xref: /linux/net/ceph/messenger.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef	CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif	/* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18 
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25 
26 /*
27  * Ceph uses the messenger to exchange ceph_msg messages with other
28  * hosts in the system.  The messenger provides ordered and reliable
29  * delivery.  We tolerate TCP disconnects by reconnecting (with
30  * exponential backoff) in the case of a fault (disconnection, bad
31  * crc, protocol error).  Acks allow sent messages to be discarded by
32  * the sender.
33  */
34 
35 /*
36  * We track the state of the socket on a given connection using
37  * values defined below.  The transition to a new socket state is
38  * handled by a function which verifies we aren't coming from an
39  * unexpected state.
40  *
41  *      --------
42  *      | NEW* |  transient initial state
43  *      --------
44  *          | con_sock_state_init()
45  *          v
46  *      ----------
47  *      | CLOSED |  initialized, but no socket (and no
48  *      ----------  TCP connection)
49  *       ^      \
50  *       |       \ con_sock_state_connecting()
51  *       |        ----------------------
52  *       |                              \
53  *       + con_sock_state_closed()       \
54  *       |+---------------------------    \
55  *       | \                          \    \
56  *       |  -----------                \    \
57  *       |  | CLOSING |  socket event;  \    \
58  *       |  -----------  await close     \    \
59  *       |       ^                        \   |
60  *       |       |                         \  |
61  *       |       + con_sock_state_closing() \ |
62  *       |      / \                         | |
63  *       |     /   ---------------          | |
64  *       |    /                   \         v v
65  *       |   /                    --------------
66  *       |  /    -----------------| CONNECTING |  socket created, TCP
67  *       |  |   /                 --------------  connect initiated
68  *       |  |   | con_sock_state_connected()
69  *       |  |   v
70  *      -------------
71  *      | CONNECTED |  TCP connection established
72  *      -------------
73  *
74  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
75  */
76 
77 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
78 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
79 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
80 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
81 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
82 
83 /*
84  * connection states
85  */
86 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
87 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
88 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
89 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
90 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
91 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
92 
93 /*
94  * ceph_connection flag bits
95  */
96 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
97 				       * messages on errors */
98 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
99 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
100 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
101 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
102 
103 static bool con_flag_valid(unsigned long con_flag)
104 {
105 	switch (con_flag) {
106 	case CON_FLAG_LOSSYTX:
107 	case CON_FLAG_KEEPALIVE_PENDING:
108 	case CON_FLAG_WRITE_PENDING:
109 	case CON_FLAG_SOCK_CLOSED:
110 	case CON_FLAG_BACKOFF:
111 		return true;
112 	default:
113 		return false;
114 	}
115 }
116 
117 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
118 {
119 	BUG_ON(!con_flag_valid(con_flag));
120 
121 	clear_bit(con_flag, &con->flags);
122 }
123 
124 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
125 {
126 	BUG_ON(!con_flag_valid(con_flag));
127 
128 	set_bit(con_flag, &con->flags);
129 }
130 
131 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
132 {
133 	BUG_ON(!con_flag_valid(con_flag));
134 
135 	return test_bit(con_flag, &con->flags);
136 }
137 
138 static bool con_flag_test_and_clear(struct ceph_connection *con,
139 					unsigned long con_flag)
140 {
141 	BUG_ON(!con_flag_valid(con_flag));
142 
143 	return test_and_clear_bit(con_flag, &con->flags);
144 }
145 
146 static bool con_flag_test_and_set(struct ceph_connection *con,
147 					unsigned long con_flag)
148 {
149 	BUG_ON(!con_flag_valid(con_flag));
150 
151 	return test_and_set_bit(con_flag, &con->flags);
152 }
153 
154 /* Slab caches for frequently-allocated structures */
155 
156 static struct kmem_cache	*ceph_msg_cache;
157 static struct kmem_cache	*ceph_msg_data_cache;
158 
159 /* static tag bytes (protocol control messages) */
160 static char tag_msg = CEPH_MSGR_TAG_MSG;
161 static char tag_ack = CEPH_MSGR_TAG_ACK;
162 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
163 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
164 
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168 
169 /*
170  * When skipping (ignoring) a block of input we read it into a "skip
171  * buffer," which is this many bytes in size.
172  */
173 #define SKIP_BUF_SIZE	1024
174 
175 static void queue_con(struct ceph_connection *con);
176 static void cancel_con(struct ceph_connection *con);
177 static void ceph_con_workfn(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179 
180 /*
181  * Nicely render a sockaddr as a string.  An array of formatted
182  * strings is used, to approximate reentrancy.
183  */
184 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
185 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
188 
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191 
192 static struct page *zero_page;		/* used in certain error cases */
193 
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 	int i;
197 	char *s;
198 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200 
201 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 	s = addr_str[i];
203 
204 	switch (ss->ss_family) {
205 	case AF_INET:
206 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 			 ntohs(in4->sin_port));
208 		break;
209 
210 	case AF_INET6:
211 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 			 ntohs(in6->sin6_port));
213 		break;
214 
215 	default:
216 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 			 ss->ss_family);
218 	}
219 
220 	return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223 
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 	ceph_encode_addr(&msgr->my_enc_addr);
228 }
229 
230 /*
231  * work queue for all reading and writing to/from the socket.
232  */
233 static struct workqueue_struct *ceph_msgr_wq;
234 
235 static int ceph_msgr_slab_init(void)
236 {
237 	BUG_ON(ceph_msg_cache);
238 	ceph_msg_cache = kmem_cache_create("ceph_msg",
239 					sizeof (struct ceph_msg),
240 					__alignof__(struct ceph_msg), 0, NULL);
241 
242 	if (!ceph_msg_cache)
243 		return -ENOMEM;
244 
245 	BUG_ON(ceph_msg_data_cache);
246 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 					sizeof (struct ceph_msg_data),
248 					__alignof__(struct ceph_msg_data),
249 					0, NULL);
250 	if (ceph_msg_data_cache)
251 		return 0;
252 
253 	kmem_cache_destroy(ceph_msg_cache);
254 	ceph_msg_cache = NULL;
255 
256 	return -ENOMEM;
257 }
258 
259 static void ceph_msgr_slab_exit(void)
260 {
261 	BUG_ON(!ceph_msg_data_cache);
262 	kmem_cache_destroy(ceph_msg_data_cache);
263 	ceph_msg_data_cache = NULL;
264 
265 	BUG_ON(!ceph_msg_cache);
266 	kmem_cache_destroy(ceph_msg_cache);
267 	ceph_msg_cache = NULL;
268 }
269 
270 static void _ceph_msgr_exit(void)
271 {
272 	if (ceph_msgr_wq) {
273 		destroy_workqueue(ceph_msgr_wq);
274 		ceph_msgr_wq = NULL;
275 	}
276 
277 	BUG_ON(zero_page == NULL);
278 	page_cache_release(zero_page);
279 	zero_page = NULL;
280 
281 	ceph_msgr_slab_exit();
282 }
283 
284 int ceph_msgr_init(void)
285 {
286 	if (ceph_msgr_slab_init())
287 		return -ENOMEM;
288 
289 	BUG_ON(zero_page != NULL);
290 	zero_page = ZERO_PAGE(0);
291 	page_cache_get(zero_page);
292 
293 	/*
294 	 * The number of active work items is limited by the number of
295 	 * connections, so leave @max_active at default.
296 	 */
297 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
298 	if (ceph_msgr_wq)
299 		return 0;
300 
301 	pr_err("msgr_init failed to create workqueue\n");
302 	_ceph_msgr_exit();
303 
304 	return -ENOMEM;
305 }
306 EXPORT_SYMBOL(ceph_msgr_init);
307 
308 void ceph_msgr_exit(void)
309 {
310 	BUG_ON(ceph_msgr_wq == NULL);
311 
312 	_ceph_msgr_exit();
313 }
314 EXPORT_SYMBOL(ceph_msgr_exit);
315 
316 void ceph_msgr_flush(void)
317 {
318 	flush_workqueue(ceph_msgr_wq);
319 }
320 EXPORT_SYMBOL(ceph_msgr_flush);
321 
322 /* Connection socket state transition functions */
323 
324 static void con_sock_state_init(struct ceph_connection *con)
325 {
326 	int old_state;
327 
328 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
329 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
330 		printk("%s: unexpected old state %d\n", __func__, old_state);
331 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332 	     CON_SOCK_STATE_CLOSED);
333 }
334 
335 static void con_sock_state_connecting(struct ceph_connection *con)
336 {
337 	int old_state;
338 
339 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
340 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
341 		printk("%s: unexpected old state %d\n", __func__, old_state);
342 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
343 	     CON_SOCK_STATE_CONNECTING);
344 }
345 
346 static void con_sock_state_connected(struct ceph_connection *con)
347 {
348 	int old_state;
349 
350 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
351 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
352 		printk("%s: unexpected old state %d\n", __func__, old_state);
353 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
354 	     CON_SOCK_STATE_CONNECTED);
355 }
356 
357 static void con_sock_state_closing(struct ceph_connection *con)
358 {
359 	int old_state;
360 
361 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
362 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
363 			old_state != CON_SOCK_STATE_CONNECTED &&
364 			old_state != CON_SOCK_STATE_CLOSING))
365 		printk("%s: unexpected old state %d\n", __func__, old_state);
366 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
367 	     CON_SOCK_STATE_CLOSING);
368 }
369 
370 static void con_sock_state_closed(struct ceph_connection *con)
371 {
372 	int old_state;
373 
374 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
375 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
376 		    old_state != CON_SOCK_STATE_CLOSING &&
377 		    old_state != CON_SOCK_STATE_CONNECTING &&
378 		    old_state != CON_SOCK_STATE_CLOSED))
379 		printk("%s: unexpected old state %d\n", __func__, old_state);
380 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
381 	     CON_SOCK_STATE_CLOSED);
382 }
383 
384 /*
385  * socket callback functions
386  */
387 
388 /* data available on socket, or listen socket received a connect */
389 static void ceph_sock_data_ready(struct sock *sk)
390 {
391 	struct ceph_connection *con = sk->sk_user_data;
392 	if (atomic_read(&con->msgr->stopping)) {
393 		return;
394 	}
395 
396 	if (sk->sk_state != TCP_CLOSE_WAIT) {
397 		dout("%s on %p state = %lu, queueing work\n", __func__,
398 		     con, con->state);
399 		queue_con(con);
400 	}
401 }
402 
403 /* socket has buffer space for writing */
404 static void ceph_sock_write_space(struct sock *sk)
405 {
406 	struct ceph_connection *con = sk->sk_user_data;
407 
408 	/* only queue to workqueue if there is data we want to write,
409 	 * and there is sufficient space in the socket buffer to accept
410 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
411 	 * doesn't get called again until try_write() fills the socket
412 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
413 	 * and net/core/stream.c:sk_stream_write_space().
414 	 */
415 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
416 		if (sk_stream_is_writeable(sk)) {
417 			dout("%s %p queueing write work\n", __func__, con);
418 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
419 			queue_con(con);
420 		}
421 	} else {
422 		dout("%s %p nothing to write\n", __func__, con);
423 	}
424 }
425 
426 /* socket's state has changed */
427 static void ceph_sock_state_change(struct sock *sk)
428 {
429 	struct ceph_connection *con = sk->sk_user_data;
430 
431 	dout("%s %p state = %lu sk_state = %u\n", __func__,
432 	     con, con->state, sk->sk_state);
433 
434 	switch (sk->sk_state) {
435 	case TCP_CLOSE:
436 		dout("%s TCP_CLOSE\n", __func__);
437 	case TCP_CLOSE_WAIT:
438 		dout("%s TCP_CLOSE_WAIT\n", __func__);
439 		con_sock_state_closing(con);
440 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
441 		queue_con(con);
442 		break;
443 	case TCP_ESTABLISHED:
444 		dout("%s TCP_ESTABLISHED\n", __func__);
445 		con_sock_state_connected(con);
446 		queue_con(con);
447 		break;
448 	default:	/* Everything else is uninteresting */
449 		break;
450 	}
451 }
452 
453 /*
454  * set up socket callbacks
455  */
456 static void set_sock_callbacks(struct socket *sock,
457 			       struct ceph_connection *con)
458 {
459 	struct sock *sk = sock->sk;
460 	sk->sk_user_data = con;
461 	sk->sk_data_ready = ceph_sock_data_ready;
462 	sk->sk_write_space = ceph_sock_write_space;
463 	sk->sk_state_change = ceph_sock_state_change;
464 }
465 
466 
467 /*
468  * socket helpers
469  */
470 
471 /*
472  * initiate connection to a remote socket.
473  */
474 static int ceph_tcp_connect(struct ceph_connection *con)
475 {
476 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
477 	struct socket *sock;
478 	int ret;
479 
480 	BUG_ON(con->sock);
481 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
482 			       SOCK_STREAM, IPPROTO_TCP, &sock);
483 	if (ret)
484 		return ret;
485 	sock->sk->sk_allocation = GFP_NOFS;
486 
487 #ifdef CONFIG_LOCKDEP
488 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
489 #endif
490 
491 	set_sock_callbacks(sock, con);
492 
493 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
494 
495 	con_sock_state_connecting(con);
496 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
497 				 O_NONBLOCK);
498 	if (ret == -EINPROGRESS) {
499 		dout("connect %s EINPROGRESS sk_state = %u\n",
500 		     ceph_pr_addr(&con->peer_addr.in_addr),
501 		     sock->sk->sk_state);
502 	} else if (ret < 0) {
503 		pr_err("connect %s error %d\n",
504 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
505 		sock_release(sock);
506 		return ret;
507 	}
508 
509 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
510 		int optval = 1;
511 
512 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
513 					(char *)&optval, sizeof(optval));
514 		if (ret)
515 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
516 			       ret);
517 	}
518 
519 	con->sock = sock;
520 	return 0;
521 }
522 
523 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
524 {
525 	struct kvec iov = {buf, len};
526 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
527 	int r;
528 
529 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
530 	if (r == -EAGAIN)
531 		r = 0;
532 	return r;
533 }
534 
535 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
536 		     int page_offset, size_t length)
537 {
538 	void *kaddr;
539 	int ret;
540 
541 	BUG_ON(page_offset + length > PAGE_SIZE);
542 
543 	kaddr = kmap(page);
544 	BUG_ON(!kaddr);
545 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
546 	kunmap(page);
547 
548 	return ret;
549 }
550 
551 /*
552  * write something.  @more is true if caller will be sending more data
553  * shortly.
554  */
555 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
556 		     size_t kvlen, size_t len, int more)
557 {
558 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
559 	int r;
560 
561 	if (more)
562 		msg.msg_flags |= MSG_MORE;
563 	else
564 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
565 
566 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
567 	if (r == -EAGAIN)
568 		r = 0;
569 	return r;
570 }
571 
572 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
573 		     int offset, size_t size, bool more)
574 {
575 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
576 	int ret;
577 
578 	ret = kernel_sendpage(sock, page, offset, size, flags);
579 	if (ret == -EAGAIN)
580 		ret = 0;
581 
582 	return ret;
583 }
584 
585 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
586 		     int offset, size_t size, bool more)
587 {
588 	int ret;
589 	struct kvec iov;
590 
591 	/* sendpage cannot properly handle pages with page_count == 0,
592 	 * we need to fallback to sendmsg if that's the case */
593 	if (page_count(page) >= 1)
594 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
595 
596 	iov.iov_base = kmap(page) + offset;
597 	iov.iov_len = size;
598 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
599 	kunmap(page);
600 
601 	return ret;
602 }
603 
604 /*
605  * Shutdown/close the socket for the given connection.
606  */
607 static int con_close_socket(struct ceph_connection *con)
608 {
609 	int rc = 0;
610 
611 	dout("con_close_socket on %p sock %p\n", con, con->sock);
612 	if (con->sock) {
613 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
614 		sock_release(con->sock);
615 		con->sock = NULL;
616 	}
617 
618 	/*
619 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
620 	 * independent of the connection mutex, and we could have
621 	 * received a socket close event before we had the chance to
622 	 * shut the socket down.
623 	 */
624 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
625 
626 	con_sock_state_closed(con);
627 	return rc;
628 }
629 
630 /*
631  * Reset a connection.  Discard all incoming and outgoing messages
632  * and clear *_seq state.
633  */
634 static void ceph_msg_remove(struct ceph_msg *msg)
635 {
636 	list_del_init(&msg->list_head);
637 
638 	ceph_msg_put(msg);
639 }
640 static void ceph_msg_remove_list(struct list_head *head)
641 {
642 	while (!list_empty(head)) {
643 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
644 							list_head);
645 		ceph_msg_remove(msg);
646 	}
647 }
648 
649 static void reset_connection(struct ceph_connection *con)
650 {
651 	/* reset connection, out_queue, msg_ and connect_seq */
652 	/* discard existing out_queue and msg_seq */
653 	dout("reset_connection %p\n", con);
654 	ceph_msg_remove_list(&con->out_queue);
655 	ceph_msg_remove_list(&con->out_sent);
656 
657 	if (con->in_msg) {
658 		BUG_ON(con->in_msg->con != con);
659 		ceph_msg_put(con->in_msg);
660 		con->in_msg = NULL;
661 	}
662 
663 	con->connect_seq = 0;
664 	con->out_seq = 0;
665 	if (con->out_msg) {
666 		BUG_ON(con->out_msg->con != con);
667 		ceph_msg_put(con->out_msg);
668 		con->out_msg = NULL;
669 	}
670 	con->in_seq = 0;
671 	con->in_seq_acked = 0;
672 
673 	con->out_skip = 0;
674 }
675 
676 /*
677  * mark a peer down.  drop any open connections.
678  */
679 void ceph_con_close(struct ceph_connection *con)
680 {
681 	mutex_lock(&con->mutex);
682 	dout("con_close %p peer %s\n", con,
683 	     ceph_pr_addr(&con->peer_addr.in_addr));
684 	con->state = CON_STATE_CLOSED;
685 
686 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
687 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
688 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
689 	con_flag_clear(con, CON_FLAG_BACKOFF);
690 
691 	reset_connection(con);
692 	con->peer_global_seq = 0;
693 	cancel_con(con);
694 	con_close_socket(con);
695 	mutex_unlock(&con->mutex);
696 }
697 EXPORT_SYMBOL(ceph_con_close);
698 
699 /*
700  * Reopen a closed connection, with a new peer address.
701  */
702 void ceph_con_open(struct ceph_connection *con,
703 		   __u8 entity_type, __u64 entity_num,
704 		   struct ceph_entity_addr *addr)
705 {
706 	mutex_lock(&con->mutex);
707 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
708 
709 	WARN_ON(con->state != CON_STATE_CLOSED);
710 	con->state = CON_STATE_PREOPEN;
711 
712 	con->peer_name.type = (__u8) entity_type;
713 	con->peer_name.num = cpu_to_le64(entity_num);
714 
715 	memcpy(&con->peer_addr, addr, sizeof(*addr));
716 	con->delay = 0;      /* reset backoff memory */
717 	mutex_unlock(&con->mutex);
718 	queue_con(con);
719 }
720 EXPORT_SYMBOL(ceph_con_open);
721 
722 /*
723  * return true if this connection ever successfully opened
724  */
725 bool ceph_con_opened(struct ceph_connection *con)
726 {
727 	return con->connect_seq > 0;
728 }
729 
730 /*
731  * initialize a new connection.
732  */
733 void ceph_con_init(struct ceph_connection *con, void *private,
734 	const struct ceph_connection_operations *ops,
735 	struct ceph_messenger *msgr)
736 {
737 	dout("con_init %p\n", con);
738 	memset(con, 0, sizeof(*con));
739 	con->private = private;
740 	con->ops = ops;
741 	con->msgr = msgr;
742 
743 	con_sock_state_init(con);
744 
745 	mutex_init(&con->mutex);
746 	INIT_LIST_HEAD(&con->out_queue);
747 	INIT_LIST_HEAD(&con->out_sent);
748 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
749 
750 	con->state = CON_STATE_CLOSED;
751 }
752 EXPORT_SYMBOL(ceph_con_init);
753 
754 
755 /*
756  * We maintain a global counter to order connection attempts.  Get
757  * a unique seq greater than @gt.
758  */
759 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
760 {
761 	u32 ret;
762 
763 	spin_lock(&msgr->global_seq_lock);
764 	if (msgr->global_seq < gt)
765 		msgr->global_seq = gt;
766 	ret = ++msgr->global_seq;
767 	spin_unlock(&msgr->global_seq_lock);
768 	return ret;
769 }
770 
771 static void con_out_kvec_reset(struct ceph_connection *con)
772 {
773 	BUG_ON(con->out_skip);
774 
775 	con->out_kvec_left = 0;
776 	con->out_kvec_bytes = 0;
777 	con->out_kvec_cur = &con->out_kvec[0];
778 }
779 
780 static void con_out_kvec_add(struct ceph_connection *con,
781 				size_t size, void *data)
782 {
783 	int index = con->out_kvec_left;
784 
785 	BUG_ON(con->out_skip);
786 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
787 
788 	con->out_kvec[index].iov_len = size;
789 	con->out_kvec[index].iov_base = data;
790 	con->out_kvec_left++;
791 	con->out_kvec_bytes += size;
792 }
793 
794 /*
795  * Chop off a kvec from the end.  Return residual number of bytes for
796  * that kvec, i.e. how many bytes would have been written if the kvec
797  * hadn't been nuked.
798  */
799 static int con_out_kvec_skip(struct ceph_connection *con)
800 {
801 	int off = con->out_kvec_cur - con->out_kvec;
802 	int skip = 0;
803 
804 	if (con->out_kvec_bytes > 0) {
805 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
806 		BUG_ON(con->out_kvec_bytes < skip);
807 		BUG_ON(!con->out_kvec_left);
808 		con->out_kvec_bytes -= skip;
809 		con->out_kvec_left--;
810 	}
811 
812 	return skip;
813 }
814 
815 #ifdef CONFIG_BLOCK
816 
817 /*
818  * For a bio data item, a piece is whatever remains of the next
819  * entry in the current bio iovec, or the first entry in the next
820  * bio in the list.
821  */
822 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
823 					size_t length)
824 {
825 	struct ceph_msg_data *data = cursor->data;
826 	struct bio *bio;
827 
828 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
829 
830 	bio = data->bio;
831 	BUG_ON(!bio);
832 
833 	cursor->resid = min(length, data->bio_length);
834 	cursor->bio = bio;
835 	cursor->bvec_iter = bio->bi_iter;
836 	cursor->last_piece =
837 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
838 }
839 
840 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
841 						size_t *page_offset,
842 						size_t *length)
843 {
844 	struct ceph_msg_data *data = cursor->data;
845 	struct bio *bio;
846 	struct bio_vec bio_vec;
847 
848 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
849 
850 	bio = cursor->bio;
851 	BUG_ON(!bio);
852 
853 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
854 
855 	*page_offset = (size_t) bio_vec.bv_offset;
856 	BUG_ON(*page_offset >= PAGE_SIZE);
857 	if (cursor->last_piece) /* pagelist offset is always 0 */
858 		*length = cursor->resid;
859 	else
860 		*length = (size_t) bio_vec.bv_len;
861 	BUG_ON(*length > cursor->resid);
862 	BUG_ON(*page_offset + *length > PAGE_SIZE);
863 
864 	return bio_vec.bv_page;
865 }
866 
867 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
868 					size_t bytes)
869 {
870 	struct bio *bio;
871 	struct bio_vec bio_vec;
872 
873 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
874 
875 	bio = cursor->bio;
876 	BUG_ON(!bio);
877 
878 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
879 
880 	/* Advance the cursor offset */
881 
882 	BUG_ON(cursor->resid < bytes);
883 	cursor->resid -= bytes;
884 
885 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
886 
887 	if (bytes < bio_vec.bv_len)
888 		return false;	/* more bytes to process in this segment */
889 
890 	/* Move on to the next segment, and possibly the next bio */
891 
892 	if (!cursor->bvec_iter.bi_size) {
893 		bio = bio->bi_next;
894 		cursor->bio = bio;
895 		if (bio)
896 			cursor->bvec_iter = bio->bi_iter;
897 		else
898 			memset(&cursor->bvec_iter, 0,
899 			       sizeof(cursor->bvec_iter));
900 	}
901 
902 	if (!cursor->last_piece) {
903 		BUG_ON(!cursor->resid);
904 		BUG_ON(!bio);
905 		/* A short read is OK, so use <= rather than == */
906 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
907 			cursor->last_piece = true;
908 	}
909 
910 	return true;
911 }
912 #endif /* CONFIG_BLOCK */
913 
914 /*
915  * For a page array, a piece comes from the first page in the array
916  * that has not already been fully consumed.
917  */
918 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
919 					size_t length)
920 {
921 	struct ceph_msg_data *data = cursor->data;
922 	int page_count;
923 
924 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
925 
926 	BUG_ON(!data->pages);
927 	BUG_ON(!data->length);
928 
929 	cursor->resid = min(length, data->length);
930 	page_count = calc_pages_for(data->alignment, (u64)data->length);
931 	cursor->page_offset = data->alignment & ~PAGE_MASK;
932 	cursor->page_index = 0;
933 	BUG_ON(page_count > (int)USHRT_MAX);
934 	cursor->page_count = (unsigned short)page_count;
935 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
936 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
937 }
938 
939 static struct page *
940 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
941 					size_t *page_offset, size_t *length)
942 {
943 	struct ceph_msg_data *data = cursor->data;
944 
945 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
946 
947 	BUG_ON(cursor->page_index >= cursor->page_count);
948 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
949 
950 	*page_offset = cursor->page_offset;
951 	if (cursor->last_piece)
952 		*length = cursor->resid;
953 	else
954 		*length = PAGE_SIZE - *page_offset;
955 
956 	return data->pages[cursor->page_index];
957 }
958 
959 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
960 						size_t bytes)
961 {
962 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
963 
964 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
965 
966 	/* Advance the cursor page offset */
967 
968 	cursor->resid -= bytes;
969 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
970 	if (!bytes || cursor->page_offset)
971 		return false;	/* more bytes to process in the current page */
972 
973 	if (!cursor->resid)
974 		return false;   /* no more data */
975 
976 	/* Move on to the next page; offset is already at 0 */
977 
978 	BUG_ON(cursor->page_index >= cursor->page_count);
979 	cursor->page_index++;
980 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
981 
982 	return true;
983 }
984 
985 /*
986  * For a pagelist, a piece is whatever remains to be consumed in the
987  * first page in the list, or the front of the next page.
988  */
989 static void
990 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
991 					size_t length)
992 {
993 	struct ceph_msg_data *data = cursor->data;
994 	struct ceph_pagelist *pagelist;
995 	struct page *page;
996 
997 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
998 
999 	pagelist = data->pagelist;
1000 	BUG_ON(!pagelist);
1001 
1002 	if (!length)
1003 		return;		/* pagelist can be assigned but empty */
1004 
1005 	BUG_ON(list_empty(&pagelist->head));
1006 	page = list_first_entry(&pagelist->head, struct page, lru);
1007 
1008 	cursor->resid = min(length, pagelist->length);
1009 	cursor->page = page;
1010 	cursor->offset = 0;
1011 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1012 }
1013 
1014 static struct page *
1015 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1016 				size_t *page_offset, size_t *length)
1017 {
1018 	struct ceph_msg_data *data = cursor->data;
1019 	struct ceph_pagelist *pagelist;
1020 
1021 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1022 
1023 	pagelist = data->pagelist;
1024 	BUG_ON(!pagelist);
1025 
1026 	BUG_ON(!cursor->page);
1027 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1028 
1029 	/* offset of first page in pagelist is always 0 */
1030 	*page_offset = cursor->offset & ~PAGE_MASK;
1031 	if (cursor->last_piece)
1032 		*length = cursor->resid;
1033 	else
1034 		*length = PAGE_SIZE - *page_offset;
1035 
1036 	return cursor->page;
1037 }
1038 
1039 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1040 						size_t bytes)
1041 {
1042 	struct ceph_msg_data *data = cursor->data;
1043 	struct ceph_pagelist *pagelist;
1044 
1045 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1046 
1047 	pagelist = data->pagelist;
1048 	BUG_ON(!pagelist);
1049 
1050 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1051 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1052 
1053 	/* Advance the cursor offset */
1054 
1055 	cursor->resid -= bytes;
1056 	cursor->offset += bytes;
1057 	/* offset of first page in pagelist is always 0 */
1058 	if (!bytes || cursor->offset & ~PAGE_MASK)
1059 		return false;	/* more bytes to process in the current page */
1060 
1061 	if (!cursor->resid)
1062 		return false;   /* no more data */
1063 
1064 	/* Move on to the next page */
1065 
1066 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1067 	cursor->page = list_next_entry(cursor->page, lru);
1068 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1069 
1070 	return true;
1071 }
1072 
1073 /*
1074  * Message data is handled (sent or received) in pieces, where each
1075  * piece resides on a single page.  The network layer might not
1076  * consume an entire piece at once.  A data item's cursor keeps
1077  * track of which piece is next to process and how much remains to
1078  * be processed in that piece.  It also tracks whether the current
1079  * piece is the last one in the data item.
1080  */
1081 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1082 {
1083 	size_t length = cursor->total_resid;
1084 
1085 	switch (cursor->data->type) {
1086 	case CEPH_MSG_DATA_PAGELIST:
1087 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1088 		break;
1089 	case CEPH_MSG_DATA_PAGES:
1090 		ceph_msg_data_pages_cursor_init(cursor, length);
1091 		break;
1092 #ifdef CONFIG_BLOCK
1093 	case CEPH_MSG_DATA_BIO:
1094 		ceph_msg_data_bio_cursor_init(cursor, length);
1095 		break;
1096 #endif /* CONFIG_BLOCK */
1097 	case CEPH_MSG_DATA_NONE:
1098 	default:
1099 		/* BUG(); */
1100 		break;
1101 	}
1102 	cursor->need_crc = true;
1103 }
1104 
1105 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1106 {
1107 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1108 	struct ceph_msg_data *data;
1109 
1110 	BUG_ON(!length);
1111 	BUG_ON(length > msg->data_length);
1112 	BUG_ON(list_empty(&msg->data));
1113 
1114 	cursor->data_head = &msg->data;
1115 	cursor->total_resid = length;
1116 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1117 	cursor->data = data;
1118 
1119 	__ceph_msg_data_cursor_init(cursor);
1120 }
1121 
1122 /*
1123  * Return the page containing the next piece to process for a given
1124  * data item, and supply the page offset and length of that piece.
1125  * Indicate whether this is the last piece in this data item.
1126  */
1127 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1128 					size_t *page_offset, size_t *length,
1129 					bool *last_piece)
1130 {
1131 	struct page *page;
1132 
1133 	switch (cursor->data->type) {
1134 	case CEPH_MSG_DATA_PAGELIST:
1135 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1136 		break;
1137 	case CEPH_MSG_DATA_PAGES:
1138 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1139 		break;
1140 #ifdef CONFIG_BLOCK
1141 	case CEPH_MSG_DATA_BIO:
1142 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1143 		break;
1144 #endif /* CONFIG_BLOCK */
1145 	case CEPH_MSG_DATA_NONE:
1146 	default:
1147 		page = NULL;
1148 		break;
1149 	}
1150 	BUG_ON(!page);
1151 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1152 	BUG_ON(!*length);
1153 	if (last_piece)
1154 		*last_piece = cursor->last_piece;
1155 
1156 	return page;
1157 }
1158 
1159 /*
1160  * Returns true if the result moves the cursor on to the next piece
1161  * of the data item.
1162  */
1163 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1164 				size_t bytes)
1165 {
1166 	bool new_piece;
1167 
1168 	BUG_ON(bytes > cursor->resid);
1169 	switch (cursor->data->type) {
1170 	case CEPH_MSG_DATA_PAGELIST:
1171 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1172 		break;
1173 	case CEPH_MSG_DATA_PAGES:
1174 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1175 		break;
1176 #ifdef CONFIG_BLOCK
1177 	case CEPH_MSG_DATA_BIO:
1178 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1179 		break;
1180 #endif /* CONFIG_BLOCK */
1181 	case CEPH_MSG_DATA_NONE:
1182 	default:
1183 		BUG();
1184 		break;
1185 	}
1186 	cursor->total_resid -= bytes;
1187 
1188 	if (!cursor->resid && cursor->total_resid) {
1189 		WARN_ON(!cursor->last_piece);
1190 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1191 		cursor->data = list_next_entry(cursor->data, links);
1192 		__ceph_msg_data_cursor_init(cursor);
1193 		new_piece = true;
1194 	}
1195 	cursor->need_crc = new_piece;
1196 
1197 	return new_piece;
1198 }
1199 
1200 static size_t sizeof_footer(struct ceph_connection *con)
1201 {
1202 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1203 	    sizeof(struct ceph_msg_footer) :
1204 	    sizeof(struct ceph_msg_footer_old);
1205 }
1206 
1207 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1208 {
1209 	BUG_ON(!msg);
1210 	BUG_ON(!data_len);
1211 
1212 	/* Initialize data cursor */
1213 
1214 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1215 }
1216 
1217 /*
1218  * Prepare footer for currently outgoing message, and finish things
1219  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1220  */
1221 static void prepare_write_message_footer(struct ceph_connection *con)
1222 {
1223 	struct ceph_msg *m = con->out_msg;
1224 	int v = con->out_kvec_left;
1225 
1226 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1227 
1228 	dout("prepare_write_message_footer %p\n", con);
1229 	con->out_kvec[v].iov_base = &m->footer;
1230 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1231 		if (con->ops->sign_message)
1232 			con->ops->sign_message(m);
1233 		else
1234 			m->footer.sig = 0;
1235 		con->out_kvec[v].iov_len = sizeof(m->footer);
1236 		con->out_kvec_bytes += sizeof(m->footer);
1237 	} else {
1238 		m->old_footer.flags = m->footer.flags;
1239 		con->out_kvec[v].iov_len = sizeof(m->old_footer);
1240 		con->out_kvec_bytes += sizeof(m->old_footer);
1241 	}
1242 	con->out_kvec_left++;
1243 	con->out_more = m->more_to_follow;
1244 	con->out_msg_done = true;
1245 }
1246 
1247 /*
1248  * Prepare headers for the next outgoing message.
1249  */
1250 static void prepare_write_message(struct ceph_connection *con)
1251 {
1252 	struct ceph_msg *m;
1253 	u32 crc;
1254 
1255 	con_out_kvec_reset(con);
1256 	con->out_msg_done = false;
1257 
1258 	/* Sneak an ack in there first?  If we can get it into the same
1259 	 * TCP packet that's a good thing. */
1260 	if (con->in_seq > con->in_seq_acked) {
1261 		con->in_seq_acked = con->in_seq;
1262 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1263 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1264 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1265 			&con->out_temp_ack);
1266 	}
1267 
1268 	BUG_ON(list_empty(&con->out_queue));
1269 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1270 	con->out_msg = m;
1271 	BUG_ON(m->con != con);
1272 
1273 	/* put message on sent list */
1274 	ceph_msg_get(m);
1275 	list_move_tail(&m->list_head, &con->out_sent);
1276 
1277 	/*
1278 	 * only assign outgoing seq # if we haven't sent this message
1279 	 * yet.  if it is requeued, resend with it's original seq.
1280 	 */
1281 	if (m->needs_out_seq) {
1282 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1283 		m->needs_out_seq = false;
1284 	}
1285 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1286 
1287 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1288 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1289 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1290 	     m->data_length);
1291 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1292 
1293 	/* tag + hdr + front + middle */
1294 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1295 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1296 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1297 
1298 	if (m->middle)
1299 		con_out_kvec_add(con, m->middle->vec.iov_len,
1300 			m->middle->vec.iov_base);
1301 
1302 	/* fill in hdr crc and finalize hdr */
1303 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1304 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1305 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1306 
1307 	/* fill in front and middle crc, footer */
1308 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1309 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1310 	if (m->middle) {
1311 		crc = crc32c(0, m->middle->vec.iov_base,
1312 				m->middle->vec.iov_len);
1313 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1314 	} else
1315 		con->out_msg->footer.middle_crc = 0;
1316 	dout("%s front_crc %u middle_crc %u\n", __func__,
1317 	     le32_to_cpu(con->out_msg->footer.front_crc),
1318 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1319 	con->out_msg->footer.flags = 0;
1320 
1321 	/* is there a data payload? */
1322 	con->out_msg->footer.data_crc = 0;
1323 	if (m->data_length) {
1324 		prepare_message_data(con->out_msg, m->data_length);
1325 		con->out_more = 1;  /* data + footer will follow */
1326 	} else {
1327 		/* no, queue up footer too and be done */
1328 		prepare_write_message_footer(con);
1329 	}
1330 
1331 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1332 }
1333 
1334 /*
1335  * Prepare an ack.
1336  */
1337 static void prepare_write_ack(struct ceph_connection *con)
1338 {
1339 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1340 	     con->in_seq_acked, con->in_seq);
1341 	con->in_seq_acked = con->in_seq;
1342 
1343 	con_out_kvec_reset(con);
1344 
1345 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1346 
1347 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1348 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1349 				&con->out_temp_ack);
1350 
1351 	con->out_more = 1;  /* more will follow.. eventually.. */
1352 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1353 }
1354 
1355 /*
1356  * Prepare to share the seq during handshake
1357  */
1358 static void prepare_write_seq(struct ceph_connection *con)
1359 {
1360 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1361 	     con->in_seq_acked, con->in_seq);
1362 	con->in_seq_acked = con->in_seq;
1363 
1364 	con_out_kvec_reset(con);
1365 
1366 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1367 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1368 			 &con->out_temp_ack);
1369 
1370 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1371 }
1372 
1373 /*
1374  * Prepare to write keepalive byte.
1375  */
1376 static void prepare_write_keepalive(struct ceph_connection *con)
1377 {
1378 	dout("prepare_write_keepalive %p\n", con);
1379 	con_out_kvec_reset(con);
1380 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1381 		struct timespec now = CURRENT_TIME;
1382 
1383 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1384 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1385 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1386 				 &con->out_temp_keepalive2);
1387 	} else {
1388 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1389 	}
1390 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1391 }
1392 
1393 /*
1394  * Connection negotiation.
1395  */
1396 
1397 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1398 						int *auth_proto)
1399 {
1400 	struct ceph_auth_handshake *auth;
1401 
1402 	if (!con->ops->get_authorizer) {
1403 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1404 		con->out_connect.authorizer_len = 0;
1405 		return NULL;
1406 	}
1407 
1408 	/* Can't hold the mutex while getting authorizer */
1409 	mutex_unlock(&con->mutex);
1410 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1411 	mutex_lock(&con->mutex);
1412 
1413 	if (IS_ERR(auth))
1414 		return auth;
1415 	if (con->state != CON_STATE_NEGOTIATING)
1416 		return ERR_PTR(-EAGAIN);
1417 
1418 	con->auth_reply_buf = auth->authorizer_reply_buf;
1419 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1420 	return auth;
1421 }
1422 
1423 /*
1424  * We connected to a peer and are saying hello.
1425  */
1426 static void prepare_write_banner(struct ceph_connection *con)
1427 {
1428 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1429 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1430 					&con->msgr->my_enc_addr);
1431 
1432 	con->out_more = 0;
1433 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1434 }
1435 
1436 static int prepare_write_connect(struct ceph_connection *con)
1437 {
1438 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1439 	int proto;
1440 	int auth_proto;
1441 	struct ceph_auth_handshake *auth;
1442 
1443 	switch (con->peer_name.type) {
1444 	case CEPH_ENTITY_TYPE_MON:
1445 		proto = CEPH_MONC_PROTOCOL;
1446 		break;
1447 	case CEPH_ENTITY_TYPE_OSD:
1448 		proto = CEPH_OSDC_PROTOCOL;
1449 		break;
1450 	case CEPH_ENTITY_TYPE_MDS:
1451 		proto = CEPH_MDSC_PROTOCOL;
1452 		break;
1453 	default:
1454 		BUG();
1455 	}
1456 
1457 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1458 	     con->connect_seq, global_seq, proto);
1459 
1460 	con->out_connect.features =
1461 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1462 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1463 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1464 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1465 	con->out_connect.protocol_version = cpu_to_le32(proto);
1466 	con->out_connect.flags = 0;
1467 
1468 	auth_proto = CEPH_AUTH_UNKNOWN;
1469 	auth = get_connect_authorizer(con, &auth_proto);
1470 	if (IS_ERR(auth))
1471 		return PTR_ERR(auth);
1472 
1473 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1474 	con->out_connect.authorizer_len = auth ?
1475 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1476 
1477 	con_out_kvec_add(con, sizeof (con->out_connect),
1478 					&con->out_connect);
1479 	if (auth && auth->authorizer_buf_len)
1480 		con_out_kvec_add(con, auth->authorizer_buf_len,
1481 					auth->authorizer_buf);
1482 
1483 	con->out_more = 0;
1484 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1485 
1486 	return 0;
1487 }
1488 
1489 /*
1490  * write as much of pending kvecs to the socket as we can.
1491  *  1 -> done
1492  *  0 -> socket full, but more to do
1493  * <0 -> error
1494  */
1495 static int write_partial_kvec(struct ceph_connection *con)
1496 {
1497 	int ret;
1498 
1499 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1500 	while (con->out_kvec_bytes > 0) {
1501 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1502 				       con->out_kvec_left, con->out_kvec_bytes,
1503 				       con->out_more);
1504 		if (ret <= 0)
1505 			goto out;
1506 		con->out_kvec_bytes -= ret;
1507 		if (con->out_kvec_bytes == 0)
1508 			break;            /* done */
1509 
1510 		/* account for full iov entries consumed */
1511 		while (ret >= con->out_kvec_cur->iov_len) {
1512 			BUG_ON(!con->out_kvec_left);
1513 			ret -= con->out_kvec_cur->iov_len;
1514 			con->out_kvec_cur++;
1515 			con->out_kvec_left--;
1516 		}
1517 		/* and for a partially-consumed entry */
1518 		if (ret) {
1519 			con->out_kvec_cur->iov_len -= ret;
1520 			con->out_kvec_cur->iov_base += ret;
1521 		}
1522 	}
1523 	con->out_kvec_left = 0;
1524 	ret = 1;
1525 out:
1526 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1527 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1528 	return ret;  /* done! */
1529 }
1530 
1531 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1532 				unsigned int page_offset,
1533 				unsigned int length)
1534 {
1535 	char *kaddr;
1536 
1537 	kaddr = kmap(page);
1538 	BUG_ON(kaddr == NULL);
1539 	crc = crc32c(crc, kaddr + page_offset, length);
1540 	kunmap(page);
1541 
1542 	return crc;
1543 }
1544 /*
1545  * Write as much message data payload as we can.  If we finish, queue
1546  * up the footer.
1547  *  1 -> done, footer is now queued in out_kvec[].
1548  *  0 -> socket full, but more to do
1549  * <0 -> error
1550  */
1551 static int write_partial_message_data(struct ceph_connection *con)
1552 {
1553 	struct ceph_msg *msg = con->out_msg;
1554 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1555 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1556 	u32 crc;
1557 
1558 	dout("%s %p msg %p\n", __func__, con, msg);
1559 
1560 	if (list_empty(&msg->data))
1561 		return -EINVAL;
1562 
1563 	/*
1564 	 * Iterate through each page that contains data to be
1565 	 * written, and send as much as possible for each.
1566 	 *
1567 	 * If we are calculating the data crc (the default), we will
1568 	 * need to map the page.  If we have no pages, they have
1569 	 * been revoked, so use the zero page.
1570 	 */
1571 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1572 	while (cursor->resid) {
1573 		struct page *page;
1574 		size_t page_offset;
1575 		size_t length;
1576 		bool last_piece;
1577 		bool need_crc;
1578 		int ret;
1579 
1580 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1581 					  &last_piece);
1582 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1583 					length, !last_piece);
1584 		if (ret <= 0) {
1585 			if (do_datacrc)
1586 				msg->footer.data_crc = cpu_to_le32(crc);
1587 
1588 			return ret;
1589 		}
1590 		if (do_datacrc && cursor->need_crc)
1591 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1592 		need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1593 	}
1594 
1595 	dout("%s %p msg %p done\n", __func__, con, msg);
1596 
1597 	/* prepare and queue up footer, too */
1598 	if (do_datacrc)
1599 		msg->footer.data_crc = cpu_to_le32(crc);
1600 	else
1601 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1602 	con_out_kvec_reset(con);
1603 	prepare_write_message_footer(con);
1604 
1605 	return 1;	/* must return > 0 to indicate success */
1606 }
1607 
1608 /*
1609  * write some zeros
1610  */
1611 static int write_partial_skip(struct ceph_connection *con)
1612 {
1613 	int ret;
1614 
1615 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1616 	while (con->out_skip > 0) {
1617 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1618 
1619 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1620 		if (ret <= 0)
1621 			goto out;
1622 		con->out_skip -= ret;
1623 	}
1624 	ret = 1;
1625 out:
1626 	return ret;
1627 }
1628 
1629 /*
1630  * Prepare to read connection handshake, or an ack.
1631  */
1632 static void prepare_read_banner(struct ceph_connection *con)
1633 {
1634 	dout("prepare_read_banner %p\n", con);
1635 	con->in_base_pos = 0;
1636 }
1637 
1638 static void prepare_read_connect(struct ceph_connection *con)
1639 {
1640 	dout("prepare_read_connect %p\n", con);
1641 	con->in_base_pos = 0;
1642 }
1643 
1644 static void prepare_read_ack(struct ceph_connection *con)
1645 {
1646 	dout("prepare_read_ack %p\n", con);
1647 	con->in_base_pos = 0;
1648 }
1649 
1650 static void prepare_read_seq(struct ceph_connection *con)
1651 {
1652 	dout("prepare_read_seq %p\n", con);
1653 	con->in_base_pos = 0;
1654 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1655 }
1656 
1657 static void prepare_read_tag(struct ceph_connection *con)
1658 {
1659 	dout("prepare_read_tag %p\n", con);
1660 	con->in_base_pos = 0;
1661 	con->in_tag = CEPH_MSGR_TAG_READY;
1662 }
1663 
1664 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1665 {
1666 	dout("prepare_read_keepalive_ack %p\n", con);
1667 	con->in_base_pos = 0;
1668 }
1669 
1670 /*
1671  * Prepare to read a message.
1672  */
1673 static int prepare_read_message(struct ceph_connection *con)
1674 {
1675 	dout("prepare_read_message %p\n", con);
1676 	BUG_ON(con->in_msg != NULL);
1677 	con->in_base_pos = 0;
1678 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1679 	return 0;
1680 }
1681 
1682 
1683 static int read_partial(struct ceph_connection *con,
1684 			int end, int size, void *object)
1685 {
1686 	while (con->in_base_pos < end) {
1687 		int left = end - con->in_base_pos;
1688 		int have = size - left;
1689 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1690 		if (ret <= 0)
1691 			return ret;
1692 		con->in_base_pos += ret;
1693 	}
1694 	return 1;
1695 }
1696 
1697 
1698 /*
1699  * Read all or part of the connect-side handshake on a new connection
1700  */
1701 static int read_partial_banner(struct ceph_connection *con)
1702 {
1703 	int size;
1704 	int end;
1705 	int ret;
1706 
1707 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1708 
1709 	/* peer's banner */
1710 	size = strlen(CEPH_BANNER);
1711 	end = size;
1712 	ret = read_partial(con, end, size, con->in_banner);
1713 	if (ret <= 0)
1714 		goto out;
1715 
1716 	size = sizeof (con->actual_peer_addr);
1717 	end += size;
1718 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1719 	if (ret <= 0)
1720 		goto out;
1721 
1722 	size = sizeof (con->peer_addr_for_me);
1723 	end += size;
1724 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1725 	if (ret <= 0)
1726 		goto out;
1727 
1728 out:
1729 	return ret;
1730 }
1731 
1732 static int read_partial_connect(struct ceph_connection *con)
1733 {
1734 	int size;
1735 	int end;
1736 	int ret;
1737 
1738 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1739 
1740 	size = sizeof (con->in_reply);
1741 	end = size;
1742 	ret = read_partial(con, end, size, &con->in_reply);
1743 	if (ret <= 0)
1744 		goto out;
1745 
1746 	size = le32_to_cpu(con->in_reply.authorizer_len);
1747 	end += size;
1748 	ret = read_partial(con, end, size, con->auth_reply_buf);
1749 	if (ret <= 0)
1750 		goto out;
1751 
1752 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1753 	     con, (int)con->in_reply.tag,
1754 	     le32_to_cpu(con->in_reply.connect_seq),
1755 	     le32_to_cpu(con->in_reply.global_seq));
1756 out:
1757 	return ret;
1758 
1759 }
1760 
1761 /*
1762  * Verify the hello banner looks okay.
1763  */
1764 static int verify_hello(struct ceph_connection *con)
1765 {
1766 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1767 		pr_err("connect to %s got bad banner\n",
1768 		       ceph_pr_addr(&con->peer_addr.in_addr));
1769 		con->error_msg = "protocol error, bad banner";
1770 		return -1;
1771 	}
1772 	return 0;
1773 }
1774 
1775 static bool addr_is_blank(struct sockaddr_storage *ss)
1776 {
1777 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1778 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1779 
1780 	switch (ss->ss_family) {
1781 	case AF_INET:
1782 		return addr->s_addr == htonl(INADDR_ANY);
1783 	case AF_INET6:
1784 		return ipv6_addr_any(addr6);
1785 	default:
1786 		return true;
1787 	}
1788 }
1789 
1790 static int addr_port(struct sockaddr_storage *ss)
1791 {
1792 	switch (ss->ss_family) {
1793 	case AF_INET:
1794 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1795 	case AF_INET6:
1796 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1797 	}
1798 	return 0;
1799 }
1800 
1801 static void addr_set_port(struct sockaddr_storage *ss, int p)
1802 {
1803 	switch (ss->ss_family) {
1804 	case AF_INET:
1805 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1806 		break;
1807 	case AF_INET6:
1808 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1809 		break;
1810 	}
1811 }
1812 
1813 /*
1814  * Unlike other *_pton function semantics, zero indicates success.
1815  */
1816 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1817 		char delim, const char **ipend)
1818 {
1819 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1820 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1821 
1822 	memset(ss, 0, sizeof(*ss));
1823 
1824 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1825 		ss->ss_family = AF_INET;
1826 		return 0;
1827 	}
1828 
1829 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1830 		ss->ss_family = AF_INET6;
1831 		return 0;
1832 	}
1833 
1834 	return -EINVAL;
1835 }
1836 
1837 /*
1838  * Extract hostname string and resolve using kernel DNS facility.
1839  */
1840 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1841 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1842 		struct sockaddr_storage *ss, char delim, const char **ipend)
1843 {
1844 	const char *end, *delim_p;
1845 	char *colon_p, *ip_addr = NULL;
1846 	int ip_len, ret;
1847 
1848 	/*
1849 	 * The end of the hostname occurs immediately preceding the delimiter or
1850 	 * the port marker (':') where the delimiter takes precedence.
1851 	 */
1852 	delim_p = memchr(name, delim, namelen);
1853 	colon_p = memchr(name, ':', namelen);
1854 
1855 	if (delim_p && colon_p)
1856 		end = delim_p < colon_p ? delim_p : colon_p;
1857 	else if (!delim_p && colon_p)
1858 		end = colon_p;
1859 	else {
1860 		end = delim_p;
1861 		if (!end) /* case: hostname:/ */
1862 			end = name + namelen;
1863 	}
1864 
1865 	if (end <= name)
1866 		return -EINVAL;
1867 
1868 	/* do dns_resolve upcall */
1869 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1870 	if (ip_len > 0)
1871 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1872 	else
1873 		ret = -ESRCH;
1874 
1875 	kfree(ip_addr);
1876 
1877 	*ipend = end;
1878 
1879 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1880 			ret, ret ? "failed" : ceph_pr_addr(ss));
1881 
1882 	return ret;
1883 }
1884 #else
1885 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1886 		struct sockaddr_storage *ss, char delim, const char **ipend)
1887 {
1888 	return -EINVAL;
1889 }
1890 #endif
1891 
1892 /*
1893  * Parse a server name (IP or hostname). If a valid IP address is not found
1894  * then try to extract a hostname to resolve using userspace DNS upcall.
1895  */
1896 static int ceph_parse_server_name(const char *name, size_t namelen,
1897 			struct sockaddr_storage *ss, char delim, const char **ipend)
1898 {
1899 	int ret;
1900 
1901 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1902 	if (ret)
1903 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1904 
1905 	return ret;
1906 }
1907 
1908 /*
1909  * Parse an ip[:port] list into an addr array.  Use the default
1910  * monitor port if a port isn't specified.
1911  */
1912 int ceph_parse_ips(const char *c, const char *end,
1913 		   struct ceph_entity_addr *addr,
1914 		   int max_count, int *count)
1915 {
1916 	int i, ret = -EINVAL;
1917 	const char *p = c;
1918 
1919 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1920 	for (i = 0; i < max_count; i++) {
1921 		const char *ipend;
1922 		struct sockaddr_storage *ss = &addr[i].in_addr;
1923 		int port;
1924 		char delim = ',';
1925 
1926 		if (*p == '[') {
1927 			delim = ']';
1928 			p++;
1929 		}
1930 
1931 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1932 		if (ret)
1933 			goto bad;
1934 		ret = -EINVAL;
1935 
1936 		p = ipend;
1937 
1938 		if (delim == ']') {
1939 			if (*p != ']') {
1940 				dout("missing matching ']'\n");
1941 				goto bad;
1942 			}
1943 			p++;
1944 		}
1945 
1946 		/* port? */
1947 		if (p < end && *p == ':') {
1948 			port = 0;
1949 			p++;
1950 			while (p < end && *p >= '0' && *p <= '9') {
1951 				port = (port * 10) + (*p - '0');
1952 				p++;
1953 			}
1954 			if (port == 0)
1955 				port = CEPH_MON_PORT;
1956 			else if (port > 65535)
1957 				goto bad;
1958 		} else {
1959 			port = CEPH_MON_PORT;
1960 		}
1961 
1962 		addr_set_port(ss, port);
1963 
1964 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1965 
1966 		if (p == end)
1967 			break;
1968 		if (*p != ',')
1969 			goto bad;
1970 		p++;
1971 	}
1972 
1973 	if (p != end)
1974 		goto bad;
1975 
1976 	if (count)
1977 		*count = i + 1;
1978 	return 0;
1979 
1980 bad:
1981 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1982 	return ret;
1983 }
1984 EXPORT_SYMBOL(ceph_parse_ips);
1985 
1986 static int process_banner(struct ceph_connection *con)
1987 {
1988 	dout("process_banner on %p\n", con);
1989 
1990 	if (verify_hello(con) < 0)
1991 		return -1;
1992 
1993 	ceph_decode_addr(&con->actual_peer_addr);
1994 	ceph_decode_addr(&con->peer_addr_for_me);
1995 
1996 	/*
1997 	 * Make sure the other end is who we wanted.  note that the other
1998 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1999 	 * them the benefit of the doubt.
2000 	 */
2001 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2002 		   sizeof(con->peer_addr)) != 0 &&
2003 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2004 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2005 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2006 			ceph_pr_addr(&con->peer_addr.in_addr),
2007 			(int)le32_to_cpu(con->peer_addr.nonce),
2008 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2009 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2010 		con->error_msg = "wrong peer at address";
2011 		return -1;
2012 	}
2013 
2014 	/*
2015 	 * did we learn our address?
2016 	 */
2017 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2018 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2019 
2020 		memcpy(&con->msgr->inst.addr.in_addr,
2021 		       &con->peer_addr_for_me.in_addr,
2022 		       sizeof(con->peer_addr_for_me.in_addr));
2023 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2024 		encode_my_addr(con->msgr);
2025 		dout("process_banner learned my addr is %s\n",
2026 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 static int process_connect(struct ceph_connection *con)
2033 {
2034 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2035 	u64 req_feat = from_msgr(con->msgr)->required_features;
2036 	u64 server_feat = ceph_sanitize_features(
2037 				le64_to_cpu(con->in_reply.features));
2038 	int ret;
2039 
2040 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2041 
2042 	switch (con->in_reply.tag) {
2043 	case CEPH_MSGR_TAG_FEATURES:
2044 		pr_err("%s%lld %s feature set mismatch,"
2045 		       " my %llx < server's %llx, missing %llx\n",
2046 		       ENTITY_NAME(con->peer_name),
2047 		       ceph_pr_addr(&con->peer_addr.in_addr),
2048 		       sup_feat, server_feat, server_feat & ~sup_feat);
2049 		con->error_msg = "missing required protocol features";
2050 		reset_connection(con);
2051 		return -1;
2052 
2053 	case CEPH_MSGR_TAG_BADPROTOVER:
2054 		pr_err("%s%lld %s protocol version mismatch,"
2055 		       " my %d != server's %d\n",
2056 		       ENTITY_NAME(con->peer_name),
2057 		       ceph_pr_addr(&con->peer_addr.in_addr),
2058 		       le32_to_cpu(con->out_connect.protocol_version),
2059 		       le32_to_cpu(con->in_reply.protocol_version));
2060 		con->error_msg = "protocol version mismatch";
2061 		reset_connection(con);
2062 		return -1;
2063 
2064 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2065 		con->auth_retry++;
2066 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2067 		     con->auth_retry);
2068 		if (con->auth_retry == 2) {
2069 			con->error_msg = "connect authorization failure";
2070 			return -1;
2071 		}
2072 		con_out_kvec_reset(con);
2073 		ret = prepare_write_connect(con);
2074 		if (ret < 0)
2075 			return ret;
2076 		prepare_read_connect(con);
2077 		break;
2078 
2079 	case CEPH_MSGR_TAG_RESETSESSION:
2080 		/*
2081 		 * If we connected with a large connect_seq but the peer
2082 		 * has no record of a session with us (no connection, or
2083 		 * connect_seq == 0), they will send RESETSESION to indicate
2084 		 * that they must have reset their session, and may have
2085 		 * dropped messages.
2086 		 */
2087 		dout("process_connect got RESET peer seq %u\n",
2088 		     le32_to_cpu(con->in_reply.connect_seq));
2089 		pr_err("%s%lld %s connection reset\n",
2090 		       ENTITY_NAME(con->peer_name),
2091 		       ceph_pr_addr(&con->peer_addr.in_addr));
2092 		reset_connection(con);
2093 		con_out_kvec_reset(con);
2094 		ret = prepare_write_connect(con);
2095 		if (ret < 0)
2096 			return ret;
2097 		prepare_read_connect(con);
2098 
2099 		/* Tell ceph about it. */
2100 		mutex_unlock(&con->mutex);
2101 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2102 		if (con->ops->peer_reset)
2103 			con->ops->peer_reset(con);
2104 		mutex_lock(&con->mutex);
2105 		if (con->state != CON_STATE_NEGOTIATING)
2106 			return -EAGAIN;
2107 		break;
2108 
2109 	case CEPH_MSGR_TAG_RETRY_SESSION:
2110 		/*
2111 		 * If we sent a smaller connect_seq than the peer has, try
2112 		 * again with a larger value.
2113 		 */
2114 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2115 		     le32_to_cpu(con->out_connect.connect_seq),
2116 		     le32_to_cpu(con->in_reply.connect_seq));
2117 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2118 		con_out_kvec_reset(con);
2119 		ret = prepare_write_connect(con);
2120 		if (ret < 0)
2121 			return ret;
2122 		prepare_read_connect(con);
2123 		break;
2124 
2125 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2126 		/*
2127 		 * If we sent a smaller global_seq than the peer has, try
2128 		 * again with a larger value.
2129 		 */
2130 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2131 		     con->peer_global_seq,
2132 		     le32_to_cpu(con->in_reply.global_seq));
2133 		get_global_seq(con->msgr,
2134 			       le32_to_cpu(con->in_reply.global_seq));
2135 		con_out_kvec_reset(con);
2136 		ret = prepare_write_connect(con);
2137 		if (ret < 0)
2138 			return ret;
2139 		prepare_read_connect(con);
2140 		break;
2141 
2142 	case CEPH_MSGR_TAG_SEQ:
2143 	case CEPH_MSGR_TAG_READY:
2144 		if (req_feat & ~server_feat) {
2145 			pr_err("%s%lld %s protocol feature mismatch,"
2146 			       " my required %llx > server's %llx, need %llx\n",
2147 			       ENTITY_NAME(con->peer_name),
2148 			       ceph_pr_addr(&con->peer_addr.in_addr),
2149 			       req_feat, server_feat, req_feat & ~server_feat);
2150 			con->error_msg = "missing required protocol features";
2151 			reset_connection(con);
2152 			return -1;
2153 		}
2154 
2155 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2156 		con->state = CON_STATE_OPEN;
2157 		con->auth_retry = 0;    /* we authenticated; clear flag */
2158 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2159 		con->connect_seq++;
2160 		con->peer_features = server_feat;
2161 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2162 		     con->peer_global_seq,
2163 		     le32_to_cpu(con->in_reply.connect_seq),
2164 		     con->connect_seq);
2165 		WARN_ON(con->connect_seq !=
2166 			le32_to_cpu(con->in_reply.connect_seq));
2167 
2168 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2169 			con_flag_set(con, CON_FLAG_LOSSYTX);
2170 
2171 		con->delay = 0;      /* reset backoff memory */
2172 
2173 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2174 			prepare_write_seq(con);
2175 			prepare_read_seq(con);
2176 		} else {
2177 			prepare_read_tag(con);
2178 		}
2179 		break;
2180 
2181 	case CEPH_MSGR_TAG_WAIT:
2182 		/*
2183 		 * If there is a connection race (we are opening
2184 		 * connections to each other), one of us may just have
2185 		 * to WAIT.  This shouldn't happen if we are the
2186 		 * client.
2187 		 */
2188 		con->error_msg = "protocol error, got WAIT as client";
2189 		return -1;
2190 
2191 	default:
2192 		con->error_msg = "protocol error, garbage tag during connect";
2193 		return -1;
2194 	}
2195 	return 0;
2196 }
2197 
2198 
2199 /*
2200  * read (part of) an ack
2201  */
2202 static int read_partial_ack(struct ceph_connection *con)
2203 {
2204 	int size = sizeof (con->in_temp_ack);
2205 	int end = size;
2206 
2207 	return read_partial(con, end, size, &con->in_temp_ack);
2208 }
2209 
2210 /*
2211  * We can finally discard anything that's been acked.
2212  */
2213 static void process_ack(struct ceph_connection *con)
2214 {
2215 	struct ceph_msg *m;
2216 	u64 ack = le64_to_cpu(con->in_temp_ack);
2217 	u64 seq;
2218 
2219 	while (!list_empty(&con->out_sent)) {
2220 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2221 				     list_head);
2222 		seq = le64_to_cpu(m->hdr.seq);
2223 		if (seq > ack)
2224 			break;
2225 		dout("got ack for seq %llu type %d at %p\n", seq,
2226 		     le16_to_cpu(m->hdr.type), m);
2227 		m->ack_stamp = jiffies;
2228 		ceph_msg_remove(m);
2229 	}
2230 	prepare_read_tag(con);
2231 }
2232 
2233 
2234 static int read_partial_message_section(struct ceph_connection *con,
2235 					struct kvec *section,
2236 					unsigned int sec_len, u32 *crc)
2237 {
2238 	int ret, left;
2239 
2240 	BUG_ON(!section);
2241 
2242 	while (section->iov_len < sec_len) {
2243 		BUG_ON(section->iov_base == NULL);
2244 		left = sec_len - section->iov_len;
2245 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2246 				       section->iov_len, left);
2247 		if (ret <= 0)
2248 			return ret;
2249 		section->iov_len += ret;
2250 	}
2251 	if (section->iov_len == sec_len)
2252 		*crc = crc32c(0, section->iov_base, section->iov_len);
2253 
2254 	return 1;
2255 }
2256 
2257 static int read_partial_msg_data(struct ceph_connection *con)
2258 {
2259 	struct ceph_msg *msg = con->in_msg;
2260 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2261 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2262 	struct page *page;
2263 	size_t page_offset;
2264 	size_t length;
2265 	u32 crc = 0;
2266 	int ret;
2267 
2268 	BUG_ON(!msg);
2269 	if (list_empty(&msg->data))
2270 		return -EIO;
2271 
2272 	if (do_datacrc)
2273 		crc = con->in_data_crc;
2274 	while (cursor->resid) {
2275 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2276 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2277 		if (ret <= 0) {
2278 			if (do_datacrc)
2279 				con->in_data_crc = crc;
2280 
2281 			return ret;
2282 		}
2283 
2284 		if (do_datacrc)
2285 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2286 		(void) ceph_msg_data_advance(cursor, (size_t)ret);
2287 	}
2288 	if (do_datacrc)
2289 		con->in_data_crc = crc;
2290 
2291 	return 1;	/* must return > 0 to indicate success */
2292 }
2293 
2294 /*
2295  * read (part of) a message.
2296  */
2297 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2298 
2299 static int read_partial_message(struct ceph_connection *con)
2300 {
2301 	struct ceph_msg *m = con->in_msg;
2302 	int size;
2303 	int end;
2304 	int ret;
2305 	unsigned int front_len, middle_len, data_len;
2306 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2307 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2308 	u64 seq;
2309 	u32 crc;
2310 
2311 	dout("read_partial_message con %p msg %p\n", con, m);
2312 
2313 	/* header */
2314 	size = sizeof (con->in_hdr);
2315 	end = size;
2316 	ret = read_partial(con, end, size, &con->in_hdr);
2317 	if (ret <= 0)
2318 		return ret;
2319 
2320 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2321 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2322 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2323 		       crc, con->in_hdr.crc);
2324 		return -EBADMSG;
2325 	}
2326 
2327 	front_len = le32_to_cpu(con->in_hdr.front_len);
2328 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2329 		return -EIO;
2330 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2331 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2332 		return -EIO;
2333 	data_len = le32_to_cpu(con->in_hdr.data_len);
2334 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2335 		return -EIO;
2336 
2337 	/* verify seq# */
2338 	seq = le64_to_cpu(con->in_hdr.seq);
2339 	if ((s64)seq - (s64)con->in_seq < 1) {
2340 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2341 			ENTITY_NAME(con->peer_name),
2342 			ceph_pr_addr(&con->peer_addr.in_addr),
2343 			seq, con->in_seq + 1);
2344 		con->in_base_pos = -front_len - middle_len - data_len -
2345 			sizeof_footer(con);
2346 		con->in_tag = CEPH_MSGR_TAG_READY;
2347 		return 1;
2348 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2349 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2350 		       seq, con->in_seq + 1);
2351 		con->error_msg = "bad message sequence # for incoming message";
2352 		return -EBADE;
2353 	}
2354 
2355 	/* allocate message? */
2356 	if (!con->in_msg) {
2357 		int skip = 0;
2358 
2359 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2360 		     front_len, data_len);
2361 		ret = ceph_con_in_msg_alloc(con, &skip);
2362 		if (ret < 0)
2363 			return ret;
2364 
2365 		BUG_ON(!con->in_msg ^ skip);
2366 		if (skip) {
2367 			/* skip this message */
2368 			dout("alloc_msg said skip message\n");
2369 			con->in_base_pos = -front_len - middle_len - data_len -
2370 				sizeof_footer(con);
2371 			con->in_tag = CEPH_MSGR_TAG_READY;
2372 			con->in_seq++;
2373 			return 1;
2374 		}
2375 
2376 		BUG_ON(!con->in_msg);
2377 		BUG_ON(con->in_msg->con != con);
2378 		m = con->in_msg;
2379 		m->front.iov_len = 0;    /* haven't read it yet */
2380 		if (m->middle)
2381 			m->middle->vec.iov_len = 0;
2382 
2383 		/* prepare for data payload, if any */
2384 
2385 		if (data_len)
2386 			prepare_message_data(con->in_msg, data_len);
2387 	}
2388 
2389 	/* front */
2390 	ret = read_partial_message_section(con, &m->front, front_len,
2391 					   &con->in_front_crc);
2392 	if (ret <= 0)
2393 		return ret;
2394 
2395 	/* middle */
2396 	if (m->middle) {
2397 		ret = read_partial_message_section(con, &m->middle->vec,
2398 						   middle_len,
2399 						   &con->in_middle_crc);
2400 		if (ret <= 0)
2401 			return ret;
2402 	}
2403 
2404 	/* (page) data */
2405 	if (data_len) {
2406 		ret = read_partial_msg_data(con);
2407 		if (ret <= 0)
2408 			return ret;
2409 	}
2410 
2411 	/* footer */
2412 	if (need_sign)
2413 		size = sizeof(m->footer);
2414 	else
2415 		size = sizeof(m->old_footer);
2416 
2417 	end += size;
2418 	ret = read_partial(con, end, size, &m->footer);
2419 	if (ret <= 0)
2420 		return ret;
2421 
2422 	if (!need_sign) {
2423 		m->footer.flags = m->old_footer.flags;
2424 		m->footer.sig = 0;
2425 	}
2426 
2427 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2428 	     m, front_len, m->footer.front_crc, middle_len,
2429 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2430 
2431 	/* crc ok? */
2432 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2433 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2434 		       m, con->in_front_crc, m->footer.front_crc);
2435 		return -EBADMSG;
2436 	}
2437 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2438 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2439 		       m, con->in_middle_crc, m->footer.middle_crc);
2440 		return -EBADMSG;
2441 	}
2442 	if (do_datacrc &&
2443 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2444 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2445 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2446 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2447 		return -EBADMSG;
2448 	}
2449 
2450 	if (need_sign && con->ops->check_message_signature &&
2451 	    con->ops->check_message_signature(m)) {
2452 		pr_err("read_partial_message %p signature check failed\n", m);
2453 		return -EBADMSG;
2454 	}
2455 
2456 	return 1; /* done! */
2457 }
2458 
2459 /*
2460  * Process message.  This happens in the worker thread.  The callback should
2461  * be careful not to do anything that waits on other incoming messages or it
2462  * may deadlock.
2463  */
2464 static void process_message(struct ceph_connection *con)
2465 {
2466 	struct ceph_msg *msg = con->in_msg;
2467 
2468 	BUG_ON(con->in_msg->con != con);
2469 	con->in_msg = NULL;
2470 
2471 	/* if first message, set peer_name */
2472 	if (con->peer_name.type == 0)
2473 		con->peer_name = msg->hdr.src;
2474 
2475 	con->in_seq++;
2476 	mutex_unlock(&con->mutex);
2477 
2478 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2479 	     msg, le64_to_cpu(msg->hdr.seq),
2480 	     ENTITY_NAME(msg->hdr.src),
2481 	     le16_to_cpu(msg->hdr.type),
2482 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2483 	     le32_to_cpu(msg->hdr.front_len),
2484 	     le32_to_cpu(msg->hdr.data_len),
2485 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2486 	con->ops->dispatch(con, msg);
2487 
2488 	mutex_lock(&con->mutex);
2489 }
2490 
2491 static int read_keepalive_ack(struct ceph_connection *con)
2492 {
2493 	struct ceph_timespec ceph_ts;
2494 	size_t size = sizeof(ceph_ts);
2495 	int ret = read_partial(con, size, size, &ceph_ts);
2496 	if (ret <= 0)
2497 		return ret;
2498 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2499 	prepare_read_tag(con);
2500 	return 1;
2501 }
2502 
2503 /*
2504  * Write something to the socket.  Called in a worker thread when the
2505  * socket appears to be writeable and we have something ready to send.
2506  */
2507 static int try_write(struct ceph_connection *con)
2508 {
2509 	int ret = 1;
2510 
2511 	dout("try_write start %p state %lu\n", con, con->state);
2512 
2513 more:
2514 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2515 
2516 	/* open the socket first? */
2517 	if (con->state == CON_STATE_PREOPEN) {
2518 		BUG_ON(con->sock);
2519 		con->state = CON_STATE_CONNECTING;
2520 
2521 		con_out_kvec_reset(con);
2522 		prepare_write_banner(con);
2523 		prepare_read_banner(con);
2524 
2525 		BUG_ON(con->in_msg);
2526 		con->in_tag = CEPH_MSGR_TAG_READY;
2527 		dout("try_write initiating connect on %p new state %lu\n",
2528 		     con, con->state);
2529 		ret = ceph_tcp_connect(con);
2530 		if (ret < 0) {
2531 			con->error_msg = "connect error";
2532 			goto out;
2533 		}
2534 	}
2535 
2536 more_kvec:
2537 	/* kvec data queued? */
2538 	if (con->out_kvec_left) {
2539 		ret = write_partial_kvec(con);
2540 		if (ret <= 0)
2541 			goto out;
2542 	}
2543 	if (con->out_skip) {
2544 		ret = write_partial_skip(con);
2545 		if (ret <= 0)
2546 			goto out;
2547 	}
2548 
2549 	/* msg pages? */
2550 	if (con->out_msg) {
2551 		if (con->out_msg_done) {
2552 			ceph_msg_put(con->out_msg);
2553 			con->out_msg = NULL;   /* we're done with this one */
2554 			goto do_next;
2555 		}
2556 
2557 		ret = write_partial_message_data(con);
2558 		if (ret == 1)
2559 			goto more_kvec;  /* we need to send the footer, too! */
2560 		if (ret == 0)
2561 			goto out;
2562 		if (ret < 0) {
2563 			dout("try_write write_partial_message_data err %d\n",
2564 			     ret);
2565 			goto out;
2566 		}
2567 	}
2568 
2569 do_next:
2570 	if (con->state == CON_STATE_OPEN) {
2571 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2572 			prepare_write_keepalive(con);
2573 			goto more;
2574 		}
2575 		/* is anything else pending? */
2576 		if (!list_empty(&con->out_queue)) {
2577 			prepare_write_message(con);
2578 			goto more;
2579 		}
2580 		if (con->in_seq > con->in_seq_acked) {
2581 			prepare_write_ack(con);
2582 			goto more;
2583 		}
2584 	}
2585 
2586 	/* Nothing to do! */
2587 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2588 	dout("try_write nothing else to write.\n");
2589 	ret = 0;
2590 out:
2591 	dout("try_write done on %p ret %d\n", con, ret);
2592 	return ret;
2593 }
2594 
2595 
2596 
2597 /*
2598  * Read what we can from the socket.
2599  */
2600 static int try_read(struct ceph_connection *con)
2601 {
2602 	int ret = -1;
2603 
2604 more:
2605 	dout("try_read start on %p state %lu\n", con, con->state);
2606 	if (con->state != CON_STATE_CONNECTING &&
2607 	    con->state != CON_STATE_NEGOTIATING &&
2608 	    con->state != CON_STATE_OPEN)
2609 		return 0;
2610 
2611 	BUG_ON(!con->sock);
2612 
2613 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2614 	     con->in_base_pos);
2615 
2616 	if (con->state == CON_STATE_CONNECTING) {
2617 		dout("try_read connecting\n");
2618 		ret = read_partial_banner(con);
2619 		if (ret <= 0)
2620 			goto out;
2621 		ret = process_banner(con);
2622 		if (ret < 0)
2623 			goto out;
2624 
2625 		con->state = CON_STATE_NEGOTIATING;
2626 
2627 		/*
2628 		 * Received banner is good, exchange connection info.
2629 		 * Do not reset out_kvec, as sending our banner raced
2630 		 * with receiving peer banner after connect completed.
2631 		 */
2632 		ret = prepare_write_connect(con);
2633 		if (ret < 0)
2634 			goto out;
2635 		prepare_read_connect(con);
2636 
2637 		/* Send connection info before awaiting response */
2638 		goto out;
2639 	}
2640 
2641 	if (con->state == CON_STATE_NEGOTIATING) {
2642 		dout("try_read negotiating\n");
2643 		ret = read_partial_connect(con);
2644 		if (ret <= 0)
2645 			goto out;
2646 		ret = process_connect(con);
2647 		if (ret < 0)
2648 			goto out;
2649 		goto more;
2650 	}
2651 
2652 	WARN_ON(con->state != CON_STATE_OPEN);
2653 
2654 	if (con->in_base_pos < 0) {
2655 		/*
2656 		 * skipping + discarding content.
2657 		 *
2658 		 * FIXME: there must be a better way to do this!
2659 		 */
2660 		static char buf[SKIP_BUF_SIZE];
2661 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2662 
2663 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2664 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2665 		if (ret <= 0)
2666 			goto out;
2667 		con->in_base_pos += ret;
2668 		if (con->in_base_pos)
2669 			goto more;
2670 	}
2671 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2672 		/*
2673 		 * what's next?
2674 		 */
2675 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2676 		if (ret <= 0)
2677 			goto out;
2678 		dout("try_read got tag %d\n", (int)con->in_tag);
2679 		switch (con->in_tag) {
2680 		case CEPH_MSGR_TAG_MSG:
2681 			prepare_read_message(con);
2682 			break;
2683 		case CEPH_MSGR_TAG_ACK:
2684 			prepare_read_ack(con);
2685 			break;
2686 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2687 			prepare_read_keepalive_ack(con);
2688 			break;
2689 		case CEPH_MSGR_TAG_CLOSE:
2690 			con_close_socket(con);
2691 			con->state = CON_STATE_CLOSED;
2692 			goto out;
2693 		default:
2694 			goto bad_tag;
2695 		}
2696 	}
2697 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2698 		ret = read_partial_message(con);
2699 		if (ret <= 0) {
2700 			switch (ret) {
2701 			case -EBADMSG:
2702 				con->error_msg = "bad crc/signature";
2703 				/* fall through */
2704 			case -EBADE:
2705 				ret = -EIO;
2706 				break;
2707 			case -EIO:
2708 				con->error_msg = "io error";
2709 				break;
2710 			}
2711 			goto out;
2712 		}
2713 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2714 			goto more;
2715 		process_message(con);
2716 		if (con->state == CON_STATE_OPEN)
2717 			prepare_read_tag(con);
2718 		goto more;
2719 	}
2720 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2721 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2722 		/*
2723 		 * the final handshake seq exchange is semantically
2724 		 * equivalent to an ACK
2725 		 */
2726 		ret = read_partial_ack(con);
2727 		if (ret <= 0)
2728 			goto out;
2729 		process_ack(con);
2730 		goto more;
2731 	}
2732 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2733 		ret = read_keepalive_ack(con);
2734 		if (ret <= 0)
2735 			goto out;
2736 		goto more;
2737 	}
2738 
2739 out:
2740 	dout("try_read done on %p ret %d\n", con, ret);
2741 	return ret;
2742 
2743 bad_tag:
2744 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2745 	con->error_msg = "protocol error, garbage tag";
2746 	ret = -1;
2747 	goto out;
2748 }
2749 
2750 
2751 /*
2752  * Atomically queue work on a connection after the specified delay.
2753  * Bump @con reference to avoid races with connection teardown.
2754  * Returns 0 if work was queued, or an error code otherwise.
2755  */
2756 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2757 {
2758 	if (!con->ops->get(con)) {
2759 		dout("%s %p ref count 0\n", __func__, con);
2760 		return -ENOENT;
2761 	}
2762 
2763 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2764 		dout("%s %p - already queued\n", __func__, con);
2765 		con->ops->put(con);
2766 		return -EBUSY;
2767 	}
2768 
2769 	dout("%s %p %lu\n", __func__, con, delay);
2770 	return 0;
2771 }
2772 
2773 static void queue_con(struct ceph_connection *con)
2774 {
2775 	(void) queue_con_delay(con, 0);
2776 }
2777 
2778 static void cancel_con(struct ceph_connection *con)
2779 {
2780 	if (cancel_delayed_work(&con->work)) {
2781 		dout("%s %p\n", __func__, con);
2782 		con->ops->put(con);
2783 	}
2784 }
2785 
2786 static bool con_sock_closed(struct ceph_connection *con)
2787 {
2788 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2789 		return false;
2790 
2791 #define CASE(x)								\
2792 	case CON_STATE_ ## x:						\
2793 		con->error_msg = "socket closed (con state " #x ")";	\
2794 		break;
2795 
2796 	switch (con->state) {
2797 	CASE(CLOSED);
2798 	CASE(PREOPEN);
2799 	CASE(CONNECTING);
2800 	CASE(NEGOTIATING);
2801 	CASE(OPEN);
2802 	CASE(STANDBY);
2803 	default:
2804 		pr_warn("%s con %p unrecognized state %lu\n",
2805 			__func__, con, con->state);
2806 		con->error_msg = "unrecognized con state";
2807 		BUG();
2808 		break;
2809 	}
2810 #undef CASE
2811 
2812 	return true;
2813 }
2814 
2815 static bool con_backoff(struct ceph_connection *con)
2816 {
2817 	int ret;
2818 
2819 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2820 		return false;
2821 
2822 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2823 	if (ret) {
2824 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2825 			con, con->delay);
2826 		BUG_ON(ret == -ENOENT);
2827 		con_flag_set(con, CON_FLAG_BACKOFF);
2828 	}
2829 
2830 	return true;
2831 }
2832 
2833 /* Finish fault handling; con->mutex must *not* be held here */
2834 
2835 static void con_fault_finish(struct ceph_connection *con)
2836 {
2837 	dout("%s %p\n", __func__, con);
2838 
2839 	/*
2840 	 * in case we faulted due to authentication, invalidate our
2841 	 * current tickets so that we can get new ones.
2842 	 */
2843 	if (con->auth_retry) {
2844 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2845 		if (con->ops->invalidate_authorizer)
2846 			con->ops->invalidate_authorizer(con);
2847 		con->auth_retry = 0;
2848 	}
2849 
2850 	if (con->ops->fault)
2851 		con->ops->fault(con);
2852 }
2853 
2854 /*
2855  * Do some work on a connection.  Drop a connection ref when we're done.
2856  */
2857 static void ceph_con_workfn(struct work_struct *work)
2858 {
2859 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2860 						   work.work);
2861 	bool fault;
2862 
2863 	mutex_lock(&con->mutex);
2864 	while (true) {
2865 		int ret;
2866 
2867 		if ((fault = con_sock_closed(con))) {
2868 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2869 			break;
2870 		}
2871 		if (con_backoff(con)) {
2872 			dout("%s: con %p BACKOFF\n", __func__, con);
2873 			break;
2874 		}
2875 		if (con->state == CON_STATE_STANDBY) {
2876 			dout("%s: con %p STANDBY\n", __func__, con);
2877 			break;
2878 		}
2879 		if (con->state == CON_STATE_CLOSED) {
2880 			dout("%s: con %p CLOSED\n", __func__, con);
2881 			BUG_ON(con->sock);
2882 			break;
2883 		}
2884 		if (con->state == CON_STATE_PREOPEN) {
2885 			dout("%s: con %p PREOPEN\n", __func__, con);
2886 			BUG_ON(con->sock);
2887 		}
2888 
2889 		ret = try_read(con);
2890 		if (ret < 0) {
2891 			if (ret == -EAGAIN)
2892 				continue;
2893 			if (!con->error_msg)
2894 				con->error_msg = "socket error on read";
2895 			fault = true;
2896 			break;
2897 		}
2898 
2899 		ret = try_write(con);
2900 		if (ret < 0) {
2901 			if (ret == -EAGAIN)
2902 				continue;
2903 			if (!con->error_msg)
2904 				con->error_msg = "socket error on write";
2905 			fault = true;
2906 		}
2907 
2908 		break;	/* If we make it to here, we're done */
2909 	}
2910 	if (fault)
2911 		con_fault(con);
2912 	mutex_unlock(&con->mutex);
2913 
2914 	if (fault)
2915 		con_fault_finish(con);
2916 
2917 	con->ops->put(con);
2918 }
2919 
2920 /*
2921  * Generic error/fault handler.  A retry mechanism is used with
2922  * exponential backoff
2923  */
2924 static void con_fault(struct ceph_connection *con)
2925 {
2926 	dout("fault %p state %lu to peer %s\n",
2927 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2928 
2929 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2930 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2931 	con->error_msg = NULL;
2932 
2933 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2934 	       con->state != CON_STATE_NEGOTIATING &&
2935 	       con->state != CON_STATE_OPEN);
2936 
2937 	con_close_socket(con);
2938 
2939 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2940 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2941 		con->state = CON_STATE_CLOSED;
2942 		return;
2943 	}
2944 
2945 	if (con->in_msg) {
2946 		BUG_ON(con->in_msg->con != con);
2947 		ceph_msg_put(con->in_msg);
2948 		con->in_msg = NULL;
2949 	}
2950 
2951 	/* Requeue anything that hasn't been acked */
2952 	list_splice_init(&con->out_sent, &con->out_queue);
2953 
2954 	/* If there are no messages queued or keepalive pending, place
2955 	 * the connection in a STANDBY state */
2956 	if (list_empty(&con->out_queue) &&
2957 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2958 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2959 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2960 		con->state = CON_STATE_STANDBY;
2961 	} else {
2962 		/* retry after a delay. */
2963 		con->state = CON_STATE_PREOPEN;
2964 		if (con->delay == 0)
2965 			con->delay = BASE_DELAY_INTERVAL;
2966 		else if (con->delay < MAX_DELAY_INTERVAL)
2967 			con->delay *= 2;
2968 		con_flag_set(con, CON_FLAG_BACKOFF);
2969 		queue_con(con);
2970 	}
2971 }
2972 
2973 
2974 
2975 /*
2976  * initialize a new messenger instance
2977  */
2978 void ceph_messenger_init(struct ceph_messenger *msgr,
2979 			 struct ceph_entity_addr *myaddr)
2980 {
2981 	spin_lock_init(&msgr->global_seq_lock);
2982 
2983 	if (myaddr)
2984 		msgr->inst.addr = *myaddr;
2985 
2986 	/* select a random nonce */
2987 	msgr->inst.addr.type = 0;
2988 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2989 	encode_my_addr(msgr);
2990 
2991 	atomic_set(&msgr->stopping, 0);
2992 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2993 
2994 	dout("%s %p\n", __func__, msgr);
2995 }
2996 EXPORT_SYMBOL(ceph_messenger_init);
2997 
2998 void ceph_messenger_fini(struct ceph_messenger *msgr)
2999 {
3000 	put_net(read_pnet(&msgr->net));
3001 }
3002 EXPORT_SYMBOL(ceph_messenger_fini);
3003 
3004 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3005 {
3006 	if (msg->con)
3007 		msg->con->ops->put(msg->con);
3008 
3009 	msg->con = con ? con->ops->get(con) : NULL;
3010 	BUG_ON(msg->con != con);
3011 }
3012 
3013 static void clear_standby(struct ceph_connection *con)
3014 {
3015 	/* come back from STANDBY? */
3016 	if (con->state == CON_STATE_STANDBY) {
3017 		dout("clear_standby %p and ++connect_seq\n", con);
3018 		con->state = CON_STATE_PREOPEN;
3019 		con->connect_seq++;
3020 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3021 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3022 	}
3023 }
3024 
3025 /*
3026  * Queue up an outgoing message on the given connection.
3027  */
3028 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3029 {
3030 	/* set src+dst */
3031 	msg->hdr.src = con->msgr->inst.name;
3032 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3033 	msg->needs_out_seq = true;
3034 
3035 	mutex_lock(&con->mutex);
3036 
3037 	if (con->state == CON_STATE_CLOSED) {
3038 		dout("con_send %p closed, dropping %p\n", con, msg);
3039 		ceph_msg_put(msg);
3040 		mutex_unlock(&con->mutex);
3041 		return;
3042 	}
3043 
3044 	msg_con_set(msg, con);
3045 
3046 	BUG_ON(!list_empty(&msg->list_head));
3047 	list_add_tail(&msg->list_head, &con->out_queue);
3048 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3049 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3050 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3051 	     le32_to_cpu(msg->hdr.front_len),
3052 	     le32_to_cpu(msg->hdr.middle_len),
3053 	     le32_to_cpu(msg->hdr.data_len));
3054 
3055 	clear_standby(con);
3056 	mutex_unlock(&con->mutex);
3057 
3058 	/* if there wasn't anything waiting to send before, queue
3059 	 * new work */
3060 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3061 		queue_con(con);
3062 }
3063 EXPORT_SYMBOL(ceph_con_send);
3064 
3065 /*
3066  * Revoke a message that was previously queued for send
3067  */
3068 void ceph_msg_revoke(struct ceph_msg *msg)
3069 {
3070 	struct ceph_connection *con = msg->con;
3071 
3072 	if (!con) {
3073 		dout("%s msg %p null con\n", __func__, msg);
3074 		return;		/* Message not in our possession */
3075 	}
3076 
3077 	mutex_lock(&con->mutex);
3078 	if (!list_empty(&msg->list_head)) {
3079 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3080 		list_del_init(&msg->list_head);
3081 		msg->hdr.seq = 0;
3082 
3083 		ceph_msg_put(msg);
3084 	}
3085 	if (con->out_msg == msg) {
3086 		BUG_ON(con->out_skip);
3087 		/* footer */
3088 		if (con->out_msg_done) {
3089 			con->out_skip += con_out_kvec_skip(con);
3090 		} else {
3091 			BUG_ON(!msg->data_length);
3092 			if (con->peer_features & CEPH_FEATURE_MSG_AUTH)
3093 				con->out_skip += sizeof(msg->footer);
3094 			else
3095 				con->out_skip += sizeof(msg->old_footer);
3096 		}
3097 		/* data, middle, front */
3098 		if (msg->data_length)
3099 			con->out_skip += msg->cursor.total_resid;
3100 		if (msg->middle)
3101 			con->out_skip += con_out_kvec_skip(con);
3102 		con->out_skip += con_out_kvec_skip(con);
3103 
3104 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3105 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3106 		msg->hdr.seq = 0;
3107 		con->out_msg = NULL;
3108 		ceph_msg_put(msg);
3109 	}
3110 
3111 	mutex_unlock(&con->mutex);
3112 }
3113 
3114 /*
3115  * Revoke a message that we may be reading data into
3116  */
3117 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3118 {
3119 	struct ceph_connection *con = msg->con;
3120 
3121 	if (!con) {
3122 		dout("%s msg %p null con\n", __func__, msg);
3123 		return;		/* Message not in our possession */
3124 	}
3125 
3126 	mutex_lock(&con->mutex);
3127 	if (con->in_msg == msg) {
3128 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3129 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3130 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3131 
3132 		/* skip rest of message */
3133 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3134 		con->in_base_pos = con->in_base_pos -
3135 				sizeof(struct ceph_msg_header) -
3136 				front_len -
3137 				middle_len -
3138 				data_len -
3139 				sizeof(struct ceph_msg_footer);
3140 		ceph_msg_put(con->in_msg);
3141 		con->in_msg = NULL;
3142 		con->in_tag = CEPH_MSGR_TAG_READY;
3143 		con->in_seq++;
3144 	} else {
3145 		dout("%s %p in_msg %p msg %p no-op\n",
3146 		     __func__, con, con->in_msg, msg);
3147 	}
3148 	mutex_unlock(&con->mutex);
3149 }
3150 
3151 /*
3152  * Queue a keepalive byte to ensure the tcp connection is alive.
3153  */
3154 void ceph_con_keepalive(struct ceph_connection *con)
3155 {
3156 	dout("con_keepalive %p\n", con);
3157 	mutex_lock(&con->mutex);
3158 	clear_standby(con);
3159 	mutex_unlock(&con->mutex);
3160 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3161 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3162 		queue_con(con);
3163 }
3164 EXPORT_SYMBOL(ceph_con_keepalive);
3165 
3166 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3167 			       unsigned long interval)
3168 {
3169 	if (interval > 0 &&
3170 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3171 		struct timespec now = CURRENT_TIME;
3172 		struct timespec ts;
3173 		jiffies_to_timespec(interval, &ts);
3174 		ts = timespec_add(con->last_keepalive_ack, ts);
3175 		return timespec_compare(&now, &ts) >= 0;
3176 	}
3177 	return false;
3178 }
3179 
3180 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3181 {
3182 	struct ceph_msg_data *data;
3183 
3184 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3185 		return NULL;
3186 
3187 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3188 	if (data)
3189 		data->type = type;
3190 	INIT_LIST_HEAD(&data->links);
3191 
3192 	return data;
3193 }
3194 
3195 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3196 {
3197 	if (!data)
3198 		return;
3199 
3200 	WARN_ON(!list_empty(&data->links));
3201 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3202 		ceph_pagelist_release(data->pagelist);
3203 	kmem_cache_free(ceph_msg_data_cache, data);
3204 }
3205 
3206 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3207 		size_t length, size_t alignment)
3208 {
3209 	struct ceph_msg_data *data;
3210 
3211 	BUG_ON(!pages);
3212 	BUG_ON(!length);
3213 
3214 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3215 	BUG_ON(!data);
3216 	data->pages = pages;
3217 	data->length = length;
3218 	data->alignment = alignment & ~PAGE_MASK;
3219 
3220 	list_add_tail(&data->links, &msg->data);
3221 	msg->data_length += length;
3222 }
3223 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3224 
3225 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3226 				struct ceph_pagelist *pagelist)
3227 {
3228 	struct ceph_msg_data *data;
3229 
3230 	BUG_ON(!pagelist);
3231 	BUG_ON(!pagelist->length);
3232 
3233 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3234 	BUG_ON(!data);
3235 	data->pagelist = pagelist;
3236 
3237 	list_add_tail(&data->links, &msg->data);
3238 	msg->data_length += pagelist->length;
3239 }
3240 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3241 
3242 #ifdef	CONFIG_BLOCK
3243 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3244 		size_t length)
3245 {
3246 	struct ceph_msg_data *data;
3247 
3248 	BUG_ON(!bio);
3249 
3250 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3251 	BUG_ON(!data);
3252 	data->bio = bio;
3253 	data->bio_length = length;
3254 
3255 	list_add_tail(&data->links, &msg->data);
3256 	msg->data_length += length;
3257 }
3258 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3259 #endif	/* CONFIG_BLOCK */
3260 
3261 /*
3262  * construct a new message with given type, size
3263  * the new msg has a ref count of 1.
3264  */
3265 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3266 			      bool can_fail)
3267 {
3268 	struct ceph_msg *m;
3269 
3270 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3271 	if (m == NULL)
3272 		goto out;
3273 
3274 	m->hdr.type = cpu_to_le16(type);
3275 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3276 	m->hdr.front_len = cpu_to_le32(front_len);
3277 
3278 	INIT_LIST_HEAD(&m->list_head);
3279 	kref_init(&m->kref);
3280 	INIT_LIST_HEAD(&m->data);
3281 
3282 	/* front */
3283 	if (front_len) {
3284 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3285 		if (m->front.iov_base == NULL) {
3286 			dout("ceph_msg_new can't allocate %d bytes\n",
3287 			     front_len);
3288 			goto out2;
3289 		}
3290 	} else {
3291 		m->front.iov_base = NULL;
3292 	}
3293 	m->front_alloc_len = m->front.iov_len = front_len;
3294 
3295 	dout("ceph_msg_new %p front %d\n", m, front_len);
3296 	return m;
3297 
3298 out2:
3299 	ceph_msg_put(m);
3300 out:
3301 	if (!can_fail) {
3302 		pr_err("msg_new can't create type %d front %d\n", type,
3303 		       front_len);
3304 		WARN_ON(1);
3305 	} else {
3306 		dout("msg_new can't create type %d front %d\n", type,
3307 		     front_len);
3308 	}
3309 	return NULL;
3310 }
3311 EXPORT_SYMBOL(ceph_msg_new);
3312 
3313 /*
3314  * Allocate "middle" portion of a message, if it is needed and wasn't
3315  * allocated by alloc_msg.  This allows us to read a small fixed-size
3316  * per-type header in the front and then gracefully fail (i.e.,
3317  * propagate the error to the caller based on info in the front) when
3318  * the middle is too large.
3319  */
3320 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3321 {
3322 	int type = le16_to_cpu(msg->hdr.type);
3323 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3324 
3325 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3326 	     ceph_msg_type_name(type), middle_len);
3327 	BUG_ON(!middle_len);
3328 	BUG_ON(msg->middle);
3329 
3330 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3331 	if (!msg->middle)
3332 		return -ENOMEM;
3333 	return 0;
3334 }
3335 
3336 /*
3337  * Allocate a message for receiving an incoming message on a
3338  * connection, and save the result in con->in_msg.  Uses the
3339  * connection's private alloc_msg op if available.
3340  *
3341  * Returns 0 on success, or a negative error code.
3342  *
3343  * On success, if we set *skip = 1:
3344  *  - the next message should be skipped and ignored.
3345  *  - con->in_msg == NULL
3346  * or if we set *skip = 0:
3347  *  - con->in_msg is non-null.
3348  * On error (ENOMEM, EAGAIN, ...),
3349  *  - con->in_msg == NULL
3350  */
3351 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3352 {
3353 	struct ceph_msg_header *hdr = &con->in_hdr;
3354 	int middle_len = le32_to_cpu(hdr->middle_len);
3355 	struct ceph_msg *msg;
3356 	int ret = 0;
3357 
3358 	BUG_ON(con->in_msg != NULL);
3359 	BUG_ON(!con->ops->alloc_msg);
3360 
3361 	mutex_unlock(&con->mutex);
3362 	msg = con->ops->alloc_msg(con, hdr, skip);
3363 	mutex_lock(&con->mutex);
3364 	if (con->state != CON_STATE_OPEN) {
3365 		if (msg)
3366 			ceph_msg_put(msg);
3367 		return -EAGAIN;
3368 	}
3369 	if (msg) {
3370 		BUG_ON(*skip);
3371 		msg_con_set(msg, con);
3372 		con->in_msg = msg;
3373 	} else {
3374 		/*
3375 		 * Null message pointer means either we should skip
3376 		 * this message or we couldn't allocate memory.  The
3377 		 * former is not an error.
3378 		 */
3379 		if (*skip)
3380 			return 0;
3381 
3382 		con->error_msg = "error allocating memory for incoming message";
3383 		return -ENOMEM;
3384 	}
3385 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3386 
3387 	if (middle_len && !con->in_msg->middle) {
3388 		ret = ceph_alloc_middle(con, con->in_msg);
3389 		if (ret < 0) {
3390 			ceph_msg_put(con->in_msg);
3391 			con->in_msg = NULL;
3392 		}
3393 	}
3394 
3395 	return ret;
3396 }
3397 
3398 
3399 /*
3400  * Free a generically kmalloc'd message.
3401  */
3402 static void ceph_msg_free(struct ceph_msg *m)
3403 {
3404 	dout("%s %p\n", __func__, m);
3405 	kvfree(m->front.iov_base);
3406 	kmem_cache_free(ceph_msg_cache, m);
3407 }
3408 
3409 static void ceph_msg_release(struct kref *kref)
3410 {
3411 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3412 	struct ceph_msg_data *data, *next;
3413 
3414 	dout("%s %p\n", __func__, m);
3415 	WARN_ON(!list_empty(&m->list_head));
3416 
3417 	msg_con_set(m, NULL);
3418 
3419 	/* drop middle, data, if any */
3420 	if (m->middle) {
3421 		ceph_buffer_put(m->middle);
3422 		m->middle = NULL;
3423 	}
3424 
3425 	list_for_each_entry_safe(data, next, &m->data, links) {
3426 		list_del_init(&data->links);
3427 		ceph_msg_data_destroy(data);
3428 	}
3429 	m->data_length = 0;
3430 
3431 	if (m->pool)
3432 		ceph_msgpool_put(m->pool, m);
3433 	else
3434 		ceph_msg_free(m);
3435 }
3436 
3437 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3438 {
3439 	dout("%s %p (was %d)\n", __func__, msg,
3440 	     atomic_read(&msg->kref.refcount));
3441 	kref_get(&msg->kref);
3442 	return msg;
3443 }
3444 EXPORT_SYMBOL(ceph_msg_get);
3445 
3446 void ceph_msg_put(struct ceph_msg *msg)
3447 {
3448 	dout("%s %p (was %d)\n", __func__, msg,
3449 	     atomic_read(&msg->kref.refcount));
3450 	kref_put(&msg->kref, ceph_msg_release);
3451 }
3452 EXPORT_SYMBOL(ceph_msg_put);
3453 
3454 void ceph_msg_dump(struct ceph_msg *msg)
3455 {
3456 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3457 		 msg->front_alloc_len, msg->data_length);
3458 	print_hex_dump(KERN_DEBUG, "header: ",
3459 		       DUMP_PREFIX_OFFSET, 16, 1,
3460 		       &msg->hdr, sizeof(msg->hdr), true);
3461 	print_hex_dump(KERN_DEBUG, " front: ",
3462 		       DUMP_PREFIX_OFFSET, 16, 1,
3463 		       msg->front.iov_base, msg->front.iov_len, true);
3464 	if (msg->middle)
3465 		print_hex_dump(KERN_DEBUG, "middle: ",
3466 			       DUMP_PREFIX_OFFSET, 16, 1,
3467 			       msg->middle->vec.iov_base,
3468 			       msg->middle->vec.iov_len, true);
3469 	print_hex_dump(KERN_DEBUG, "footer: ",
3470 		       DUMP_PREFIX_OFFSET, 16, 1,
3471 		       &msg->footer, sizeof(msg->footer), true);
3472 }
3473 EXPORT_SYMBOL(ceph_msg_dump);
3474