_keepalive_ack %p\n", con);
1641 	con->in_base_pos = 0;
1642 }
1643 
1644 /*
1645  * Prepare to read a message.
1646  */
1647 static int prepare_read_message(struct ceph_connection *con)
1648 {
1649 	dout("prepare_read_message %p\n", con);
1650 	BUG_ON(con->in_msg != NULL);
1651 	con->in_base_pos = 0;
1652 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1653 	return 0;
1654 }
1655 
1656 
1657 static int read_partial(struct ceph_connection *con,
1658 			int end, int size, void *object)
1659 {
1660 	while (con->in_base_pos < end) {
1661 		int left = end - con->in_base_pos;
1662 		int have = size - left;
1663 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1664 		if (ret <= 0)
1665 			return ret;
1666 		con->in_base_pos += ret;
1667 	}
1668 	return 1;
1669 }
1670 
1671 
1672 /*
1673  * Read all or part of the connect-side handshake on a new connection
1674  */
1675 static int read_partial_banner(struct ceph_connection *con)
1676 {
1677 	int size;
1678 	int end;
1679 	int ret;
1680 
1681 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1682 
1683 	/* peer's banner */
1684 	size = strlen(CEPH_BANNER);
1685 	end = size;
1686 	ret = read_partial(con, end, size, con->in_banner);
1687 	if (ret <= 0)
1688 		goto out;
1689 
1690 	size = sizeof (con->actual_peer_addr);
1691 	end += size;
1692 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1693 	if (ret <= 0)
1694 		goto out;
1695 
1696 	size = sizeof (con->peer_addr_for_me);
1697 	end += size;
1698 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1699 	if (ret <= 0)
1700 		goto out;
1701 
1702 out:
1703 	return ret;
1704 }
1705 
1706 static int read_partial_connect(struct ceph_connection *con)
1707 {
1708 	int size;
1709 	int end;
1710 	int ret;
1711 
1712 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1713 
1714 	size = sizeof (con->in_reply);
1715 	end = size;
1716 	ret = read_partial(con, end, size, &con->in_reply);
1717 	if (ret <= 0)
1718 		goto out;
1719 
1720 	size = le32_to_cpu(con->in_reply.authorizer_len);
1721 	end += size;
1722 	ret = read_partial(con, end, size, con->auth_reply_buf);
1723 	if (ret <= 0)
1724 		goto out;
1725 
1726 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1727 	     con, (int)con->in_reply.tag,
1728 	     le32_to_cpu(con->in_reply.connect_seq),
1729 	     le32_to_cpu(con->in_reply.global_seq));
1730 out:
1731 	return ret;
1732 
1733 }
1734 
1735 /*
1736  * Verify the hello banner looks okay.
1737  */
1738 static int verify_hello(struct ceph_connection *con)
1739 {
1740 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1741 		pr_err("connect to %s got bad banner\n",
1742 		       ceph_pr_addr(&con->peer_addr.in_addr));
1743 		con->error_msg = "protocol error, bad banner";
1744 		return -1;
1745 	}
1746 	return 0;
1747 }
1748 
1749 static bool addr_is_blank(struct sockaddr_storage *ss)
1750 {
1751 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1752 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1753 
1754 	switch (ss->ss_family) {
1755 	case AF_INET:
1756 		return addr->s_addr == htonl(INADDR_ANY);
1757 	case AF_INET6:
1758 		return ipv6_addr_any(addr6);
1759 	default:
1760 		return true;
1761 	}
1762 }
1763 
1764 static int addr_port(struct sockaddr_storage *ss)
1765 {
1766 	switch (ss->ss_family) {
1767 	case AF_INET:
1768 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1769 	case AF_INET6:
1770 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1771 	}
1772 	return 0;
1773 }
1774 
1775 static void addr_set_port(struct sockaddr_storage *ss, int p)
1776 {
1777 	switch (ss->ss_family) {
1778 	case AF_INET:
1779 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1780 		break;
1781 	case AF_INET6:
1782 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1783 		break;
1784 	}
1785 }
1786 
1787 /*
1788  * Unlike other *_pton function semantics, zero indicates success.
1789  */
1790 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1791 		char delim, const char **ipend)
1792 {
1793 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1794 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1795 
1796 	memset(ss, 0, sizeof(*ss));
1797 
1798 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1799 		ss->ss_family = AF_INET;
1800 		return 0;
1801 	}
1802 
1803 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1804 		ss->ss_family = AF_INET6;
1805 		return 0;
1806 	}
1807 
1808 	return -EINVAL;
1809 }
1810 
1811 /*
1812  * Extract hostname string and resolve using kernel DNS facility.
1813  */
1814 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1815 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1816 		struct sockaddr_storage *ss, char delim, const char **ipend)
1817 {
1818 	const char *end, *delim_p;
1819 	char *colon_p, *ip_addr = NULL;
1820 	int ip_len, ret;
1821 
1822 	/*
1823 	 * The end of the hostname occurs immediately preceding the delimiter or
1824 	 * the port marker (':') where the delimiter takes precedence.
1825 	 */
1826 	delim_p = memchr(name, delim, namelen);
1827 	colon_p = memchr(name, ':', namelen);
1828 
1829 	if (delim_p && colon_p)
1830 		end = delim_p < colon_p ? delim_p : colon_p;
1831 	else if (!delim_p && colon_p)
1832 		end = colon_p;
1833 	else {
1834 		end = delim_p;
1835 		if (!end) /* case: hostname:/ */
1836 			end = name + namelen;
1837 	}
1838 
1839 	if (end <= name)
1840 		return -EINVAL;
1841 
1842 	/* do dns_resolve upcall */
1843 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1844 	if (ip_len > 0)
1845 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1846 	else
1847 		ret = -ESRCH;
1848 
1849 	kfree(ip_addr);
1850 
1851 	*ipend = end;
1852 
1853 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1854 			ret, ret ? "failed" : ceph_pr_addr(ss));
1855 
1856 	return ret;
1857 }
1858 #else
1859 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1860 		struct sockaddr_storage *ss, char delim, const char **ipend)
1861 {
1862 	return -EINVAL;
1863 }
1864 #endif
1865 
1866 /*
1867  * Parse a server name (IP or hostname). If a valid IP address is not found
1868  * then try to extract a hostname to resolve using userspace DNS upcall.
1869  */
1870 static int ceph_parse_server_name(const char *name, size_t namelen,
1871 			struct sockaddr_storage *ss, char delim, const char **ipend)
1872 {
1873 	int ret;
1874 
1875 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1876 	if (ret)
1877 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1878 
1879 	return ret;
1880 }
1881 
1882 /*
1883  * Parse an ip[:port] list into an addr array.  Use the default
1884  * monitor port if a port isn't specified.
1885  */
1886 int ceph_parse_ips(const char *c, const char *end,
1887 		   struct ceph_entity_addr *addr,
1888 		   int max_count, int *count)
1889 {
1890 	int i, ret = -EINVAL;
1891 	const char *p = c;
1892 
1893 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1894 	for (i = 0; i < max_count; i++) {
1895 		const char *ipend;
1896 		struct sockaddr_storage *ss = &addr[i].in_addr;
1897 		int port;
1898 		char delim = ',';
1899 
1900 		if (*p == '[') {
1901 			delim = ']';
1902 			p++;
1903 		}
1904 
1905 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1906 		if (ret)
1907 			goto bad;
1908 		ret = -EINVAL;
1909 
1910 		p = ipend;
1911 
1912 		if (delim == ']') {
1913 			if (*p != ']') {
1914 				dout("missing matching ']'\n");
1915 				goto bad;
1916 			}
1917 			p++;
1918 		}
1919 
1920 		/* port? */
1921 		if (p < end && *p == ':') {
1922 			port = 0;
1923 			p++;
1924 			while (p < end && *p >= '0' && *p <= '9') {
1925 				port = (port * 10) + (*p - '0');
1926 				p++;
1927 			}
1928 			if (port == 0)
1929 				port = CEPH_MON_PORT;
1930 			else if (port > 65535)
1931 				goto bad;
1932 		} else {
1933 			port = CEPH_MON_PORT;
1934 		}
1935 
1936 		addr_set_port(ss, port);
1937 
1938 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1939 
1940 		if (p == end)
1941 			break;
1942 		if (*p != ',')
1943 			goto bad;
1944 		p++;
1945 	}
1946 
1947 	if (p != end)
1948 		goto bad;
1949 
1950 	if (count)
1951 		*count = i + 1;
1952 	return 0;
1953 
1954 bad:
1955 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1956 	return ret;
1957 }
1958 EXPORT_SYMBOL(ceph_parse_ips);
1959 
1960 static int process_banner(struct ceph_connection *con)
1961 {
1962 	dout("process_banner on %p\n", con);
1963 
1964 	if (verify_hello(con) < 0)
1965 		return -1;
1966 
1967 	ceph_decode_addr(&con->actual_peer_addr);
1968 	ceph_decode_addr(&con->peer_addr_for_me);
1969 
1970 	/*
1971 	 * Make sure the other end is who we wanted.  note that the other
1972 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1973 	 * them the benefit of the doubt.
1974 	 */
1975 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1976 		   sizeof(con->peer_addr)) != 0 &&
1977 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1978 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1979 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1980 			ceph_pr_addr(&con->peer_addr.in_addr),
1981 			(int)le32_to_cpu(con->peer_addr.nonce),
1982 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1983 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1984 		con->error_msg = "wrong peer at address";
1985 		return -1;
1986 	}
1987 
1988 	/*
1989 	 * did we learn our address?
1990 	 */
1991 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1992 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1993 
1994 		memcpy(&con->msgr->inst.addr.in_addr,
1995 		       &con->peer_addr_for_me.in_addr,
1996 		       sizeof(con->peer_addr_for_me.in_addr));
1997 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1998 		encode_my_addr(con->msgr);
1999 		dout("process_banner learned my addr is %s\n",
2000 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 static int process_connect(struct ceph_connection *con)
2007 {
2008 	u64 sup_feat = con->msgr->supported_features;
2009 	u64 req_feat = con->msgr->required_features;
2010 	u64 server_feat = ceph_sanitize_features(
2011 				le64_to_cpu(con->in_reply.features));
2012 	int ret;
2013 
2014 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2015 
2016 	switch (con->in_reply.tag) {
2017 	case CEPH_MSGR_TAG_FEATURES:
2018 		pr_err("%s%lld %s feature set mismatch,"
2019 		       " my %llx < server's %llx, missing %llx\n",
2020 		       ENTITY_NAME(con->peer_name),
2021 		       ceph_pr_addr(&con->peer_addr.in_addr),
2022 		       sup_feat, server_feat, server_feat & ~sup_feat);
2023 		con->error_msg = "missing required protocol features";
2024 		reset_connection(con);
2025 		return -1;
2026 
2027 	case CEPH_MSGR_TAG_BADPROTOVER:
2028 		pr_err("%s%lld %s protocol version mismatch,"
2029 		       " my %d != server's %d\n",
2030 		       ENTITY_NAME(con->peer_name),
2031 		       ceph_pr_addr(&con->peer_addr.in_addr),
2032 		       le32_to_cpu(con->out_connect.protocol_version),
2033 		       le32_to_cpu(con->in_reply.protocol_version));
2034 		con->error_msg = "protocol version mismatch";
2035 		reset_connection(con);
2036 		return -1;
2037 
2038 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2039 		con->auth_retry++;
2040 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2041 		     con->auth_retry);
2042 		if (con->auth_retry == 2) {
2043 			con->error_msg = "connect authorization failure";
2044 			return -1;
2045 		}
2046 		con_out_kvec_reset(con);
2047 		ret = prepare_write_connect(con);
2048 		if (ret < 0)
2049 			return ret;
2050 		prepare_read_connect(con);
2051 		break;
2052 
2053 	case CEPH_MSGR_TAG_RESETSESSION:
2054 		/*
2055 		 * If we connected with a large connect_seq but the peer
2056 		 * has no record of a session with us (no connection, or
2057 		 * connect_seq == 0), they will send RESETSESION to indicate
2058 		 * that they must have reset their session, and may have
2059 		 * dropped messages.
2060 		 */
2061 		dout("process_connect got RESET peer seq %u\n",
2062 		     le32_to_cpu(con->in_reply.connect_seq));
2063 		pr_err("%s%lld %s connection reset\n",
2064 		       ENTITY_NAME(con->peer_name),
2065 		       ceph_pr_addr(&con->peer_addr.in_addr));
2066 		reset_connection(con);
2067 		con_out_kvec_reset(con);
2068 		ret = prepare_write_connect(con);
2069 		if (ret < 0)
2070 			return ret;
2071 		prepare_read_connect(con);
2072 
2073 		/* Tell ceph about it. */
2074 		mutex_unlock(&con->mutex);
2075 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2076 		if (con->ops->peer_reset)
2077 			con->ops->peer_reset(con);
2078 		mutex_lock(&con->mutex);
2079 		if (con->state != CON_STATE_NEGOTIATING)
2080 			return -EAGAIN;
2081 		break;
2082 
2083 	case CEPH_MSGR_TAG_RETRY_SESSION:
2084 		/*
2085 		 * If we sent a smaller connect_seq than the peer has, try
2086 		 * again with a larger value.
2087 		 */
2088 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2089 		     le32_to_cpu(con->out_connect.connect_seq),
2090 		     le32_to_cpu(con->in_reply.connect_seq));
2091 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2092 		con_out_kvec_reset(con);
2093 		ret = prepare_write_connect(con);
2094 		if (ret < 0)
2095 			return ret;
2096 		prepare_read_connect(con);
2097 		break;
2098 
2099 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2100 		/*
2101 		 * If we sent a smaller global_seq than the peer has, try
2102 		 * again with a larger value.
2103 		 */
2104 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2105 		     con->peer_global_seq,
2106 		     le32_to_cpu(con->in_reply.global_seq));
2107 		get_global_seq(con->msgr,
2108 			       le32_to_cpu(con->in_reply.global_seq));
2109 		con_out_kvec_reset(con);
2110 		ret = prepare_write_connect(con);
2111 		if (ret < 0)
2112 			return ret;
2113 		prepare_read_connect(con);
2114 		break;
2115 
2116 	case CEPH_MSGR_TAG_SEQ:
2117 	case CEPH_MSGR_TAG_READY:
2118 		if (req_feat & ~server_feat) {
2119 			pr_err("%s%lld %s protocol feature mismatch,"
2120 			       " my required %llx > server's %llx, need %llx\n",
2121 			       ENTITY_NAME(con->peer_name),
2122 			       ceph_pr_addr(&con->peer_addr.in_addr),
2123 			       req_feat, server_feat, req_feat & ~server_feat);
2124 			con->error_msg = "missing required protocol features";
2125 			reset_connection(con);
2126 			return -1;
2127 		}
2128 
2129 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2130 		con->state = CON_STATE_OPEN;
2131 		con->auth_retry = 0;    /* we authenticated; clear flag */
2132 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2133 		con->connect_seq++;
2134 		con->peer_features = server_feat;
2135 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2136 		     con->peer_global_seq,
2137 		     le32_to_cpu(con->in_reply.connect_seq),
2138 		     con->connect_seq);
2139 		WARN_ON(con->connect_seq !=
2140 			le32_to_cpu(con->in_reply.connect_seq));
2141 
2142 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2143 			con_flag_set(con, CON_FLAG_LOSSYTX);
2144 
2145 		con->delay = 0;      /* reset backoff memory */
2146 
2147 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2148 			prepare_write_seq(con);
2149 			prepare_read_seq(con);
2150 		} else {
2151 			prepare_read_tag(con);
2152 		}
2153 		break;
2154 
2155 	case CEPH_MSGR_TAG_WAIT:
2156 		/*
2157 		 * If there is a connection race (we are opening
2158 		 * connections to each other), one of us may just have
2159 		 * to WAIT.  This shouldn't happen if we are the
2160 		 * client.
2161 		 */
2162 		con->error_msg = "protocol error, got WAIT as client";
2163 		return -1;
2164 
2165 	default:
2166 		con->error_msg = "protocol error, garbage tag during connect";
2167 		return -1;
2168 	}
2169 	return 0;
2170 }
2171 
2172 
2173 /*
2174  * read (part of) an ack
2175  */
2176 static int read_partial_ack(struct ceph_connection *con)
2177 {
2178 	int size = sizeof (con->in_temp_ack);
2179 	int end = size;
2180 
2181 	return read_partial(con, end, size, &con->in_temp_ack);
2182 }
2183 
2184 /*
2185  * We can finally discard anything that's been acked.
2186  */
2187 static void process_ack(struct ceph_connection *con)
2188 {
2189 	struct ceph_msg *m;
2190 	u64 ack = le64_to_cpu(con->in_temp_ack);
2191 	u64 seq;
2192 
2193 	while (!list_empty(&con->out_sent)) {
2194 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2195 				     list_head);
2196 		seq = le64_to_cpu(m->hdr.seq);
2197 		if (seq > ack)
2198 			break;
2199 		dout("got ack for seq %llu type %d at %p\n", seq,
2200 		     le16_to_cpu(m->hdr.type), m);
2201 		m->ack_stamp = jiffies;
2202 		ceph_msg_remove(m);
2203 	}
2204 	prepare_read_tag(con);
2205 }
2206 
2207 
2208 static int read_partial_message_section(struct ceph_connection *con,
2209 					struct kvec *section,
2210 					unsigned int sec_len, u32 *crc)
2211 {
2212 	int ret, left;
2213 
2214 	BUG_ON(!section);
2215 
2216 	while (section->iov_len < sec_len) {
2217 		BUG_ON(section->iov_base == NULL);
2218 		left = sec_len - section->iov_len;
2219 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2220 				       section->iov_len, left);
2221 		if (ret <= 0)
2222 			return ret;
2223 		section->iov_len += ret;
2224 	}
2225 	if (section->iov_len == sec_len)
2226 		*crc = crc32c(0, section->iov_base, section->iov_len);
2227 
2228 	return 1;
2229 }
2230 
2231 static int read_partial_msg_data(struct ceph_connection *con)
2232 {
2233 	struct ceph_msg *msg = con->in_msg;
2234 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2235 	const bool do_datacrc = !con->msgr->nocrc;
2236 	struct page *page;
2237 	size_t page_offset;
2238 	size_t length;
2239 	u32 crc = 0;
2240 	int ret;
2241 
2242 	BUG_ON(!msg);
2243 	if (list_empty(&msg->data))
2244 		return -EIO;
2245 
2246 	if (do_datacrc)
2247 		crc = con->in_data_crc;
2248 	while (cursor->resid) {
2249 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2250 							NULL);
2251 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2252 		if (ret <= 0) {
2253 			if (do_datacrc)
2254 				con->in_data_crc = crc;
2255 
2256 			return ret;
2257 		}
2258 
2259 		if (do_datacrc)
2260 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2261 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2262 	}
2263 	if (do_datacrc)
2264 		con->in_data_crc = crc;
2265 
2266 	return 1;	/* must return > 0 to indicate success */
2267 }
2268 
2269 /*
2270  * read (part of) a message.
2271  */
2272 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2273 
2274 static int read_partial_message(struct ceph_connection *con)
2275 {
2276 	struct ceph_msg *m = con->in_msg;
2277 	int size;
2278 	int end;
2279 	int ret;
2280 	unsigned int front_len, middle_len, data_len;
2281 	bool do_datacrc = !con->msgr->nocrc;
2282 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2283 	u64 seq;
2284 	u32 crc;
2285 
2286 	dout("read_partial_message con %p msg %p\n", con, m);
2287 
2288 	/* header */
2289 	size = sizeof (con->in_hdr);
2290 	end = size;
2291 	ret = read_partial(con, end, size, &con->in_hdr);
2292 	if (ret <= 0)
2293 		return ret;
2294 
2295 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2296 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2297 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2298 		       crc, con->in_hdr.crc);
2299 		return -EBADMSG;
2300 	}
2301 
2302 	front_len = le32_to_cpu(con->in_hdr.front_len);
2303 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2304 		return -EIO;
2305 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2306 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2307 		return -EIO;
2308 	data_len = le32_to_cpu(con->in_hdr.data_len);
2309 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2310 		return -EIO;
2311 
2312 	/* verify seq# */
2313 	seq = le64_to_cpu(con->in_hdr.seq);
2314 	if ((s64)seq - (s64)con->in_seq < 1) {
2315 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2316 			ENTITY_NAME(con->peer_name),
2317 			ceph_pr_addr(&con->peer_addr.in_addr),
2318 			seq, con->in_seq + 1);
2319 		con->in_base_pos = -front_len - middle_len - data_len -
2320 			sizeof(m->footer);
2321 		con->in_tag = CEPH_MSGR_TAG_READY;
2322 		return 0;
2323 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2324 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2325 		       seq, con->in_seq + 1);
2326 		con->error_msg = "bad message sequence # for incoming message";
2327 		return -EBADE;
2328 	}
2329 
2330 	/* allocate message? */
2331 	if (!con->in_msg) {
2332 		int skip = 0;
2333 
2334 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2335 		     front_len, data_len);
2336 		ret = ceph_con_in_msg_alloc(con, &skip);
2337 		if (ret < 0)
2338 			return ret;
2339 
2340 		BUG_ON(!con->in_msg ^ skip);
2341 		if (skip) {
2342 			/* skip this message */
2343 			dout("alloc_msg said skip message\n");
2344 			con->in_base_pos = -front_len - middle_len - data_len -
2345 				sizeof(m->footer);
2346 			con->in_tag = CEPH_MSGR_TAG_READY;
2347 			con->in_seq++;
2348 			return 0;
2349 		}
2350 
2351 		BUG_ON(!con->in_msg);
2352 		BUG_ON(con->in_msg->con != con);
2353 		m = con->in_msg;
2354 		m->front.iov_len = 0;    /* haven't read it yet */
2355 		if (m->middle)
2356 			m->middle->vec.iov_len = 0;
2357 
2358 		/* prepare for data payload, if any */
2359 
2360 		if (data_len)
2361 			prepare_message_data(con->in_msg, data_len);
2362 	}
2363 
2364 	/* front */
2365 	ret = read_partial_message_section(con, &m->front, front_len,
2366 					   &con->in_front_crc);
2367 	if (ret <= 0)
2368 		return ret;
2369 
2370 	/* middle */
2371 	if (m->middle) {
2372 		ret = read_partial_message_section(con, &m->middle->vec,
2373 						   middle_len,
2374 						   &con->in_middle_crc);
2375 		if (ret <= 0)
2376 			return ret;
2377 	}
2378 
2379 	/* (page) data */
2380 	if (data_len) {
2381 		ret = read_partial_msg_data(con);
2382 		if (ret <= 0)
2383 			return ret;
2384 	}
2385 
2386 	/* footer */
2387 	if (need_sign)
2388 		size = sizeof(m->footer);
2389 	else
2390 		size = sizeof(m->old_footer);
2391 
2392 	end += size;
2393 	ret = read_partial(con, end, size, &m->footer);
2394 	if (ret <= 0)
2395 		return ret;
2396 
2397 	if (!need_sign) {
2398 		m->footer.flags = m->old_footer.flags;
2399 		m->footer.sig = 0;
2400 	}
2401 
2402 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2403 	     m, front_len, m->footer.front_crc, middle_len,
2404 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2405 
2406 	/* crc ok? */
2407 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2408 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2409 		       m, con->in_front_crc, m->footer.front_crc);
2410 		return -EBADMSG;
2411 	}
2412 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2413 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2414 		       m, con->in_middle_crc, m->footer.middle_crc);
2415 		return -EBADMSG;
2416 	}
2417 	if (do_datacrc &&
2418 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2419 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2420 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2421 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2422 		return -EBADMSG;
2423 	}
2424 
2425 	if (need_sign && con->ops->check_message_signature &&
2426 	    con->ops->check_message_signature(con, m)) {
2427 		pr_err("read_partial_message %p signature check failed\n", m);
2428 		return -EBADMSG;
2429 	}
2430 
2431 	return 1; /* done! */
2432 }
2433 
2434 /*
2435  * Process message.  This happens in the worker thread.  The callback should
2436  * be careful not to do anything that waits on other incoming messages or it
2437  * may deadlock.
2438  */
2439 static void process_message(struct ceph_connection *con)
2440 {
2441 	struct ceph_msg *msg;
2442 
2443 	BUG_ON(con->in_msg->con != con);
2444 	con->in_msg->con = NULL;
2445 	msg = con->in_msg;
2446 	con->in_msg = NULL;
2447 	con->ops->put(con);
2448 
2449 	/* if first message, set peer_name */
2450 	if (con->peer_name.type == 0)
2451 		con->peer_name = msg->hdr.src;
2452 
2453 	con->in_seq++;
2454 	mutex_unlock(&con->mutex);
2455 
2456 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2457 	     msg, le64_to_cpu(msg->hdr.seq),
2458 	     ENTITY_NAME(msg->hdr.src),
2459 	     le16_to_cpu(msg->hdr.type),
2460 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2461 	     le32_to_cpu(msg->hdr.front_len),
2462 	     le32_to_cpu(msg->hdr.data_len),
2463 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2464 	con->ops->dispatch(con, msg);
2465 
2466 	mutex_lock(&con->mutex);
2467 }
2468 
2469 static int read_keepalive_ack(struct ceph_connection *con)
2470 {
2471 	struct ceph_timespec ceph_ts;
2472 	size_t size = sizeof(ceph_ts);
2473 	int ret = read_partial(con, size, size, &ceph_ts);
2474 	if (ret <= 0)
2475 		return ret;
2476 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2477 	prepare_read_tag(con);
2478 	return 1;
2479 }
2480 
2481 /*
2482  * Write something to the socket.  Called in a worker thread when the
2483  * socket appears to be writeable and we have something ready to send.
2484  */
2485 static int try_write(struct ceph_connection *con)
2486 {
2487 	int ret = 1;
2488 
2489 	dout("try_write start %p state %lu\n", con, con->state);
2490 
2491 more:
2492 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2493 
2494 	/* open the socket first? */
2495 	if (con->state == CON_STATE_PREOPEN) {
2496 		BUG_ON(con->sock);
2497 		con->state = CON_STATE_CONNECTING;
2498 
2499 		con_out_kvec_reset(con);
2500 		prepare_write_banner(con);
2501 		prepare_read_banner(con);
2502 
2503 		BUG_ON(con->in_msg);
2504 		con->in_tag = CEPH_MSGR_TAG_READY;
2505 		dout("try_write initiating connect on %p new state %lu\n",
2506 		     con, con->state);
2507 		ret = ceph_tcp_connect(con);
2508 		if (ret < 0) {
2509 			con->error_msg = "connect error";
2510 			goto out;
2511 		}
2512 	}
2513 
2514 more_kvec:
2515 	/* kvec data queued? */
2516 	if (con->out_skip) {
2517 		ret = write_partial_skip(con);
2518 		if (ret <= 0)
2519 			goto out;
2520 	}
2521 	if (con->out_kvec_left) {
2522 		ret = write_partial_kvec(con);
2523 		if (ret <= 0)
2524 			goto out;
2525 	}
2526 
2527 	/* msg pages? */
2528 	if (con->out_msg) {
2529 		if (con->out_msg_done) {
2530 			ceph_msg_put(con->out_msg);
2531 			con->out_msg = NULL;   /* we're done with this one */
2532 			goto do_next;
2533 		}
2534 
2535 		ret = write_partial_message_data(con);
2536 		if (ret == 1)
2537 			goto more_kvec;  /* we need to send the footer, too! */
2538 		if (ret == 0)
2539 			goto out;
2540 		if (ret < 0) {
2541 			dout("try_write write_partial_message_data err %d\n",
2542 			     ret);
2543 			goto out;
2544 		}
2545 	}
2546 
2547 do_next:
2548 	if (con->state == CON_STATE_OPEN) {
2549 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2550 			prepare_write_keepalive(con);
2551 			goto more;
2552 		}
2553 		/* is anything else pending? */
2554 		if (!list_empty(&con->out_queue)) {
2555 			prepare_write_message(con);
2556 			goto more;
2557 		}
2558 		if (con->in_seq > con->in_seq_acked) {
2559 			prepare_write_ack(con);
2560 			goto more;
2561 		}
2562 	}
2563 
2564 	/* Nothing to do! */
2565 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2566 	dout("try_write nothing else to write.\n");
2567 	ret = 0;
2568 out:
2569 	dout("try_write done on %p ret %d\n", con, ret);
2570 	return ret;
2571 }
2572 
2573 
2574 
2575 /*
2576  * Read what we can from the socket.
2577  */
2578 static int try_read(struct ceph_connection *con)
2579 {
2580 	int ret = -1;
2581 
2582 more:
2583 	dout("try_read start on %p state %lu\n", con, con->state);
2584 	if (con->state != CON_STATE_CONNECTING &&
2585 	    con->state != CON_STATE_NEGOTIATING &&
2586 	    con->state != CON_STATE_OPEN)
2587 		return 0;
2588 
2589 	BUG_ON(!con->sock);
2590 
2591 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2592 	     con->in_base_pos);
2593 
2594 	if (con->state == CON_STATE_CONNECTING) {
2595 		dout("try_read connecting\n");
2596 		ret = read_partial_banner(con);
2597 		if (ret <= 0)
2598 			goto out;
2599 		ret = process_banner(con);
2600 		if (ret < 0)
2601 			goto out;
2602 
2603 		con->state = CON_STATE_NEGOTIATING;
2604 
2605 		/*
2606 		 * Received banner is good, exchange connection info.
2607 		 * Do not reset out_kvec, as sending our banner raced
2608 		 * with receiving peer banner after connect completed.
2609 		 */
2610 		ret = prepare_write_connect(con);
2611 		if (ret < 0)
2612 			goto out;
2613 		prepare_read_connect(con);
2614 
2615 		/* Send connection info before awaiting response */
2616 		goto out;
2617 	}
2618 
2619 	if (con->state == CON_STATE_NEGOTIATING) {
2620 		dout("try_read negotiating\n");
2621 		ret = read_partial_connect(con);
2622 		if (ret <= 0)
2623 			goto out;
2624 		ret = process_connect(con);
2625 		if (ret < 0)
2626 			goto out;
2627 		goto more;
2628 	}
2629 
2630 	WARN_ON(con->state != CON_STATE_OPEN);
2631 
2632 	if (con->in_base_pos < 0) {
2633 		/*
2634 		 * skipping + discarding content.
2635 		 *
2636 		 * FIXME: there must be a better way to do this!
2637 		 */
2638 		static char buf[SKIP_BUF_SIZE];
2639 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2640 
2641 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2642 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2643 		if (ret <= 0)
2644 			goto out;
2645 		con->in_base_pos += ret;
2646 		if (con->in_base_pos)
2647 			goto more;
2648 	}
2649 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2650 		/*
2651 		 * what's next?
2652 		 */
2653 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2654 		if (ret <= 0)
2655 			goto out;
2656 		dout("try_read got tag %d\n", (int)con->in_tag);
2657 		switch (con->in_tag) {
2658 		case CEPH_MSGR_TAG_MSG:
2659 			prepare_read_message(con);
2660 			break;
2661 		case CEPH_MSGR_TAG_ACK:
2662 			prepare_read_ack(con);
2663 			break;
2664 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2665 			prepare_read_keepalive_ack(con);
2666 			break;
2667 		case CEPH_MSGR_TAG_CLOSE:
2668 			con_close_socket(con);
2669 			con->state = CON_STATE_CLOSED;
2670 			goto out;
2671 		default:
2672 			goto bad_tag;
2673 		}
2674 	}
2675 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2676 		ret = read_partial_message(con);
2677 		if (ret <= 0) {
2678 			switch (ret) {
2679 			case -EBADMSG:
2680 				con->error_msg = "bad crc";
2681 				/* fall through */
2682 			case -EBADE:
2683 				ret = -EIO;
2684 				break;
2685 			case -EIO:
2686 				con->error_msg = "io error";
2687 				break;
2688 			}
2689 			goto out;
2690 		}
2691 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2692 			goto more;
2693 		process_message(con);
2694 		if (con->state == CON_STATE_OPEN)
2695 			prepare_read_tag(con);
2696 		goto more;
2697 	}
2698 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2699 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2700 		/*
2701 		 * the final handshake seq exchange is semantically
2702 		 * equivalent to an ACK
2703 		 */
2704 		ret = read_partial_ack(con);
2705 		if (ret <= 0)
2706 			goto out;
2707 		process_ack(con);
2708 		goto more;
2709 	}
2710 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2711 		ret = read_keepalive_ack(con);
2712 		if (ret <= 0)
2713 			goto out;
2714 		goto more;
2715 	}
2716 
2717 out:
2718 	dout("try_read done on %p ret %d\n", con, ret);
2719 	return ret;
2720 
2721 bad_tag:
2722 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2723 	con->error_msg = "protocol error, garbage tag";
2724 	ret = -1;
2725 	goto out;
2726 }
2727 
2728 
2729 /*
2730  * Atomically queue work on a connection after the specified delay.
2731  * Bump @con reference to avoid races with connection teardown.
2732  * Returns 0 if work was queued, or an error code otherwise.
2733  */
2734 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2735 {
2736 	if (!con->ops->get(con)) {
2737 		dout("%s %p ref count 0\n", __func__, con);
2738 		return -ENOENT;
2739 	}
2740 
2741 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2742 		dout("%s %p - already queued\n", __func__, con);
2743 		con->ops->put(con);
2744 		return -EBUSY;
2745 	}
2746 
2747 	dout("%s %p %lu\n", __func__, con, delay);
2748 	return 0;
2749 }
2750 
2751 static void queue_con(struct ceph_connection *con)
2752 {
2753 	(void) queue_con_delay(con, 0);
2754 }
2755 
2756 static void cancel_con(struct ceph_connection *con)
2757 {
2758 	if (cancel_delayed_work(&con->work)) {
2759 		dout("%s %p\n", __func__, con);
2760 		con->ops->put(con);
2761 	}
2762 }
2763 
2764 static bool con_sock_closed(struct ceph_connection *con)
2765 {
2766 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2767 		return false;
2768 
2769 #define CASE(x)								\
2770 	case CON_STATE_ ## x:						\
2771 		con->error_msg = "socket closed (con state " #x ")";	\
2772 		break;
2773 
2774 	switch (con->state) {
2775 	CASE(CLOSED);
2776 	CASE(PREOPEN);
2777 	CASE(CONNECTING);
2778 	CASE(NEGOTIATING);
2779 	CASE(OPEN);
2780 	CASE(STANDBY);
2781 	default:
2782 		pr_warn("%s con %p unrecognized state %lu\n",
2783 			__func__, con, con->state);
2784 		con->error_msg = "unrecognized con state";
2785 		BUG();
2786 		break;
2787 	}
2788 #undef CASE
2789 
2790 	return true;
2791 }
2792 
2793 static bool con_backoff(struct ceph_connection *con)
2794 {
2795 	int ret;
2796 
2797 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2798 		return false;
2799 
2800 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2801 	if (ret) {
2802 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2803 			con, con->delay);
2804 		BUG_ON(ret == -ENOENT);
2805 		con_flag_set(con, CON_FLAG_BACKOFF);
2806 	}
2807 
2808 	return true;
2809 }
2810 
2811 /* Finish fault handling; con->mutex must *not* be held here */
2812 
2813 static void con_fault_finish(struct ceph_connection *con)
2814 {
2815 	/*
2816 	 * in case we faulted due to authentication, invalidate our
2817 	 * current tickets so that we can get new ones.
2818 	 */
2819 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2820 		dout("calling invalidate_authorizer()\n");
2821 		con->ops->invalidate_authorizer(con);
2822 	}
2823 
2824 	if (con->ops->fault)
2825 		con->ops->fault(con);
2826 }
2827 
2828 /*
2829  * Do some work on a connection.  Drop a connection ref when we're done.
2830  */
2831 static void ceph_con_workfn(struct work_struct *work)
2832 {
2833 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2834 						   work.work);
2835 	bool fault;
2836 
2837 	mutex_lock(&con->mutex);
2838 	while (true) {
2839 		int ret;
2840 
2841 		if ((fault = con_sock_closed(con))) {
2842 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2843 			break;
2844 		}
2845 		if (con_backoff(con)) {
2846 			dout("%s: con %p BACKOFF\n", __func__, con);
2847 			break;
2848 		}
2849 		if (con->state == CON_STATE_STANDBY) {
2850 			dout("%s: con %p STANDBY\n", __func__, con);
2851 			break;
2852 		}
2853 		if (con->state == CON_STATE_CLOSED) {
2854 			dout("%s: con %p CLOSED\n", __func__, con);
2855 			BUG_ON(con->sock);
2856 			break;
2857 		}
2858 		if (con->state == CON_STATE_PREOPEN) {
2859 			dout("%s: con %p PREOPEN\n", __func__, con);
2860 			BUG_ON(con->sock);
2861 		}
2862 
2863 		ret = try_read(con);
2864 		if (ret < 0) {
2865 			if (ret == -EAGAIN)
2866 				continue;
2867 			if (!con->error_msg)
2868 				con->error_msg = "socket error on read";
2869 			fault = true;
2870 			break;
2871 		}
2872 
2873 		ret = try_write(con);
2874 		if (ret < 0) {
2875 			if (ret == -EAGAIN)
2876 				continue;
2877 			if (!con->error_msg)
2878 				con->error_msg = "socket error on write";
2879 			fault = true;
2880 		}
2881 
2882 		break;	/* If we make it to here, we're done */
2883 	}
2884 	if (fault)
2885 		con_fault(con);
2886 	mutex_unlock(&con->mutex);
2887 
2888 	if (fault)
2889 		con_fault_finish(con);
2890 
2891 	con->ops->put(con);
2892 }
2893 
2894 /*
2895  * Generic error/fault handler.  A retry mechanism is used with
2896  * exponential backoff
2897  */
2898 static void con_fault(struct ceph_connection *con)
2899 {
2900 	dout("fault %p state %lu to peer %s\n",
2901 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2902 
2903 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2904 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2905 	con->error_msg = NULL;
2906 
2907 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2908 	       con->state != CON_STATE_NEGOTIATING &&
2909 	       con->state != CON_STATE_OPEN);
2910 
2911 	con_close_socket(con);
2912 
2913 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2914 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2915 		con->state = CON_STATE_CLOSED;
2916 		return;
2917 	}
2918 
2919 	if (con->in_msg) {
2920 		BUG_ON(con->in_msg->con != con);
2921 		con->in_msg->con = NULL;
2922 		ceph_msg_put(con->in_msg);
2923 		con->in_msg = NULL;
2924 		con->ops->put(con);
2925 	}
2926 
2927 	/* Requeue anything that hasn't been acked */
2928 	list_splice_init(&con->out_sent, &con->out_queue);
2929 
2930 	/* If there are no messages queued or keepalive pending, place
2931 	 * the connection in a STANDBY state */
2932 	if (list_empty(&con->out_queue) &&
2933 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2934 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2935 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2936 		con->state = CON_STATE_STANDBY;
2937 	} else {
2938 		/* retry after a delay. */
2939 		con->state = CON_STATE_PREOPEN;
2940 		if (con->delay == 0)
2941 			con->delay = BASE_DELAY_INTERVAL;
2942 		else if (con->delay < MAX_DELAY_INTERVAL)
2943 			con->delay *= 2;
2944 		con_flag_set(con, CON_FLAG_BACKOFF);
2945 		queue_con(con);
2946 	}
2947 }
2948 
2949 
2950 
2951 /*
2952  * initialize a new messenger instance
2953  */
2954 void ceph_messenger_init(struct ceph_messenger *msgr,
2955 			struct ceph_entity_addr *myaddr,
2956 			u64 supported_features,
2957 			u64 required_features,
2958 			bool nocrc,
2959 			bool tcp_nodelay)
2960 {
2961 	msgr->supported_features = supported_features;
2962 	msgr->required_features = required_features;
2963 
2964 	spin_lock_init(&msgr->global_seq_lock);
2965 
2966 	if (myaddr)
2967 		msgr->inst.addr = *myaddr;
2968 
2969 	/* select a random nonce */
2970 	msgr->inst.addr.type = 0;
2971 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2972 	encode_my_addr(msgr);
2973 	msgr->nocrc = nocrc;
2974 	msgr->tcp_nodelay = tcp_nodelay;
2975 
2976 	atomic_set(&msgr->stopping, 0);
2977 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2978 
2979 	dout("%s %p\n", __func__, msgr);
2980 }
2981 EXPORT_SYMBOL(ceph_messenger_init);
2982 
2983 void ceph_messenger_fini(struct ceph_messenger *msgr)
2984 {
2985 	put_net(read_pnet(&msgr->net));
2986 }
2987 EXPORT_SYMBOL(ceph_messenger_fini);
2988 
2989 static void clear_standby(struct ceph_connection *con)
2990 {
2991 	/* come back from STANDBY? */
2992 	if (con->state == CON_STATE_STANDBY) {
2993 		dout("clear_standby %p and ++connect_seq\n", con);
2994 		con->state = CON_STATE_PREOPEN;
2995 		con->connect_seq++;
2996 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2997 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2998 	}
2999 }
3000 
3001 /*
3002  * Queue up an outgoing message on the given connection.
3003  */
3004 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3005 {
3006 	/* set src+dst */
3007 	msg->hdr.src = con->msgr->inst.name;
3008 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3009 	msg->needs_out_seq = true;
3010 
3011 	mutex_lock(&con->mutex);
3012 
3013 	if (con->state == CON_STATE_CLOSED) {
3014 		dout("con_send %p closed, dropping %p\n", con, msg);
3015 		ceph_msg_put(msg);
3016 		mutex_unlock(&con->mutex);
3017 		return;
3018 	}
3019 
3020 	BUG_ON(msg->con != NULL);
3021 	msg->con = con->ops->get(con);
3022 	BUG_ON(msg->con == NULL);
3023 
3024 	BUG_ON(!list_empty(&msg->list_head));
3025 	list_add_tail(&msg->list_head, &con->out_queue);
3026 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3027 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3028 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3029 	     le32_to_cpu(msg->hdr.front_len),
3030 	     le32_to_cpu(msg->hdr.middle_len),
3031 	     le32_to_cpu(msg->hdr.data_len));
3032 
3033 	clear_standby(con);
3034 	mutex_unlock(&con->mutex);
3035 
3036 	/* if there wasn't anything waiting to send before, queue
3037 	 * new work */
3038 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3039 		queue_con(con);
3040 }
3041 EXPORT_SYMBOL(ceph_con_send);
3042 
3043 /*
3044  * Revoke a message that was previously queued for send
3045  */
3046 void ceph_msg_revoke(struct ceph_msg *msg)
3047 {
3048 	struct ceph_connection *con = msg->con;
3049 
3050 	if (!con)
3051 		return;		/* Message not in our possession */
3052 
3053 	mutex_lock(&con->mutex);
3054 	if (!list_empty(&msg->list_head)) {
3055 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3056 		list_del_init(&msg->list_head);
3057 		BUG_ON(msg->con == NULL);
3058 		msg->con->ops->put(msg->con);
3059 		msg->con = NULL;
3060 		msg->hdr.seq = 0;
3061 
3062 		ceph_msg_put(msg);
3063 	}
3064 	if (con->out_msg == msg) {
3065 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
3066 		con->out_msg = NULL;
3067 		if (con->out_kvec_is_msg) {
3068 			con->out_skip = con->out_kvec_bytes;
3069 			con->out_kvec_is_msg = false;
3070 		}
3071 		msg->hdr.seq = 0;
3072 
3073 		ceph_msg_put(msg);
3074 	}
3075 	mutex_unlock(&con->mutex);
3076 }
3077 
3078 /*
3079  * Revoke a message that we may be reading data into
3080  */
3081 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3082 {
3083 	struct ceph_connection *con;
3084 
3085 	BUG_ON(msg == NULL);
3086 	if (!msg->con) {
3087 		dout("%s msg %p null con\n", __func__, msg);
3088 
3089 		return;		/* Message not in our possession */
3090 	}
3091 
3092 	con = msg->con;
3093 	mutex_lock(&con->mutex);
3094 	if (con->in_msg == msg) {
3095 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3096 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3097 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3098 
3099 		/* skip rest of message */
3100 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3101 		con->in_base_pos = con->in_base_pos -
3102 				sizeof(struct ceph_msg_header) -
3103 				front_len -
3104 				middle_len -
3105 				data_len -
3106 				sizeof(struct ceph_msg_footer);
3107 		ceph_msg_put(con->in_msg);
3108 		con->in_msg = NULL;
3109 		con->in_tag = CEPH_MSGR_TAG_READY;
3110 		con->in_seq++;
3111 	} else {
3112 		dout("%s %p in_msg %p msg %p no-op\n",
3113 		     __func__, con, con->in_msg, msg);
3114 	}
3115 	mutex_unlock(&con->mutex);
3116 }
3117 
3118 /*
3119  * Queue a keepalive byte to ensure the tcp connection is alive.
3120  */
3121 void ceph_con_keepalive(struct ceph_connection *con)
3122 {
3123 	dout("con_keepalive %p\n", con);
3124 	mutex_lock(&con->mutex);
3125 	clear_standby(con);
3126 	mutex_unlock(&con->mutex);
3127 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3128 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3129 		queue_con(con);
3130 }
3131 EXPORT_SYMBOL(ceph_con_keepalive);
3132 
3133 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3134 			       unsigned long interval)
3135 {
3136 	if (interval > 0 &&
3137 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3138 		struct timespec now = CURRENT_TIME;
3139 		struct timespec ts;
3140 		jiffies_to_timespec(interval, &ts);
3141 		ts = timespec_add(con->last_keepalive_ack, ts);
3142 		return timespec_compare(&now, &ts) >= 0;
3143 	}
3144 	return false;
3145 }
3146 
3147 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3148 {
3149 	struct ceph_msg_data *data;
3150 
3151 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3152 		return NULL;
3153 
3154 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3155 	if (data)
3156 		data->type = type;
3157 	INIT_LIST_HEAD(&data->links);
3158 
3159 	return data;
3160 }
3161 
3162 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3163 {
3164 	if (!data)
3165 		return;
3166 
3167 	WARN_ON(!list_empty(&data->links));
3168 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3169 		ceph_pagelist_release(data->pagelist);
3170 	kmem_cache_free(ceph_msg_data_cache, data);
3171 }
3172 
3173 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3174 		size_t length, size_t alignment)
3175 {
3176 	struct ceph_msg_data *data;
3177 
3178 	BUG_ON(!pages);
3179 	BUG_ON(!length);
3180 
3181 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3182 	BUG_ON(!data);
3183 	data->pages = pages;
3184 	data->length = length;
3185 	data->alignment = alignment & ~PAGE_MASK;
3186 
3187 	list_add_tail(&data->links, &msg->data);
3188 	msg->data_length += length;
3189 }
3190 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3191 
3192 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3193 				struct ceph_pagelist *pagelist)
3194 {
3195 	struct ceph_msg_data *data;
3196 
3197 	BUG_ON(!pagelist);
3198 	BUG_ON(!pagelist->length);
3199 
3200 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3201 	BUG_ON(!data);
3202 	data->pagelist = pagelist;
3203 
3204 	list_add_tail(&data->links, &msg->data);
3205 	msg->data_length += pagelist->length;
3206 }
3207 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3208 
3209 #ifdef	CONFIG_BLOCK
3210 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3211 		size_t length)
3212 {
3213 	struct ceph_msg_data *data;
3214 
3215 	BUG_ON(!bio);
3216 
3217 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3218 	BUG_ON(!data);
3219 	data->bio = bio;
3220 	data->bio_length = length;
3221 
3222 	list_add_tail(&data->links, &msg->data);
3223 	msg->data_length += length;
3224 }
3225 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3226 #endif	/* CONFIG_BLOCK */
3227 
3228 /*
3229  * construct a new message with given type, size
3230  * the new msg has a ref count of 1.
3231  */
3232 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3233 			      bool can_fail)
3234 {
3235 	struct ceph_msg *m;
3236 
3237 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3238 	if (m == NULL)
3239 		goto out;
3240 
3241 	m->hdr.type = cpu_to_le16(type);
3242 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3243 	m->hdr.front_len = cpu_to_le32(front_len);
3244 
3245 	INIT_LIST_HEAD(&m->list_head);
3246 	kref_init(&m->kref);
3247 	INIT_LIST_HEAD(&m->data);
3248 
3249 	/* front */
3250 	if (front_len) {
3251 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3252 		if (m->front.iov_base == NULL) {
3253 			dout("ceph_msg_new can't allocate %d bytes\n",
3254 			     front_len);
3255 			goto out2;
3256 		}
3257 	} else {
3258 		m->front.iov_base = NULL;
3259 	}
3260 	m->front_alloc_len = m->front.iov_len = front_len;
3261 
3262 	dout("ceph_msg_new %p front %d\n", m, front_len);
3263 	return m;
3264 
3265 out2:
3266 	ceph_msg_put(m);
3267 out:
3268 	if (!can_fail) {
3269 		pr_err("msg_new can't create type %d front %d\n", type,
3270 		       front_len);
3271 		WARN_ON(1);
3272 	} else {
3273 		dout("msg_new can't create type %d front %d\n", type,
3274 		     front_len);
3275 	}
3276 	return NULL;
3277 }
3278 EXPORT_SYMBOL(ceph_msg_new);
3279 
3280 /*
3281  * Allocate "middle" portion of a message, if it is needed and wasn't
3282  * allocated by alloc_msg.  This allows us to read a small fixed-size
3283  * per-type header in the front and then gracefully fail (i.e.,
3284  * propagate the error to the caller based on info in the front) when
3285  * the middle is too large.
3286  */
3287 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3288 {
3289 	int type = le16_to_cpu(msg->hdr.type);
3290 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3291 
3292 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3293 	     ceph_msg_type_name(type), middle_len);
3294 	BUG_ON(!middle_len);
3295 	BUG_ON(msg->middle);
3296 
3297 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3298 	if (!msg->middle)
3299 		return -ENOMEM;
3300 	return 0;
3301 }
3302 
3303 /*
3304  * Allocate a message for receiving an incoming message on a
3305  * connection, and save the result in con->in_msg.  Uses the
3306  * connection's private alloc_msg op if available.
3307  *
3308  * Returns 0 on success, or a negative error code.
3309  *
3310  * On success, if we set *skip = 1:
3311  *  - the next message should be skipped and ignored.
3312  *  - con->in_msg == NULL
3313  * or if we set *skip = 0:
3314  *  - con->in_msg is non-null.
3315  * On error (ENOMEM, EAGAIN, ...),
3316  *  - con->in_msg == NULL
3317  */
3318 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3319 {
3320 	struct ceph_msg_header *hdr = &con->in_hdr;
3321 	int middle_len = le32_to_cpu(hdr->middle_len);
3322 	struct ceph_msg *msg;
3323 	int ret = 0;
3324 
3325 	BUG_ON(con->in_msg != NULL);
3326 	BUG_ON(!con->ops->alloc_msg);
3327 
3328 	mutex_unlock(&con->mutex);
3329 	msg = con->ops->alloc_msg(con, hdr, skip);
3330 	mutex_lock(&con->mutex);
3331 	if (con->state != CON_STATE_OPEN) {
3332 		if (msg)
3333 			ceph_msg_put(msg);
3334 		return -EAGAIN;
3335 	}
3336 	if (msg) {
3337 		BUG_ON(*skip);
3338 		con->in_msg = msg;
3339 		con->in_msg->con = con->ops->get(con);
3340 		BUG_ON(con->in_msg->con == NULL);
3341 	} else {
3342 		/*
3343 		 * Null message pointer means either we should skip
3344 		 * this message or we couldn't allocate memory.  The
3345 		 * former is not an error.
3346 		 */
3347 		if (*skip)
3348 			return 0;
3349 
3350 		con->error_msg = "error allocating memory for incoming message";
3351 		return -ENOMEM;
3352 	}
3353 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3354 
3355 	if (middle_len && !con->in_msg->middle) {
3356 		ret = ceph_alloc_middle(con, con->in_msg);
3357 		if (ret < 0) {
3358 			ceph_msg_put(con->in_msg);
3359 			con->in_msg = NULL;
3360 		}
3361 	}
3362 
3363 	return ret;
3364 }
3365 
3366 
3367 /*
3368  * Free a generically kmalloc'd message.
3369  */
3370 static void ceph_msg_free(struct ceph_msg *m)
3371 {
3372 	dout("%s %p\n", __func__, m);
3373 	kvfree(m->front.iov_base);
3374 	kmem_cache_free(ceph_msg_cache, m);
3375 }
3376 
3377 static void ceph_msg_release(struct kref *kref)
3378 {
3379 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3380 	LIST_HEAD(data);
3381 	struct list_head *links;
3382 	struct list_head *next;
3383 
3384 	dout("%s %p\n", __func__, m);
3385 	WARN_ON(!list_empty(&m->list_head));
3386 
3387 	/* drop middle, data, if any */
3388 	if (m->middle) {
3389 		ceph_buffer_put(m->middle);
3390 		m->middle = NULL;
3391 	}
3392 
3393 	list_splice_init(&m->data, &data);
3394 	list_for_each_safe(links, next, &data) {
3395 		struct ceph_msg_data *data;
3396 
3397 		data = list_entry(links, struct ceph_msg_data, links);
3398 		list_del_init(links);
3399 		ceph_msg_data_destroy(data);
3400 	}
3401 	m->data_length = 0;
3402 
3403 	if (m->pool)
3404 		ceph_msgpool_put(m->pool, m);
3405 	else
3406 		ceph_msg_free(m);
3407 }
3408 
3409 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3410 {
3411 	dout("%s %p (was %d)\n", __func__, msg,
3412 	     atomic_read(&msg->kref.refcount));
3413 	kref_get(&msg->kref);
3414 	return msg;
3415 }
3416 EXPORT_SYMBOL(ceph_msg_get);
3417 
3418 void ceph_msg_put(struct ceph_msg *msg)
3419 {
3420 	dout("%s %p (was %d)\n", __func__, msg,
3421 	     atomic_read(&msg->kref.refcount));
3422 	kref_put(&msg->kref, ceph_msg_release);
3423 }
3424 EXPORT_SYMBOL(ceph_msg_put);
3425 
3426 void ceph_msg_dump(struct ceph_msg *msg)
3427 {
3428 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3429 		 msg->front_alloc_len, msg->data_length);
3430 	print_hex_dump(KERN_DEBUG, "header: ",
3431 		       DUMP_PREFIX_OFFSET, 16, 1,
3432 		       &msg->hdr, sizeof(msg->hdr), true);
3433 	print_hex_dump(KERN_DEBUG, " front: ",
3434 		       DUMP_PREFIX_OFFSET, 16, 1,
3435 		       msg->front.iov_base, msg->front.iov_len, true);
3436 	if (msg->middle)
3437 		print_hex_dump(KERN_DEBUG, "middle: ",
3438 			       DUMP_PREFIX_OFFSET, 16, 1,
3439 			       msg->middle->vec.iov_base,
3440 			       msg->middle->vec.iov_len, true);
3441 	print_hex_dump(KERN_DEBUG, "footer: ",
3442 		       DUMP_PREFIX_OFFSET, 16, 1,
3443 		       &msg->footer, sizeof(msg->footer), true);
3444 }
3445 EXPORT_SYMBOL(ceph_msg_dump);
3446