1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/nsproxy.h> 10 #include <linux/slab.h> 11 #include <linux/socket.h> 12 #include <linux/string.h> 13 #ifdef CONFIG_BLOCK 14 #include <linux/bio.h> 15 #endif /* CONFIG_BLOCK */ 16 #include <linux/dns_resolver.h> 17 #include <net/tcp.h> 18 19 #include <linux/ceph/ceph_features.h> 20 #include <linux/ceph/libceph.h> 21 #include <linux/ceph/messenger.h> 22 #include <linux/ceph/decode.h> 23 #include <linux/ceph/pagelist.h> 24 #include <linux/export.h> 25 26 /* 27 * Ceph uses the messenger to exchange ceph_msg messages with other 28 * hosts in the system. The messenger provides ordered and reliable 29 * delivery. We tolerate TCP disconnects by reconnecting (with 30 * exponential backoff) in the case of a fault (disconnection, bad 31 * crc, protocol error). Acks allow sent messages to be discarded by 32 * the sender. 33 */ 34 35 /* 36 * We track the state of the socket on a given connection using 37 * values defined below. The transition to a new socket state is 38 * handled by a function which verifies we aren't coming from an 39 * unexpected state. 40 * 41 * -------- 42 * | NEW* | transient initial state 43 * -------- 44 * | con_sock_state_init() 45 * v 46 * ---------- 47 * | CLOSED | initialized, but no socket (and no 48 * ---------- TCP connection) 49 * ^ \ 50 * | \ con_sock_state_connecting() 51 * | ---------------------- 52 * | \ 53 * + con_sock_state_closed() \ 54 * |+--------------------------- \ 55 * | \ \ \ 56 * | ----------- \ \ 57 * | | CLOSING | socket event; \ \ 58 * | ----------- await close \ \ 59 * | ^ \ | 60 * | | \ | 61 * | + con_sock_state_closing() \ | 62 * | / \ | | 63 * | / --------------- | | 64 * | / \ v v 65 * | / -------------- 66 * | / -----------------| CONNECTING | socket created, TCP 67 * | | / -------------- connect initiated 68 * | | | con_sock_state_connected() 69 * | | v 70 * ------------- 71 * | CONNECTED | TCP connection established 72 * ------------- 73 * 74 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 75 */ 76 77 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 78 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 79 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 80 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 81 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 82 83 /* 84 * connection states 85 */ 86 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 87 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 88 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 89 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 90 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 91 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 92 93 /* 94 * ceph_connection flag bits 95 */ 96 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 97 * messages on errors */ 98 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 99 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 100 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 101 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 102 103 static bool con_flag_valid(unsigned long con_flag) 104 { 105 switch (con_flag) { 106 case CON_FLAG_LOSSYTX: 107 case CON_FLAG_KEEPALIVE_PENDING: 108 case CON_FLAG_WRITE_PENDING: 109 case CON_FLAG_SOCK_CLOSED: 110 case CON_FLAG_BACKOFF: 111 return true; 112 default: 113 return false; 114 } 115 } 116 117 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 118 { 119 BUG_ON(!con_flag_valid(con_flag)); 120 121 clear_bit(con_flag, &con->flags); 122 } 123 124 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 125 { 126 BUG_ON(!con_flag_valid(con_flag)); 127 128 set_bit(con_flag, &con->flags); 129 } 130 131 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 132 { 133 BUG_ON(!con_flag_valid(con_flag)); 134 135 return test_bit(con_flag, &con->flags); 136 } 137 138 static bool con_flag_test_and_clear(struct ceph_connection *con, 139 unsigned long con_flag) 140 { 141 BUG_ON(!con_flag_valid(con_flag)); 142 143 return test_and_clear_bit(con_flag, &con->flags); 144 } 145 146 static bool con_flag_test_and_set(struct ceph_connection *con, 147 unsigned long con_flag) 148 { 149 BUG_ON(!con_flag_valid(con_flag)); 150 151 return test_and_set_bit(con_flag, &con->flags); 152 } 153 154 /* Slab caches for frequently-allocated structures */ 155 156 static struct kmem_cache *ceph_msg_cache; 157 static struct kmem_cache *ceph_msg_data_cache; 158 159 /* static tag bytes (protocol control messages) */ 160 static char tag_msg = CEPH_MSGR_TAG_MSG; 161 static char tag_ack = CEPH_MSGR_TAG_ACK; 162 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 163 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2; 164 165 #ifdef CONFIG_LOCKDEP 166 static struct lock_class_key socket_class; 167 #endif 168 169 /* 170 * When skipping (ignoring) a block of input we read it into a "skip 171 * buffer," which is this many bytes in size. 172 */ 173 #define SKIP_BUF_SIZE 1024 174 175 static void queue_con(struct ceph_connection *con); 176 static void cancel_con(struct ceph_connection *con); 177 static void ceph_con_workfn(struct work_struct *); 178 static void con_fault(struct ceph_connection *con); 179 180 /* 181 * Nicely render a sockaddr as a string. An array of formatted 182 * strings is used, to approximate reentrancy. 183 */ 184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 188 189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 190 static atomic_t addr_str_seq = ATOMIC_INIT(0); 191 192 static struct page *zero_page; /* used in certain error cases */ 193 194 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 195 { 196 int i; 197 char *s; 198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 200 201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 202 s = addr_str[i]; 203 204 switch (ss->ss_family) { 205 case AF_INET: 206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 207 ntohs(in4->sin_port)); 208 break; 209 210 case AF_INET6: 211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 212 ntohs(in6->sin6_port)); 213 break; 214 215 default: 216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 217 ss->ss_family); 218 } 219 220 return s; 221 } 222 EXPORT_SYMBOL(ceph_pr_addr); 223 224 static void encode_my_addr(struct ceph_messenger *msgr) 225 { 226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 227 ceph_encode_addr(&msgr->my_enc_addr); 228 } 229 230 /* 231 * work queue for all reading and writing to/from the socket. 232 */ 233 static struct workqueue_struct *ceph_msgr_wq; 234 235 static int ceph_msgr_slab_init(void) 236 { 237 BUG_ON(ceph_msg_cache); 238 ceph_msg_cache = kmem_cache_create("ceph_msg", 239 sizeof (struct ceph_msg), 240 __alignof__(struct ceph_msg), 0, NULL); 241 242 if (!ceph_msg_cache) 243 return -ENOMEM; 244 245 BUG_ON(ceph_msg_data_cache); 246 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data", 247 sizeof (struct ceph_msg_data), 248 __alignof__(struct ceph_msg_data), 249 0, NULL); 250 if (ceph_msg_data_cache) 251 return 0; 252 253 kmem_cache_destroy(ceph_msg_cache); 254 ceph_msg_cache = NULL; 255 256 return -ENOMEM; 257 } 258 259 static void ceph_msgr_slab_exit(void) 260 { 261 BUG_ON(!ceph_msg_data_cache); 262 kmem_cache_destroy(ceph_msg_data_cache); 263 ceph_msg_data_cache = NULL; 264 265 BUG_ON(!ceph_msg_cache); 266 kmem_cache_destroy(ceph_msg_cache); 267 ceph_msg_cache = NULL; 268 } 269 270 static void _ceph_msgr_exit(void) 271 { 272 if (ceph_msgr_wq) { 273 destroy_workqueue(ceph_msgr_wq); 274 ceph_msgr_wq = NULL; 275 } 276 277 BUG_ON(zero_page == NULL); 278 page_cache_release(zero_page); 279 zero_page = NULL; 280 281 ceph_msgr_slab_exit(); 282 } 283 284 int ceph_msgr_init(void) 285 { 286 if (ceph_msgr_slab_init()) 287 return -ENOMEM; 288 289 BUG_ON(zero_page != NULL); 290 zero_page = ZERO_PAGE(0); 291 page_cache_get(zero_page); 292 293 /* 294 * The number of active work items is limited by the number of 295 * connections, so leave @max_active at default. 296 */ 297 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 298 if (ceph_msgr_wq) 299 return 0; 300 301 pr_err("msgr_init failed to create workqueue\n"); 302 _ceph_msgr_exit(); 303 304 return -ENOMEM; 305 } 306 EXPORT_SYMBOL(ceph_msgr_init); 307 308 void ceph_msgr_exit(void) 309 { 310 BUG_ON(ceph_msgr_wq == NULL); 311 312 _ceph_msgr_exit(); 313 } 314 EXPORT_SYMBOL(ceph_msgr_exit); 315 316 void ceph_msgr_flush(void) 317 { 318 flush_workqueue(ceph_msgr_wq); 319 } 320 EXPORT_SYMBOL(ceph_msgr_flush); 321 322 /* Connection socket state transition functions */ 323 324 static void con_sock_state_init(struct ceph_connection *con) 325 { 326 int old_state; 327 328 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 329 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 330 printk("%s: unexpected old state %d\n", __func__, old_state); 331 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 332 CON_SOCK_STATE_CLOSED); 333 } 334 335 static void con_sock_state_connecting(struct ceph_connection *con) 336 { 337 int old_state; 338 339 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 340 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 341 printk("%s: unexpected old state %d\n", __func__, old_state); 342 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 343 CON_SOCK_STATE_CONNECTING); 344 } 345 346 static void con_sock_state_connected(struct ceph_connection *con) 347 { 348 int old_state; 349 350 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 351 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 352 printk("%s: unexpected old state %d\n", __func__, old_state); 353 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 354 CON_SOCK_STATE_CONNECTED); 355 } 356 357 static void con_sock_state_closing(struct ceph_connection *con) 358 { 359 int old_state; 360 361 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 362 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 363 old_state != CON_SOCK_STATE_CONNECTED && 364 old_state != CON_SOCK_STATE_CLOSING)) 365 printk("%s: unexpected old state %d\n", __func__, old_state); 366 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 367 CON_SOCK_STATE_CLOSING); 368 } 369 370 static void con_sock_state_closed(struct ceph_connection *con) 371 { 372 int old_state; 373 374 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 375 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 376 old_state != CON_SOCK_STATE_CLOSING && 377 old_state != CON_SOCK_STATE_CONNECTING && 378 old_state != CON_SOCK_STATE_CLOSED)) 379 printk("%s: unexpected old state %d\n", __func__, old_state); 380 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 381 CON_SOCK_STATE_CLOSED); 382 } 383 384 /* 385 * socket callback functions 386 */ 387 388 /* data available on socket, or listen socket received a connect */ 389 static void ceph_sock_data_ready(struct sock *sk) 390 { 391 struct ceph_connection *con = sk->sk_user_data; 392 if (atomic_read(&con->msgr->stopping)) { 393 return; 394 } 395 396 if (sk->sk_state != TCP_CLOSE_WAIT) { 397 dout("%s on %p state = %lu, queueing work\n", __func__, 398 con, con->state); 399 queue_con(con); 400 } 401 } 402 403 /* socket has buffer space for writing */ 404 static void ceph_sock_write_space(struct sock *sk) 405 { 406 struct ceph_connection *con = sk->sk_user_data; 407 408 /* only queue to workqueue if there is data we want to write, 409 * and there is sufficient space in the socket buffer to accept 410 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 411 * doesn't get called again until try_write() fills the socket 412 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 413 * and net/core/stream.c:sk_stream_write_space(). 414 */ 415 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 416 if (sk_stream_is_writeable(sk)) { 417 dout("%s %p queueing write work\n", __func__, con); 418 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 419 queue_con(con); 420 } 421 } else { 422 dout("%s %p nothing to write\n", __func__, con); 423 } 424 } 425 426 /* socket's state has changed */ 427 static void ceph_sock_state_change(struct sock *sk) 428 { 429 struct ceph_connection *con = sk->sk_user_data; 430 431 dout("%s %p state = %lu sk_state = %u\n", __func__, 432 con, con->state, sk->sk_state); 433 434 switch (sk->sk_state) { 435 case TCP_CLOSE: 436 dout("%s TCP_CLOSE\n", __func__); 437 case TCP_CLOSE_WAIT: 438 dout("%s TCP_CLOSE_WAIT\n", __func__); 439 con_sock_state_closing(con); 440 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 441 queue_con(con); 442 break; 443 case TCP_ESTABLISHED: 444 dout("%s TCP_ESTABLISHED\n", __func__); 445 con_sock_state_connected(con); 446 queue_con(con); 447 break; 448 default: /* Everything else is uninteresting */ 449 break; 450 } 451 } 452 453 /* 454 * set up socket callbacks 455 */ 456 static void set_sock_callbacks(struct socket *sock, 457 struct ceph_connection *con) 458 { 459 struct sock *sk = sock->sk; 460 sk->sk_user_data = con; 461 sk->sk_data_ready = ceph_sock_data_ready; 462 sk->sk_write_space = ceph_sock_write_space; 463 sk->sk_state_change = ceph_sock_state_change; 464 } 465 466 467 /* 468 * socket helpers 469 */ 470 471 /* 472 * initiate connection to a remote socket. 473 */ 474 static int ceph_tcp_connect(struct ceph_connection *con) 475 { 476 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 477 struct socket *sock; 478 int ret; 479 480 BUG_ON(con->sock); 481 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family, 482 SOCK_STREAM, IPPROTO_TCP, &sock); 483 if (ret) 484 return ret; 485 sock->sk->sk_allocation = GFP_NOFS; 486 487 #ifdef CONFIG_LOCKDEP 488 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 489 #endif 490 491 set_sock_callbacks(sock, con); 492 493 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 494 495 con_sock_state_connecting(con); 496 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 497 O_NONBLOCK); 498 if (ret == -EINPROGRESS) { 499 dout("connect %s EINPROGRESS sk_state = %u\n", 500 ceph_pr_addr(&con->peer_addr.in_addr), 501 sock->sk->sk_state); 502 } else if (ret < 0) { 503 pr_err("connect %s error %d\n", 504 ceph_pr_addr(&con->peer_addr.in_addr), ret); 505 sock_release(sock); 506 return ret; 507 } 508 509 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) { 510 int optval = 1; 511 512 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 513 (char *)&optval, sizeof(optval)); 514 if (ret) 515 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 516 ret); 517 } 518 519 con->sock = sock; 520 return 0; 521 } 522 523 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 524 { 525 struct kvec iov = {buf, len}; 526 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 527 int r; 528 529 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 530 if (r == -EAGAIN) 531 r = 0; 532 return r; 533 } 534 535 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 536 int page_offset, size_t length) 537 { 538 void *kaddr; 539 int ret; 540 541 BUG_ON(page_offset + length > PAGE_SIZE); 542 543 kaddr = kmap(page); 544 BUG_ON(!kaddr); 545 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length); 546 kunmap(page); 547 548 return ret; 549 } 550 551 /* 552 * write something. @more is true if caller will be sending more data 553 * shortly. 554 */ 555 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 556 size_t kvlen, size_t len, int more) 557 { 558 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 559 int r; 560 561 if (more) 562 msg.msg_flags |= MSG_MORE; 563 else 564 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 565 566 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 567 if (r == -EAGAIN) 568 r = 0; 569 return r; 570 } 571 572 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 573 int offset, size_t size, bool more) 574 { 575 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 576 int ret; 577 578 ret = kernel_sendpage(sock, page, offset, size, flags); 579 if (ret == -EAGAIN) 580 ret = 0; 581 582 return ret; 583 } 584 585 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 586 int offset, size_t size, bool more) 587 { 588 int ret; 589 struct kvec iov; 590 591 /* sendpage cannot properly handle pages with page_count == 0, 592 * we need to fallback to sendmsg if that's the case */ 593 if (page_count(page) >= 1) 594 return __ceph_tcp_sendpage(sock, page, offset, size, more); 595 596 iov.iov_base = kmap(page) + offset; 597 iov.iov_len = size; 598 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more); 599 kunmap(page); 600 601 return ret; 602 } 603 604 /* 605 * Shutdown/close the socket for the given connection. 606 */ 607 static int con_close_socket(struct ceph_connection *con) 608 { 609 int rc = 0; 610 611 dout("con_close_socket on %p sock %p\n", con, con->sock); 612 if (con->sock) { 613 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 614 sock_release(con->sock); 615 con->sock = NULL; 616 } 617 618 /* 619 * Forcibly clear the SOCK_CLOSED flag. It gets set 620 * independent of the connection mutex, and we could have 621 * received a socket close event before we had the chance to 622 * shut the socket down. 623 */ 624 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 625 626 con_sock_state_closed(con); 627 return rc; 628 } 629 630 /* 631 * Reset a connection. Discard all incoming and outgoing messages 632 * and clear *_seq state. 633 */ 634 static void ceph_msg_remove(struct ceph_msg *msg) 635 { 636 list_del_init(&msg->list_head); 637 638 ceph_msg_put(msg); 639 } 640 static void ceph_msg_remove_list(struct list_head *head) 641 { 642 while (!list_empty(head)) { 643 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 644 list_head); 645 ceph_msg_remove(msg); 646 } 647 } 648 649 static void reset_connection(struct ceph_connection *con) 650 { 651 /* reset connection, out_queue, msg_ and connect_seq */ 652 /* discard existing out_queue and msg_seq */ 653 dout("reset_connection %p\n", con); 654 ceph_msg_remove_list(&con->out_queue); 655 ceph_msg_remove_list(&con->out_sent); 656 657 if (con->in_msg) { 658 BUG_ON(con->in_msg->con != con); 659 ceph_msg_put(con->in_msg); 660 con->in_msg = NULL; 661 } 662 663 con->connect_seq = 0; 664 con->out_seq = 0; 665 if (con->out_msg) { 666 BUG_ON(con->out_msg->con != con); 667 ceph_msg_put(con->out_msg); 668 con->out_msg = NULL; 669 } 670 con->in_seq = 0; 671 con->in_seq_acked = 0; 672 673 con->out_skip = 0; 674 } 675 676 /* 677 * mark a peer down. drop any open connections. 678 */ 679 void ceph_con_close(struct ceph_connection *con) 680 { 681 mutex_lock(&con->mutex); 682 dout("con_close %p peer %s\n", con, 683 ceph_pr_addr(&con->peer_addr.in_addr)); 684 con->state = CON_STATE_CLOSED; 685 686 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 687 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 688 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 689 con_flag_clear(con, CON_FLAG_BACKOFF); 690 691 reset_connection(con); 692 con->peer_global_seq = 0; 693 cancel_con(con); 694 con_close_socket(con); 695 mutex_unlock(&con->mutex); 696 } 697 EXPORT_SYMBOL(ceph_con_close); 698 699 /* 700 * Reopen a closed connection, with a new peer address. 701 */ 702 void ceph_con_open(struct ceph_connection *con, 703 __u8 entity_type, __u64 entity_num, 704 struct ceph_entity_addr *addr) 705 { 706 mutex_lock(&con->mutex); 707 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 708 709 WARN_ON(con->state != CON_STATE_CLOSED); 710 con->state = CON_STATE_PREOPEN; 711 712 con->peer_name.type = (__u8) entity_type; 713 con->peer_name.num = cpu_to_le64(entity_num); 714 715 memcpy(&con->peer_addr, addr, sizeof(*addr)); 716 con->delay = 0; /* reset backoff memory */ 717 mutex_unlock(&con->mutex); 718 queue_con(con); 719 } 720 EXPORT_SYMBOL(ceph_con_open); 721 722 /* 723 * return true if this connection ever successfully opened 724 */ 725 bool ceph_con_opened(struct ceph_connection *con) 726 { 727 return con->connect_seq > 0; 728 } 729 730 /* 731 * initialize a new connection. 732 */ 733 void ceph_con_init(struct ceph_connection *con, void *private, 734 const struct ceph_connection_operations *ops, 735 struct ceph_messenger *msgr) 736 { 737 dout("con_init %p\n", con); 738 memset(con, 0, sizeof(*con)); 739 con->private = private; 740 con->ops = ops; 741 con->msgr = msgr; 742 743 con_sock_state_init(con); 744 745 mutex_init(&con->mutex); 746 INIT_LIST_HEAD(&con->out_queue); 747 INIT_LIST_HEAD(&con->out_sent); 748 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 749 750 con->state = CON_STATE_CLOSED; 751 } 752 EXPORT_SYMBOL(ceph_con_init); 753 754 755 /* 756 * We maintain a global counter to order connection attempts. Get 757 * a unique seq greater than @gt. 758 */ 759 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 760 { 761 u32 ret; 762 763 spin_lock(&msgr->global_seq_lock); 764 if (msgr->global_seq < gt) 765 msgr->global_seq = gt; 766 ret = ++msgr->global_seq; 767 spin_unlock(&msgr->global_seq_lock); 768 return ret; 769 } 770 771 static void con_out_kvec_reset(struct ceph_connection *con) 772 { 773 BUG_ON(con->out_skip); 774 775 con->out_kvec_left = 0; 776 con->out_kvec_bytes = 0; 777 con->out_kvec_cur = &con->out_kvec[0]; 778 } 779 780 static void con_out_kvec_add(struct ceph_connection *con, 781 size_t size, void *data) 782 { 783 int index = con->out_kvec_left; 784 785 BUG_ON(con->out_skip); 786 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 787 788 con->out_kvec[index].iov_len = size; 789 con->out_kvec[index].iov_base = data; 790 con->out_kvec_left++; 791 con->out_kvec_bytes += size; 792 } 793 794 /* 795 * Chop off a kvec from the end. Return residual number of bytes for 796 * that kvec, i.e. how many bytes would have been written if the kvec 797 * hadn't been nuked. 798 */ 799 static int con_out_kvec_skip(struct ceph_connection *con) 800 { 801 int off = con->out_kvec_cur - con->out_kvec; 802 int skip = 0; 803 804 if (con->out_kvec_bytes > 0) { 805 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len; 806 BUG_ON(con->out_kvec_bytes < skip); 807 BUG_ON(!con->out_kvec_left); 808 con->out_kvec_bytes -= skip; 809 con->out_kvec_left--; 810 } 811 812 return skip; 813 } 814 815 #ifdef CONFIG_BLOCK 816 817 /* 818 * For a bio data item, a piece is whatever remains of the next 819 * entry in the current bio iovec, or the first entry in the next 820 * bio in the list. 821 */ 822 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 823 size_t length) 824 { 825 struct ceph_msg_data *data = cursor->data; 826 struct bio *bio; 827 828 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 829 830 bio = data->bio; 831 BUG_ON(!bio); 832 833 cursor->resid = min(length, data->bio_length); 834 cursor->bio = bio; 835 cursor->bvec_iter = bio->bi_iter; 836 cursor->last_piece = 837 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); 838 } 839 840 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 841 size_t *page_offset, 842 size_t *length) 843 { 844 struct ceph_msg_data *data = cursor->data; 845 struct bio *bio; 846 struct bio_vec bio_vec; 847 848 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 849 850 bio = cursor->bio; 851 BUG_ON(!bio); 852 853 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 854 855 *page_offset = (size_t) bio_vec.bv_offset; 856 BUG_ON(*page_offset >= PAGE_SIZE); 857 if (cursor->last_piece) /* pagelist offset is always 0 */ 858 *length = cursor->resid; 859 else 860 *length = (size_t) bio_vec.bv_len; 861 BUG_ON(*length > cursor->resid); 862 BUG_ON(*page_offset + *length > PAGE_SIZE); 863 864 return bio_vec.bv_page; 865 } 866 867 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 868 size_t bytes) 869 { 870 struct bio *bio; 871 struct bio_vec bio_vec; 872 873 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 874 875 bio = cursor->bio; 876 BUG_ON(!bio); 877 878 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 879 880 /* Advance the cursor offset */ 881 882 BUG_ON(cursor->resid < bytes); 883 cursor->resid -= bytes; 884 885 bio_advance_iter(bio, &cursor->bvec_iter, bytes); 886 887 if (bytes < bio_vec.bv_len) 888 return false; /* more bytes to process in this segment */ 889 890 /* Move on to the next segment, and possibly the next bio */ 891 892 if (!cursor->bvec_iter.bi_size) { 893 bio = bio->bi_next; 894 cursor->bio = bio; 895 if (bio) 896 cursor->bvec_iter = bio->bi_iter; 897 else 898 memset(&cursor->bvec_iter, 0, 899 sizeof(cursor->bvec_iter)); 900 } 901 902 if (!cursor->last_piece) { 903 BUG_ON(!cursor->resid); 904 BUG_ON(!bio); 905 /* A short read is OK, so use <= rather than == */ 906 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) 907 cursor->last_piece = true; 908 } 909 910 return true; 911 } 912 #endif /* CONFIG_BLOCK */ 913 914 /* 915 * For a page array, a piece comes from the first page in the array 916 * that has not already been fully consumed. 917 */ 918 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 919 size_t length) 920 { 921 struct ceph_msg_data *data = cursor->data; 922 int page_count; 923 924 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 925 926 BUG_ON(!data->pages); 927 BUG_ON(!data->length); 928 929 cursor->resid = min(length, data->length); 930 page_count = calc_pages_for(data->alignment, (u64)data->length); 931 cursor->page_offset = data->alignment & ~PAGE_MASK; 932 cursor->page_index = 0; 933 BUG_ON(page_count > (int)USHRT_MAX); 934 cursor->page_count = (unsigned short)page_count; 935 BUG_ON(length > SIZE_MAX - cursor->page_offset); 936 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 937 } 938 939 static struct page * 940 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 941 size_t *page_offset, size_t *length) 942 { 943 struct ceph_msg_data *data = cursor->data; 944 945 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 946 947 BUG_ON(cursor->page_index >= cursor->page_count); 948 BUG_ON(cursor->page_offset >= PAGE_SIZE); 949 950 *page_offset = cursor->page_offset; 951 if (cursor->last_piece) 952 *length = cursor->resid; 953 else 954 *length = PAGE_SIZE - *page_offset; 955 956 return data->pages[cursor->page_index]; 957 } 958 959 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 960 size_t bytes) 961 { 962 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 963 964 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 965 966 /* Advance the cursor page offset */ 967 968 cursor->resid -= bytes; 969 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 970 if (!bytes || cursor->page_offset) 971 return false; /* more bytes to process in the current page */ 972 973 if (!cursor->resid) 974 return false; /* no more data */ 975 976 /* Move on to the next page; offset is already at 0 */ 977 978 BUG_ON(cursor->page_index >= cursor->page_count); 979 cursor->page_index++; 980 cursor->last_piece = cursor->resid <= PAGE_SIZE; 981 982 return true; 983 } 984 985 /* 986 * For a pagelist, a piece is whatever remains to be consumed in the 987 * first page in the list, or the front of the next page. 988 */ 989 static void 990 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 991 size_t length) 992 { 993 struct ceph_msg_data *data = cursor->data; 994 struct ceph_pagelist *pagelist; 995 struct page *page; 996 997 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 998 999 pagelist = data->pagelist; 1000 BUG_ON(!pagelist); 1001 1002 if (!length) 1003 return; /* pagelist can be assigned but empty */ 1004 1005 BUG_ON(list_empty(&pagelist->head)); 1006 page = list_first_entry(&pagelist->head, struct page, lru); 1007 1008 cursor->resid = min(length, pagelist->length); 1009 cursor->page = page; 1010 cursor->offset = 0; 1011 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1012 } 1013 1014 static struct page * 1015 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 1016 size_t *page_offset, size_t *length) 1017 { 1018 struct ceph_msg_data *data = cursor->data; 1019 struct ceph_pagelist *pagelist; 1020 1021 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1022 1023 pagelist = data->pagelist; 1024 BUG_ON(!pagelist); 1025 1026 BUG_ON(!cursor->page); 1027 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1028 1029 /* offset of first page in pagelist is always 0 */ 1030 *page_offset = cursor->offset & ~PAGE_MASK; 1031 if (cursor->last_piece) 1032 *length = cursor->resid; 1033 else 1034 *length = PAGE_SIZE - *page_offset; 1035 1036 return cursor->page; 1037 } 1038 1039 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1040 size_t bytes) 1041 { 1042 struct ceph_msg_data *data = cursor->data; 1043 struct ceph_pagelist *pagelist; 1044 1045 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1046 1047 pagelist = data->pagelist; 1048 BUG_ON(!pagelist); 1049 1050 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1051 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1052 1053 /* Advance the cursor offset */ 1054 1055 cursor->resid -= bytes; 1056 cursor->offset += bytes; 1057 /* offset of first page in pagelist is always 0 */ 1058 if (!bytes || cursor->offset & ~PAGE_MASK) 1059 return false; /* more bytes to process in the current page */ 1060 1061 if (!cursor->resid) 1062 return false; /* no more data */ 1063 1064 /* Move on to the next page */ 1065 1066 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1067 cursor->page = list_next_entry(cursor->page, lru); 1068 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1069 1070 return true; 1071 } 1072 1073 /* 1074 * Message data is handled (sent or received) in pieces, where each 1075 * piece resides on a single page. The network layer might not 1076 * consume an entire piece at once. A data item's cursor keeps 1077 * track of which piece is next to process and how much remains to 1078 * be processed in that piece. It also tracks whether the current 1079 * piece is the last one in the data item. 1080 */ 1081 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1082 { 1083 size_t length = cursor->total_resid; 1084 1085 switch (cursor->data->type) { 1086 case CEPH_MSG_DATA_PAGELIST: 1087 ceph_msg_data_pagelist_cursor_init(cursor, length); 1088 break; 1089 case CEPH_MSG_DATA_PAGES: 1090 ceph_msg_data_pages_cursor_init(cursor, length); 1091 break; 1092 #ifdef CONFIG_BLOCK 1093 case CEPH_MSG_DATA_BIO: 1094 ceph_msg_data_bio_cursor_init(cursor, length); 1095 break; 1096 #endif /* CONFIG_BLOCK */ 1097 case CEPH_MSG_DATA_NONE: 1098 default: 1099 /* BUG(); */ 1100 break; 1101 } 1102 cursor->need_crc = true; 1103 } 1104 1105 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1106 { 1107 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1108 struct ceph_msg_data *data; 1109 1110 BUG_ON(!length); 1111 BUG_ON(length > msg->data_length); 1112 BUG_ON(list_empty(&msg->data)); 1113 1114 cursor->data_head = &msg->data; 1115 cursor->total_resid = length; 1116 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1117 cursor->data = data; 1118 1119 __ceph_msg_data_cursor_init(cursor); 1120 } 1121 1122 /* 1123 * Return the page containing the next piece to process for a given 1124 * data item, and supply the page offset and length of that piece. 1125 * Indicate whether this is the last piece in this data item. 1126 */ 1127 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1128 size_t *page_offset, size_t *length, 1129 bool *last_piece) 1130 { 1131 struct page *page; 1132 1133 switch (cursor->data->type) { 1134 case CEPH_MSG_DATA_PAGELIST: 1135 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1136 break; 1137 case CEPH_MSG_DATA_PAGES: 1138 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1139 break; 1140 #ifdef CONFIG_BLOCK 1141 case CEPH_MSG_DATA_BIO: 1142 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1143 break; 1144 #endif /* CONFIG_BLOCK */ 1145 case CEPH_MSG_DATA_NONE: 1146 default: 1147 page = NULL; 1148 break; 1149 } 1150 BUG_ON(!page); 1151 BUG_ON(*page_offset + *length > PAGE_SIZE); 1152 BUG_ON(!*length); 1153 if (last_piece) 1154 *last_piece = cursor->last_piece; 1155 1156 return page; 1157 } 1158 1159 /* 1160 * Returns true if the result moves the cursor on to the next piece 1161 * of the data item. 1162 */ 1163 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1164 size_t bytes) 1165 { 1166 bool new_piece; 1167 1168 BUG_ON(bytes > cursor->resid); 1169 switch (cursor->data->type) { 1170 case CEPH_MSG_DATA_PAGELIST: 1171 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1172 break; 1173 case CEPH_MSG_DATA_PAGES: 1174 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1175 break; 1176 #ifdef CONFIG_BLOCK 1177 case CEPH_MSG_DATA_BIO: 1178 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1179 break; 1180 #endif /* CONFIG_BLOCK */ 1181 case CEPH_MSG_DATA_NONE: 1182 default: 1183 BUG(); 1184 break; 1185 } 1186 cursor->total_resid -= bytes; 1187 1188 if (!cursor->resid && cursor->total_resid) { 1189 WARN_ON(!cursor->last_piece); 1190 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1191 cursor->data = list_next_entry(cursor->data, links); 1192 __ceph_msg_data_cursor_init(cursor); 1193 new_piece = true; 1194 } 1195 cursor->need_crc = new_piece; 1196 1197 return new_piece; 1198 } 1199 1200 static size_t sizeof_footer(struct ceph_connection *con) 1201 { 1202 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ? 1203 sizeof(struct ceph_msg_footer) : 1204 sizeof(struct ceph_msg_footer_old); 1205 } 1206 1207 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1208 { 1209 BUG_ON(!msg); 1210 BUG_ON(!data_len); 1211 1212 /* Initialize data cursor */ 1213 1214 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1215 } 1216 1217 /* 1218 * Prepare footer for currently outgoing message, and finish things 1219 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1220 */ 1221 static void prepare_write_message_footer(struct ceph_connection *con) 1222 { 1223 struct ceph_msg *m = con->out_msg; 1224 int v = con->out_kvec_left; 1225 1226 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1227 1228 dout("prepare_write_message_footer %p\n", con); 1229 con->out_kvec[v].iov_base = &m->footer; 1230 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1231 if (con->ops->sign_message) 1232 con->ops->sign_message(m); 1233 else 1234 m->footer.sig = 0; 1235 con->out_kvec[v].iov_len = sizeof(m->footer); 1236 con->out_kvec_bytes += sizeof(m->footer); 1237 } else { 1238 m->old_footer.flags = m->footer.flags; 1239 con->out_kvec[v].iov_len = sizeof(m->old_footer); 1240 con->out_kvec_bytes += sizeof(m->old_footer); 1241 } 1242 con->out_kvec_left++; 1243 con->out_more = m->more_to_follow; 1244 con->out_msg_done = true; 1245 } 1246 1247 /* 1248 * Prepare headers for the next outgoing message. 1249 */ 1250 static void prepare_write_message(struct ceph_connection *con) 1251 { 1252 struct ceph_msg *m; 1253 u32 crc; 1254 1255 con_out_kvec_reset(con); 1256 con->out_msg_done = false; 1257 1258 /* Sneak an ack in there first? If we can get it into the same 1259 * TCP packet that's a good thing. */ 1260 if (con->in_seq > con->in_seq_acked) { 1261 con->in_seq_acked = con->in_seq; 1262 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1263 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1264 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1265 &con->out_temp_ack); 1266 } 1267 1268 BUG_ON(list_empty(&con->out_queue)); 1269 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1270 con->out_msg = m; 1271 BUG_ON(m->con != con); 1272 1273 /* put message on sent list */ 1274 ceph_msg_get(m); 1275 list_move_tail(&m->list_head, &con->out_sent); 1276 1277 /* 1278 * only assign outgoing seq # if we haven't sent this message 1279 * yet. if it is requeued, resend with it's original seq. 1280 */ 1281 if (m->needs_out_seq) { 1282 m->hdr.seq = cpu_to_le64(++con->out_seq); 1283 m->needs_out_seq = false; 1284 } 1285 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1286 1287 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1288 m, con->out_seq, le16_to_cpu(m->hdr.type), 1289 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1290 m->data_length); 1291 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 1292 1293 /* tag + hdr + front + middle */ 1294 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1295 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr); 1296 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1297 1298 if (m->middle) 1299 con_out_kvec_add(con, m->middle->vec.iov_len, 1300 m->middle->vec.iov_base); 1301 1302 /* fill in hdr crc and finalize hdr */ 1303 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1304 con->out_msg->hdr.crc = cpu_to_le32(crc); 1305 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr)); 1306 1307 /* fill in front and middle crc, footer */ 1308 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1309 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1310 if (m->middle) { 1311 crc = crc32c(0, m->middle->vec.iov_base, 1312 m->middle->vec.iov_len); 1313 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1314 } else 1315 con->out_msg->footer.middle_crc = 0; 1316 dout("%s front_crc %u middle_crc %u\n", __func__, 1317 le32_to_cpu(con->out_msg->footer.front_crc), 1318 le32_to_cpu(con->out_msg->footer.middle_crc)); 1319 con->out_msg->footer.flags = 0; 1320 1321 /* is there a data payload? */ 1322 con->out_msg->footer.data_crc = 0; 1323 if (m->data_length) { 1324 prepare_message_data(con->out_msg, m->data_length); 1325 con->out_more = 1; /* data + footer will follow */ 1326 } else { 1327 /* no, queue up footer too and be done */ 1328 prepare_write_message_footer(con); 1329 } 1330 1331 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1332 } 1333 1334 /* 1335 * Prepare an ack. 1336 */ 1337 static void prepare_write_ack(struct ceph_connection *con) 1338 { 1339 dout("prepare_write_ack %p %llu -> %llu\n", con, 1340 con->in_seq_acked, con->in_seq); 1341 con->in_seq_acked = con->in_seq; 1342 1343 con_out_kvec_reset(con); 1344 1345 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1346 1347 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1348 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1349 &con->out_temp_ack); 1350 1351 con->out_more = 1; /* more will follow.. eventually.. */ 1352 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1353 } 1354 1355 /* 1356 * Prepare to share the seq during handshake 1357 */ 1358 static void prepare_write_seq(struct ceph_connection *con) 1359 { 1360 dout("prepare_write_seq %p %llu -> %llu\n", con, 1361 con->in_seq_acked, con->in_seq); 1362 con->in_seq_acked = con->in_seq; 1363 1364 con_out_kvec_reset(con); 1365 1366 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1367 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1368 &con->out_temp_ack); 1369 1370 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1371 } 1372 1373 /* 1374 * Prepare to write keepalive byte. 1375 */ 1376 static void prepare_write_keepalive(struct ceph_connection *con) 1377 { 1378 dout("prepare_write_keepalive %p\n", con); 1379 con_out_kvec_reset(con); 1380 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) { 1381 struct timespec now = CURRENT_TIME; 1382 1383 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2); 1384 ceph_encode_timespec(&con->out_temp_keepalive2, &now); 1385 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2), 1386 &con->out_temp_keepalive2); 1387 } else { 1388 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive); 1389 } 1390 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1391 } 1392 1393 /* 1394 * Connection negotiation. 1395 */ 1396 1397 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1398 int *auth_proto) 1399 { 1400 struct ceph_auth_handshake *auth; 1401 1402 if (!con->ops->get_authorizer) { 1403 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1404 con->out_connect.authorizer_len = 0; 1405 return NULL; 1406 } 1407 1408 /* Can't hold the mutex while getting authorizer */ 1409 mutex_unlock(&con->mutex); 1410 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1411 mutex_lock(&con->mutex); 1412 1413 if (IS_ERR(auth)) 1414 return auth; 1415 if (con->state != CON_STATE_NEGOTIATING) 1416 return ERR_PTR(-EAGAIN); 1417 1418 con->auth_reply_buf = auth->authorizer_reply_buf; 1419 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1420 return auth; 1421 } 1422 1423 /* 1424 * We connected to a peer and are saying hello. 1425 */ 1426 static void prepare_write_banner(struct ceph_connection *con) 1427 { 1428 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1429 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1430 &con->msgr->my_enc_addr); 1431 1432 con->out_more = 0; 1433 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1434 } 1435 1436 static int prepare_write_connect(struct ceph_connection *con) 1437 { 1438 unsigned int global_seq = get_global_seq(con->msgr, 0); 1439 int proto; 1440 int auth_proto; 1441 struct ceph_auth_handshake *auth; 1442 1443 switch (con->peer_name.type) { 1444 case CEPH_ENTITY_TYPE_MON: 1445 proto = CEPH_MONC_PROTOCOL; 1446 break; 1447 case CEPH_ENTITY_TYPE_OSD: 1448 proto = CEPH_OSDC_PROTOCOL; 1449 break; 1450 case CEPH_ENTITY_TYPE_MDS: 1451 proto = CEPH_MDSC_PROTOCOL; 1452 break; 1453 default: 1454 BUG(); 1455 } 1456 1457 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1458 con->connect_seq, global_seq, proto); 1459 1460 con->out_connect.features = 1461 cpu_to_le64(from_msgr(con->msgr)->supported_features); 1462 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1463 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1464 con->out_connect.global_seq = cpu_to_le32(global_seq); 1465 con->out_connect.protocol_version = cpu_to_le32(proto); 1466 con->out_connect.flags = 0; 1467 1468 auth_proto = CEPH_AUTH_UNKNOWN; 1469 auth = get_connect_authorizer(con, &auth_proto); 1470 if (IS_ERR(auth)) 1471 return PTR_ERR(auth); 1472 1473 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1474 con->out_connect.authorizer_len = auth ? 1475 cpu_to_le32(auth->authorizer_buf_len) : 0; 1476 1477 con_out_kvec_add(con, sizeof (con->out_connect), 1478 &con->out_connect); 1479 if (auth && auth->authorizer_buf_len) 1480 con_out_kvec_add(con, auth->authorizer_buf_len, 1481 auth->authorizer_buf); 1482 1483 con->out_more = 0; 1484 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1485 1486 return 0; 1487 } 1488 1489 /* 1490 * write as much of pending kvecs to the socket as we can. 1491 * 1 -> done 1492 * 0 -> socket full, but more to do 1493 * <0 -> error 1494 */ 1495 static int write_partial_kvec(struct ceph_connection *con) 1496 { 1497 int ret; 1498 1499 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1500 while (con->out_kvec_bytes > 0) { 1501 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1502 con->out_kvec_left, con->out_kvec_bytes, 1503 con->out_more); 1504 if (ret <= 0) 1505 goto out; 1506 con->out_kvec_bytes -= ret; 1507 if (con->out_kvec_bytes == 0) 1508 break; /* done */ 1509 1510 /* account for full iov entries consumed */ 1511 while (ret >= con->out_kvec_cur->iov_len) { 1512 BUG_ON(!con->out_kvec_left); 1513 ret -= con->out_kvec_cur->iov_len; 1514 con->out_kvec_cur++; 1515 con->out_kvec_left--; 1516 } 1517 /* and for a partially-consumed entry */ 1518 if (ret) { 1519 con->out_kvec_cur->iov_len -= ret; 1520 con->out_kvec_cur->iov_base += ret; 1521 } 1522 } 1523 con->out_kvec_left = 0; 1524 ret = 1; 1525 out: 1526 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1527 con->out_kvec_bytes, con->out_kvec_left, ret); 1528 return ret; /* done! */ 1529 } 1530 1531 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1532 unsigned int page_offset, 1533 unsigned int length) 1534 { 1535 char *kaddr; 1536 1537 kaddr = kmap(page); 1538 BUG_ON(kaddr == NULL); 1539 crc = crc32c(crc, kaddr + page_offset, length); 1540 kunmap(page); 1541 1542 return crc; 1543 } 1544 /* 1545 * Write as much message data payload as we can. If we finish, queue 1546 * up the footer. 1547 * 1 -> done, footer is now queued in out_kvec[]. 1548 * 0 -> socket full, but more to do 1549 * <0 -> error 1550 */ 1551 static int write_partial_message_data(struct ceph_connection *con) 1552 { 1553 struct ceph_msg *msg = con->out_msg; 1554 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1555 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 1556 u32 crc; 1557 1558 dout("%s %p msg %p\n", __func__, con, msg); 1559 1560 if (list_empty(&msg->data)) 1561 return -EINVAL; 1562 1563 /* 1564 * Iterate through each page that contains data to be 1565 * written, and send as much as possible for each. 1566 * 1567 * If we are calculating the data crc (the default), we will 1568 * need to map the page. If we have no pages, they have 1569 * been revoked, so use the zero page. 1570 */ 1571 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1572 while (cursor->resid) { 1573 struct page *page; 1574 size_t page_offset; 1575 size_t length; 1576 bool last_piece; 1577 bool need_crc; 1578 int ret; 1579 1580 page = ceph_msg_data_next(cursor, &page_offset, &length, 1581 &last_piece); 1582 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1583 length, !last_piece); 1584 if (ret <= 0) { 1585 if (do_datacrc) 1586 msg->footer.data_crc = cpu_to_le32(crc); 1587 1588 return ret; 1589 } 1590 if (do_datacrc && cursor->need_crc) 1591 crc = ceph_crc32c_page(crc, page, page_offset, length); 1592 need_crc = ceph_msg_data_advance(cursor, (size_t)ret); 1593 } 1594 1595 dout("%s %p msg %p done\n", __func__, con, msg); 1596 1597 /* prepare and queue up footer, too */ 1598 if (do_datacrc) 1599 msg->footer.data_crc = cpu_to_le32(crc); 1600 else 1601 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1602 con_out_kvec_reset(con); 1603 prepare_write_message_footer(con); 1604 1605 return 1; /* must return > 0 to indicate success */ 1606 } 1607 1608 /* 1609 * write some zeros 1610 */ 1611 static int write_partial_skip(struct ceph_connection *con) 1612 { 1613 int ret; 1614 1615 dout("%s %p %d left\n", __func__, con, con->out_skip); 1616 while (con->out_skip > 0) { 1617 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1618 1619 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1620 if (ret <= 0) 1621 goto out; 1622 con->out_skip -= ret; 1623 } 1624 ret = 1; 1625 out: 1626 return ret; 1627 } 1628 1629 /* 1630 * Prepare to read connection handshake, or an ack. 1631 */ 1632 static void prepare_read_banner(struct ceph_connection *con) 1633 { 1634 dout("prepare_read_banner %p\n", con); 1635 con->in_base_pos = 0; 1636 } 1637 1638 static void prepare_read_connect(struct ceph_connection *con) 1639 { 1640 dout("prepare_read_connect %p\n", con); 1641 con->in_base_pos = 0; 1642 } 1643 1644 static void prepare_read_ack(struct ceph_connection *con) 1645 { 1646 dout("prepare_read_ack %p\n", con); 1647 con->in_base_pos = 0; 1648 } 1649 1650 static void prepare_read_seq(struct ceph_connection *con) 1651 { 1652 dout("prepare_read_seq %p\n", con); 1653 con->in_base_pos = 0; 1654 con->in_tag = CEPH_MSGR_TAG_SEQ; 1655 } 1656 1657 static void prepare_read_tag(struct ceph_connection *con) 1658 { 1659 dout("prepare_read_tag %p\n", con); 1660 con->in_base_pos = 0; 1661 con->in_tag = CEPH_MSGR_TAG_READY; 1662 } 1663 1664 static void prepare_read_keepalive_ack(struct ceph_connection *con) 1665 { 1666 dout("prepare_read_keepalive_ack %p\n", con); 1667 con->in_base_pos = 0; 1668 } 1669 1670 /* 1671 * Prepare to read a message. 1672 */ 1673 static int prepare_read_message(struct ceph_connection *con) 1674 { 1675 dout("prepare_read_message %p\n", con); 1676 BUG_ON(con->in_msg != NULL); 1677 con->in_base_pos = 0; 1678 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1679 return 0; 1680 } 1681 1682 1683 static int read_partial(struct ceph_connection *con, 1684 int end, int size, void *object) 1685 { 1686 while (con->in_base_pos < end) { 1687 int left = end - con->in_base_pos; 1688 int have = size - left; 1689 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1690 if (ret <= 0) 1691 return ret; 1692 con->in_base_pos += ret; 1693 } 1694 return 1; 1695 } 1696 1697 1698 /* 1699 * Read all or part of the connect-side handshake on a new connection 1700 */ 1701 static int read_partial_banner(struct ceph_connection *con) 1702 { 1703 int size; 1704 int end; 1705 int ret; 1706 1707 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1708 1709 /* peer's banner */ 1710 size = strlen(CEPH_BANNER); 1711 end = size; 1712 ret = read_partial(con, end, size, con->in_banner); 1713 if (ret <= 0) 1714 goto out; 1715 1716 size = sizeof (con->actual_peer_addr); 1717 end += size; 1718 ret = read_partial(con, end, size, &con->actual_peer_addr); 1719 if (ret <= 0) 1720 goto out; 1721 1722 size = sizeof (con->peer_addr_for_me); 1723 end += size; 1724 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1725 if (ret <= 0) 1726 goto out; 1727 1728 out: 1729 return ret; 1730 } 1731 1732 static int read_partial_connect(struct ceph_connection *con) 1733 { 1734 int size; 1735 int end; 1736 int ret; 1737 1738 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1739 1740 size = sizeof (con->in_reply); 1741 end = size; 1742 ret = read_partial(con, end, size, &con->in_reply); 1743 if (ret <= 0) 1744 goto out; 1745 1746 size = le32_to_cpu(con->in_reply.authorizer_len); 1747 end += size; 1748 ret = read_partial(con, end, size, con->auth_reply_buf); 1749 if (ret <= 0) 1750 goto out; 1751 1752 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1753 con, (int)con->in_reply.tag, 1754 le32_to_cpu(con->in_reply.connect_seq), 1755 le32_to_cpu(con->in_reply.global_seq)); 1756 out: 1757 return ret; 1758 1759 } 1760 1761 /* 1762 * Verify the hello banner looks okay. 1763 */ 1764 static int verify_hello(struct ceph_connection *con) 1765 { 1766 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1767 pr_err("connect to %s got bad banner\n", 1768 ceph_pr_addr(&con->peer_addr.in_addr)); 1769 con->error_msg = "protocol error, bad banner"; 1770 return -1; 1771 } 1772 return 0; 1773 } 1774 1775 static bool addr_is_blank(struct sockaddr_storage *ss) 1776 { 1777 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr; 1778 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr; 1779 1780 switch (ss->ss_family) { 1781 case AF_INET: 1782 return addr->s_addr == htonl(INADDR_ANY); 1783 case AF_INET6: 1784 return ipv6_addr_any(addr6); 1785 default: 1786 return true; 1787 } 1788 } 1789 1790 static int addr_port(struct sockaddr_storage *ss) 1791 { 1792 switch (ss->ss_family) { 1793 case AF_INET: 1794 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1795 case AF_INET6: 1796 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1797 } 1798 return 0; 1799 } 1800 1801 static void addr_set_port(struct sockaddr_storage *ss, int p) 1802 { 1803 switch (ss->ss_family) { 1804 case AF_INET: 1805 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1806 break; 1807 case AF_INET6: 1808 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1809 break; 1810 } 1811 } 1812 1813 /* 1814 * Unlike other *_pton function semantics, zero indicates success. 1815 */ 1816 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1817 char delim, const char **ipend) 1818 { 1819 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1820 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1821 1822 memset(ss, 0, sizeof(*ss)); 1823 1824 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1825 ss->ss_family = AF_INET; 1826 return 0; 1827 } 1828 1829 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1830 ss->ss_family = AF_INET6; 1831 return 0; 1832 } 1833 1834 return -EINVAL; 1835 } 1836 1837 /* 1838 * Extract hostname string and resolve using kernel DNS facility. 1839 */ 1840 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1841 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1842 struct sockaddr_storage *ss, char delim, const char **ipend) 1843 { 1844 const char *end, *delim_p; 1845 char *colon_p, *ip_addr = NULL; 1846 int ip_len, ret; 1847 1848 /* 1849 * The end of the hostname occurs immediately preceding the delimiter or 1850 * the port marker (':') where the delimiter takes precedence. 1851 */ 1852 delim_p = memchr(name, delim, namelen); 1853 colon_p = memchr(name, ':', namelen); 1854 1855 if (delim_p && colon_p) 1856 end = delim_p < colon_p ? delim_p : colon_p; 1857 else if (!delim_p && colon_p) 1858 end = colon_p; 1859 else { 1860 end = delim_p; 1861 if (!end) /* case: hostname:/ */ 1862 end = name + namelen; 1863 } 1864 1865 if (end <= name) 1866 return -EINVAL; 1867 1868 /* do dns_resolve upcall */ 1869 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1870 if (ip_len > 0) 1871 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1872 else 1873 ret = -ESRCH; 1874 1875 kfree(ip_addr); 1876 1877 *ipend = end; 1878 1879 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1880 ret, ret ? "failed" : ceph_pr_addr(ss)); 1881 1882 return ret; 1883 } 1884 #else 1885 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1886 struct sockaddr_storage *ss, char delim, const char **ipend) 1887 { 1888 return -EINVAL; 1889 } 1890 #endif 1891 1892 /* 1893 * Parse a server name (IP or hostname). If a valid IP address is not found 1894 * then try to extract a hostname to resolve using userspace DNS upcall. 1895 */ 1896 static int ceph_parse_server_name(const char *name, size_t namelen, 1897 struct sockaddr_storage *ss, char delim, const char **ipend) 1898 { 1899 int ret; 1900 1901 ret = ceph_pton(name, namelen, ss, delim, ipend); 1902 if (ret) 1903 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1904 1905 return ret; 1906 } 1907 1908 /* 1909 * Parse an ip[:port] list into an addr array. Use the default 1910 * monitor port if a port isn't specified. 1911 */ 1912 int ceph_parse_ips(const char *c, const char *end, 1913 struct ceph_entity_addr *addr, 1914 int max_count, int *count) 1915 { 1916 int i, ret = -EINVAL; 1917 const char *p = c; 1918 1919 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1920 for (i = 0; i < max_count; i++) { 1921 const char *ipend; 1922 struct sockaddr_storage *ss = &addr[i].in_addr; 1923 int port; 1924 char delim = ','; 1925 1926 if (*p == '[') { 1927 delim = ']'; 1928 p++; 1929 } 1930 1931 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1932 if (ret) 1933 goto bad; 1934 ret = -EINVAL; 1935 1936 p = ipend; 1937 1938 if (delim == ']') { 1939 if (*p != ']') { 1940 dout("missing matching ']'\n"); 1941 goto bad; 1942 } 1943 p++; 1944 } 1945 1946 /* port? */ 1947 if (p < end && *p == ':') { 1948 port = 0; 1949 p++; 1950 while (p < end && *p >= '0' && *p <= '9') { 1951 port = (port * 10) + (*p - '0'); 1952 p++; 1953 } 1954 if (port == 0) 1955 port = CEPH_MON_PORT; 1956 else if (port > 65535) 1957 goto bad; 1958 } else { 1959 port = CEPH_MON_PORT; 1960 } 1961 1962 addr_set_port(ss, port); 1963 1964 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1965 1966 if (p == end) 1967 break; 1968 if (*p != ',') 1969 goto bad; 1970 p++; 1971 } 1972 1973 if (p != end) 1974 goto bad; 1975 1976 if (count) 1977 *count = i + 1; 1978 return 0; 1979 1980 bad: 1981 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1982 return ret; 1983 } 1984 EXPORT_SYMBOL(ceph_parse_ips); 1985 1986 static int process_banner(struct ceph_connection *con) 1987 { 1988 dout("process_banner on %p\n", con); 1989 1990 if (verify_hello(con) < 0) 1991 return -1; 1992 1993 ceph_decode_addr(&con->actual_peer_addr); 1994 ceph_decode_addr(&con->peer_addr_for_me); 1995 1996 /* 1997 * Make sure the other end is who we wanted. note that the other 1998 * end may not yet know their ip address, so if it's 0.0.0.0, give 1999 * them the benefit of the doubt. 2000 */ 2001 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 2002 sizeof(con->peer_addr)) != 0 && 2003 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 2004 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 2005 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 2006 ceph_pr_addr(&con->peer_addr.in_addr), 2007 (int)le32_to_cpu(con->peer_addr.nonce), 2008 ceph_pr_addr(&con->actual_peer_addr.in_addr), 2009 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 2010 con->error_msg = "wrong peer at address"; 2011 return -1; 2012 } 2013 2014 /* 2015 * did we learn our address? 2016 */ 2017 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 2018 int port = addr_port(&con->msgr->inst.addr.in_addr); 2019 2020 memcpy(&con->msgr->inst.addr.in_addr, 2021 &con->peer_addr_for_me.in_addr, 2022 sizeof(con->peer_addr_for_me.in_addr)); 2023 addr_set_port(&con->msgr->inst.addr.in_addr, port); 2024 encode_my_addr(con->msgr); 2025 dout("process_banner learned my addr is %s\n", 2026 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 2027 } 2028 2029 return 0; 2030 } 2031 2032 static int process_connect(struct ceph_connection *con) 2033 { 2034 u64 sup_feat = from_msgr(con->msgr)->supported_features; 2035 u64 req_feat = from_msgr(con->msgr)->required_features; 2036 u64 server_feat = ceph_sanitize_features( 2037 le64_to_cpu(con->in_reply.features)); 2038 int ret; 2039 2040 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 2041 2042 switch (con->in_reply.tag) { 2043 case CEPH_MSGR_TAG_FEATURES: 2044 pr_err("%s%lld %s feature set mismatch," 2045 " my %llx < server's %llx, missing %llx\n", 2046 ENTITY_NAME(con->peer_name), 2047 ceph_pr_addr(&con->peer_addr.in_addr), 2048 sup_feat, server_feat, server_feat & ~sup_feat); 2049 con->error_msg = "missing required protocol features"; 2050 reset_connection(con); 2051 return -1; 2052 2053 case CEPH_MSGR_TAG_BADPROTOVER: 2054 pr_err("%s%lld %s protocol version mismatch," 2055 " my %d != server's %d\n", 2056 ENTITY_NAME(con->peer_name), 2057 ceph_pr_addr(&con->peer_addr.in_addr), 2058 le32_to_cpu(con->out_connect.protocol_version), 2059 le32_to_cpu(con->in_reply.protocol_version)); 2060 con->error_msg = "protocol version mismatch"; 2061 reset_connection(con); 2062 return -1; 2063 2064 case CEPH_MSGR_TAG_BADAUTHORIZER: 2065 con->auth_retry++; 2066 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2067 con->auth_retry); 2068 if (con->auth_retry == 2) { 2069 con->error_msg = "connect authorization failure"; 2070 return -1; 2071 } 2072 con_out_kvec_reset(con); 2073 ret = prepare_write_connect(con); 2074 if (ret < 0) 2075 return ret; 2076 prepare_read_connect(con); 2077 break; 2078 2079 case CEPH_MSGR_TAG_RESETSESSION: 2080 /* 2081 * If we connected with a large connect_seq but the peer 2082 * has no record of a session with us (no connection, or 2083 * connect_seq == 0), they will send RESETSESION to indicate 2084 * that they must have reset their session, and may have 2085 * dropped messages. 2086 */ 2087 dout("process_connect got RESET peer seq %u\n", 2088 le32_to_cpu(con->in_reply.connect_seq)); 2089 pr_err("%s%lld %s connection reset\n", 2090 ENTITY_NAME(con->peer_name), 2091 ceph_pr_addr(&con->peer_addr.in_addr)); 2092 reset_connection(con); 2093 con_out_kvec_reset(con); 2094 ret = prepare_write_connect(con); 2095 if (ret < 0) 2096 return ret; 2097 prepare_read_connect(con); 2098 2099 /* Tell ceph about it. */ 2100 mutex_unlock(&con->mutex); 2101 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2102 if (con->ops->peer_reset) 2103 con->ops->peer_reset(con); 2104 mutex_lock(&con->mutex); 2105 if (con->state != CON_STATE_NEGOTIATING) 2106 return -EAGAIN; 2107 break; 2108 2109 case CEPH_MSGR_TAG_RETRY_SESSION: 2110 /* 2111 * If we sent a smaller connect_seq than the peer has, try 2112 * again with a larger value. 2113 */ 2114 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2115 le32_to_cpu(con->out_connect.connect_seq), 2116 le32_to_cpu(con->in_reply.connect_seq)); 2117 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2118 con_out_kvec_reset(con); 2119 ret = prepare_write_connect(con); 2120 if (ret < 0) 2121 return ret; 2122 prepare_read_connect(con); 2123 break; 2124 2125 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2126 /* 2127 * If we sent a smaller global_seq than the peer has, try 2128 * again with a larger value. 2129 */ 2130 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2131 con->peer_global_seq, 2132 le32_to_cpu(con->in_reply.global_seq)); 2133 get_global_seq(con->msgr, 2134 le32_to_cpu(con->in_reply.global_seq)); 2135 con_out_kvec_reset(con); 2136 ret = prepare_write_connect(con); 2137 if (ret < 0) 2138 return ret; 2139 prepare_read_connect(con); 2140 break; 2141 2142 case CEPH_MSGR_TAG_SEQ: 2143 case CEPH_MSGR_TAG_READY: 2144 if (req_feat & ~server_feat) { 2145 pr_err("%s%lld %s protocol feature mismatch," 2146 " my required %llx > server's %llx, need %llx\n", 2147 ENTITY_NAME(con->peer_name), 2148 ceph_pr_addr(&con->peer_addr.in_addr), 2149 req_feat, server_feat, req_feat & ~server_feat); 2150 con->error_msg = "missing required protocol features"; 2151 reset_connection(con); 2152 return -1; 2153 } 2154 2155 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2156 con->state = CON_STATE_OPEN; 2157 con->auth_retry = 0; /* we authenticated; clear flag */ 2158 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2159 con->connect_seq++; 2160 con->peer_features = server_feat; 2161 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2162 con->peer_global_seq, 2163 le32_to_cpu(con->in_reply.connect_seq), 2164 con->connect_seq); 2165 WARN_ON(con->connect_seq != 2166 le32_to_cpu(con->in_reply.connect_seq)); 2167 2168 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2169 con_flag_set(con, CON_FLAG_LOSSYTX); 2170 2171 con->delay = 0; /* reset backoff memory */ 2172 2173 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2174 prepare_write_seq(con); 2175 prepare_read_seq(con); 2176 } else { 2177 prepare_read_tag(con); 2178 } 2179 break; 2180 2181 case CEPH_MSGR_TAG_WAIT: 2182 /* 2183 * If there is a connection race (we are opening 2184 * connections to each other), one of us may just have 2185 * to WAIT. This shouldn't happen if we are the 2186 * client. 2187 */ 2188 con->error_msg = "protocol error, got WAIT as client"; 2189 return -1; 2190 2191 default: 2192 con->error_msg = "protocol error, garbage tag during connect"; 2193 return -1; 2194 } 2195 return 0; 2196 } 2197 2198 2199 /* 2200 * read (part of) an ack 2201 */ 2202 static int read_partial_ack(struct ceph_connection *con) 2203 { 2204 int size = sizeof (con->in_temp_ack); 2205 int end = size; 2206 2207 return read_partial(con, end, size, &con->in_temp_ack); 2208 } 2209 2210 /* 2211 * We can finally discard anything that's been acked. 2212 */ 2213 static void process_ack(struct ceph_connection *con) 2214 { 2215 struct ceph_msg *m; 2216 u64 ack = le64_to_cpu(con->in_temp_ack); 2217 u64 seq; 2218 2219 while (!list_empty(&con->out_sent)) { 2220 m = list_first_entry(&con->out_sent, struct ceph_msg, 2221 list_head); 2222 seq = le64_to_cpu(m->hdr.seq); 2223 if (seq > ack) 2224 break; 2225 dout("got ack for seq %llu type %d at %p\n", seq, 2226 le16_to_cpu(m->hdr.type), m); 2227 m->ack_stamp = jiffies; 2228 ceph_msg_remove(m); 2229 } 2230 prepare_read_tag(con); 2231 } 2232 2233 2234 static int read_partial_message_section(struct ceph_connection *con, 2235 struct kvec *section, 2236 unsigned int sec_len, u32 *crc) 2237 { 2238 int ret, left; 2239 2240 BUG_ON(!section); 2241 2242 while (section->iov_len < sec_len) { 2243 BUG_ON(section->iov_base == NULL); 2244 left = sec_len - section->iov_len; 2245 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2246 section->iov_len, left); 2247 if (ret <= 0) 2248 return ret; 2249 section->iov_len += ret; 2250 } 2251 if (section->iov_len == sec_len) 2252 *crc = crc32c(0, section->iov_base, section->iov_len); 2253 2254 return 1; 2255 } 2256 2257 static int read_partial_msg_data(struct ceph_connection *con) 2258 { 2259 struct ceph_msg *msg = con->in_msg; 2260 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2261 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2262 struct page *page; 2263 size_t page_offset; 2264 size_t length; 2265 u32 crc = 0; 2266 int ret; 2267 2268 BUG_ON(!msg); 2269 if (list_empty(&msg->data)) 2270 return -EIO; 2271 2272 if (do_datacrc) 2273 crc = con->in_data_crc; 2274 while (cursor->resid) { 2275 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 2276 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2277 if (ret <= 0) { 2278 if (do_datacrc) 2279 con->in_data_crc = crc; 2280 2281 return ret; 2282 } 2283 2284 if (do_datacrc) 2285 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2286 (void) ceph_msg_data_advance(cursor, (size_t)ret); 2287 } 2288 if (do_datacrc) 2289 con->in_data_crc = crc; 2290 2291 return 1; /* must return > 0 to indicate success */ 2292 } 2293 2294 /* 2295 * read (part of) a message. 2296 */ 2297 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2298 2299 static int read_partial_message(struct ceph_connection *con) 2300 { 2301 struct ceph_msg *m = con->in_msg; 2302 int size; 2303 int end; 2304 int ret; 2305 unsigned int front_len, middle_len, data_len; 2306 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2307 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2308 u64 seq; 2309 u32 crc; 2310 2311 dout("read_partial_message con %p msg %p\n", con, m); 2312 2313 /* header */ 2314 size = sizeof (con->in_hdr); 2315 end = size; 2316 ret = read_partial(con, end, size, &con->in_hdr); 2317 if (ret <= 0) 2318 return ret; 2319 2320 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2321 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2322 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2323 crc, con->in_hdr.crc); 2324 return -EBADMSG; 2325 } 2326 2327 front_len = le32_to_cpu(con->in_hdr.front_len); 2328 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2329 return -EIO; 2330 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2331 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2332 return -EIO; 2333 data_len = le32_to_cpu(con->in_hdr.data_len); 2334 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2335 return -EIO; 2336 2337 /* verify seq# */ 2338 seq = le64_to_cpu(con->in_hdr.seq); 2339 if ((s64)seq - (s64)con->in_seq < 1) { 2340 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2341 ENTITY_NAME(con->peer_name), 2342 ceph_pr_addr(&con->peer_addr.in_addr), 2343 seq, con->in_seq + 1); 2344 con->in_base_pos = -front_len - middle_len - data_len - 2345 sizeof_footer(con); 2346 con->in_tag = CEPH_MSGR_TAG_READY; 2347 return 1; 2348 } else if ((s64)seq - (s64)con->in_seq > 1) { 2349 pr_err("read_partial_message bad seq %lld expected %lld\n", 2350 seq, con->in_seq + 1); 2351 con->error_msg = "bad message sequence # for incoming message"; 2352 return -EBADE; 2353 } 2354 2355 /* allocate message? */ 2356 if (!con->in_msg) { 2357 int skip = 0; 2358 2359 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2360 front_len, data_len); 2361 ret = ceph_con_in_msg_alloc(con, &skip); 2362 if (ret < 0) 2363 return ret; 2364 2365 BUG_ON(!con->in_msg ^ skip); 2366 if (skip) { 2367 /* skip this message */ 2368 dout("alloc_msg said skip message\n"); 2369 con->in_base_pos = -front_len - middle_len - data_len - 2370 sizeof_footer(con); 2371 con->in_tag = CEPH_MSGR_TAG_READY; 2372 con->in_seq++; 2373 return 1; 2374 } 2375 2376 BUG_ON(!con->in_msg); 2377 BUG_ON(con->in_msg->con != con); 2378 m = con->in_msg; 2379 m->front.iov_len = 0; /* haven't read it yet */ 2380 if (m->middle) 2381 m->middle->vec.iov_len = 0; 2382 2383 /* prepare for data payload, if any */ 2384 2385 if (data_len) 2386 prepare_message_data(con->in_msg, data_len); 2387 } 2388 2389 /* front */ 2390 ret = read_partial_message_section(con, &m->front, front_len, 2391 &con->in_front_crc); 2392 if (ret <= 0) 2393 return ret; 2394 2395 /* middle */ 2396 if (m->middle) { 2397 ret = read_partial_message_section(con, &m->middle->vec, 2398 middle_len, 2399 &con->in_middle_crc); 2400 if (ret <= 0) 2401 return ret; 2402 } 2403 2404 /* (page) data */ 2405 if (data_len) { 2406 ret = read_partial_msg_data(con); 2407 if (ret <= 0) 2408 return ret; 2409 } 2410 2411 /* footer */ 2412 if (need_sign) 2413 size = sizeof(m->footer); 2414 else 2415 size = sizeof(m->old_footer); 2416 2417 end += size; 2418 ret = read_partial(con, end, size, &m->footer); 2419 if (ret <= 0) 2420 return ret; 2421 2422 if (!need_sign) { 2423 m->footer.flags = m->old_footer.flags; 2424 m->footer.sig = 0; 2425 } 2426 2427 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2428 m, front_len, m->footer.front_crc, middle_len, 2429 m->footer.middle_crc, data_len, m->footer.data_crc); 2430 2431 /* crc ok? */ 2432 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2433 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2434 m, con->in_front_crc, m->footer.front_crc); 2435 return -EBADMSG; 2436 } 2437 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2438 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2439 m, con->in_middle_crc, m->footer.middle_crc); 2440 return -EBADMSG; 2441 } 2442 if (do_datacrc && 2443 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2444 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2445 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2446 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2447 return -EBADMSG; 2448 } 2449 2450 if (need_sign && con->ops->check_message_signature && 2451 con->ops->check_message_signature(m)) { 2452 pr_err("read_partial_message %p signature check failed\n", m); 2453 return -EBADMSG; 2454 } 2455 2456 return 1; /* done! */ 2457 } 2458 2459 /* 2460 * Process message. This happens in the worker thread. The callback should 2461 * be careful not to do anything that waits on other incoming messages or it 2462 * may deadlock. 2463 */ 2464 static void process_message(struct ceph_connection *con) 2465 { 2466 struct ceph_msg *msg = con->in_msg; 2467 2468 BUG_ON(con->in_msg->con != con); 2469 con->in_msg = NULL; 2470 2471 /* if first message, set peer_name */ 2472 if (con->peer_name.type == 0) 2473 con->peer_name = msg->hdr.src; 2474 2475 con->in_seq++; 2476 mutex_unlock(&con->mutex); 2477 2478 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2479 msg, le64_to_cpu(msg->hdr.seq), 2480 ENTITY_NAME(msg->hdr.src), 2481 le16_to_cpu(msg->hdr.type), 2482 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2483 le32_to_cpu(msg->hdr.front_len), 2484 le32_to_cpu(msg->hdr.data_len), 2485 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2486 con->ops->dispatch(con, msg); 2487 2488 mutex_lock(&con->mutex); 2489 } 2490 2491 static int read_keepalive_ack(struct ceph_connection *con) 2492 { 2493 struct ceph_timespec ceph_ts; 2494 size_t size = sizeof(ceph_ts); 2495 int ret = read_partial(con, size, size, &ceph_ts); 2496 if (ret <= 0) 2497 return ret; 2498 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts); 2499 prepare_read_tag(con); 2500 return 1; 2501 } 2502 2503 /* 2504 * Write something to the socket. Called in a worker thread when the 2505 * socket appears to be writeable and we have something ready to send. 2506 */ 2507 static int try_write(struct ceph_connection *con) 2508 { 2509 int ret = 1; 2510 2511 dout("try_write start %p state %lu\n", con, con->state); 2512 2513 more: 2514 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2515 2516 /* open the socket first? */ 2517 if (con->state == CON_STATE_PREOPEN) { 2518 BUG_ON(con->sock); 2519 con->state = CON_STATE_CONNECTING; 2520 2521 con_out_kvec_reset(con); 2522 prepare_write_banner(con); 2523 prepare_read_banner(con); 2524 2525 BUG_ON(con->in_msg); 2526 con->in_tag = CEPH_MSGR_TAG_READY; 2527 dout("try_write initiating connect on %p new state %lu\n", 2528 con, con->state); 2529 ret = ceph_tcp_connect(con); 2530 if (ret < 0) { 2531 con->error_msg = "connect error"; 2532 goto out; 2533 } 2534 } 2535 2536 more_kvec: 2537 /* kvec data queued? */ 2538 if (con->out_kvec_left) { 2539 ret = write_partial_kvec(con); 2540 if (ret <= 0) 2541 goto out; 2542 } 2543 if (con->out_skip) { 2544 ret = write_partial_skip(con); 2545 if (ret <= 0) 2546 goto out; 2547 } 2548 2549 /* msg pages? */ 2550 if (con->out_msg) { 2551 if (con->out_msg_done) { 2552 ceph_msg_put(con->out_msg); 2553 con->out_msg = NULL; /* we're done with this one */ 2554 goto do_next; 2555 } 2556 2557 ret = write_partial_message_data(con); 2558 if (ret == 1) 2559 goto more_kvec; /* we need to send the footer, too! */ 2560 if (ret == 0) 2561 goto out; 2562 if (ret < 0) { 2563 dout("try_write write_partial_message_data err %d\n", 2564 ret); 2565 goto out; 2566 } 2567 } 2568 2569 do_next: 2570 if (con->state == CON_STATE_OPEN) { 2571 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2572 prepare_write_keepalive(con); 2573 goto more; 2574 } 2575 /* is anything else pending? */ 2576 if (!list_empty(&con->out_queue)) { 2577 prepare_write_message(con); 2578 goto more; 2579 } 2580 if (con->in_seq > con->in_seq_acked) { 2581 prepare_write_ack(con); 2582 goto more; 2583 } 2584 } 2585 2586 /* Nothing to do! */ 2587 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2588 dout("try_write nothing else to write.\n"); 2589 ret = 0; 2590 out: 2591 dout("try_write done on %p ret %d\n", con, ret); 2592 return ret; 2593 } 2594 2595 2596 2597 /* 2598 * Read what we can from the socket. 2599 */ 2600 static int try_read(struct ceph_connection *con) 2601 { 2602 int ret = -1; 2603 2604 more: 2605 dout("try_read start on %p state %lu\n", con, con->state); 2606 if (con->state != CON_STATE_CONNECTING && 2607 con->state != CON_STATE_NEGOTIATING && 2608 con->state != CON_STATE_OPEN) 2609 return 0; 2610 2611 BUG_ON(!con->sock); 2612 2613 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2614 con->in_base_pos); 2615 2616 if (con->state == CON_STATE_CONNECTING) { 2617 dout("try_read connecting\n"); 2618 ret = read_partial_banner(con); 2619 if (ret <= 0) 2620 goto out; 2621 ret = process_banner(con); 2622 if (ret < 0) 2623 goto out; 2624 2625 con->state = CON_STATE_NEGOTIATING; 2626 2627 /* 2628 * Received banner is good, exchange connection info. 2629 * Do not reset out_kvec, as sending our banner raced 2630 * with receiving peer banner after connect completed. 2631 */ 2632 ret = prepare_write_connect(con); 2633 if (ret < 0) 2634 goto out; 2635 prepare_read_connect(con); 2636 2637 /* Send connection info before awaiting response */ 2638 goto out; 2639 } 2640 2641 if (con->state == CON_STATE_NEGOTIATING) { 2642 dout("try_read negotiating\n"); 2643 ret = read_partial_connect(con); 2644 if (ret <= 0) 2645 goto out; 2646 ret = process_connect(con); 2647 if (ret < 0) 2648 goto out; 2649 goto more; 2650 } 2651 2652 WARN_ON(con->state != CON_STATE_OPEN); 2653 2654 if (con->in_base_pos < 0) { 2655 /* 2656 * skipping + discarding content. 2657 * 2658 * FIXME: there must be a better way to do this! 2659 */ 2660 static char buf[SKIP_BUF_SIZE]; 2661 int skip = min((int) sizeof (buf), -con->in_base_pos); 2662 2663 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2664 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2665 if (ret <= 0) 2666 goto out; 2667 con->in_base_pos += ret; 2668 if (con->in_base_pos) 2669 goto more; 2670 } 2671 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2672 /* 2673 * what's next? 2674 */ 2675 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2676 if (ret <= 0) 2677 goto out; 2678 dout("try_read got tag %d\n", (int)con->in_tag); 2679 switch (con->in_tag) { 2680 case CEPH_MSGR_TAG_MSG: 2681 prepare_read_message(con); 2682 break; 2683 case CEPH_MSGR_TAG_ACK: 2684 prepare_read_ack(con); 2685 break; 2686 case CEPH_MSGR_TAG_KEEPALIVE2_ACK: 2687 prepare_read_keepalive_ack(con); 2688 break; 2689 case CEPH_MSGR_TAG_CLOSE: 2690 con_close_socket(con); 2691 con->state = CON_STATE_CLOSED; 2692 goto out; 2693 default: 2694 goto bad_tag; 2695 } 2696 } 2697 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2698 ret = read_partial_message(con); 2699 if (ret <= 0) { 2700 switch (ret) { 2701 case -EBADMSG: 2702 con->error_msg = "bad crc/signature"; 2703 /* fall through */ 2704 case -EBADE: 2705 ret = -EIO; 2706 break; 2707 case -EIO: 2708 con->error_msg = "io error"; 2709 break; 2710 } 2711 goto out; 2712 } 2713 if (con->in_tag == CEPH_MSGR_TAG_READY) 2714 goto more; 2715 process_message(con); 2716 if (con->state == CON_STATE_OPEN) 2717 prepare_read_tag(con); 2718 goto more; 2719 } 2720 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2721 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2722 /* 2723 * the final handshake seq exchange is semantically 2724 * equivalent to an ACK 2725 */ 2726 ret = read_partial_ack(con); 2727 if (ret <= 0) 2728 goto out; 2729 process_ack(con); 2730 goto more; 2731 } 2732 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) { 2733 ret = read_keepalive_ack(con); 2734 if (ret <= 0) 2735 goto out; 2736 goto more; 2737 } 2738 2739 out: 2740 dout("try_read done on %p ret %d\n", con, ret); 2741 return ret; 2742 2743 bad_tag: 2744 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2745 con->error_msg = "protocol error, garbage tag"; 2746 ret = -1; 2747 goto out; 2748 } 2749 2750 2751 /* 2752 * Atomically queue work on a connection after the specified delay. 2753 * Bump @con reference to avoid races with connection teardown. 2754 * Returns 0 if work was queued, or an error code otherwise. 2755 */ 2756 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2757 { 2758 if (!con->ops->get(con)) { 2759 dout("%s %p ref count 0\n", __func__, con); 2760 return -ENOENT; 2761 } 2762 2763 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2764 dout("%s %p - already queued\n", __func__, con); 2765 con->ops->put(con); 2766 return -EBUSY; 2767 } 2768 2769 dout("%s %p %lu\n", __func__, con, delay); 2770 return 0; 2771 } 2772 2773 static void queue_con(struct ceph_connection *con) 2774 { 2775 (void) queue_con_delay(con, 0); 2776 } 2777 2778 static void cancel_con(struct ceph_connection *con) 2779 { 2780 if (cancel_delayed_work(&con->work)) { 2781 dout("%s %p\n", __func__, con); 2782 con->ops->put(con); 2783 } 2784 } 2785 2786 static bool con_sock_closed(struct ceph_connection *con) 2787 { 2788 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2789 return false; 2790 2791 #define CASE(x) \ 2792 case CON_STATE_ ## x: \ 2793 con->error_msg = "socket closed (con state " #x ")"; \ 2794 break; 2795 2796 switch (con->state) { 2797 CASE(CLOSED); 2798 CASE(PREOPEN); 2799 CASE(CONNECTING); 2800 CASE(NEGOTIATING); 2801 CASE(OPEN); 2802 CASE(STANDBY); 2803 default: 2804 pr_warn("%s con %p unrecognized state %lu\n", 2805 __func__, con, con->state); 2806 con->error_msg = "unrecognized con state"; 2807 BUG(); 2808 break; 2809 } 2810 #undef CASE 2811 2812 return true; 2813 } 2814 2815 static bool con_backoff(struct ceph_connection *con) 2816 { 2817 int ret; 2818 2819 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2820 return false; 2821 2822 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2823 if (ret) { 2824 dout("%s: con %p FAILED to back off %lu\n", __func__, 2825 con, con->delay); 2826 BUG_ON(ret == -ENOENT); 2827 con_flag_set(con, CON_FLAG_BACKOFF); 2828 } 2829 2830 return true; 2831 } 2832 2833 /* Finish fault handling; con->mutex must *not* be held here */ 2834 2835 static void con_fault_finish(struct ceph_connection *con) 2836 { 2837 dout("%s %p\n", __func__, con); 2838 2839 /* 2840 * in case we faulted due to authentication, invalidate our 2841 * current tickets so that we can get new ones. 2842 */ 2843 if (con->auth_retry) { 2844 dout("auth_retry %d, invalidating\n", con->auth_retry); 2845 if (con->ops->invalidate_authorizer) 2846 con->ops->invalidate_authorizer(con); 2847 con->auth_retry = 0; 2848 } 2849 2850 if (con->ops->fault) 2851 con->ops->fault(con); 2852 } 2853 2854 /* 2855 * Do some work on a connection. Drop a connection ref when we're done. 2856 */ 2857 static void ceph_con_workfn(struct work_struct *work) 2858 { 2859 struct ceph_connection *con = container_of(work, struct ceph_connection, 2860 work.work); 2861 bool fault; 2862 2863 mutex_lock(&con->mutex); 2864 while (true) { 2865 int ret; 2866 2867 if ((fault = con_sock_closed(con))) { 2868 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2869 break; 2870 } 2871 if (con_backoff(con)) { 2872 dout("%s: con %p BACKOFF\n", __func__, con); 2873 break; 2874 } 2875 if (con->state == CON_STATE_STANDBY) { 2876 dout("%s: con %p STANDBY\n", __func__, con); 2877 break; 2878 } 2879 if (con->state == CON_STATE_CLOSED) { 2880 dout("%s: con %p CLOSED\n", __func__, con); 2881 BUG_ON(con->sock); 2882 break; 2883 } 2884 if (con->state == CON_STATE_PREOPEN) { 2885 dout("%s: con %p PREOPEN\n", __func__, con); 2886 BUG_ON(con->sock); 2887 } 2888 2889 ret = try_read(con); 2890 if (ret < 0) { 2891 if (ret == -EAGAIN) 2892 continue; 2893 if (!con->error_msg) 2894 con->error_msg = "socket error on read"; 2895 fault = true; 2896 break; 2897 } 2898 2899 ret = try_write(con); 2900 if (ret < 0) { 2901 if (ret == -EAGAIN) 2902 continue; 2903 if (!con->error_msg) 2904 con->error_msg = "socket error on write"; 2905 fault = true; 2906 } 2907 2908 break; /* If we make it to here, we're done */ 2909 } 2910 if (fault) 2911 con_fault(con); 2912 mutex_unlock(&con->mutex); 2913 2914 if (fault) 2915 con_fault_finish(con); 2916 2917 con->ops->put(con); 2918 } 2919 2920 /* 2921 * Generic error/fault handler. A retry mechanism is used with 2922 * exponential backoff 2923 */ 2924 static void con_fault(struct ceph_connection *con) 2925 { 2926 dout("fault %p state %lu to peer %s\n", 2927 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2928 2929 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2930 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2931 con->error_msg = NULL; 2932 2933 WARN_ON(con->state != CON_STATE_CONNECTING && 2934 con->state != CON_STATE_NEGOTIATING && 2935 con->state != CON_STATE_OPEN); 2936 2937 con_close_socket(con); 2938 2939 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2940 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2941 con->state = CON_STATE_CLOSED; 2942 return; 2943 } 2944 2945 if (con->in_msg) { 2946 BUG_ON(con->in_msg->con != con); 2947 ceph_msg_put(con->in_msg); 2948 con->in_msg = NULL; 2949 } 2950 2951 /* Requeue anything that hasn't been acked */ 2952 list_splice_init(&con->out_sent, &con->out_queue); 2953 2954 /* If there are no messages queued or keepalive pending, place 2955 * the connection in a STANDBY state */ 2956 if (list_empty(&con->out_queue) && 2957 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2958 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2959 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2960 con->state = CON_STATE_STANDBY; 2961 } else { 2962 /* retry after a delay. */ 2963 con->state = CON_STATE_PREOPEN; 2964 if (con->delay == 0) 2965 con->delay = BASE_DELAY_INTERVAL; 2966 else if (con->delay < MAX_DELAY_INTERVAL) 2967 con->delay *= 2; 2968 con_flag_set(con, CON_FLAG_BACKOFF); 2969 queue_con(con); 2970 } 2971 } 2972 2973 2974 2975 /* 2976 * initialize a new messenger instance 2977 */ 2978 void ceph_messenger_init(struct ceph_messenger *msgr, 2979 struct ceph_entity_addr *myaddr) 2980 { 2981 spin_lock_init(&msgr->global_seq_lock); 2982 2983 if (myaddr) 2984 msgr->inst.addr = *myaddr; 2985 2986 /* select a random nonce */ 2987 msgr->inst.addr.type = 0; 2988 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2989 encode_my_addr(msgr); 2990 2991 atomic_set(&msgr->stopping, 0); 2992 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 2993 2994 dout("%s %p\n", __func__, msgr); 2995 } 2996 EXPORT_SYMBOL(ceph_messenger_init); 2997 2998 void ceph_messenger_fini(struct ceph_messenger *msgr) 2999 { 3000 put_net(read_pnet(&msgr->net)); 3001 } 3002 EXPORT_SYMBOL(ceph_messenger_fini); 3003 3004 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 3005 { 3006 if (msg->con) 3007 msg->con->ops->put(msg->con); 3008 3009 msg->con = con ? con->ops->get(con) : NULL; 3010 BUG_ON(msg->con != con); 3011 } 3012 3013 static void clear_standby(struct ceph_connection *con) 3014 { 3015 /* come back from STANDBY? */ 3016 if (con->state == CON_STATE_STANDBY) { 3017 dout("clear_standby %p and ++connect_seq\n", con); 3018 con->state = CON_STATE_PREOPEN; 3019 con->connect_seq++; 3020 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 3021 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 3022 } 3023 } 3024 3025 /* 3026 * Queue up an outgoing message on the given connection. 3027 */ 3028 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 3029 { 3030 /* set src+dst */ 3031 msg->hdr.src = con->msgr->inst.name; 3032 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 3033 msg->needs_out_seq = true; 3034 3035 mutex_lock(&con->mutex); 3036 3037 if (con->state == CON_STATE_CLOSED) { 3038 dout("con_send %p closed, dropping %p\n", con, msg); 3039 ceph_msg_put(msg); 3040 mutex_unlock(&con->mutex); 3041 return; 3042 } 3043 3044 msg_con_set(msg, con); 3045 3046 BUG_ON(!list_empty(&msg->list_head)); 3047 list_add_tail(&msg->list_head, &con->out_queue); 3048 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 3049 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 3050 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 3051 le32_to_cpu(msg->hdr.front_len), 3052 le32_to_cpu(msg->hdr.middle_len), 3053 le32_to_cpu(msg->hdr.data_len)); 3054 3055 clear_standby(con); 3056 mutex_unlock(&con->mutex); 3057 3058 /* if there wasn't anything waiting to send before, queue 3059 * new work */ 3060 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3061 queue_con(con); 3062 } 3063 EXPORT_SYMBOL(ceph_con_send); 3064 3065 /* 3066 * Revoke a message that was previously queued for send 3067 */ 3068 void ceph_msg_revoke(struct ceph_msg *msg) 3069 { 3070 struct ceph_connection *con = msg->con; 3071 3072 if (!con) { 3073 dout("%s msg %p null con\n", __func__, msg); 3074 return; /* Message not in our possession */ 3075 } 3076 3077 mutex_lock(&con->mutex); 3078 if (!list_empty(&msg->list_head)) { 3079 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3080 list_del_init(&msg->list_head); 3081 msg->hdr.seq = 0; 3082 3083 ceph_msg_put(msg); 3084 } 3085 if (con->out_msg == msg) { 3086 BUG_ON(con->out_skip); 3087 /* footer */ 3088 if (con->out_msg_done) { 3089 con->out_skip += con_out_kvec_skip(con); 3090 } else { 3091 BUG_ON(!msg->data_length); 3092 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) 3093 con->out_skip += sizeof(msg->footer); 3094 else 3095 con->out_skip += sizeof(msg->old_footer); 3096 } 3097 /* data, middle, front */ 3098 if (msg->data_length) 3099 con->out_skip += msg->cursor.total_resid; 3100 if (msg->middle) 3101 con->out_skip += con_out_kvec_skip(con); 3102 con->out_skip += con_out_kvec_skip(con); 3103 3104 dout("%s %p msg %p - was sending, will write %d skip %d\n", 3105 __func__, con, msg, con->out_kvec_bytes, con->out_skip); 3106 msg->hdr.seq = 0; 3107 con->out_msg = NULL; 3108 ceph_msg_put(msg); 3109 } 3110 3111 mutex_unlock(&con->mutex); 3112 } 3113 3114 /* 3115 * Revoke a message that we may be reading data into 3116 */ 3117 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3118 { 3119 struct ceph_connection *con = msg->con; 3120 3121 if (!con) { 3122 dout("%s msg %p null con\n", __func__, msg); 3123 return; /* Message not in our possession */ 3124 } 3125 3126 mutex_lock(&con->mutex); 3127 if (con->in_msg == msg) { 3128 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3129 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3130 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3131 3132 /* skip rest of message */ 3133 dout("%s %p msg %p revoked\n", __func__, con, msg); 3134 con->in_base_pos = con->in_base_pos - 3135 sizeof(struct ceph_msg_header) - 3136 front_len - 3137 middle_len - 3138 data_len - 3139 sizeof(struct ceph_msg_footer); 3140 ceph_msg_put(con->in_msg); 3141 con->in_msg = NULL; 3142 con->in_tag = CEPH_MSGR_TAG_READY; 3143 con->in_seq++; 3144 } else { 3145 dout("%s %p in_msg %p msg %p no-op\n", 3146 __func__, con, con->in_msg, msg); 3147 } 3148 mutex_unlock(&con->mutex); 3149 } 3150 3151 /* 3152 * Queue a keepalive byte to ensure the tcp connection is alive. 3153 */ 3154 void ceph_con_keepalive(struct ceph_connection *con) 3155 { 3156 dout("con_keepalive %p\n", con); 3157 mutex_lock(&con->mutex); 3158 clear_standby(con); 3159 mutex_unlock(&con->mutex); 3160 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3161 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3162 queue_con(con); 3163 } 3164 EXPORT_SYMBOL(ceph_con_keepalive); 3165 3166 bool ceph_con_keepalive_expired(struct ceph_connection *con, 3167 unsigned long interval) 3168 { 3169 if (interval > 0 && 3170 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 3171 struct timespec now = CURRENT_TIME; 3172 struct timespec ts; 3173 jiffies_to_timespec(interval, &ts); 3174 ts = timespec_add(con->last_keepalive_ack, ts); 3175 return timespec_compare(&now, &ts) >= 0; 3176 } 3177 return false; 3178 } 3179 3180 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3181 { 3182 struct ceph_msg_data *data; 3183 3184 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3185 return NULL; 3186 3187 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3188 if (data) 3189 data->type = type; 3190 INIT_LIST_HEAD(&data->links); 3191 3192 return data; 3193 } 3194 3195 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3196 { 3197 if (!data) 3198 return; 3199 3200 WARN_ON(!list_empty(&data->links)); 3201 if (data->type == CEPH_MSG_DATA_PAGELIST) 3202 ceph_pagelist_release(data->pagelist); 3203 kmem_cache_free(ceph_msg_data_cache, data); 3204 } 3205 3206 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3207 size_t length, size_t alignment) 3208 { 3209 struct ceph_msg_data *data; 3210 3211 BUG_ON(!pages); 3212 BUG_ON(!length); 3213 3214 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3215 BUG_ON(!data); 3216 data->pages = pages; 3217 data->length = length; 3218 data->alignment = alignment & ~PAGE_MASK; 3219 3220 list_add_tail(&data->links, &msg->data); 3221 msg->data_length += length; 3222 } 3223 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3224 3225 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3226 struct ceph_pagelist *pagelist) 3227 { 3228 struct ceph_msg_data *data; 3229 3230 BUG_ON(!pagelist); 3231 BUG_ON(!pagelist->length); 3232 3233 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3234 BUG_ON(!data); 3235 data->pagelist = pagelist; 3236 3237 list_add_tail(&data->links, &msg->data); 3238 msg->data_length += pagelist->length; 3239 } 3240 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3241 3242 #ifdef CONFIG_BLOCK 3243 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3244 size_t length) 3245 { 3246 struct ceph_msg_data *data; 3247 3248 BUG_ON(!bio); 3249 3250 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3251 BUG_ON(!data); 3252 data->bio = bio; 3253 data->bio_length = length; 3254 3255 list_add_tail(&data->links, &msg->data); 3256 msg->data_length += length; 3257 } 3258 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3259 #endif /* CONFIG_BLOCK */ 3260 3261 /* 3262 * construct a new message with given type, size 3263 * the new msg has a ref count of 1. 3264 */ 3265 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3266 bool can_fail) 3267 { 3268 struct ceph_msg *m; 3269 3270 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3271 if (m == NULL) 3272 goto out; 3273 3274 m->hdr.type = cpu_to_le16(type); 3275 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3276 m->hdr.front_len = cpu_to_le32(front_len); 3277 3278 INIT_LIST_HEAD(&m->list_head); 3279 kref_init(&m->kref); 3280 INIT_LIST_HEAD(&m->data); 3281 3282 /* front */ 3283 if (front_len) { 3284 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3285 if (m->front.iov_base == NULL) { 3286 dout("ceph_msg_new can't allocate %d bytes\n", 3287 front_len); 3288 goto out2; 3289 } 3290 } else { 3291 m->front.iov_base = NULL; 3292 } 3293 m->front_alloc_len = m->front.iov_len = front_len; 3294 3295 dout("ceph_msg_new %p front %d\n", m, front_len); 3296 return m; 3297 3298 out2: 3299 ceph_msg_put(m); 3300 out: 3301 if (!can_fail) { 3302 pr_err("msg_new can't create type %d front %d\n", type, 3303 front_len); 3304 WARN_ON(1); 3305 } else { 3306 dout("msg_new can't create type %d front %d\n", type, 3307 front_len); 3308 } 3309 return NULL; 3310 } 3311 EXPORT_SYMBOL(ceph_msg_new); 3312 3313 /* 3314 * Allocate "middle" portion of a message, if it is needed and wasn't 3315 * allocated by alloc_msg. This allows us to read a small fixed-size 3316 * per-type header in the front and then gracefully fail (i.e., 3317 * propagate the error to the caller based on info in the front) when 3318 * the middle is too large. 3319 */ 3320 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3321 { 3322 int type = le16_to_cpu(msg->hdr.type); 3323 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3324 3325 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3326 ceph_msg_type_name(type), middle_len); 3327 BUG_ON(!middle_len); 3328 BUG_ON(msg->middle); 3329 3330 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3331 if (!msg->middle) 3332 return -ENOMEM; 3333 return 0; 3334 } 3335 3336 /* 3337 * Allocate a message for receiving an incoming message on a 3338 * connection, and save the result in con->in_msg. Uses the 3339 * connection's private alloc_msg op if available. 3340 * 3341 * Returns 0 on success, or a negative error code. 3342 * 3343 * On success, if we set *skip = 1: 3344 * - the next message should be skipped and ignored. 3345 * - con->in_msg == NULL 3346 * or if we set *skip = 0: 3347 * - con->in_msg is non-null. 3348 * On error (ENOMEM, EAGAIN, ...), 3349 * - con->in_msg == NULL 3350 */ 3351 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3352 { 3353 struct ceph_msg_header *hdr = &con->in_hdr; 3354 int middle_len = le32_to_cpu(hdr->middle_len); 3355 struct ceph_msg *msg; 3356 int ret = 0; 3357 3358 BUG_ON(con->in_msg != NULL); 3359 BUG_ON(!con->ops->alloc_msg); 3360 3361 mutex_unlock(&con->mutex); 3362 msg = con->ops->alloc_msg(con, hdr, skip); 3363 mutex_lock(&con->mutex); 3364 if (con->state != CON_STATE_OPEN) { 3365 if (msg) 3366 ceph_msg_put(msg); 3367 return -EAGAIN; 3368 } 3369 if (msg) { 3370 BUG_ON(*skip); 3371 msg_con_set(msg, con); 3372 con->in_msg = msg; 3373 } else { 3374 /* 3375 * Null message pointer means either we should skip 3376 * this message or we couldn't allocate memory. The 3377 * former is not an error. 3378 */ 3379 if (*skip) 3380 return 0; 3381 3382 con->error_msg = "error allocating memory for incoming message"; 3383 return -ENOMEM; 3384 } 3385 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3386 3387 if (middle_len && !con->in_msg->middle) { 3388 ret = ceph_alloc_middle(con, con->in_msg); 3389 if (ret < 0) { 3390 ceph_msg_put(con->in_msg); 3391 con->in_msg = NULL; 3392 } 3393 } 3394 3395 return ret; 3396 } 3397 3398 3399 /* 3400 * Free a generically kmalloc'd message. 3401 */ 3402 static void ceph_msg_free(struct ceph_msg *m) 3403 { 3404 dout("%s %p\n", __func__, m); 3405 kvfree(m->front.iov_base); 3406 kmem_cache_free(ceph_msg_cache, m); 3407 } 3408 3409 static void ceph_msg_release(struct kref *kref) 3410 { 3411 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3412 struct ceph_msg_data *data, *next; 3413 3414 dout("%s %p\n", __func__, m); 3415 WARN_ON(!list_empty(&m->list_head)); 3416 3417 msg_con_set(m, NULL); 3418 3419 /* drop middle, data, if any */ 3420 if (m->middle) { 3421 ceph_buffer_put(m->middle); 3422 m->middle = NULL; 3423 } 3424 3425 list_for_each_entry_safe(data, next, &m->data, links) { 3426 list_del_init(&data->links); 3427 ceph_msg_data_destroy(data); 3428 } 3429 m->data_length = 0; 3430 3431 if (m->pool) 3432 ceph_msgpool_put(m->pool, m); 3433 else 3434 ceph_msg_free(m); 3435 } 3436 3437 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3438 { 3439 dout("%s %p (was %d)\n", __func__, msg, 3440 atomic_read(&msg->kref.refcount)); 3441 kref_get(&msg->kref); 3442 return msg; 3443 } 3444 EXPORT_SYMBOL(ceph_msg_get); 3445 3446 void ceph_msg_put(struct ceph_msg *msg) 3447 { 3448 dout("%s %p (was %d)\n", __func__, msg, 3449 atomic_read(&msg->kref.refcount)); 3450 kref_put(&msg->kref, ceph_msg_release); 3451 } 3452 EXPORT_SYMBOL(ceph_msg_put); 3453 3454 void ceph_msg_dump(struct ceph_msg *msg) 3455 { 3456 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3457 msg->front_alloc_len, msg->data_length); 3458 print_hex_dump(KERN_DEBUG, "header: ", 3459 DUMP_PREFIX_OFFSET, 16, 1, 3460 &msg->hdr, sizeof(msg->hdr), true); 3461 print_hex_dump(KERN_DEBUG, " front: ", 3462 DUMP_PREFIX_OFFSET, 16, 1, 3463 msg->front.iov_base, msg->front.iov_len, true); 3464 if (msg->middle) 3465 print_hex_dump(KERN_DEBUG, "middle: ", 3466 DUMP_PREFIX_OFFSET, 16, 1, 3467 msg->middle->vec.iov_base, 3468 msg->middle->vec.iov_len, true); 3469 print_hex_dump(KERN_DEBUG, "footer: ", 3470 DUMP_PREFIX_OFFSET, 16, 1, 3471 &msg->footer, sizeof(msg->footer), true); 3472 } 3473 EXPORT_SYMBOL(ceph_msg_dump); 3474