xref: /linux/net/ceph/messenger.c (revision a3a4a816b4b194c45d0217e8b9e08b2639802cda)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef	CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif	/* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18 
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25 
26 /*
27  * Ceph uses the messenger to exchange ceph_msg messages with other
28  * hosts in the system.  The messenger provides ordered and reliable
29  * delivery.  We tolerate TCP disconnects by reconnecting (with
30  * exponential backoff) in the case of a fault (disconnection, bad
31  * crc, protocol error).  Acks allow sent messages to be discarded by
32  * the sender.
33  */
34 
35 /*
36  * We track the state of the socket on a given connection using
37  * values defined below.  The transition to a new socket state is
38  * handled by a function which verifies we aren't coming from an
39  * unexpected state.
40  *
41  *      --------
42  *      | NEW* |  transient initial state
43  *      --------
44  *          | con_sock_state_init()
45  *          v
46  *      ----------
47  *      | CLOSED |  initialized, but no socket (and no
48  *      ----------  TCP connection)
49  *       ^      \
50  *       |       \ con_sock_state_connecting()
51  *       |        ----------------------
52  *       |                              \
53  *       + con_sock_state_closed()       \
54  *       |+---------------------------    \
55  *       | \                          \    \
56  *       |  -----------                \    \
57  *       |  | CLOSING |  socket event;  \    \
58  *       |  -----------  await close     \    \
59  *       |       ^                        \   |
60  *       |       |                         \  |
61  *       |       + con_sock_state_closing() \ |
62  *       |      / \                         | |
63  *       |     /   ---------------          | |
64  *       |    /                   \         v v
65  *       |   /                    --------------
66  *       |  /    -----------------| CONNECTING |  socket created, TCP
67  *       |  |   /                 --------------  connect initiated
68  *       |  |   | con_sock_state_connected()
69  *       |  |   v
70  *      -------------
71  *      | CONNECTED |  TCP connection established
72  *      -------------
73  *
74  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
75  */
76 
77 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
78 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
79 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
80 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
81 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
82 
83 /*
84  * connection states
85  */
86 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
87 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
88 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
89 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
90 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
91 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
92 
93 /*
94  * ceph_connection flag bits
95  */
96 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
97 				       * messages on errors */
98 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
99 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
100 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
101 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
102 
103 static bool con_flag_valid(unsigned long con_flag)
104 {
105 	switch (con_flag) {
106 	case CON_FLAG_LOSSYTX:
107 	case CON_FLAG_KEEPALIVE_PENDING:
108 	case CON_FLAG_WRITE_PENDING:
109 	case CON_FLAG_SOCK_CLOSED:
110 	case CON_FLAG_BACKOFF:
111 		return true;
112 	default:
113 		return false;
114 	}
115 }
116 
117 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
118 {
119 	BUG_ON(!con_flag_valid(con_flag));
120 
121 	clear_bit(con_flag, &con->flags);
122 }
123 
124 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
125 {
126 	BUG_ON(!con_flag_valid(con_flag));
127 
128 	set_bit(con_flag, &con->flags);
129 }
130 
131 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
132 {
133 	BUG_ON(!con_flag_valid(con_flag));
134 
135 	return test_bit(con_flag, &con->flags);
136 }
137 
138 static bool con_flag_test_and_clear(struct ceph_connection *con,
139 					unsigned long con_flag)
140 {
141 	BUG_ON(!con_flag_valid(con_flag));
142 
143 	return test_and_clear_bit(con_flag, &con->flags);
144 }
145 
146 static bool con_flag_test_and_set(struct ceph_connection *con,
147 					unsigned long con_flag)
148 {
149 	BUG_ON(!con_flag_valid(con_flag));
150 
151 	return test_and_set_bit(con_flag, &con->flags);
152 }
153 
154 /* Slab caches for frequently-allocated structures */
155 
156 static struct kmem_cache	*ceph_msg_cache;
157 static struct kmem_cache	*ceph_msg_data_cache;
158 
159 /* static tag bytes (protocol control messages) */
160 static char tag_msg = CEPH_MSGR_TAG_MSG;
161 static char tag_ack = CEPH_MSGR_TAG_ACK;
162 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
163 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
164 
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168 
169 /*
170  * When skipping (ignoring) a block of input we read it into a "skip
171  * buffer," which is this many bytes in size.
172  */
173 #define SKIP_BUF_SIZE	1024
174 
175 static void queue_con(struct ceph_connection *con);
176 static void cancel_con(struct ceph_connection *con);
177 static void ceph_con_workfn(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179 
180 /*
181  * Nicely render a sockaddr as a string.  An array of formatted
182  * strings is used, to approximate reentrancy.
183  */
184 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
185 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
188 
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191 
192 static struct page *zero_page;		/* used in certain error cases */
193 
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 	int i;
197 	char *s;
198 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200 
201 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 	s = addr_str[i];
203 
204 	switch (ss->ss_family) {
205 	case AF_INET:
206 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 			 ntohs(in4->sin_port));
208 		break;
209 
210 	case AF_INET6:
211 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 			 ntohs(in6->sin6_port));
213 		break;
214 
215 	default:
216 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 			 ss->ss_family);
218 	}
219 
220 	return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223 
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 	ceph_encode_addr(&msgr->my_enc_addr);
228 }
229 
230 /*
231  * work queue for all reading and writing to/from the socket.
232  */
233 static struct workqueue_struct *ceph_msgr_wq;
234 
235 static int ceph_msgr_slab_init(void)
236 {
237 	BUG_ON(ceph_msg_cache);
238 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
239 	if (!ceph_msg_cache)
240 		return -ENOMEM;
241 
242 	BUG_ON(ceph_msg_data_cache);
243 	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
244 	if (ceph_msg_data_cache)
245 		return 0;
246 
247 	kmem_cache_destroy(ceph_msg_cache);
248 	ceph_msg_cache = NULL;
249 
250 	return -ENOMEM;
251 }
252 
253 static void ceph_msgr_slab_exit(void)
254 {
255 	BUG_ON(!ceph_msg_data_cache);
256 	kmem_cache_destroy(ceph_msg_data_cache);
257 	ceph_msg_data_cache = NULL;
258 
259 	BUG_ON(!ceph_msg_cache);
260 	kmem_cache_destroy(ceph_msg_cache);
261 	ceph_msg_cache = NULL;
262 }
263 
264 static void _ceph_msgr_exit(void)
265 {
266 	if (ceph_msgr_wq) {
267 		destroy_workqueue(ceph_msgr_wq);
268 		ceph_msgr_wq = NULL;
269 	}
270 
271 	BUG_ON(zero_page == NULL);
272 	put_page(zero_page);
273 	zero_page = NULL;
274 
275 	ceph_msgr_slab_exit();
276 }
277 
278 int ceph_msgr_init(void)
279 {
280 	if (ceph_msgr_slab_init())
281 		return -ENOMEM;
282 
283 	BUG_ON(zero_page != NULL);
284 	zero_page = ZERO_PAGE(0);
285 	get_page(zero_page);
286 
287 	/*
288 	 * The number of active work items is limited by the number of
289 	 * connections, so leave @max_active at default.
290 	 */
291 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
292 	if (ceph_msgr_wq)
293 		return 0;
294 
295 	pr_err("msgr_init failed to create workqueue\n");
296 	_ceph_msgr_exit();
297 
298 	return -ENOMEM;
299 }
300 EXPORT_SYMBOL(ceph_msgr_init);
301 
302 void ceph_msgr_exit(void)
303 {
304 	BUG_ON(ceph_msgr_wq == NULL);
305 
306 	_ceph_msgr_exit();
307 }
308 EXPORT_SYMBOL(ceph_msgr_exit);
309 
310 void ceph_msgr_flush(void)
311 {
312 	flush_workqueue(ceph_msgr_wq);
313 }
314 EXPORT_SYMBOL(ceph_msgr_flush);
315 
316 /* Connection socket state transition functions */
317 
318 static void con_sock_state_init(struct ceph_connection *con)
319 {
320 	int old_state;
321 
322 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
324 		printk("%s: unexpected old state %d\n", __func__, old_state);
325 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
326 	     CON_SOCK_STATE_CLOSED);
327 }
328 
329 static void con_sock_state_connecting(struct ceph_connection *con)
330 {
331 	int old_state;
332 
333 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
334 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
335 		printk("%s: unexpected old state %d\n", __func__, old_state);
336 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337 	     CON_SOCK_STATE_CONNECTING);
338 }
339 
340 static void con_sock_state_connected(struct ceph_connection *con)
341 {
342 	int old_state;
343 
344 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
345 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
346 		printk("%s: unexpected old state %d\n", __func__, old_state);
347 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
348 	     CON_SOCK_STATE_CONNECTED);
349 }
350 
351 static void con_sock_state_closing(struct ceph_connection *con)
352 {
353 	int old_state;
354 
355 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
356 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
357 			old_state != CON_SOCK_STATE_CONNECTED &&
358 			old_state != CON_SOCK_STATE_CLOSING))
359 		printk("%s: unexpected old state %d\n", __func__, old_state);
360 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
361 	     CON_SOCK_STATE_CLOSING);
362 }
363 
364 static void con_sock_state_closed(struct ceph_connection *con)
365 {
366 	int old_state;
367 
368 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
369 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
370 		    old_state != CON_SOCK_STATE_CLOSING &&
371 		    old_state != CON_SOCK_STATE_CONNECTING &&
372 		    old_state != CON_SOCK_STATE_CLOSED))
373 		printk("%s: unexpected old state %d\n", __func__, old_state);
374 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
375 	     CON_SOCK_STATE_CLOSED);
376 }
377 
378 /*
379  * socket callback functions
380  */
381 
382 /* data available on socket, or listen socket received a connect */
383 static void ceph_sock_data_ready(struct sock *sk)
384 {
385 	struct ceph_connection *con = sk->sk_user_data;
386 	if (atomic_read(&con->msgr->stopping)) {
387 		return;
388 	}
389 
390 	if (sk->sk_state != TCP_CLOSE_WAIT) {
391 		dout("%s on %p state = %lu, queueing work\n", __func__,
392 		     con, con->state);
393 		queue_con(con);
394 	}
395 }
396 
397 /* socket has buffer space for writing */
398 static void ceph_sock_write_space(struct sock *sk)
399 {
400 	struct ceph_connection *con = sk->sk_user_data;
401 
402 	/* only queue to workqueue if there is data we want to write,
403 	 * and there is sufficient space in the socket buffer to accept
404 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
405 	 * doesn't get called again until try_write() fills the socket
406 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
407 	 * and net/core/stream.c:sk_stream_write_space().
408 	 */
409 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
410 		if (sk_stream_is_writeable(sk)) {
411 			dout("%s %p queueing write work\n", __func__, con);
412 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
413 			queue_con(con);
414 		}
415 	} else {
416 		dout("%s %p nothing to write\n", __func__, con);
417 	}
418 }
419 
420 /* socket's state has changed */
421 static void ceph_sock_state_change(struct sock *sk)
422 {
423 	struct ceph_connection *con = sk->sk_user_data;
424 
425 	dout("%s %p state = %lu sk_state = %u\n", __func__,
426 	     con, con->state, sk->sk_state);
427 
428 	switch (sk->sk_state) {
429 	case TCP_CLOSE:
430 		dout("%s TCP_CLOSE\n", __func__);
431 	case TCP_CLOSE_WAIT:
432 		dout("%s TCP_CLOSE_WAIT\n", __func__);
433 		con_sock_state_closing(con);
434 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
435 		queue_con(con);
436 		break;
437 	case TCP_ESTABLISHED:
438 		dout("%s TCP_ESTABLISHED\n", __func__);
439 		con_sock_state_connected(con);
440 		queue_con(con);
441 		break;
442 	default:	/* Everything else is uninteresting */
443 		break;
444 	}
445 }
446 
447 /*
448  * set up socket callbacks
449  */
450 static void set_sock_callbacks(struct socket *sock,
451 			       struct ceph_connection *con)
452 {
453 	struct sock *sk = sock->sk;
454 	sk->sk_user_data = con;
455 	sk->sk_data_ready = ceph_sock_data_ready;
456 	sk->sk_write_space = ceph_sock_write_space;
457 	sk->sk_state_change = ceph_sock_state_change;
458 }
459 
460 
461 /*
462  * socket helpers
463  */
464 
465 /*
466  * initiate connection to a remote socket.
467  */
468 static int ceph_tcp_connect(struct ceph_connection *con)
469 {
470 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
471 	struct socket *sock;
472 	int ret;
473 
474 	BUG_ON(con->sock);
475 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
476 			       SOCK_STREAM, IPPROTO_TCP, &sock);
477 	if (ret)
478 		return ret;
479 	sock->sk->sk_allocation = GFP_NOFS;
480 
481 #ifdef CONFIG_LOCKDEP
482 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
483 #endif
484 
485 	set_sock_callbacks(sock, con);
486 
487 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
488 
489 	con_sock_state_connecting(con);
490 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
491 				 O_NONBLOCK);
492 	if (ret == -EINPROGRESS) {
493 		dout("connect %s EINPROGRESS sk_state = %u\n",
494 		     ceph_pr_addr(&con->peer_addr.in_addr),
495 		     sock->sk->sk_state);
496 	} else if (ret < 0) {
497 		pr_err("connect %s error %d\n",
498 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
499 		sock_release(sock);
500 		return ret;
501 	}
502 
503 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
504 		int optval = 1;
505 
506 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
507 					(char *)&optval, sizeof(optval));
508 		if (ret)
509 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
510 			       ret);
511 	}
512 
513 	con->sock = sock;
514 	return 0;
515 }
516 
517 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
518 {
519 	struct kvec iov = {buf, len};
520 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
521 	int r;
522 
523 	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
524 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
525 	if (r == -EAGAIN)
526 		r = 0;
527 	return r;
528 }
529 
530 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
531 		     int page_offset, size_t length)
532 {
533 	struct bio_vec bvec = {
534 		.bv_page = page,
535 		.bv_offset = page_offset,
536 		.bv_len = length
537 	};
538 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
539 	int r;
540 
541 	BUG_ON(page_offset + length > PAGE_SIZE);
542 	iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
543 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
544 	if (r == -EAGAIN)
545 		r = 0;
546 	return r;
547 }
548 
549 /*
550  * write something.  @more is true if caller will be sending more data
551  * shortly.
552  */
553 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
554 		     size_t kvlen, size_t len, int more)
555 {
556 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
557 	int r;
558 
559 	if (more)
560 		msg.msg_flags |= MSG_MORE;
561 	else
562 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
563 
564 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
565 	if (r == -EAGAIN)
566 		r = 0;
567 	return r;
568 }
569 
570 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
571 		     int offset, size_t size, bool more)
572 {
573 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
574 	int ret;
575 
576 	ret = kernel_sendpage(sock, page, offset, size, flags);
577 	if (ret == -EAGAIN)
578 		ret = 0;
579 
580 	return ret;
581 }
582 
583 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
584 		     int offset, size_t size, bool more)
585 {
586 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
587 	struct bio_vec bvec;
588 	int ret;
589 
590 	/* sendpage cannot properly handle pages with page_count == 0,
591 	 * we need to fallback to sendmsg if that's the case */
592 	if (page_count(page) >= 1)
593 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
594 
595 	bvec.bv_page = page;
596 	bvec.bv_offset = offset;
597 	bvec.bv_len = size;
598 
599 	if (more)
600 		msg.msg_flags |= MSG_MORE;
601 	else
602 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
603 
604 	iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
605 	ret = sock_sendmsg(sock, &msg);
606 	if (ret == -EAGAIN)
607 		ret = 0;
608 
609 	return ret;
610 }
611 
612 /*
613  * Shutdown/close the socket for the given connection.
614  */
615 static int con_close_socket(struct ceph_connection *con)
616 {
617 	int rc = 0;
618 
619 	dout("con_close_socket on %p sock %p\n", con, con->sock);
620 	if (con->sock) {
621 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
622 		sock_release(con->sock);
623 		con->sock = NULL;
624 	}
625 
626 	/*
627 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
628 	 * independent of the connection mutex, and we could have
629 	 * received a socket close event before we had the chance to
630 	 * shut the socket down.
631 	 */
632 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
633 
634 	con_sock_state_closed(con);
635 	return rc;
636 }
637 
638 /*
639  * Reset a connection.  Discard all incoming and outgoing messages
640  * and clear *_seq state.
641  */
642 static void ceph_msg_remove(struct ceph_msg *msg)
643 {
644 	list_del_init(&msg->list_head);
645 
646 	ceph_msg_put(msg);
647 }
648 static void ceph_msg_remove_list(struct list_head *head)
649 {
650 	while (!list_empty(head)) {
651 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
652 							list_head);
653 		ceph_msg_remove(msg);
654 	}
655 }
656 
657 static void reset_connection(struct ceph_connection *con)
658 {
659 	/* reset connection, out_queue, msg_ and connect_seq */
660 	/* discard existing out_queue and msg_seq */
661 	dout("reset_connection %p\n", con);
662 	ceph_msg_remove_list(&con->out_queue);
663 	ceph_msg_remove_list(&con->out_sent);
664 
665 	if (con->in_msg) {
666 		BUG_ON(con->in_msg->con != con);
667 		ceph_msg_put(con->in_msg);
668 		con->in_msg = NULL;
669 	}
670 
671 	con->connect_seq = 0;
672 	con->out_seq = 0;
673 	if (con->out_msg) {
674 		BUG_ON(con->out_msg->con != con);
675 		ceph_msg_put(con->out_msg);
676 		con->out_msg = NULL;
677 	}
678 	con->in_seq = 0;
679 	con->in_seq_acked = 0;
680 
681 	con->out_skip = 0;
682 }
683 
684 /*
685  * mark a peer down.  drop any open connections.
686  */
687 void ceph_con_close(struct ceph_connection *con)
688 {
689 	mutex_lock(&con->mutex);
690 	dout("con_close %p peer %s\n", con,
691 	     ceph_pr_addr(&con->peer_addr.in_addr));
692 	con->state = CON_STATE_CLOSED;
693 
694 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
695 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
696 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
697 	con_flag_clear(con, CON_FLAG_BACKOFF);
698 
699 	reset_connection(con);
700 	con->peer_global_seq = 0;
701 	cancel_con(con);
702 	con_close_socket(con);
703 	mutex_unlock(&con->mutex);
704 }
705 EXPORT_SYMBOL(ceph_con_close);
706 
707 /*
708  * Reopen a closed connection, with a new peer address.
709  */
710 void ceph_con_open(struct ceph_connection *con,
711 		   __u8 entity_type, __u64 entity_num,
712 		   struct ceph_entity_addr *addr)
713 {
714 	mutex_lock(&con->mutex);
715 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
716 
717 	WARN_ON(con->state != CON_STATE_CLOSED);
718 	con->state = CON_STATE_PREOPEN;
719 
720 	con->peer_name.type = (__u8) entity_type;
721 	con->peer_name.num = cpu_to_le64(entity_num);
722 
723 	memcpy(&con->peer_addr, addr, sizeof(*addr));
724 	con->delay = 0;      /* reset backoff memory */
725 	mutex_unlock(&con->mutex);
726 	queue_con(con);
727 }
728 EXPORT_SYMBOL(ceph_con_open);
729 
730 /*
731  * return true if this connection ever successfully opened
732  */
733 bool ceph_con_opened(struct ceph_connection *con)
734 {
735 	return con->connect_seq > 0;
736 }
737 
738 /*
739  * initialize a new connection.
740  */
741 void ceph_con_init(struct ceph_connection *con, void *private,
742 	const struct ceph_connection_operations *ops,
743 	struct ceph_messenger *msgr)
744 {
745 	dout("con_init %p\n", con);
746 	memset(con, 0, sizeof(*con));
747 	con->private = private;
748 	con->ops = ops;
749 	con->msgr = msgr;
750 
751 	con_sock_state_init(con);
752 
753 	mutex_init(&con->mutex);
754 	INIT_LIST_HEAD(&con->out_queue);
755 	INIT_LIST_HEAD(&con->out_sent);
756 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
757 
758 	con->state = CON_STATE_CLOSED;
759 }
760 EXPORT_SYMBOL(ceph_con_init);
761 
762 
763 /*
764  * We maintain a global counter to order connection attempts.  Get
765  * a unique seq greater than @gt.
766  */
767 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
768 {
769 	u32 ret;
770 
771 	spin_lock(&msgr->global_seq_lock);
772 	if (msgr->global_seq < gt)
773 		msgr->global_seq = gt;
774 	ret = ++msgr->global_seq;
775 	spin_unlock(&msgr->global_seq_lock);
776 	return ret;
777 }
778 
779 static void con_out_kvec_reset(struct ceph_connection *con)
780 {
781 	BUG_ON(con->out_skip);
782 
783 	con->out_kvec_left = 0;
784 	con->out_kvec_bytes = 0;
785 	con->out_kvec_cur = &con->out_kvec[0];
786 }
787 
788 static void con_out_kvec_add(struct ceph_connection *con,
789 				size_t size, void *data)
790 {
791 	int index = con->out_kvec_left;
792 
793 	BUG_ON(con->out_skip);
794 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
795 
796 	con->out_kvec[index].iov_len = size;
797 	con->out_kvec[index].iov_base = data;
798 	con->out_kvec_left++;
799 	con->out_kvec_bytes += size;
800 }
801 
802 /*
803  * Chop off a kvec from the end.  Return residual number of bytes for
804  * that kvec, i.e. how many bytes would have been written if the kvec
805  * hadn't been nuked.
806  */
807 static int con_out_kvec_skip(struct ceph_connection *con)
808 {
809 	int off = con->out_kvec_cur - con->out_kvec;
810 	int skip = 0;
811 
812 	if (con->out_kvec_bytes > 0) {
813 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
814 		BUG_ON(con->out_kvec_bytes < skip);
815 		BUG_ON(!con->out_kvec_left);
816 		con->out_kvec_bytes -= skip;
817 		con->out_kvec_left--;
818 	}
819 
820 	return skip;
821 }
822 
823 #ifdef CONFIG_BLOCK
824 
825 /*
826  * For a bio data item, a piece is whatever remains of the next
827  * entry in the current bio iovec, or the first entry in the next
828  * bio in the list.
829  */
830 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
831 					size_t length)
832 {
833 	struct ceph_msg_data *data = cursor->data;
834 	struct bio *bio;
835 
836 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
837 
838 	bio = data->bio;
839 	BUG_ON(!bio);
840 
841 	cursor->resid = min(length, data->bio_length);
842 	cursor->bio = bio;
843 	cursor->bvec_iter = bio->bi_iter;
844 	cursor->last_piece =
845 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
846 }
847 
848 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
849 						size_t *page_offset,
850 						size_t *length)
851 {
852 	struct ceph_msg_data *data = cursor->data;
853 	struct bio *bio;
854 	struct bio_vec bio_vec;
855 
856 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
857 
858 	bio = cursor->bio;
859 	BUG_ON(!bio);
860 
861 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
862 
863 	*page_offset = (size_t) bio_vec.bv_offset;
864 	BUG_ON(*page_offset >= PAGE_SIZE);
865 	if (cursor->last_piece) /* pagelist offset is always 0 */
866 		*length = cursor->resid;
867 	else
868 		*length = (size_t) bio_vec.bv_len;
869 	BUG_ON(*length > cursor->resid);
870 	BUG_ON(*page_offset + *length > PAGE_SIZE);
871 
872 	return bio_vec.bv_page;
873 }
874 
875 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
876 					size_t bytes)
877 {
878 	struct bio *bio;
879 	struct bio_vec bio_vec;
880 
881 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
882 
883 	bio = cursor->bio;
884 	BUG_ON(!bio);
885 
886 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
887 
888 	/* Advance the cursor offset */
889 
890 	BUG_ON(cursor->resid < bytes);
891 	cursor->resid -= bytes;
892 
893 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
894 
895 	if (bytes < bio_vec.bv_len)
896 		return false;	/* more bytes to process in this segment */
897 
898 	/* Move on to the next segment, and possibly the next bio */
899 
900 	if (!cursor->bvec_iter.bi_size) {
901 		bio = bio->bi_next;
902 		cursor->bio = bio;
903 		if (bio)
904 			cursor->bvec_iter = bio->bi_iter;
905 		else
906 			memset(&cursor->bvec_iter, 0,
907 			       sizeof(cursor->bvec_iter));
908 	}
909 
910 	if (!cursor->last_piece) {
911 		BUG_ON(!cursor->resid);
912 		BUG_ON(!bio);
913 		/* A short read is OK, so use <= rather than == */
914 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
915 			cursor->last_piece = true;
916 	}
917 
918 	return true;
919 }
920 #endif /* CONFIG_BLOCK */
921 
922 /*
923  * For a page array, a piece comes from the first page in the array
924  * that has not already been fully consumed.
925  */
926 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
927 					size_t length)
928 {
929 	struct ceph_msg_data *data = cursor->data;
930 	int page_count;
931 
932 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
933 
934 	BUG_ON(!data->pages);
935 	BUG_ON(!data->length);
936 
937 	cursor->resid = min(length, data->length);
938 	page_count = calc_pages_for(data->alignment, (u64)data->length);
939 	cursor->page_offset = data->alignment & ~PAGE_MASK;
940 	cursor->page_index = 0;
941 	BUG_ON(page_count > (int)USHRT_MAX);
942 	cursor->page_count = (unsigned short)page_count;
943 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
944 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
945 }
946 
947 static struct page *
948 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
949 					size_t *page_offset, size_t *length)
950 {
951 	struct ceph_msg_data *data = cursor->data;
952 
953 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
954 
955 	BUG_ON(cursor->page_index >= cursor->page_count);
956 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
957 
958 	*page_offset = cursor->page_offset;
959 	if (cursor->last_piece)
960 		*length = cursor->resid;
961 	else
962 		*length = PAGE_SIZE - *page_offset;
963 
964 	return data->pages[cursor->page_index];
965 }
966 
967 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
968 						size_t bytes)
969 {
970 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
971 
972 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
973 
974 	/* Advance the cursor page offset */
975 
976 	cursor->resid -= bytes;
977 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
978 	if (!bytes || cursor->page_offset)
979 		return false;	/* more bytes to process in the current page */
980 
981 	if (!cursor->resid)
982 		return false;   /* no more data */
983 
984 	/* Move on to the next page; offset is already at 0 */
985 
986 	BUG_ON(cursor->page_index >= cursor->page_count);
987 	cursor->page_index++;
988 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
989 
990 	return true;
991 }
992 
993 /*
994  * For a pagelist, a piece is whatever remains to be consumed in the
995  * first page in the list, or the front of the next page.
996  */
997 static void
998 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
999 					size_t length)
1000 {
1001 	struct ceph_msg_data *data = cursor->data;
1002 	struct ceph_pagelist *pagelist;
1003 	struct page *page;
1004 
1005 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1006 
1007 	pagelist = data->pagelist;
1008 	BUG_ON(!pagelist);
1009 
1010 	if (!length)
1011 		return;		/* pagelist can be assigned but empty */
1012 
1013 	BUG_ON(list_empty(&pagelist->head));
1014 	page = list_first_entry(&pagelist->head, struct page, lru);
1015 
1016 	cursor->resid = min(length, pagelist->length);
1017 	cursor->page = page;
1018 	cursor->offset = 0;
1019 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1020 }
1021 
1022 static struct page *
1023 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1024 				size_t *page_offset, size_t *length)
1025 {
1026 	struct ceph_msg_data *data = cursor->data;
1027 	struct ceph_pagelist *pagelist;
1028 
1029 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1030 
1031 	pagelist = data->pagelist;
1032 	BUG_ON(!pagelist);
1033 
1034 	BUG_ON(!cursor->page);
1035 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1036 
1037 	/* offset of first page in pagelist is always 0 */
1038 	*page_offset = cursor->offset & ~PAGE_MASK;
1039 	if (cursor->last_piece)
1040 		*length = cursor->resid;
1041 	else
1042 		*length = PAGE_SIZE - *page_offset;
1043 
1044 	return cursor->page;
1045 }
1046 
1047 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1048 						size_t bytes)
1049 {
1050 	struct ceph_msg_data *data = cursor->data;
1051 	struct ceph_pagelist *pagelist;
1052 
1053 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1054 
1055 	pagelist = data->pagelist;
1056 	BUG_ON(!pagelist);
1057 
1058 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1059 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1060 
1061 	/* Advance the cursor offset */
1062 
1063 	cursor->resid -= bytes;
1064 	cursor->offset += bytes;
1065 	/* offset of first page in pagelist is always 0 */
1066 	if (!bytes || cursor->offset & ~PAGE_MASK)
1067 		return false;	/* more bytes to process in the current page */
1068 
1069 	if (!cursor->resid)
1070 		return false;   /* no more data */
1071 
1072 	/* Move on to the next page */
1073 
1074 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1075 	cursor->page = list_next_entry(cursor->page, lru);
1076 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1077 
1078 	return true;
1079 }
1080 
1081 /*
1082  * Message data is handled (sent or received) in pieces, where each
1083  * piece resides on a single page.  The network layer might not
1084  * consume an entire piece at once.  A data item's cursor keeps
1085  * track of which piece is next to process and how much remains to
1086  * be processed in that piece.  It also tracks whether the current
1087  * piece is the last one in the data item.
1088  */
1089 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1090 {
1091 	size_t length = cursor->total_resid;
1092 
1093 	switch (cursor->data->type) {
1094 	case CEPH_MSG_DATA_PAGELIST:
1095 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1096 		break;
1097 	case CEPH_MSG_DATA_PAGES:
1098 		ceph_msg_data_pages_cursor_init(cursor, length);
1099 		break;
1100 #ifdef CONFIG_BLOCK
1101 	case CEPH_MSG_DATA_BIO:
1102 		ceph_msg_data_bio_cursor_init(cursor, length);
1103 		break;
1104 #endif /* CONFIG_BLOCK */
1105 	case CEPH_MSG_DATA_NONE:
1106 	default:
1107 		/* BUG(); */
1108 		break;
1109 	}
1110 	cursor->need_crc = true;
1111 }
1112 
1113 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1114 {
1115 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1116 	struct ceph_msg_data *data;
1117 
1118 	BUG_ON(!length);
1119 	BUG_ON(length > msg->data_length);
1120 	BUG_ON(list_empty(&msg->data));
1121 
1122 	cursor->data_head = &msg->data;
1123 	cursor->total_resid = length;
1124 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1125 	cursor->data = data;
1126 
1127 	__ceph_msg_data_cursor_init(cursor);
1128 }
1129 
1130 /*
1131  * Return the page containing the next piece to process for a given
1132  * data item, and supply the page offset and length of that piece.
1133  * Indicate whether this is the last piece in this data item.
1134  */
1135 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1136 					size_t *page_offset, size_t *length,
1137 					bool *last_piece)
1138 {
1139 	struct page *page;
1140 
1141 	switch (cursor->data->type) {
1142 	case CEPH_MSG_DATA_PAGELIST:
1143 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1144 		break;
1145 	case CEPH_MSG_DATA_PAGES:
1146 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1147 		break;
1148 #ifdef CONFIG_BLOCK
1149 	case CEPH_MSG_DATA_BIO:
1150 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1151 		break;
1152 #endif /* CONFIG_BLOCK */
1153 	case CEPH_MSG_DATA_NONE:
1154 	default:
1155 		page = NULL;
1156 		break;
1157 	}
1158 	BUG_ON(!page);
1159 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1160 	BUG_ON(!*length);
1161 	if (last_piece)
1162 		*last_piece = cursor->last_piece;
1163 
1164 	return page;
1165 }
1166 
1167 /*
1168  * Returns true if the result moves the cursor on to the next piece
1169  * of the data item.
1170  */
1171 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1172 				size_t bytes)
1173 {
1174 	bool new_piece;
1175 
1176 	BUG_ON(bytes > cursor->resid);
1177 	switch (cursor->data->type) {
1178 	case CEPH_MSG_DATA_PAGELIST:
1179 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1180 		break;
1181 	case CEPH_MSG_DATA_PAGES:
1182 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1183 		break;
1184 #ifdef CONFIG_BLOCK
1185 	case CEPH_MSG_DATA_BIO:
1186 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1187 		break;
1188 #endif /* CONFIG_BLOCK */
1189 	case CEPH_MSG_DATA_NONE:
1190 	default:
1191 		BUG();
1192 		break;
1193 	}
1194 	cursor->total_resid -= bytes;
1195 
1196 	if (!cursor->resid && cursor->total_resid) {
1197 		WARN_ON(!cursor->last_piece);
1198 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1199 		cursor->data = list_next_entry(cursor->data, links);
1200 		__ceph_msg_data_cursor_init(cursor);
1201 		new_piece = true;
1202 	}
1203 	cursor->need_crc = new_piece;
1204 
1205 	return new_piece;
1206 }
1207 
1208 static size_t sizeof_footer(struct ceph_connection *con)
1209 {
1210 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1211 	    sizeof(struct ceph_msg_footer) :
1212 	    sizeof(struct ceph_msg_footer_old);
1213 }
1214 
1215 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1216 {
1217 	BUG_ON(!msg);
1218 	BUG_ON(!data_len);
1219 
1220 	/* Initialize data cursor */
1221 
1222 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1223 }
1224 
1225 /*
1226  * Prepare footer for currently outgoing message, and finish things
1227  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1228  */
1229 static void prepare_write_message_footer(struct ceph_connection *con)
1230 {
1231 	struct ceph_msg *m = con->out_msg;
1232 
1233 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1234 
1235 	dout("prepare_write_message_footer %p\n", con);
1236 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1237 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1238 		if (con->ops->sign_message)
1239 			con->ops->sign_message(m);
1240 		else
1241 			m->footer.sig = 0;
1242 	} else {
1243 		m->old_footer.flags = m->footer.flags;
1244 	}
1245 	con->out_more = m->more_to_follow;
1246 	con->out_msg_done = true;
1247 }
1248 
1249 /*
1250  * Prepare headers for the next outgoing message.
1251  */
1252 static void prepare_write_message(struct ceph_connection *con)
1253 {
1254 	struct ceph_msg *m;
1255 	u32 crc;
1256 
1257 	con_out_kvec_reset(con);
1258 	con->out_msg_done = false;
1259 
1260 	/* Sneak an ack in there first?  If we can get it into the same
1261 	 * TCP packet that's a good thing. */
1262 	if (con->in_seq > con->in_seq_acked) {
1263 		con->in_seq_acked = con->in_seq;
1264 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1265 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1266 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1267 			&con->out_temp_ack);
1268 	}
1269 
1270 	BUG_ON(list_empty(&con->out_queue));
1271 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1272 	con->out_msg = m;
1273 	BUG_ON(m->con != con);
1274 
1275 	/* put message on sent list */
1276 	ceph_msg_get(m);
1277 	list_move_tail(&m->list_head, &con->out_sent);
1278 
1279 	/*
1280 	 * only assign outgoing seq # if we haven't sent this message
1281 	 * yet.  if it is requeued, resend with it's original seq.
1282 	 */
1283 	if (m->needs_out_seq) {
1284 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1285 		m->needs_out_seq = false;
1286 	}
1287 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1288 
1289 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1290 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1291 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1292 	     m->data_length);
1293 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1294 
1295 	/* tag + hdr + front + middle */
1296 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1297 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1298 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1299 
1300 	if (m->middle)
1301 		con_out_kvec_add(con, m->middle->vec.iov_len,
1302 			m->middle->vec.iov_base);
1303 
1304 	/* fill in hdr crc and finalize hdr */
1305 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1306 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1307 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1308 
1309 	/* fill in front and middle crc, footer */
1310 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1311 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1312 	if (m->middle) {
1313 		crc = crc32c(0, m->middle->vec.iov_base,
1314 				m->middle->vec.iov_len);
1315 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1316 	} else
1317 		con->out_msg->footer.middle_crc = 0;
1318 	dout("%s front_crc %u middle_crc %u\n", __func__,
1319 	     le32_to_cpu(con->out_msg->footer.front_crc),
1320 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1321 	con->out_msg->footer.flags = 0;
1322 
1323 	/* is there a data payload? */
1324 	con->out_msg->footer.data_crc = 0;
1325 	if (m->data_length) {
1326 		prepare_message_data(con->out_msg, m->data_length);
1327 		con->out_more = 1;  /* data + footer will follow */
1328 	} else {
1329 		/* no, queue up footer too and be done */
1330 		prepare_write_message_footer(con);
1331 	}
1332 
1333 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1334 }
1335 
1336 /*
1337  * Prepare an ack.
1338  */
1339 static void prepare_write_ack(struct ceph_connection *con)
1340 {
1341 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1342 	     con->in_seq_acked, con->in_seq);
1343 	con->in_seq_acked = con->in_seq;
1344 
1345 	con_out_kvec_reset(con);
1346 
1347 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1348 
1349 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1350 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1351 				&con->out_temp_ack);
1352 
1353 	con->out_more = 1;  /* more will follow.. eventually.. */
1354 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1355 }
1356 
1357 /*
1358  * Prepare to share the seq during handshake
1359  */
1360 static void prepare_write_seq(struct ceph_connection *con)
1361 {
1362 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1363 	     con->in_seq_acked, con->in_seq);
1364 	con->in_seq_acked = con->in_seq;
1365 
1366 	con_out_kvec_reset(con);
1367 
1368 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1369 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1370 			 &con->out_temp_ack);
1371 
1372 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1373 }
1374 
1375 /*
1376  * Prepare to write keepalive byte.
1377  */
1378 static void prepare_write_keepalive(struct ceph_connection *con)
1379 {
1380 	dout("prepare_write_keepalive %p\n", con);
1381 	con_out_kvec_reset(con);
1382 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1383 		struct timespec now = CURRENT_TIME;
1384 
1385 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1386 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1387 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1388 				 &con->out_temp_keepalive2);
1389 	} else {
1390 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1391 	}
1392 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1393 }
1394 
1395 /*
1396  * Connection negotiation.
1397  */
1398 
1399 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1400 						int *auth_proto)
1401 {
1402 	struct ceph_auth_handshake *auth;
1403 
1404 	if (!con->ops->get_authorizer) {
1405 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1406 		con->out_connect.authorizer_len = 0;
1407 		return NULL;
1408 	}
1409 
1410 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1411 	if (IS_ERR(auth))
1412 		return auth;
1413 
1414 	con->auth_reply_buf = auth->authorizer_reply_buf;
1415 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1416 	return auth;
1417 }
1418 
1419 /*
1420  * We connected to a peer and are saying hello.
1421  */
1422 static void prepare_write_banner(struct ceph_connection *con)
1423 {
1424 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1425 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1426 					&con->msgr->my_enc_addr);
1427 
1428 	con->out_more = 0;
1429 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1430 }
1431 
1432 static int prepare_write_connect(struct ceph_connection *con)
1433 {
1434 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1435 	int proto;
1436 	int auth_proto;
1437 	struct ceph_auth_handshake *auth;
1438 
1439 	switch (con->peer_name.type) {
1440 	case CEPH_ENTITY_TYPE_MON:
1441 		proto = CEPH_MONC_PROTOCOL;
1442 		break;
1443 	case CEPH_ENTITY_TYPE_OSD:
1444 		proto = CEPH_OSDC_PROTOCOL;
1445 		break;
1446 	case CEPH_ENTITY_TYPE_MDS:
1447 		proto = CEPH_MDSC_PROTOCOL;
1448 		break;
1449 	default:
1450 		BUG();
1451 	}
1452 
1453 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1454 	     con->connect_seq, global_seq, proto);
1455 
1456 	con->out_connect.features =
1457 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1458 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1459 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1460 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1461 	con->out_connect.protocol_version = cpu_to_le32(proto);
1462 	con->out_connect.flags = 0;
1463 
1464 	auth_proto = CEPH_AUTH_UNKNOWN;
1465 	auth = get_connect_authorizer(con, &auth_proto);
1466 	if (IS_ERR(auth))
1467 		return PTR_ERR(auth);
1468 
1469 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1470 	con->out_connect.authorizer_len = auth ?
1471 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1472 
1473 	con_out_kvec_add(con, sizeof (con->out_connect),
1474 					&con->out_connect);
1475 	if (auth && auth->authorizer_buf_len)
1476 		con_out_kvec_add(con, auth->authorizer_buf_len,
1477 					auth->authorizer_buf);
1478 
1479 	con->out_more = 0;
1480 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1481 
1482 	return 0;
1483 }
1484 
1485 /*
1486  * write as much of pending kvecs to the socket as we can.
1487  *  1 -> done
1488  *  0 -> socket full, but more to do
1489  * <0 -> error
1490  */
1491 static int write_partial_kvec(struct ceph_connection *con)
1492 {
1493 	int ret;
1494 
1495 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1496 	while (con->out_kvec_bytes > 0) {
1497 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1498 				       con->out_kvec_left, con->out_kvec_bytes,
1499 				       con->out_more);
1500 		if (ret <= 0)
1501 			goto out;
1502 		con->out_kvec_bytes -= ret;
1503 		if (con->out_kvec_bytes == 0)
1504 			break;            /* done */
1505 
1506 		/* account for full iov entries consumed */
1507 		while (ret >= con->out_kvec_cur->iov_len) {
1508 			BUG_ON(!con->out_kvec_left);
1509 			ret -= con->out_kvec_cur->iov_len;
1510 			con->out_kvec_cur++;
1511 			con->out_kvec_left--;
1512 		}
1513 		/* and for a partially-consumed entry */
1514 		if (ret) {
1515 			con->out_kvec_cur->iov_len -= ret;
1516 			con->out_kvec_cur->iov_base += ret;
1517 		}
1518 	}
1519 	con->out_kvec_left = 0;
1520 	ret = 1;
1521 out:
1522 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1523 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1524 	return ret;  /* done! */
1525 }
1526 
1527 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1528 				unsigned int page_offset,
1529 				unsigned int length)
1530 {
1531 	char *kaddr;
1532 
1533 	kaddr = kmap(page);
1534 	BUG_ON(kaddr == NULL);
1535 	crc = crc32c(crc, kaddr + page_offset, length);
1536 	kunmap(page);
1537 
1538 	return crc;
1539 }
1540 /*
1541  * Write as much message data payload as we can.  If we finish, queue
1542  * up the footer.
1543  *  1 -> done, footer is now queued in out_kvec[].
1544  *  0 -> socket full, but more to do
1545  * <0 -> error
1546  */
1547 static int write_partial_message_data(struct ceph_connection *con)
1548 {
1549 	struct ceph_msg *msg = con->out_msg;
1550 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1551 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1552 	u32 crc;
1553 
1554 	dout("%s %p msg %p\n", __func__, con, msg);
1555 
1556 	if (list_empty(&msg->data))
1557 		return -EINVAL;
1558 
1559 	/*
1560 	 * Iterate through each page that contains data to be
1561 	 * written, and send as much as possible for each.
1562 	 *
1563 	 * If we are calculating the data crc (the default), we will
1564 	 * need to map the page.  If we have no pages, they have
1565 	 * been revoked, so use the zero page.
1566 	 */
1567 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1568 	while (cursor->resid) {
1569 		struct page *page;
1570 		size_t page_offset;
1571 		size_t length;
1572 		bool last_piece;
1573 		bool need_crc;
1574 		int ret;
1575 
1576 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1577 					  &last_piece);
1578 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1579 					length, !last_piece);
1580 		if (ret <= 0) {
1581 			if (do_datacrc)
1582 				msg->footer.data_crc = cpu_to_le32(crc);
1583 
1584 			return ret;
1585 		}
1586 		if (do_datacrc && cursor->need_crc)
1587 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1588 		need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1589 	}
1590 
1591 	dout("%s %p msg %p done\n", __func__, con, msg);
1592 
1593 	/* prepare and queue up footer, too */
1594 	if (do_datacrc)
1595 		msg->footer.data_crc = cpu_to_le32(crc);
1596 	else
1597 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1598 	con_out_kvec_reset(con);
1599 	prepare_write_message_footer(con);
1600 
1601 	return 1;	/* must return > 0 to indicate success */
1602 }
1603 
1604 /*
1605  * write some zeros
1606  */
1607 static int write_partial_skip(struct ceph_connection *con)
1608 {
1609 	int ret;
1610 
1611 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1612 	while (con->out_skip > 0) {
1613 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1614 
1615 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1616 		if (ret <= 0)
1617 			goto out;
1618 		con->out_skip -= ret;
1619 	}
1620 	ret = 1;
1621 out:
1622 	return ret;
1623 }
1624 
1625 /*
1626  * Prepare to read connection handshake, or an ack.
1627  */
1628 static void prepare_read_banner(struct ceph_connection *con)
1629 {
1630 	dout("prepare_read_banner %p\n", con);
1631 	con->in_base_pos = 0;
1632 }
1633 
1634 static void prepare_read_connect(struct ceph_connection *con)
1635 {
1636 	dout("prepare_read_connect %p\n", con);
1637 	con->in_base_pos = 0;
1638 }
1639 
1640 static void prepare_read_ack(struct ceph_connection *con)
1641 {
1642 	dout("prepare_read_ack %p\n", con);
1643 	con->in_base_pos = 0;
1644 }
1645 
1646 static void prepare_read_seq(struct ceph_connection *con)
1647 {
1648 	dout("prepare_read_seq %p\n", con);
1649 	con->in_base_pos = 0;
1650 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1651 }
1652 
1653 static void prepare_read_tag(struct ceph_connection *con)
1654 {
1655 	dout("prepare_read_tag %p\n", con);
1656 	con->in_base_pos = 0;
1657 	con->in_tag = CEPH_MSGR_TAG_READY;
1658 }
1659 
1660 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1661 {
1662 	dout("prepare_read_keepalive_ack %p\n", con);
1663 	con->in_base_pos = 0;
1664 }
1665 
1666 /*
1667  * Prepare to read a message.
1668  */
1669 static int prepare_read_message(struct ceph_connection *con)
1670 {
1671 	dout("prepare_read_message %p\n", con);
1672 	BUG_ON(con->in_msg != NULL);
1673 	con->in_base_pos = 0;
1674 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1675 	return 0;
1676 }
1677 
1678 
1679 static int read_partial(struct ceph_connection *con,
1680 			int end, int size, void *object)
1681 {
1682 	while (con->in_base_pos < end) {
1683 		int left = end - con->in_base_pos;
1684 		int have = size - left;
1685 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1686 		if (ret <= 0)
1687 			return ret;
1688 		con->in_base_pos += ret;
1689 	}
1690 	return 1;
1691 }
1692 
1693 
1694 /*
1695  * Read all or part of the connect-side handshake on a new connection
1696  */
1697 static int read_partial_banner(struct ceph_connection *con)
1698 {
1699 	int size;
1700 	int end;
1701 	int ret;
1702 
1703 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1704 
1705 	/* peer's banner */
1706 	size = strlen(CEPH_BANNER);
1707 	end = size;
1708 	ret = read_partial(con, end, size, con->in_banner);
1709 	if (ret <= 0)
1710 		goto out;
1711 
1712 	size = sizeof (con->actual_peer_addr);
1713 	end += size;
1714 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1715 	if (ret <= 0)
1716 		goto out;
1717 
1718 	size = sizeof (con->peer_addr_for_me);
1719 	end += size;
1720 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1721 	if (ret <= 0)
1722 		goto out;
1723 
1724 out:
1725 	return ret;
1726 }
1727 
1728 static int read_partial_connect(struct ceph_connection *con)
1729 {
1730 	int size;
1731 	int end;
1732 	int ret;
1733 
1734 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1735 
1736 	size = sizeof (con->in_reply);
1737 	end = size;
1738 	ret = read_partial(con, end, size, &con->in_reply);
1739 	if (ret <= 0)
1740 		goto out;
1741 
1742 	size = le32_to_cpu(con->in_reply.authorizer_len);
1743 	end += size;
1744 	ret = read_partial(con, end, size, con->auth_reply_buf);
1745 	if (ret <= 0)
1746 		goto out;
1747 
1748 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1749 	     con, (int)con->in_reply.tag,
1750 	     le32_to_cpu(con->in_reply.connect_seq),
1751 	     le32_to_cpu(con->in_reply.global_seq));
1752 out:
1753 	return ret;
1754 
1755 }
1756 
1757 /*
1758  * Verify the hello banner looks okay.
1759  */
1760 static int verify_hello(struct ceph_connection *con)
1761 {
1762 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1763 		pr_err("connect to %s got bad banner\n",
1764 		       ceph_pr_addr(&con->peer_addr.in_addr));
1765 		con->error_msg = "protocol error, bad banner";
1766 		return -1;
1767 	}
1768 	return 0;
1769 }
1770 
1771 static bool addr_is_blank(struct sockaddr_storage *ss)
1772 {
1773 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1774 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1775 
1776 	switch (ss->ss_family) {
1777 	case AF_INET:
1778 		return addr->s_addr == htonl(INADDR_ANY);
1779 	case AF_INET6:
1780 		return ipv6_addr_any(addr6);
1781 	default:
1782 		return true;
1783 	}
1784 }
1785 
1786 static int addr_port(struct sockaddr_storage *ss)
1787 {
1788 	switch (ss->ss_family) {
1789 	case AF_INET:
1790 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1791 	case AF_INET6:
1792 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1793 	}
1794 	return 0;
1795 }
1796 
1797 static void addr_set_port(struct sockaddr_storage *ss, int p)
1798 {
1799 	switch (ss->ss_family) {
1800 	case AF_INET:
1801 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1802 		break;
1803 	case AF_INET6:
1804 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1805 		break;
1806 	}
1807 }
1808 
1809 /*
1810  * Unlike other *_pton function semantics, zero indicates success.
1811  */
1812 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1813 		char delim, const char **ipend)
1814 {
1815 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1816 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1817 
1818 	memset(ss, 0, sizeof(*ss));
1819 
1820 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1821 		ss->ss_family = AF_INET;
1822 		return 0;
1823 	}
1824 
1825 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1826 		ss->ss_family = AF_INET6;
1827 		return 0;
1828 	}
1829 
1830 	return -EINVAL;
1831 }
1832 
1833 /*
1834  * Extract hostname string and resolve using kernel DNS facility.
1835  */
1836 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1837 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1838 		struct sockaddr_storage *ss, char delim, const char **ipend)
1839 {
1840 	const char *end, *delim_p;
1841 	char *colon_p, *ip_addr = NULL;
1842 	int ip_len, ret;
1843 
1844 	/*
1845 	 * The end of the hostname occurs immediately preceding the delimiter or
1846 	 * the port marker (':') where the delimiter takes precedence.
1847 	 */
1848 	delim_p = memchr(name, delim, namelen);
1849 	colon_p = memchr(name, ':', namelen);
1850 
1851 	if (delim_p && colon_p)
1852 		end = delim_p < colon_p ? delim_p : colon_p;
1853 	else if (!delim_p && colon_p)
1854 		end = colon_p;
1855 	else {
1856 		end = delim_p;
1857 		if (!end) /* case: hostname:/ */
1858 			end = name + namelen;
1859 	}
1860 
1861 	if (end <= name)
1862 		return -EINVAL;
1863 
1864 	/* do dns_resolve upcall */
1865 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1866 	if (ip_len > 0)
1867 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1868 	else
1869 		ret = -ESRCH;
1870 
1871 	kfree(ip_addr);
1872 
1873 	*ipend = end;
1874 
1875 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1876 			ret, ret ? "failed" : ceph_pr_addr(ss));
1877 
1878 	return ret;
1879 }
1880 #else
1881 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1882 		struct sockaddr_storage *ss, char delim, const char **ipend)
1883 {
1884 	return -EINVAL;
1885 }
1886 #endif
1887 
1888 /*
1889  * Parse a server name (IP or hostname). If a valid IP address is not found
1890  * then try to extract a hostname to resolve using userspace DNS upcall.
1891  */
1892 static int ceph_parse_server_name(const char *name, size_t namelen,
1893 			struct sockaddr_storage *ss, char delim, const char **ipend)
1894 {
1895 	int ret;
1896 
1897 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1898 	if (ret)
1899 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1900 
1901 	return ret;
1902 }
1903 
1904 /*
1905  * Parse an ip[:port] list into an addr array.  Use the default
1906  * monitor port if a port isn't specified.
1907  */
1908 int ceph_parse_ips(const char *c, const char *end,
1909 		   struct ceph_entity_addr *addr,
1910 		   int max_count, int *count)
1911 {
1912 	int i, ret = -EINVAL;
1913 	const char *p = c;
1914 
1915 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1916 	for (i = 0; i < max_count; i++) {
1917 		const char *ipend;
1918 		struct sockaddr_storage *ss = &addr[i].in_addr;
1919 		int port;
1920 		char delim = ',';
1921 
1922 		if (*p == '[') {
1923 			delim = ']';
1924 			p++;
1925 		}
1926 
1927 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1928 		if (ret)
1929 			goto bad;
1930 		ret = -EINVAL;
1931 
1932 		p = ipend;
1933 
1934 		if (delim == ']') {
1935 			if (*p != ']') {
1936 				dout("missing matching ']'\n");
1937 				goto bad;
1938 			}
1939 			p++;
1940 		}
1941 
1942 		/* port? */
1943 		if (p < end && *p == ':') {
1944 			port = 0;
1945 			p++;
1946 			while (p < end && *p >= '0' && *p <= '9') {
1947 				port = (port * 10) + (*p - '0');
1948 				p++;
1949 			}
1950 			if (port == 0)
1951 				port = CEPH_MON_PORT;
1952 			else if (port > 65535)
1953 				goto bad;
1954 		} else {
1955 			port = CEPH_MON_PORT;
1956 		}
1957 
1958 		addr_set_port(ss, port);
1959 
1960 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1961 
1962 		if (p == end)
1963 			break;
1964 		if (*p != ',')
1965 			goto bad;
1966 		p++;
1967 	}
1968 
1969 	if (p != end)
1970 		goto bad;
1971 
1972 	if (count)
1973 		*count = i + 1;
1974 	return 0;
1975 
1976 bad:
1977 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1978 	return ret;
1979 }
1980 EXPORT_SYMBOL(ceph_parse_ips);
1981 
1982 static int process_banner(struct ceph_connection *con)
1983 {
1984 	dout("process_banner on %p\n", con);
1985 
1986 	if (verify_hello(con) < 0)
1987 		return -1;
1988 
1989 	ceph_decode_addr(&con->actual_peer_addr);
1990 	ceph_decode_addr(&con->peer_addr_for_me);
1991 
1992 	/*
1993 	 * Make sure the other end is who we wanted.  note that the other
1994 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1995 	 * them the benefit of the doubt.
1996 	 */
1997 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1998 		   sizeof(con->peer_addr)) != 0 &&
1999 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2000 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2001 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2002 			ceph_pr_addr(&con->peer_addr.in_addr),
2003 			(int)le32_to_cpu(con->peer_addr.nonce),
2004 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2005 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2006 		con->error_msg = "wrong peer at address";
2007 		return -1;
2008 	}
2009 
2010 	/*
2011 	 * did we learn our address?
2012 	 */
2013 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2014 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2015 
2016 		memcpy(&con->msgr->inst.addr.in_addr,
2017 		       &con->peer_addr_for_me.in_addr,
2018 		       sizeof(con->peer_addr_for_me.in_addr));
2019 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2020 		encode_my_addr(con->msgr);
2021 		dout("process_banner learned my addr is %s\n",
2022 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 static int process_connect(struct ceph_connection *con)
2029 {
2030 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2031 	u64 req_feat = from_msgr(con->msgr)->required_features;
2032 	u64 server_feat = ceph_sanitize_features(
2033 				le64_to_cpu(con->in_reply.features));
2034 	int ret;
2035 
2036 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2037 
2038 	if (con->auth_reply_buf) {
2039 		/*
2040 		 * Any connection that defines ->get_authorizer()
2041 		 * should also define ->verify_authorizer_reply().
2042 		 * See get_connect_authorizer().
2043 		 */
2044 		ret = con->ops->verify_authorizer_reply(con);
2045 		if (ret < 0) {
2046 			con->error_msg = "bad authorize reply";
2047 			return ret;
2048 		}
2049 	}
2050 
2051 	switch (con->in_reply.tag) {
2052 	case CEPH_MSGR_TAG_FEATURES:
2053 		pr_err("%s%lld %s feature set mismatch,"
2054 		       " my %llx < server's %llx, missing %llx\n",
2055 		       ENTITY_NAME(con->peer_name),
2056 		       ceph_pr_addr(&con->peer_addr.in_addr),
2057 		       sup_feat, server_feat, server_feat & ~sup_feat);
2058 		con->error_msg = "missing required protocol features";
2059 		reset_connection(con);
2060 		return -1;
2061 
2062 	case CEPH_MSGR_TAG_BADPROTOVER:
2063 		pr_err("%s%lld %s protocol version mismatch,"
2064 		       " my %d != server's %d\n",
2065 		       ENTITY_NAME(con->peer_name),
2066 		       ceph_pr_addr(&con->peer_addr.in_addr),
2067 		       le32_to_cpu(con->out_connect.protocol_version),
2068 		       le32_to_cpu(con->in_reply.protocol_version));
2069 		con->error_msg = "protocol version mismatch";
2070 		reset_connection(con);
2071 		return -1;
2072 
2073 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2074 		con->auth_retry++;
2075 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2076 		     con->auth_retry);
2077 		if (con->auth_retry == 2) {
2078 			con->error_msg = "connect authorization failure";
2079 			return -1;
2080 		}
2081 		con_out_kvec_reset(con);
2082 		ret = prepare_write_connect(con);
2083 		if (ret < 0)
2084 			return ret;
2085 		prepare_read_connect(con);
2086 		break;
2087 
2088 	case CEPH_MSGR_TAG_RESETSESSION:
2089 		/*
2090 		 * If we connected with a large connect_seq but the peer
2091 		 * has no record of a session with us (no connection, or
2092 		 * connect_seq == 0), they will send RESETSESION to indicate
2093 		 * that they must have reset their session, and may have
2094 		 * dropped messages.
2095 		 */
2096 		dout("process_connect got RESET peer seq %u\n",
2097 		     le32_to_cpu(con->in_reply.connect_seq));
2098 		pr_err("%s%lld %s connection reset\n",
2099 		       ENTITY_NAME(con->peer_name),
2100 		       ceph_pr_addr(&con->peer_addr.in_addr));
2101 		reset_connection(con);
2102 		con_out_kvec_reset(con);
2103 		ret = prepare_write_connect(con);
2104 		if (ret < 0)
2105 			return ret;
2106 		prepare_read_connect(con);
2107 
2108 		/* Tell ceph about it. */
2109 		mutex_unlock(&con->mutex);
2110 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2111 		if (con->ops->peer_reset)
2112 			con->ops->peer_reset(con);
2113 		mutex_lock(&con->mutex);
2114 		if (con->state != CON_STATE_NEGOTIATING)
2115 			return -EAGAIN;
2116 		break;
2117 
2118 	case CEPH_MSGR_TAG_RETRY_SESSION:
2119 		/*
2120 		 * If we sent a smaller connect_seq than the peer has, try
2121 		 * again with a larger value.
2122 		 */
2123 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2124 		     le32_to_cpu(con->out_connect.connect_seq),
2125 		     le32_to_cpu(con->in_reply.connect_seq));
2126 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2127 		con_out_kvec_reset(con);
2128 		ret = prepare_write_connect(con);
2129 		if (ret < 0)
2130 			return ret;
2131 		prepare_read_connect(con);
2132 		break;
2133 
2134 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2135 		/*
2136 		 * If we sent a smaller global_seq than the peer has, try
2137 		 * again with a larger value.
2138 		 */
2139 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2140 		     con->peer_global_seq,
2141 		     le32_to_cpu(con->in_reply.global_seq));
2142 		get_global_seq(con->msgr,
2143 			       le32_to_cpu(con->in_reply.global_seq));
2144 		con_out_kvec_reset(con);
2145 		ret = prepare_write_connect(con);
2146 		if (ret < 0)
2147 			return ret;
2148 		prepare_read_connect(con);
2149 		break;
2150 
2151 	case CEPH_MSGR_TAG_SEQ:
2152 	case CEPH_MSGR_TAG_READY:
2153 		if (req_feat & ~server_feat) {
2154 			pr_err("%s%lld %s protocol feature mismatch,"
2155 			       " my required %llx > server's %llx, need %llx\n",
2156 			       ENTITY_NAME(con->peer_name),
2157 			       ceph_pr_addr(&con->peer_addr.in_addr),
2158 			       req_feat, server_feat, req_feat & ~server_feat);
2159 			con->error_msg = "missing required protocol features";
2160 			reset_connection(con);
2161 			return -1;
2162 		}
2163 
2164 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2165 		con->state = CON_STATE_OPEN;
2166 		con->auth_retry = 0;    /* we authenticated; clear flag */
2167 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2168 		con->connect_seq++;
2169 		con->peer_features = server_feat;
2170 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2171 		     con->peer_global_seq,
2172 		     le32_to_cpu(con->in_reply.connect_seq),
2173 		     con->connect_seq);
2174 		WARN_ON(con->connect_seq !=
2175 			le32_to_cpu(con->in_reply.connect_seq));
2176 
2177 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2178 			con_flag_set(con, CON_FLAG_LOSSYTX);
2179 
2180 		con->delay = 0;      /* reset backoff memory */
2181 
2182 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2183 			prepare_write_seq(con);
2184 			prepare_read_seq(con);
2185 		} else {
2186 			prepare_read_tag(con);
2187 		}
2188 		break;
2189 
2190 	case CEPH_MSGR_TAG_WAIT:
2191 		/*
2192 		 * If there is a connection race (we are opening
2193 		 * connections to each other), one of us may just have
2194 		 * to WAIT.  This shouldn't happen if we are the
2195 		 * client.
2196 		 */
2197 		con->error_msg = "protocol error, got WAIT as client";
2198 		return -1;
2199 
2200 	default:
2201 		con->error_msg = "protocol error, garbage tag during connect";
2202 		return -1;
2203 	}
2204 	return 0;
2205 }
2206 
2207 
2208 /*
2209  * read (part of) an ack
2210  */
2211 static int read_partial_ack(struct ceph_connection *con)
2212 {
2213 	int size = sizeof (con->in_temp_ack);
2214 	int end = size;
2215 
2216 	return read_partial(con, end, size, &con->in_temp_ack);
2217 }
2218 
2219 /*
2220  * We can finally discard anything that's been acked.
2221  */
2222 static void process_ack(struct ceph_connection *con)
2223 {
2224 	struct ceph_msg *m;
2225 	u64 ack = le64_to_cpu(con->in_temp_ack);
2226 	u64 seq;
2227 
2228 	while (!list_empty(&con->out_sent)) {
2229 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2230 				     list_head);
2231 		seq = le64_to_cpu(m->hdr.seq);
2232 		if (seq > ack)
2233 			break;
2234 		dout("got ack for seq %llu type %d at %p\n", seq,
2235 		     le16_to_cpu(m->hdr.type), m);
2236 		m->ack_stamp = jiffies;
2237 		ceph_msg_remove(m);
2238 	}
2239 	prepare_read_tag(con);
2240 }
2241 
2242 
2243 static int read_partial_message_section(struct ceph_connection *con,
2244 					struct kvec *section,
2245 					unsigned int sec_len, u32 *crc)
2246 {
2247 	int ret, left;
2248 
2249 	BUG_ON(!section);
2250 
2251 	while (section->iov_len < sec_len) {
2252 		BUG_ON(section->iov_base == NULL);
2253 		left = sec_len - section->iov_len;
2254 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2255 				       section->iov_len, left);
2256 		if (ret <= 0)
2257 			return ret;
2258 		section->iov_len += ret;
2259 	}
2260 	if (section->iov_len == sec_len)
2261 		*crc = crc32c(0, section->iov_base, section->iov_len);
2262 
2263 	return 1;
2264 }
2265 
2266 static int read_partial_msg_data(struct ceph_connection *con)
2267 {
2268 	struct ceph_msg *msg = con->in_msg;
2269 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2270 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2271 	struct page *page;
2272 	size_t page_offset;
2273 	size_t length;
2274 	u32 crc = 0;
2275 	int ret;
2276 
2277 	BUG_ON(!msg);
2278 	if (list_empty(&msg->data))
2279 		return -EIO;
2280 
2281 	if (do_datacrc)
2282 		crc = con->in_data_crc;
2283 	while (cursor->resid) {
2284 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2285 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2286 		if (ret <= 0) {
2287 			if (do_datacrc)
2288 				con->in_data_crc = crc;
2289 
2290 			return ret;
2291 		}
2292 
2293 		if (do_datacrc)
2294 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2295 		(void) ceph_msg_data_advance(cursor, (size_t)ret);
2296 	}
2297 	if (do_datacrc)
2298 		con->in_data_crc = crc;
2299 
2300 	return 1;	/* must return > 0 to indicate success */
2301 }
2302 
2303 /*
2304  * read (part of) a message.
2305  */
2306 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2307 
2308 static int read_partial_message(struct ceph_connection *con)
2309 {
2310 	struct ceph_msg *m = con->in_msg;
2311 	int size;
2312 	int end;
2313 	int ret;
2314 	unsigned int front_len, middle_len, data_len;
2315 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2316 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2317 	u64 seq;
2318 	u32 crc;
2319 
2320 	dout("read_partial_message con %p msg %p\n", con, m);
2321 
2322 	/* header */
2323 	size = sizeof (con->in_hdr);
2324 	end = size;
2325 	ret = read_partial(con, end, size, &con->in_hdr);
2326 	if (ret <= 0)
2327 		return ret;
2328 
2329 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2330 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2331 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2332 		       crc, con->in_hdr.crc);
2333 		return -EBADMSG;
2334 	}
2335 
2336 	front_len = le32_to_cpu(con->in_hdr.front_len);
2337 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2338 		return -EIO;
2339 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2340 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2341 		return -EIO;
2342 	data_len = le32_to_cpu(con->in_hdr.data_len);
2343 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2344 		return -EIO;
2345 
2346 	/* verify seq# */
2347 	seq = le64_to_cpu(con->in_hdr.seq);
2348 	if ((s64)seq - (s64)con->in_seq < 1) {
2349 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2350 			ENTITY_NAME(con->peer_name),
2351 			ceph_pr_addr(&con->peer_addr.in_addr),
2352 			seq, con->in_seq + 1);
2353 		con->in_base_pos = -front_len - middle_len - data_len -
2354 			sizeof_footer(con);
2355 		con->in_tag = CEPH_MSGR_TAG_READY;
2356 		return 1;
2357 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2358 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2359 		       seq, con->in_seq + 1);
2360 		con->error_msg = "bad message sequence # for incoming message";
2361 		return -EBADE;
2362 	}
2363 
2364 	/* allocate message? */
2365 	if (!con->in_msg) {
2366 		int skip = 0;
2367 
2368 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2369 		     front_len, data_len);
2370 		ret = ceph_con_in_msg_alloc(con, &skip);
2371 		if (ret < 0)
2372 			return ret;
2373 
2374 		BUG_ON(!con->in_msg ^ skip);
2375 		if (skip) {
2376 			/* skip this message */
2377 			dout("alloc_msg said skip message\n");
2378 			con->in_base_pos = -front_len - middle_len - data_len -
2379 				sizeof_footer(con);
2380 			con->in_tag = CEPH_MSGR_TAG_READY;
2381 			con->in_seq++;
2382 			return 1;
2383 		}
2384 
2385 		BUG_ON(!con->in_msg);
2386 		BUG_ON(con->in_msg->con != con);
2387 		m = con->in_msg;
2388 		m->front.iov_len = 0;    /* haven't read it yet */
2389 		if (m->middle)
2390 			m->middle->vec.iov_len = 0;
2391 
2392 		/* prepare for data payload, if any */
2393 
2394 		if (data_len)
2395 			prepare_message_data(con->in_msg, data_len);
2396 	}
2397 
2398 	/* front */
2399 	ret = read_partial_message_section(con, &m->front, front_len,
2400 					   &con->in_front_crc);
2401 	if (ret <= 0)
2402 		return ret;
2403 
2404 	/* middle */
2405 	if (m->middle) {
2406 		ret = read_partial_message_section(con, &m->middle->vec,
2407 						   middle_len,
2408 						   &con->in_middle_crc);
2409 		if (ret <= 0)
2410 			return ret;
2411 	}
2412 
2413 	/* (page) data */
2414 	if (data_len) {
2415 		ret = read_partial_msg_data(con);
2416 		if (ret <= 0)
2417 			return ret;
2418 	}
2419 
2420 	/* footer */
2421 	size = sizeof_footer(con);
2422 	end += size;
2423 	ret = read_partial(con, end, size, &m->footer);
2424 	if (ret <= 0)
2425 		return ret;
2426 
2427 	if (!need_sign) {
2428 		m->footer.flags = m->old_footer.flags;
2429 		m->footer.sig = 0;
2430 	}
2431 
2432 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2433 	     m, front_len, m->footer.front_crc, middle_len,
2434 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2435 
2436 	/* crc ok? */
2437 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2438 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2439 		       m, con->in_front_crc, m->footer.front_crc);
2440 		return -EBADMSG;
2441 	}
2442 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2443 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2444 		       m, con->in_middle_crc, m->footer.middle_crc);
2445 		return -EBADMSG;
2446 	}
2447 	if (do_datacrc &&
2448 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2449 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2450 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2451 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2452 		return -EBADMSG;
2453 	}
2454 
2455 	if (need_sign && con->ops->check_message_signature &&
2456 	    con->ops->check_message_signature(m)) {
2457 		pr_err("read_partial_message %p signature check failed\n", m);
2458 		return -EBADMSG;
2459 	}
2460 
2461 	return 1; /* done! */
2462 }
2463 
2464 /*
2465  * Process message.  This happens in the worker thread.  The callback should
2466  * be careful not to do anything that waits on other incoming messages or it
2467  * may deadlock.
2468  */
2469 static void process_message(struct ceph_connection *con)
2470 {
2471 	struct ceph_msg *msg = con->in_msg;
2472 
2473 	BUG_ON(con->in_msg->con != con);
2474 	con->in_msg = NULL;
2475 
2476 	/* if first message, set peer_name */
2477 	if (con->peer_name.type == 0)
2478 		con->peer_name = msg->hdr.src;
2479 
2480 	con->in_seq++;
2481 	mutex_unlock(&con->mutex);
2482 
2483 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2484 	     msg, le64_to_cpu(msg->hdr.seq),
2485 	     ENTITY_NAME(msg->hdr.src),
2486 	     le16_to_cpu(msg->hdr.type),
2487 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2488 	     le32_to_cpu(msg->hdr.front_len),
2489 	     le32_to_cpu(msg->hdr.data_len),
2490 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2491 	con->ops->dispatch(con, msg);
2492 
2493 	mutex_lock(&con->mutex);
2494 }
2495 
2496 static int read_keepalive_ack(struct ceph_connection *con)
2497 {
2498 	struct ceph_timespec ceph_ts;
2499 	size_t size = sizeof(ceph_ts);
2500 	int ret = read_partial(con, size, size, &ceph_ts);
2501 	if (ret <= 0)
2502 		return ret;
2503 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2504 	prepare_read_tag(con);
2505 	return 1;
2506 }
2507 
2508 /*
2509  * Write something to the socket.  Called in a worker thread when the
2510  * socket appears to be writeable and we have something ready to send.
2511  */
2512 static int try_write(struct ceph_connection *con)
2513 {
2514 	int ret = 1;
2515 
2516 	dout("try_write start %p state %lu\n", con, con->state);
2517 
2518 more:
2519 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2520 
2521 	/* open the socket first? */
2522 	if (con->state == CON_STATE_PREOPEN) {
2523 		BUG_ON(con->sock);
2524 		con->state = CON_STATE_CONNECTING;
2525 
2526 		con_out_kvec_reset(con);
2527 		prepare_write_banner(con);
2528 		prepare_read_banner(con);
2529 
2530 		BUG_ON(con->in_msg);
2531 		con->in_tag = CEPH_MSGR_TAG_READY;
2532 		dout("try_write initiating connect on %p new state %lu\n",
2533 		     con, con->state);
2534 		ret = ceph_tcp_connect(con);
2535 		if (ret < 0) {
2536 			con->error_msg = "connect error";
2537 			goto out;
2538 		}
2539 	}
2540 
2541 more_kvec:
2542 	/* kvec data queued? */
2543 	if (con->out_kvec_left) {
2544 		ret = write_partial_kvec(con);
2545 		if (ret <= 0)
2546 			goto out;
2547 	}
2548 	if (con->out_skip) {
2549 		ret = write_partial_skip(con);
2550 		if (ret <= 0)
2551 			goto out;
2552 	}
2553 
2554 	/* msg pages? */
2555 	if (con->out_msg) {
2556 		if (con->out_msg_done) {
2557 			ceph_msg_put(con->out_msg);
2558 			con->out_msg = NULL;   /* we're done with this one */
2559 			goto do_next;
2560 		}
2561 
2562 		ret = write_partial_message_data(con);
2563 		if (ret == 1)
2564 			goto more_kvec;  /* we need to send the footer, too! */
2565 		if (ret == 0)
2566 			goto out;
2567 		if (ret < 0) {
2568 			dout("try_write write_partial_message_data err %d\n",
2569 			     ret);
2570 			goto out;
2571 		}
2572 	}
2573 
2574 do_next:
2575 	if (con->state == CON_STATE_OPEN) {
2576 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2577 			prepare_write_keepalive(con);
2578 			goto more;
2579 		}
2580 		/* is anything else pending? */
2581 		if (!list_empty(&con->out_queue)) {
2582 			prepare_write_message(con);
2583 			goto more;
2584 		}
2585 		if (con->in_seq > con->in_seq_acked) {
2586 			prepare_write_ack(con);
2587 			goto more;
2588 		}
2589 	}
2590 
2591 	/* Nothing to do! */
2592 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2593 	dout("try_write nothing else to write.\n");
2594 	ret = 0;
2595 out:
2596 	dout("try_write done on %p ret %d\n", con, ret);
2597 	return ret;
2598 }
2599 
2600 
2601 
2602 /*
2603  * Read what we can from the socket.
2604  */
2605 static int try_read(struct ceph_connection *con)
2606 {
2607 	int ret = -1;
2608 
2609 more:
2610 	dout("try_read start on %p state %lu\n", con, con->state);
2611 	if (con->state != CON_STATE_CONNECTING &&
2612 	    con->state != CON_STATE_NEGOTIATING &&
2613 	    con->state != CON_STATE_OPEN)
2614 		return 0;
2615 
2616 	BUG_ON(!con->sock);
2617 
2618 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2619 	     con->in_base_pos);
2620 
2621 	if (con->state == CON_STATE_CONNECTING) {
2622 		dout("try_read connecting\n");
2623 		ret = read_partial_banner(con);
2624 		if (ret <= 0)
2625 			goto out;
2626 		ret = process_banner(con);
2627 		if (ret < 0)
2628 			goto out;
2629 
2630 		con->state = CON_STATE_NEGOTIATING;
2631 
2632 		/*
2633 		 * Received banner is good, exchange connection info.
2634 		 * Do not reset out_kvec, as sending our banner raced
2635 		 * with receiving peer banner after connect completed.
2636 		 */
2637 		ret = prepare_write_connect(con);
2638 		if (ret < 0)
2639 			goto out;
2640 		prepare_read_connect(con);
2641 
2642 		/* Send connection info before awaiting response */
2643 		goto out;
2644 	}
2645 
2646 	if (con->state == CON_STATE_NEGOTIATING) {
2647 		dout("try_read negotiating\n");
2648 		ret = read_partial_connect(con);
2649 		if (ret <= 0)
2650 			goto out;
2651 		ret = process_connect(con);
2652 		if (ret < 0)
2653 			goto out;
2654 		goto more;
2655 	}
2656 
2657 	WARN_ON(con->state != CON_STATE_OPEN);
2658 
2659 	if (con->in_base_pos < 0) {
2660 		/*
2661 		 * skipping + discarding content.
2662 		 *
2663 		 * FIXME: there must be a better way to do this!
2664 		 */
2665 		static char buf[SKIP_BUF_SIZE];
2666 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2667 
2668 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2669 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2670 		if (ret <= 0)
2671 			goto out;
2672 		con->in_base_pos += ret;
2673 		if (con->in_base_pos)
2674 			goto more;
2675 	}
2676 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2677 		/*
2678 		 * what's next?
2679 		 */
2680 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2681 		if (ret <= 0)
2682 			goto out;
2683 		dout("try_read got tag %d\n", (int)con->in_tag);
2684 		switch (con->in_tag) {
2685 		case CEPH_MSGR_TAG_MSG:
2686 			prepare_read_message(con);
2687 			break;
2688 		case CEPH_MSGR_TAG_ACK:
2689 			prepare_read_ack(con);
2690 			break;
2691 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2692 			prepare_read_keepalive_ack(con);
2693 			break;
2694 		case CEPH_MSGR_TAG_CLOSE:
2695 			con_close_socket(con);
2696 			con->state = CON_STATE_CLOSED;
2697 			goto out;
2698 		default:
2699 			goto bad_tag;
2700 		}
2701 	}
2702 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2703 		ret = read_partial_message(con);
2704 		if (ret <= 0) {
2705 			switch (ret) {
2706 			case -EBADMSG:
2707 				con->error_msg = "bad crc/signature";
2708 				/* fall through */
2709 			case -EBADE:
2710 				ret = -EIO;
2711 				break;
2712 			case -EIO:
2713 				con->error_msg = "io error";
2714 				break;
2715 			}
2716 			goto out;
2717 		}
2718 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2719 			goto more;
2720 		process_message(con);
2721 		if (con->state == CON_STATE_OPEN)
2722 			prepare_read_tag(con);
2723 		goto more;
2724 	}
2725 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2726 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2727 		/*
2728 		 * the final handshake seq exchange is semantically
2729 		 * equivalent to an ACK
2730 		 */
2731 		ret = read_partial_ack(con);
2732 		if (ret <= 0)
2733 			goto out;
2734 		process_ack(con);
2735 		goto more;
2736 	}
2737 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2738 		ret = read_keepalive_ack(con);
2739 		if (ret <= 0)
2740 			goto out;
2741 		goto more;
2742 	}
2743 
2744 out:
2745 	dout("try_read done on %p ret %d\n", con, ret);
2746 	return ret;
2747 
2748 bad_tag:
2749 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2750 	con->error_msg = "protocol error, garbage tag";
2751 	ret = -1;
2752 	goto out;
2753 }
2754 
2755 
2756 /*
2757  * Atomically queue work on a connection after the specified delay.
2758  * Bump @con reference to avoid races with connection teardown.
2759  * Returns 0 if work was queued, or an error code otherwise.
2760  */
2761 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2762 {
2763 	if (!con->ops->get(con)) {
2764 		dout("%s %p ref count 0\n", __func__, con);
2765 		return -ENOENT;
2766 	}
2767 
2768 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2769 		dout("%s %p - already queued\n", __func__, con);
2770 		con->ops->put(con);
2771 		return -EBUSY;
2772 	}
2773 
2774 	dout("%s %p %lu\n", __func__, con, delay);
2775 	return 0;
2776 }
2777 
2778 static void queue_con(struct ceph_connection *con)
2779 {
2780 	(void) queue_con_delay(con, 0);
2781 }
2782 
2783 static void cancel_con(struct ceph_connection *con)
2784 {
2785 	if (cancel_delayed_work(&con->work)) {
2786 		dout("%s %p\n", __func__, con);
2787 		con->ops->put(con);
2788 	}
2789 }
2790 
2791 static bool con_sock_closed(struct ceph_connection *con)
2792 {
2793 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2794 		return false;
2795 
2796 #define CASE(x)								\
2797 	case CON_STATE_ ## x:						\
2798 		con->error_msg = "socket closed (con state " #x ")";	\
2799 		break;
2800 
2801 	switch (con->state) {
2802 	CASE(CLOSED);
2803 	CASE(PREOPEN);
2804 	CASE(CONNECTING);
2805 	CASE(NEGOTIATING);
2806 	CASE(OPEN);
2807 	CASE(STANDBY);
2808 	default:
2809 		pr_warn("%s con %p unrecognized state %lu\n",
2810 			__func__, con, con->state);
2811 		con->error_msg = "unrecognized con state";
2812 		BUG();
2813 		break;
2814 	}
2815 #undef CASE
2816 
2817 	return true;
2818 }
2819 
2820 static bool con_backoff(struct ceph_connection *con)
2821 {
2822 	int ret;
2823 
2824 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2825 		return false;
2826 
2827 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2828 	if (ret) {
2829 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2830 			con, con->delay);
2831 		BUG_ON(ret == -ENOENT);
2832 		con_flag_set(con, CON_FLAG_BACKOFF);
2833 	}
2834 
2835 	return true;
2836 }
2837 
2838 /* Finish fault handling; con->mutex must *not* be held here */
2839 
2840 static void con_fault_finish(struct ceph_connection *con)
2841 {
2842 	dout("%s %p\n", __func__, con);
2843 
2844 	/*
2845 	 * in case we faulted due to authentication, invalidate our
2846 	 * current tickets so that we can get new ones.
2847 	 */
2848 	if (con->auth_retry) {
2849 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2850 		if (con->ops->invalidate_authorizer)
2851 			con->ops->invalidate_authorizer(con);
2852 		con->auth_retry = 0;
2853 	}
2854 
2855 	if (con->ops->fault)
2856 		con->ops->fault(con);
2857 }
2858 
2859 /*
2860  * Do some work on a connection.  Drop a connection ref when we're done.
2861  */
2862 static void ceph_con_workfn(struct work_struct *work)
2863 {
2864 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2865 						   work.work);
2866 	bool fault;
2867 
2868 	mutex_lock(&con->mutex);
2869 	while (true) {
2870 		int ret;
2871 
2872 		if ((fault = con_sock_closed(con))) {
2873 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2874 			break;
2875 		}
2876 		if (con_backoff(con)) {
2877 			dout("%s: con %p BACKOFF\n", __func__, con);
2878 			break;
2879 		}
2880 		if (con->state == CON_STATE_STANDBY) {
2881 			dout("%s: con %p STANDBY\n", __func__, con);
2882 			break;
2883 		}
2884 		if (con->state == CON_STATE_CLOSED) {
2885 			dout("%s: con %p CLOSED\n", __func__, con);
2886 			BUG_ON(con->sock);
2887 			break;
2888 		}
2889 		if (con->state == CON_STATE_PREOPEN) {
2890 			dout("%s: con %p PREOPEN\n", __func__, con);
2891 			BUG_ON(con->sock);
2892 		}
2893 
2894 		ret = try_read(con);
2895 		if (ret < 0) {
2896 			if (ret == -EAGAIN)
2897 				continue;
2898 			if (!con->error_msg)
2899 				con->error_msg = "socket error on read";
2900 			fault = true;
2901 			break;
2902 		}
2903 
2904 		ret = try_write(con);
2905 		if (ret < 0) {
2906 			if (ret == -EAGAIN)
2907 				continue;
2908 			if (!con->error_msg)
2909 				con->error_msg = "socket error on write";
2910 			fault = true;
2911 		}
2912 
2913 		break;	/* If we make it to here, we're done */
2914 	}
2915 	if (fault)
2916 		con_fault(con);
2917 	mutex_unlock(&con->mutex);
2918 
2919 	if (fault)
2920 		con_fault_finish(con);
2921 
2922 	con->ops->put(con);
2923 }
2924 
2925 /*
2926  * Generic error/fault handler.  A retry mechanism is used with
2927  * exponential backoff
2928  */
2929 static void con_fault(struct ceph_connection *con)
2930 {
2931 	dout("fault %p state %lu to peer %s\n",
2932 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2933 
2934 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2935 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2936 	con->error_msg = NULL;
2937 
2938 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2939 	       con->state != CON_STATE_NEGOTIATING &&
2940 	       con->state != CON_STATE_OPEN);
2941 
2942 	con_close_socket(con);
2943 
2944 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2945 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2946 		con->state = CON_STATE_CLOSED;
2947 		return;
2948 	}
2949 
2950 	if (con->in_msg) {
2951 		BUG_ON(con->in_msg->con != con);
2952 		ceph_msg_put(con->in_msg);
2953 		con->in_msg = NULL;
2954 	}
2955 
2956 	/* Requeue anything that hasn't been acked */
2957 	list_splice_init(&con->out_sent, &con->out_queue);
2958 
2959 	/* If there are no messages queued or keepalive pending, place
2960 	 * the connection in a STANDBY state */
2961 	if (list_empty(&con->out_queue) &&
2962 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2963 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2964 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2965 		con->state = CON_STATE_STANDBY;
2966 	} else {
2967 		/* retry after a delay. */
2968 		con->state = CON_STATE_PREOPEN;
2969 		if (con->delay == 0)
2970 			con->delay = BASE_DELAY_INTERVAL;
2971 		else if (con->delay < MAX_DELAY_INTERVAL)
2972 			con->delay *= 2;
2973 		con_flag_set(con, CON_FLAG_BACKOFF);
2974 		queue_con(con);
2975 	}
2976 }
2977 
2978 
2979 
2980 /*
2981  * initialize a new messenger instance
2982  */
2983 void ceph_messenger_init(struct ceph_messenger *msgr,
2984 			 struct ceph_entity_addr *myaddr)
2985 {
2986 	spin_lock_init(&msgr->global_seq_lock);
2987 
2988 	if (myaddr)
2989 		msgr->inst.addr = *myaddr;
2990 
2991 	/* select a random nonce */
2992 	msgr->inst.addr.type = 0;
2993 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2994 	encode_my_addr(msgr);
2995 
2996 	atomic_set(&msgr->stopping, 0);
2997 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2998 
2999 	dout("%s %p\n", __func__, msgr);
3000 }
3001 EXPORT_SYMBOL(ceph_messenger_init);
3002 
3003 void ceph_messenger_fini(struct ceph_messenger *msgr)
3004 {
3005 	put_net(read_pnet(&msgr->net));
3006 }
3007 EXPORT_SYMBOL(ceph_messenger_fini);
3008 
3009 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3010 {
3011 	if (msg->con)
3012 		msg->con->ops->put(msg->con);
3013 
3014 	msg->con = con ? con->ops->get(con) : NULL;
3015 	BUG_ON(msg->con != con);
3016 }
3017 
3018 static void clear_standby(struct ceph_connection *con)
3019 {
3020 	/* come back from STANDBY? */
3021 	if (con->state == CON_STATE_STANDBY) {
3022 		dout("clear_standby %p and ++connect_seq\n", con);
3023 		con->state = CON_STATE_PREOPEN;
3024 		con->connect_seq++;
3025 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3026 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3027 	}
3028 }
3029 
3030 /*
3031  * Queue up an outgoing message on the given connection.
3032  */
3033 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3034 {
3035 	/* set src+dst */
3036 	msg->hdr.src = con->msgr->inst.name;
3037 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3038 	msg->needs_out_seq = true;
3039 
3040 	mutex_lock(&con->mutex);
3041 
3042 	if (con->state == CON_STATE_CLOSED) {
3043 		dout("con_send %p closed, dropping %p\n", con, msg);
3044 		ceph_msg_put(msg);
3045 		mutex_unlock(&con->mutex);
3046 		return;
3047 	}
3048 
3049 	msg_con_set(msg, con);
3050 
3051 	BUG_ON(!list_empty(&msg->list_head));
3052 	list_add_tail(&msg->list_head, &con->out_queue);
3053 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3054 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3055 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3056 	     le32_to_cpu(msg->hdr.front_len),
3057 	     le32_to_cpu(msg->hdr.middle_len),
3058 	     le32_to_cpu(msg->hdr.data_len));
3059 
3060 	clear_standby(con);
3061 	mutex_unlock(&con->mutex);
3062 
3063 	/* if there wasn't anything waiting to send before, queue
3064 	 * new work */
3065 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3066 		queue_con(con);
3067 }
3068 EXPORT_SYMBOL(ceph_con_send);
3069 
3070 /*
3071  * Revoke a message that was previously queued for send
3072  */
3073 void ceph_msg_revoke(struct ceph_msg *msg)
3074 {
3075 	struct ceph_connection *con = msg->con;
3076 
3077 	if (!con) {
3078 		dout("%s msg %p null con\n", __func__, msg);
3079 		return;		/* Message not in our possession */
3080 	}
3081 
3082 	mutex_lock(&con->mutex);
3083 	if (!list_empty(&msg->list_head)) {
3084 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3085 		list_del_init(&msg->list_head);
3086 		msg->hdr.seq = 0;
3087 
3088 		ceph_msg_put(msg);
3089 	}
3090 	if (con->out_msg == msg) {
3091 		BUG_ON(con->out_skip);
3092 		/* footer */
3093 		if (con->out_msg_done) {
3094 			con->out_skip += con_out_kvec_skip(con);
3095 		} else {
3096 			BUG_ON(!msg->data_length);
3097 			con->out_skip += sizeof_footer(con);
3098 		}
3099 		/* data, middle, front */
3100 		if (msg->data_length)
3101 			con->out_skip += msg->cursor.total_resid;
3102 		if (msg->middle)
3103 			con->out_skip += con_out_kvec_skip(con);
3104 		con->out_skip += con_out_kvec_skip(con);
3105 
3106 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3107 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3108 		msg->hdr.seq = 0;
3109 		con->out_msg = NULL;
3110 		ceph_msg_put(msg);
3111 	}
3112 
3113 	mutex_unlock(&con->mutex);
3114 }
3115 
3116 /*
3117  * Revoke a message that we may be reading data into
3118  */
3119 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3120 {
3121 	struct ceph_connection *con = msg->con;
3122 
3123 	if (!con) {
3124 		dout("%s msg %p null con\n", __func__, msg);
3125 		return;		/* Message not in our possession */
3126 	}
3127 
3128 	mutex_lock(&con->mutex);
3129 	if (con->in_msg == msg) {
3130 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3131 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3132 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3133 
3134 		/* skip rest of message */
3135 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3136 		con->in_base_pos = con->in_base_pos -
3137 				sizeof(struct ceph_msg_header) -
3138 				front_len -
3139 				middle_len -
3140 				data_len -
3141 				sizeof(struct ceph_msg_footer);
3142 		ceph_msg_put(con->in_msg);
3143 		con->in_msg = NULL;
3144 		con->in_tag = CEPH_MSGR_TAG_READY;
3145 		con->in_seq++;
3146 	} else {
3147 		dout("%s %p in_msg %p msg %p no-op\n",
3148 		     __func__, con, con->in_msg, msg);
3149 	}
3150 	mutex_unlock(&con->mutex);
3151 }
3152 
3153 /*
3154  * Queue a keepalive byte to ensure the tcp connection is alive.
3155  */
3156 void ceph_con_keepalive(struct ceph_connection *con)
3157 {
3158 	dout("con_keepalive %p\n", con);
3159 	mutex_lock(&con->mutex);
3160 	clear_standby(con);
3161 	mutex_unlock(&con->mutex);
3162 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3163 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3164 		queue_con(con);
3165 }
3166 EXPORT_SYMBOL(ceph_con_keepalive);
3167 
3168 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3169 			       unsigned long interval)
3170 {
3171 	if (interval > 0 &&
3172 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3173 		struct timespec now = CURRENT_TIME;
3174 		struct timespec ts;
3175 		jiffies_to_timespec(interval, &ts);
3176 		ts = timespec_add(con->last_keepalive_ack, ts);
3177 		return timespec_compare(&now, &ts) >= 0;
3178 	}
3179 	return false;
3180 }
3181 
3182 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3183 {
3184 	struct ceph_msg_data *data;
3185 
3186 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3187 		return NULL;
3188 
3189 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3190 	if (data)
3191 		data->type = type;
3192 	INIT_LIST_HEAD(&data->links);
3193 
3194 	return data;
3195 }
3196 
3197 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3198 {
3199 	if (!data)
3200 		return;
3201 
3202 	WARN_ON(!list_empty(&data->links));
3203 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3204 		ceph_pagelist_release(data->pagelist);
3205 	kmem_cache_free(ceph_msg_data_cache, data);
3206 }
3207 
3208 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3209 		size_t length, size_t alignment)
3210 {
3211 	struct ceph_msg_data *data;
3212 
3213 	BUG_ON(!pages);
3214 	BUG_ON(!length);
3215 
3216 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3217 	BUG_ON(!data);
3218 	data->pages = pages;
3219 	data->length = length;
3220 	data->alignment = alignment & ~PAGE_MASK;
3221 
3222 	list_add_tail(&data->links, &msg->data);
3223 	msg->data_length += length;
3224 }
3225 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3226 
3227 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3228 				struct ceph_pagelist *pagelist)
3229 {
3230 	struct ceph_msg_data *data;
3231 
3232 	BUG_ON(!pagelist);
3233 	BUG_ON(!pagelist->length);
3234 
3235 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3236 	BUG_ON(!data);
3237 	data->pagelist = pagelist;
3238 
3239 	list_add_tail(&data->links, &msg->data);
3240 	msg->data_length += pagelist->length;
3241 }
3242 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3243 
3244 #ifdef	CONFIG_BLOCK
3245 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3246 		size_t length)
3247 {
3248 	struct ceph_msg_data *data;
3249 
3250 	BUG_ON(!bio);
3251 
3252 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3253 	BUG_ON(!data);
3254 	data->bio = bio;
3255 	data->bio_length = length;
3256 
3257 	list_add_tail(&data->links, &msg->data);
3258 	msg->data_length += length;
3259 }
3260 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3261 #endif	/* CONFIG_BLOCK */
3262 
3263 /*
3264  * construct a new message with given type, size
3265  * the new msg has a ref count of 1.
3266  */
3267 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3268 			      bool can_fail)
3269 {
3270 	struct ceph_msg *m;
3271 
3272 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3273 	if (m == NULL)
3274 		goto out;
3275 
3276 	m->hdr.type = cpu_to_le16(type);
3277 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3278 	m->hdr.front_len = cpu_to_le32(front_len);
3279 
3280 	INIT_LIST_HEAD(&m->list_head);
3281 	kref_init(&m->kref);
3282 	INIT_LIST_HEAD(&m->data);
3283 
3284 	/* front */
3285 	if (front_len) {
3286 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3287 		if (m->front.iov_base == NULL) {
3288 			dout("ceph_msg_new can't allocate %d bytes\n",
3289 			     front_len);
3290 			goto out2;
3291 		}
3292 	} else {
3293 		m->front.iov_base = NULL;
3294 	}
3295 	m->front_alloc_len = m->front.iov_len = front_len;
3296 
3297 	dout("ceph_msg_new %p front %d\n", m, front_len);
3298 	return m;
3299 
3300 out2:
3301 	ceph_msg_put(m);
3302 out:
3303 	if (!can_fail) {
3304 		pr_err("msg_new can't create type %d front %d\n", type,
3305 		       front_len);
3306 		WARN_ON(1);
3307 	} else {
3308 		dout("msg_new can't create type %d front %d\n", type,
3309 		     front_len);
3310 	}
3311 	return NULL;
3312 }
3313 EXPORT_SYMBOL(ceph_msg_new);
3314 
3315 /*
3316  * Allocate "middle" portion of a message, if it is needed and wasn't
3317  * allocated by alloc_msg.  This allows us to read a small fixed-size
3318  * per-type header in the front and then gracefully fail (i.e.,
3319  * propagate the error to the caller based on info in the front) when
3320  * the middle is too large.
3321  */
3322 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3323 {
3324 	int type = le16_to_cpu(msg->hdr.type);
3325 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3326 
3327 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3328 	     ceph_msg_type_name(type), middle_len);
3329 	BUG_ON(!middle_len);
3330 	BUG_ON(msg->middle);
3331 
3332 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3333 	if (!msg->middle)
3334 		return -ENOMEM;
3335 	return 0;
3336 }
3337 
3338 /*
3339  * Allocate a message for receiving an incoming message on a
3340  * connection, and save the result in con->in_msg.  Uses the
3341  * connection's private alloc_msg op if available.
3342  *
3343  * Returns 0 on success, or a negative error code.
3344  *
3345  * On success, if we set *skip = 1:
3346  *  - the next message should be skipped and ignored.
3347  *  - con->in_msg == NULL
3348  * or if we set *skip = 0:
3349  *  - con->in_msg is non-null.
3350  * On error (ENOMEM, EAGAIN, ...),
3351  *  - con->in_msg == NULL
3352  */
3353 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3354 {
3355 	struct ceph_msg_header *hdr = &con->in_hdr;
3356 	int middle_len = le32_to_cpu(hdr->middle_len);
3357 	struct ceph_msg *msg;
3358 	int ret = 0;
3359 
3360 	BUG_ON(con->in_msg != NULL);
3361 	BUG_ON(!con->ops->alloc_msg);
3362 
3363 	mutex_unlock(&con->mutex);
3364 	msg = con->ops->alloc_msg(con, hdr, skip);
3365 	mutex_lock(&con->mutex);
3366 	if (con->state != CON_STATE_OPEN) {
3367 		if (msg)
3368 			ceph_msg_put(msg);
3369 		return -EAGAIN;
3370 	}
3371 	if (msg) {
3372 		BUG_ON(*skip);
3373 		msg_con_set(msg, con);
3374 		con->in_msg = msg;
3375 	} else {
3376 		/*
3377 		 * Null message pointer means either we should skip
3378 		 * this message or we couldn't allocate memory.  The
3379 		 * former is not an error.
3380 		 */
3381 		if (*skip)
3382 			return 0;
3383 
3384 		con->error_msg = "error allocating memory for incoming message";
3385 		return -ENOMEM;
3386 	}
3387 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3388 
3389 	if (middle_len && !con->in_msg->middle) {
3390 		ret = ceph_alloc_middle(con, con->in_msg);
3391 		if (ret < 0) {
3392 			ceph_msg_put(con->in_msg);
3393 			con->in_msg = NULL;
3394 		}
3395 	}
3396 
3397 	return ret;
3398 }
3399 
3400 
3401 /*
3402  * Free a generically kmalloc'd message.
3403  */
3404 static void ceph_msg_free(struct ceph_msg *m)
3405 {
3406 	dout("%s %p\n", __func__, m);
3407 	kvfree(m->front.iov_base);
3408 	kmem_cache_free(ceph_msg_cache, m);
3409 }
3410 
3411 static void ceph_msg_release(struct kref *kref)
3412 {
3413 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3414 	struct ceph_msg_data *data, *next;
3415 
3416 	dout("%s %p\n", __func__, m);
3417 	WARN_ON(!list_empty(&m->list_head));
3418 
3419 	msg_con_set(m, NULL);
3420 
3421 	/* drop middle, data, if any */
3422 	if (m->middle) {
3423 		ceph_buffer_put(m->middle);
3424 		m->middle = NULL;
3425 	}
3426 
3427 	list_for_each_entry_safe(data, next, &m->data, links) {
3428 		list_del_init(&data->links);
3429 		ceph_msg_data_destroy(data);
3430 	}
3431 	m->data_length = 0;
3432 
3433 	if (m->pool)
3434 		ceph_msgpool_put(m->pool, m);
3435 	else
3436 		ceph_msg_free(m);
3437 }
3438 
3439 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3440 {
3441 	dout("%s %p (was %d)\n", __func__, msg,
3442 	     kref_read(&msg->kref));
3443 	kref_get(&msg->kref);
3444 	return msg;
3445 }
3446 EXPORT_SYMBOL(ceph_msg_get);
3447 
3448 void ceph_msg_put(struct ceph_msg *msg)
3449 {
3450 	dout("%s %p (was %d)\n", __func__, msg,
3451 	     kref_read(&msg->kref));
3452 	kref_put(&msg->kref, ceph_msg_release);
3453 }
3454 EXPORT_SYMBOL(ceph_msg_put);
3455 
3456 void ceph_msg_dump(struct ceph_msg *msg)
3457 {
3458 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3459 		 msg->front_alloc_len, msg->data_length);
3460 	print_hex_dump(KERN_DEBUG, "header: ",
3461 		       DUMP_PREFIX_OFFSET, 16, 1,
3462 		       &msg->hdr, sizeof(msg->hdr), true);
3463 	print_hex_dump(KERN_DEBUG, " front: ",
3464 		       DUMP_PREFIX_OFFSET, 16, 1,
3465 		       msg->front.iov_base, msg->front.iov_len, true);
3466 	if (msg->middle)
3467 		print_hex_dump(KERN_DEBUG, "middle: ",
3468 			       DUMP_PREFIX_OFFSET, 16, 1,
3469 			       msg->middle->vec.iov_base,
3470 			       msg->middle->vec.iov_len, true);
3471 	print_hex_dump(KERN_DEBUG, "footer: ",
3472 		       DUMP_PREFIX_OFFSET, 16, 1,
3473 		       &msg->footer, sizeof(msg->footer), true);
3474 }
3475 EXPORT_SYMBOL(ceph_msg_dump);
3476