xref: /linux/net/ceph/messenger.c (revision a1ce39288e6fbefdd8d607021d02384eb4a20b99)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16 
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22 
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31 
32 /*
33  * We track the state of the socket on a given connection using
34  * values defined below.  The transition to a new socket state is
35  * handled by a function which verifies we aren't coming from an
36  * unexpected state.
37  *
38  *      --------
39  *      | NEW* |  transient initial state
40  *      --------
41  *          | con_sock_state_init()
42  *          v
43  *      ----------
44  *      | CLOSED |  initialized, but no socket (and no
45  *      ----------  TCP connection)
46  *       ^      \
47  *       |       \ con_sock_state_connecting()
48  *       |        ----------------------
49  *       |                              \
50  *       + con_sock_state_closed()       \
51  *       |+---------------------------    \
52  *       | \                          \    \
53  *       |  -----------                \    \
54  *       |  | CLOSING |  socket event;  \    \
55  *       |  -----------  await close     \    \
56  *       |       ^                        \   |
57  *       |       |                         \  |
58  *       |       + con_sock_state_closing() \ |
59  *       |      / \                         | |
60  *       |     /   ---------------          | |
61  *       |    /                   \         v v
62  *       |   /                    --------------
63  *       |  /    -----------------| CONNECTING |  socket created, TCP
64  *       |  |   /                 --------------  connect initiated
65  *       |  |   | con_sock_state_connected()
66  *       |  |   v
67  *      -------------
68  *      | CONNECTED |  TCP connection established
69  *      -------------
70  *
71  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72  */
73 
74 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
79 
80 /*
81  * connection states
82  */
83 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
84 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
89 
90 /*
91  * ceph_connection flag bits
92  */
93 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
94 				       * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
99 
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104 
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108 
109 /*
110  * When skipping (ignoring) a block of input we read it into a "skip
111  * buffer," which is this many bytes in size.
112  */
113 #define SKIP_BUF_SIZE	1024
114 
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118 
119 /*
120  * Nicely render a sockaddr as a string.  An array of formatted
121  * strings is used, to approximate reentrancy.
122  */
123 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
124 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
127 
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130 
131 static struct page *zero_page;		/* used in certain error cases */
132 
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135 	int i;
136 	char *s;
137 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139 
140 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141 	s = addr_str[i];
142 
143 	switch (ss->ss_family) {
144 	case AF_INET:
145 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146 			 ntohs(in4->sin_port));
147 		break;
148 
149 	case AF_INET6:
150 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151 			 ntohs(in6->sin6_port));
152 		break;
153 
154 	default:
155 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156 			 ss->ss_family);
157 	}
158 
159 	return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162 
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166 	ceph_encode_addr(&msgr->my_enc_addr);
167 }
168 
169 /*
170  * work queue for all reading and writing to/from the socket.
171  */
172 static struct workqueue_struct *ceph_msgr_wq;
173 
174 void _ceph_msgr_exit(void)
175 {
176 	if (ceph_msgr_wq) {
177 		destroy_workqueue(ceph_msgr_wq);
178 		ceph_msgr_wq = NULL;
179 	}
180 
181 	BUG_ON(zero_page == NULL);
182 	kunmap(zero_page);
183 	page_cache_release(zero_page);
184 	zero_page = NULL;
185 }
186 
187 int ceph_msgr_init(void)
188 {
189 	BUG_ON(zero_page != NULL);
190 	zero_page = ZERO_PAGE(0);
191 	page_cache_get(zero_page);
192 
193 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194 	if (ceph_msgr_wq)
195 		return 0;
196 
197 	pr_err("msgr_init failed to create workqueue\n");
198 	_ceph_msgr_exit();
199 
200 	return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203 
204 void ceph_msgr_exit(void)
205 {
206 	BUG_ON(ceph_msgr_wq == NULL);
207 
208 	_ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211 
212 void ceph_msgr_flush(void)
213 {
214 	flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217 
218 /* Connection socket state transition functions */
219 
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222 	int old_state;
223 
224 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226 		printk("%s: unexpected old state %d\n", __func__, old_state);
227 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228 	     CON_SOCK_STATE_CLOSED);
229 }
230 
231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233 	int old_state;
234 
235 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237 		printk("%s: unexpected old state %d\n", __func__, old_state);
238 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239 	     CON_SOCK_STATE_CONNECTING);
240 }
241 
242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244 	int old_state;
245 
246 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248 		printk("%s: unexpected old state %d\n", __func__, old_state);
249 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250 	     CON_SOCK_STATE_CONNECTED);
251 }
252 
253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255 	int old_state;
256 
257 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259 			old_state != CON_SOCK_STATE_CONNECTED &&
260 			old_state != CON_SOCK_STATE_CLOSING))
261 		printk("%s: unexpected old state %d\n", __func__, old_state);
262 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263 	     CON_SOCK_STATE_CLOSING);
264 }
265 
266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268 	int old_state;
269 
270 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272 		    old_state != CON_SOCK_STATE_CLOSING &&
273 		    old_state != CON_SOCK_STATE_CONNECTING &&
274 		    old_state != CON_SOCK_STATE_CLOSED))
275 		printk("%s: unexpected old state %d\n", __func__, old_state);
276 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277 	     CON_SOCK_STATE_CLOSED);
278 }
279 
280 /*
281  * socket callback functions
282  */
283 
284 /* data available on socket, or listen socket received a connect */
285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287 	struct ceph_connection *con = sk->sk_user_data;
288 	if (atomic_read(&con->msgr->stopping)) {
289 		return;
290 	}
291 
292 	if (sk->sk_state != TCP_CLOSE_WAIT) {
293 		dout("%s on %p state = %lu, queueing work\n", __func__,
294 		     con, con->state);
295 		queue_con(con);
296 	}
297 }
298 
299 /* socket has buffer space for writing */
300 static void ceph_sock_write_space(struct sock *sk)
301 {
302 	struct ceph_connection *con = sk->sk_user_data;
303 
304 	/* only queue to workqueue if there is data we want to write,
305 	 * and there is sufficient space in the socket buffer to accept
306 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
307 	 * doesn't get called again until try_write() fills the socket
308 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309 	 * and net/core/stream.c:sk_stream_write_space().
310 	 */
311 	if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312 		if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313 			dout("%s %p queueing write work\n", __func__, con);
314 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315 			queue_con(con);
316 		}
317 	} else {
318 		dout("%s %p nothing to write\n", __func__, con);
319 	}
320 }
321 
322 /* socket's state has changed */
323 static void ceph_sock_state_change(struct sock *sk)
324 {
325 	struct ceph_connection *con = sk->sk_user_data;
326 
327 	dout("%s %p state = %lu sk_state = %u\n", __func__,
328 	     con, con->state, sk->sk_state);
329 
330 	switch (sk->sk_state) {
331 	case TCP_CLOSE:
332 		dout("%s TCP_CLOSE\n", __func__);
333 	case TCP_CLOSE_WAIT:
334 		dout("%s TCP_CLOSE_WAIT\n", __func__);
335 		con_sock_state_closing(con);
336 		set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337 		queue_con(con);
338 		break;
339 	case TCP_ESTABLISHED:
340 		dout("%s TCP_ESTABLISHED\n", __func__);
341 		con_sock_state_connected(con);
342 		queue_con(con);
343 		break;
344 	default:	/* Everything else is uninteresting */
345 		break;
346 	}
347 }
348 
349 /*
350  * set up socket callbacks
351  */
352 static void set_sock_callbacks(struct socket *sock,
353 			       struct ceph_connection *con)
354 {
355 	struct sock *sk = sock->sk;
356 	sk->sk_user_data = con;
357 	sk->sk_data_ready = ceph_sock_data_ready;
358 	sk->sk_write_space = ceph_sock_write_space;
359 	sk->sk_state_change = ceph_sock_state_change;
360 }
361 
362 
363 /*
364  * socket helpers
365  */
366 
367 /*
368  * initiate connection to a remote socket.
369  */
370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373 	struct socket *sock;
374 	int ret;
375 
376 	BUG_ON(con->sock);
377 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378 			       IPPROTO_TCP, &sock);
379 	if (ret)
380 		return ret;
381 	sock->sk->sk_allocation = GFP_NOFS;
382 
383 #ifdef CONFIG_LOCKDEP
384 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386 
387 	set_sock_callbacks(sock, con);
388 
389 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390 
391 	con_sock_state_connecting(con);
392 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393 				 O_NONBLOCK);
394 	if (ret == -EINPROGRESS) {
395 		dout("connect %s EINPROGRESS sk_state = %u\n",
396 		     ceph_pr_addr(&con->peer_addr.in_addr),
397 		     sock->sk->sk_state);
398 	} else if (ret < 0) {
399 		pr_err("connect %s error %d\n",
400 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
401 		sock_release(sock);
402 		con->error_msg = "connect error";
403 
404 		return ret;
405 	}
406 	con->sock = sock;
407 	return 0;
408 }
409 
410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412 	struct kvec iov = {buf, len};
413 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414 	int r;
415 
416 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417 	if (r == -EAGAIN)
418 		r = 0;
419 	return r;
420 }
421 
422 /*
423  * write something.  @more is true if caller will be sending more data
424  * shortly.
425  */
426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427 		     size_t kvlen, size_t len, int more)
428 {
429 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430 	int r;
431 
432 	if (more)
433 		msg.msg_flags |= MSG_MORE;
434 	else
435 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
436 
437 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438 	if (r == -EAGAIN)
439 		r = 0;
440 	return r;
441 }
442 
443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444 		     int offset, size_t size, int more)
445 {
446 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447 	int ret;
448 
449 	ret = kernel_sendpage(sock, page, offset, size, flags);
450 	if (ret == -EAGAIN)
451 		ret = 0;
452 
453 	return ret;
454 }
455 
456 
457 /*
458  * Shutdown/close the socket for the given connection.
459  */
460 static int con_close_socket(struct ceph_connection *con)
461 {
462 	int rc = 0;
463 
464 	dout("con_close_socket on %p sock %p\n", con, con->sock);
465 	if (con->sock) {
466 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467 		sock_release(con->sock);
468 		con->sock = NULL;
469 	}
470 
471 	/*
472 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
473 	 * independent of the connection mutex, and we could have
474 	 * received a socket close event before we had the chance to
475 	 * shut the socket down.
476 	 */
477 	clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
478 
479 	con_sock_state_closed(con);
480 	return rc;
481 }
482 
483 /*
484  * Reset a connection.  Discard all incoming and outgoing messages
485  * and clear *_seq state.
486  */
487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489 	list_del_init(&msg->list_head);
490 	BUG_ON(msg->con == NULL);
491 	msg->con->ops->put(msg->con);
492 	msg->con = NULL;
493 
494 	ceph_msg_put(msg);
495 }
496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498 	while (!list_empty(head)) {
499 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500 							list_head);
501 		ceph_msg_remove(msg);
502 	}
503 }
504 
505 static void reset_connection(struct ceph_connection *con)
506 {
507 	/* reset connection, out_queue, msg_ and connect_seq */
508 	/* discard existing out_queue and msg_seq */
509 	ceph_msg_remove_list(&con->out_queue);
510 	ceph_msg_remove_list(&con->out_sent);
511 
512 	if (con->in_msg) {
513 		BUG_ON(con->in_msg->con != con);
514 		con->in_msg->con = NULL;
515 		ceph_msg_put(con->in_msg);
516 		con->in_msg = NULL;
517 		con->ops->put(con);
518 	}
519 
520 	con->connect_seq = 0;
521 	con->out_seq = 0;
522 	if (con->out_msg) {
523 		ceph_msg_put(con->out_msg);
524 		con->out_msg = NULL;
525 	}
526 	con->in_seq = 0;
527 	con->in_seq_acked = 0;
528 }
529 
530 /*
531  * mark a peer down.  drop any open connections.
532  */
533 void ceph_con_close(struct ceph_connection *con)
534 {
535 	mutex_lock(&con->mutex);
536 	dout("con_close %p peer %s\n", con,
537 	     ceph_pr_addr(&con->peer_addr.in_addr));
538 	con->state = CON_STATE_CLOSED;
539 
540 	clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
541 	clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
542 	clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
543 	clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
544 	clear_bit(CON_FLAG_BACKOFF, &con->flags);
545 
546 	reset_connection(con);
547 	con->peer_global_seq = 0;
548 	cancel_delayed_work(&con->work);
549 	con_close_socket(con);
550 	mutex_unlock(&con->mutex);
551 }
552 EXPORT_SYMBOL(ceph_con_close);
553 
554 /*
555  * Reopen a closed connection, with a new peer address.
556  */
557 void ceph_con_open(struct ceph_connection *con,
558 		   __u8 entity_type, __u64 entity_num,
559 		   struct ceph_entity_addr *addr)
560 {
561 	mutex_lock(&con->mutex);
562 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
563 
564 	BUG_ON(con->state != CON_STATE_CLOSED);
565 	con->state = CON_STATE_PREOPEN;
566 
567 	con->peer_name.type = (__u8) entity_type;
568 	con->peer_name.num = cpu_to_le64(entity_num);
569 
570 	memcpy(&con->peer_addr, addr, sizeof(*addr));
571 	con->delay = 0;      /* reset backoff memory */
572 	mutex_unlock(&con->mutex);
573 	queue_con(con);
574 }
575 EXPORT_SYMBOL(ceph_con_open);
576 
577 /*
578  * return true if this connection ever successfully opened
579  */
580 bool ceph_con_opened(struct ceph_connection *con)
581 {
582 	return con->connect_seq > 0;
583 }
584 
585 /*
586  * initialize a new connection.
587  */
588 void ceph_con_init(struct ceph_connection *con, void *private,
589 	const struct ceph_connection_operations *ops,
590 	struct ceph_messenger *msgr)
591 {
592 	dout("con_init %p\n", con);
593 	memset(con, 0, sizeof(*con));
594 	con->private = private;
595 	con->ops = ops;
596 	con->msgr = msgr;
597 
598 	con_sock_state_init(con);
599 
600 	mutex_init(&con->mutex);
601 	INIT_LIST_HEAD(&con->out_queue);
602 	INIT_LIST_HEAD(&con->out_sent);
603 	INIT_DELAYED_WORK(&con->work, con_work);
604 
605 	con->state = CON_STATE_CLOSED;
606 }
607 EXPORT_SYMBOL(ceph_con_init);
608 
609 
610 /*
611  * We maintain a global counter to order connection attempts.  Get
612  * a unique seq greater than @gt.
613  */
614 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
615 {
616 	u32 ret;
617 
618 	spin_lock(&msgr->global_seq_lock);
619 	if (msgr->global_seq < gt)
620 		msgr->global_seq = gt;
621 	ret = ++msgr->global_seq;
622 	spin_unlock(&msgr->global_seq_lock);
623 	return ret;
624 }
625 
626 static void con_out_kvec_reset(struct ceph_connection *con)
627 {
628 	con->out_kvec_left = 0;
629 	con->out_kvec_bytes = 0;
630 	con->out_kvec_cur = &con->out_kvec[0];
631 }
632 
633 static void con_out_kvec_add(struct ceph_connection *con,
634 				size_t size, void *data)
635 {
636 	int index;
637 
638 	index = con->out_kvec_left;
639 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
640 
641 	con->out_kvec[index].iov_len = size;
642 	con->out_kvec[index].iov_base = data;
643 	con->out_kvec_left++;
644 	con->out_kvec_bytes += size;
645 }
646 
647 #ifdef CONFIG_BLOCK
648 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
649 {
650 	if (!bio) {
651 		*iter = NULL;
652 		*seg = 0;
653 		return;
654 	}
655 	*iter = bio;
656 	*seg = bio->bi_idx;
657 }
658 
659 static void iter_bio_next(struct bio **bio_iter, int *seg)
660 {
661 	if (*bio_iter == NULL)
662 		return;
663 
664 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
665 
666 	(*seg)++;
667 	if (*seg == (*bio_iter)->bi_vcnt)
668 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
669 }
670 #endif
671 
672 static void prepare_write_message_data(struct ceph_connection *con)
673 {
674 	struct ceph_msg *msg = con->out_msg;
675 
676 	BUG_ON(!msg);
677 	BUG_ON(!msg->hdr.data_len);
678 
679 	/* initialize page iterator */
680 	con->out_msg_pos.page = 0;
681 	if (msg->pages)
682 		con->out_msg_pos.page_pos = msg->page_alignment;
683 	else
684 		con->out_msg_pos.page_pos = 0;
685 #ifdef CONFIG_BLOCK
686 	if (msg->bio)
687 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
688 #endif
689 	con->out_msg_pos.data_pos = 0;
690 	con->out_msg_pos.did_page_crc = false;
691 	con->out_more = 1;  /* data + footer will follow */
692 }
693 
694 /*
695  * Prepare footer for currently outgoing message, and finish things
696  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
697  */
698 static void prepare_write_message_footer(struct ceph_connection *con)
699 {
700 	struct ceph_msg *m = con->out_msg;
701 	int v = con->out_kvec_left;
702 
703 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
704 
705 	dout("prepare_write_message_footer %p\n", con);
706 	con->out_kvec_is_msg = true;
707 	con->out_kvec[v].iov_base = &m->footer;
708 	con->out_kvec[v].iov_len = sizeof(m->footer);
709 	con->out_kvec_bytes += sizeof(m->footer);
710 	con->out_kvec_left++;
711 	con->out_more = m->more_to_follow;
712 	con->out_msg_done = true;
713 }
714 
715 /*
716  * Prepare headers for the next outgoing message.
717  */
718 static void prepare_write_message(struct ceph_connection *con)
719 {
720 	struct ceph_msg *m;
721 	u32 crc;
722 
723 	con_out_kvec_reset(con);
724 	con->out_kvec_is_msg = true;
725 	con->out_msg_done = false;
726 
727 	/* Sneak an ack in there first?  If we can get it into the same
728 	 * TCP packet that's a good thing. */
729 	if (con->in_seq > con->in_seq_acked) {
730 		con->in_seq_acked = con->in_seq;
731 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
733 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
734 			&con->out_temp_ack);
735 	}
736 
737 	BUG_ON(list_empty(&con->out_queue));
738 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
739 	con->out_msg = m;
740 	BUG_ON(m->con != con);
741 
742 	/* put message on sent list */
743 	ceph_msg_get(m);
744 	list_move_tail(&m->list_head, &con->out_sent);
745 
746 	/*
747 	 * only assign outgoing seq # if we haven't sent this message
748 	 * yet.  if it is requeued, resend with it's original seq.
749 	 */
750 	if (m->needs_out_seq) {
751 		m->hdr.seq = cpu_to_le64(++con->out_seq);
752 		m->needs_out_seq = false;
753 	}
754 #ifdef CONFIG_BLOCK
755 	else
756 		m->bio_iter = NULL;
757 #endif
758 
759 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
760 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
761 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
762 	     le32_to_cpu(m->hdr.data_len),
763 	     m->nr_pages);
764 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
765 
766 	/* tag + hdr + front + middle */
767 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
768 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
769 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
770 
771 	if (m->middle)
772 		con_out_kvec_add(con, m->middle->vec.iov_len,
773 			m->middle->vec.iov_base);
774 
775 	/* fill in crc (except data pages), footer */
776 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
777 	con->out_msg->hdr.crc = cpu_to_le32(crc);
778 	con->out_msg->footer.flags = 0;
779 
780 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
781 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
782 	if (m->middle) {
783 		crc = crc32c(0, m->middle->vec.iov_base,
784 				m->middle->vec.iov_len);
785 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
786 	} else
787 		con->out_msg->footer.middle_crc = 0;
788 	dout("%s front_crc %u middle_crc %u\n", __func__,
789 	     le32_to_cpu(con->out_msg->footer.front_crc),
790 	     le32_to_cpu(con->out_msg->footer.middle_crc));
791 
792 	/* is there a data payload? */
793 	con->out_msg->footer.data_crc = 0;
794 	if (m->hdr.data_len)
795 		prepare_write_message_data(con);
796 	else
797 		/* no, queue up footer too and be done */
798 		prepare_write_message_footer(con);
799 
800 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
801 }
802 
803 /*
804  * Prepare an ack.
805  */
806 static void prepare_write_ack(struct ceph_connection *con)
807 {
808 	dout("prepare_write_ack %p %llu -> %llu\n", con,
809 	     con->in_seq_acked, con->in_seq);
810 	con->in_seq_acked = con->in_seq;
811 
812 	con_out_kvec_reset(con);
813 
814 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
815 
816 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
817 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
818 				&con->out_temp_ack);
819 
820 	con->out_more = 1;  /* more will follow.. eventually.. */
821 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
822 }
823 
824 /*
825  * Prepare to write keepalive byte.
826  */
827 static void prepare_write_keepalive(struct ceph_connection *con)
828 {
829 	dout("prepare_write_keepalive %p\n", con);
830 	con_out_kvec_reset(con);
831 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
832 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
833 }
834 
835 /*
836  * Connection negotiation.
837  */
838 
839 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
840 						int *auth_proto)
841 {
842 	struct ceph_auth_handshake *auth;
843 
844 	if (!con->ops->get_authorizer) {
845 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
846 		con->out_connect.authorizer_len = 0;
847 		return NULL;
848 	}
849 
850 	/* Can't hold the mutex while getting authorizer */
851 	mutex_unlock(&con->mutex);
852 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
853 	mutex_lock(&con->mutex);
854 
855 	if (IS_ERR(auth))
856 		return auth;
857 	if (con->state != CON_STATE_NEGOTIATING)
858 		return ERR_PTR(-EAGAIN);
859 
860 	con->auth_reply_buf = auth->authorizer_reply_buf;
861 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
862 	return auth;
863 }
864 
865 /*
866  * We connected to a peer and are saying hello.
867  */
868 static void prepare_write_banner(struct ceph_connection *con)
869 {
870 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
871 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
872 					&con->msgr->my_enc_addr);
873 
874 	con->out_more = 0;
875 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
876 }
877 
878 static int prepare_write_connect(struct ceph_connection *con)
879 {
880 	unsigned int global_seq = get_global_seq(con->msgr, 0);
881 	int proto;
882 	int auth_proto;
883 	struct ceph_auth_handshake *auth;
884 
885 	switch (con->peer_name.type) {
886 	case CEPH_ENTITY_TYPE_MON:
887 		proto = CEPH_MONC_PROTOCOL;
888 		break;
889 	case CEPH_ENTITY_TYPE_OSD:
890 		proto = CEPH_OSDC_PROTOCOL;
891 		break;
892 	case CEPH_ENTITY_TYPE_MDS:
893 		proto = CEPH_MDSC_PROTOCOL;
894 		break;
895 	default:
896 		BUG();
897 	}
898 
899 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
900 	     con->connect_seq, global_seq, proto);
901 
902 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
903 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
904 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
905 	con->out_connect.global_seq = cpu_to_le32(global_seq);
906 	con->out_connect.protocol_version = cpu_to_le32(proto);
907 	con->out_connect.flags = 0;
908 
909 	auth_proto = CEPH_AUTH_UNKNOWN;
910 	auth = get_connect_authorizer(con, &auth_proto);
911 	if (IS_ERR(auth))
912 		return PTR_ERR(auth);
913 
914 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
915 	con->out_connect.authorizer_len = auth ?
916 		cpu_to_le32(auth->authorizer_buf_len) : 0;
917 
918 	con_out_kvec_add(con, sizeof (con->out_connect),
919 					&con->out_connect);
920 	if (auth && auth->authorizer_buf_len)
921 		con_out_kvec_add(con, auth->authorizer_buf_len,
922 					auth->authorizer_buf);
923 
924 	con->out_more = 0;
925 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
926 
927 	return 0;
928 }
929 
930 /*
931  * write as much of pending kvecs to the socket as we can.
932  *  1 -> done
933  *  0 -> socket full, but more to do
934  * <0 -> error
935  */
936 static int write_partial_kvec(struct ceph_connection *con)
937 {
938 	int ret;
939 
940 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
941 	while (con->out_kvec_bytes > 0) {
942 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
943 				       con->out_kvec_left, con->out_kvec_bytes,
944 				       con->out_more);
945 		if (ret <= 0)
946 			goto out;
947 		con->out_kvec_bytes -= ret;
948 		if (con->out_kvec_bytes == 0)
949 			break;            /* done */
950 
951 		/* account for full iov entries consumed */
952 		while (ret >= con->out_kvec_cur->iov_len) {
953 			BUG_ON(!con->out_kvec_left);
954 			ret -= con->out_kvec_cur->iov_len;
955 			con->out_kvec_cur++;
956 			con->out_kvec_left--;
957 		}
958 		/* and for a partially-consumed entry */
959 		if (ret) {
960 			con->out_kvec_cur->iov_len -= ret;
961 			con->out_kvec_cur->iov_base += ret;
962 		}
963 	}
964 	con->out_kvec_left = 0;
965 	con->out_kvec_is_msg = false;
966 	ret = 1;
967 out:
968 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
969 	     con->out_kvec_bytes, con->out_kvec_left, ret);
970 	return ret;  /* done! */
971 }
972 
973 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
974 			size_t len, size_t sent, bool in_trail)
975 {
976 	struct ceph_msg *msg = con->out_msg;
977 
978 	BUG_ON(!msg);
979 	BUG_ON(!sent);
980 
981 	con->out_msg_pos.data_pos += sent;
982 	con->out_msg_pos.page_pos += sent;
983 	if (sent < len)
984 		return;
985 
986 	BUG_ON(sent != len);
987 	con->out_msg_pos.page_pos = 0;
988 	con->out_msg_pos.page++;
989 	con->out_msg_pos.did_page_crc = false;
990 	if (in_trail)
991 		list_move_tail(&page->lru,
992 			       &msg->trail->head);
993 	else if (msg->pagelist)
994 		list_move_tail(&page->lru,
995 			       &msg->pagelist->head);
996 #ifdef CONFIG_BLOCK
997 	else if (msg->bio)
998 		iter_bio_next(&msg->bio_iter, &msg->bio_seg);
999 #endif
1000 }
1001 
1002 /*
1003  * Write as much message data payload as we can.  If we finish, queue
1004  * up the footer.
1005  *  1 -> done, footer is now queued in out_kvec[].
1006  *  0 -> socket full, but more to do
1007  * <0 -> error
1008  */
1009 static int write_partial_msg_pages(struct ceph_connection *con)
1010 {
1011 	struct ceph_msg *msg = con->out_msg;
1012 	unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1013 	size_t len;
1014 	bool do_datacrc = !con->msgr->nocrc;
1015 	int ret;
1016 	int total_max_write;
1017 	bool in_trail = false;
1018 	const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1019 	const size_t trail_off = data_len - trail_len;
1020 
1021 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1022 	     con, msg, con->out_msg_pos.page, msg->nr_pages,
1023 	     con->out_msg_pos.page_pos);
1024 
1025 	/*
1026 	 * Iterate through each page that contains data to be
1027 	 * written, and send as much as possible for each.
1028 	 *
1029 	 * If we are calculating the data crc (the default), we will
1030 	 * need to map the page.  If we have no pages, they have
1031 	 * been revoked, so use the zero page.
1032 	 */
1033 	while (data_len > con->out_msg_pos.data_pos) {
1034 		struct page *page = NULL;
1035 		int max_write = PAGE_SIZE;
1036 		int bio_offset = 0;
1037 
1038 		in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1039 		if (!in_trail)
1040 			total_max_write = trail_off - con->out_msg_pos.data_pos;
1041 
1042 		if (in_trail) {
1043 			total_max_write = data_len - con->out_msg_pos.data_pos;
1044 
1045 			page = list_first_entry(&msg->trail->head,
1046 						struct page, lru);
1047 		} else if (msg->pages) {
1048 			page = msg->pages[con->out_msg_pos.page];
1049 		} else if (msg->pagelist) {
1050 			page = list_first_entry(&msg->pagelist->head,
1051 						struct page, lru);
1052 #ifdef CONFIG_BLOCK
1053 		} else if (msg->bio) {
1054 			struct bio_vec *bv;
1055 
1056 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1057 			page = bv->bv_page;
1058 			bio_offset = bv->bv_offset;
1059 			max_write = bv->bv_len;
1060 #endif
1061 		} else {
1062 			page = zero_page;
1063 		}
1064 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
1065 			    total_max_write);
1066 
1067 		if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1068 			void *base;
1069 			u32 crc = le32_to_cpu(msg->footer.data_crc);
1070 			char *kaddr;
1071 
1072 			kaddr = kmap(page);
1073 			BUG_ON(kaddr == NULL);
1074 			base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1075 			crc = crc32c(crc, base, len);
1076 			kunmap(page);
1077 			msg->footer.data_crc = cpu_to_le32(crc);
1078 			con->out_msg_pos.did_page_crc = true;
1079 		}
1080 		ret = ceph_tcp_sendpage(con->sock, page,
1081 				      con->out_msg_pos.page_pos + bio_offset,
1082 				      len, 1);
1083 		if (ret <= 0)
1084 			goto out;
1085 
1086 		out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1087 	}
1088 
1089 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1090 
1091 	/* prepare and queue up footer, too */
1092 	if (!do_datacrc)
1093 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1094 	con_out_kvec_reset(con);
1095 	prepare_write_message_footer(con);
1096 	ret = 1;
1097 out:
1098 	return ret;
1099 }
1100 
1101 /*
1102  * write some zeros
1103  */
1104 static int write_partial_skip(struct ceph_connection *con)
1105 {
1106 	int ret;
1107 
1108 	while (con->out_skip > 0) {
1109 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1110 
1111 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1112 		if (ret <= 0)
1113 			goto out;
1114 		con->out_skip -= ret;
1115 	}
1116 	ret = 1;
1117 out:
1118 	return ret;
1119 }
1120 
1121 /*
1122  * Prepare to read connection handshake, or an ack.
1123  */
1124 static void prepare_read_banner(struct ceph_connection *con)
1125 {
1126 	dout("prepare_read_banner %p\n", con);
1127 	con->in_base_pos = 0;
1128 }
1129 
1130 static void prepare_read_connect(struct ceph_connection *con)
1131 {
1132 	dout("prepare_read_connect %p\n", con);
1133 	con->in_base_pos = 0;
1134 }
1135 
1136 static void prepare_read_ack(struct ceph_connection *con)
1137 {
1138 	dout("prepare_read_ack %p\n", con);
1139 	con->in_base_pos = 0;
1140 }
1141 
1142 static void prepare_read_tag(struct ceph_connection *con)
1143 {
1144 	dout("prepare_read_tag %p\n", con);
1145 	con->in_base_pos = 0;
1146 	con->in_tag = CEPH_MSGR_TAG_READY;
1147 }
1148 
1149 /*
1150  * Prepare to read a message.
1151  */
1152 static int prepare_read_message(struct ceph_connection *con)
1153 {
1154 	dout("prepare_read_message %p\n", con);
1155 	BUG_ON(con->in_msg != NULL);
1156 	con->in_base_pos = 0;
1157 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1158 	return 0;
1159 }
1160 
1161 
1162 static int read_partial(struct ceph_connection *con,
1163 			int end, int size, void *object)
1164 {
1165 	while (con->in_base_pos < end) {
1166 		int left = end - con->in_base_pos;
1167 		int have = size - left;
1168 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1169 		if (ret <= 0)
1170 			return ret;
1171 		con->in_base_pos += ret;
1172 	}
1173 	return 1;
1174 }
1175 
1176 
1177 /*
1178  * Read all or part of the connect-side handshake on a new connection
1179  */
1180 static int read_partial_banner(struct ceph_connection *con)
1181 {
1182 	int size;
1183 	int end;
1184 	int ret;
1185 
1186 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1187 
1188 	/* peer's banner */
1189 	size = strlen(CEPH_BANNER);
1190 	end = size;
1191 	ret = read_partial(con, end, size, con->in_banner);
1192 	if (ret <= 0)
1193 		goto out;
1194 
1195 	size = sizeof (con->actual_peer_addr);
1196 	end += size;
1197 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1198 	if (ret <= 0)
1199 		goto out;
1200 
1201 	size = sizeof (con->peer_addr_for_me);
1202 	end += size;
1203 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1204 	if (ret <= 0)
1205 		goto out;
1206 
1207 out:
1208 	return ret;
1209 }
1210 
1211 static int read_partial_connect(struct ceph_connection *con)
1212 {
1213 	int size;
1214 	int end;
1215 	int ret;
1216 
1217 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1218 
1219 	size = sizeof (con->in_reply);
1220 	end = size;
1221 	ret = read_partial(con, end, size, &con->in_reply);
1222 	if (ret <= 0)
1223 		goto out;
1224 
1225 	size = le32_to_cpu(con->in_reply.authorizer_len);
1226 	end += size;
1227 	ret = read_partial(con, end, size, con->auth_reply_buf);
1228 	if (ret <= 0)
1229 		goto out;
1230 
1231 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1232 	     con, (int)con->in_reply.tag,
1233 	     le32_to_cpu(con->in_reply.connect_seq),
1234 	     le32_to_cpu(con->in_reply.global_seq));
1235 out:
1236 	return ret;
1237 
1238 }
1239 
1240 /*
1241  * Verify the hello banner looks okay.
1242  */
1243 static int verify_hello(struct ceph_connection *con)
1244 {
1245 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1246 		pr_err("connect to %s got bad banner\n",
1247 		       ceph_pr_addr(&con->peer_addr.in_addr));
1248 		con->error_msg = "protocol error, bad banner";
1249 		return -1;
1250 	}
1251 	return 0;
1252 }
1253 
1254 static bool addr_is_blank(struct sockaddr_storage *ss)
1255 {
1256 	switch (ss->ss_family) {
1257 	case AF_INET:
1258 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1259 	case AF_INET6:
1260 		return
1261 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1262 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1263 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1264 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1265 	}
1266 	return false;
1267 }
1268 
1269 static int addr_port(struct sockaddr_storage *ss)
1270 {
1271 	switch (ss->ss_family) {
1272 	case AF_INET:
1273 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1274 	case AF_INET6:
1275 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1276 	}
1277 	return 0;
1278 }
1279 
1280 static void addr_set_port(struct sockaddr_storage *ss, int p)
1281 {
1282 	switch (ss->ss_family) {
1283 	case AF_INET:
1284 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1285 		break;
1286 	case AF_INET6:
1287 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1288 		break;
1289 	}
1290 }
1291 
1292 /*
1293  * Unlike other *_pton function semantics, zero indicates success.
1294  */
1295 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1296 		char delim, const char **ipend)
1297 {
1298 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1299 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1300 
1301 	memset(ss, 0, sizeof(*ss));
1302 
1303 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1304 		ss->ss_family = AF_INET;
1305 		return 0;
1306 	}
1307 
1308 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1309 		ss->ss_family = AF_INET6;
1310 		return 0;
1311 	}
1312 
1313 	return -EINVAL;
1314 }
1315 
1316 /*
1317  * Extract hostname string and resolve using kernel DNS facility.
1318  */
1319 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1320 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1321 		struct sockaddr_storage *ss, char delim, const char **ipend)
1322 {
1323 	const char *end, *delim_p;
1324 	char *colon_p, *ip_addr = NULL;
1325 	int ip_len, ret;
1326 
1327 	/*
1328 	 * The end of the hostname occurs immediately preceding the delimiter or
1329 	 * the port marker (':') where the delimiter takes precedence.
1330 	 */
1331 	delim_p = memchr(name, delim, namelen);
1332 	colon_p = memchr(name, ':', namelen);
1333 
1334 	if (delim_p && colon_p)
1335 		end = delim_p < colon_p ? delim_p : colon_p;
1336 	else if (!delim_p && colon_p)
1337 		end = colon_p;
1338 	else {
1339 		end = delim_p;
1340 		if (!end) /* case: hostname:/ */
1341 			end = name + namelen;
1342 	}
1343 
1344 	if (end <= name)
1345 		return -EINVAL;
1346 
1347 	/* do dns_resolve upcall */
1348 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1349 	if (ip_len > 0)
1350 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1351 	else
1352 		ret = -ESRCH;
1353 
1354 	kfree(ip_addr);
1355 
1356 	*ipend = end;
1357 
1358 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1359 			ret, ret ? "failed" : ceph_pr_addr(ss));
1360 
1361 	return ret;
1362 }
1363 #else
1364 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1365 		struct sockaddr_storage *ss, char delim, const char **ipend)
1366 {
1367 	return -EINVAL;
1368 }
1369 #endif
1370 
1371 /*
1372  * Parse a server name (IP or hostname). If a valid IP address is not found
1373  * then try to extract a hostname to resolve using userspace DNS upcall.
1374  */
1375 static int ceph_parse_server_name(const char *name, size_t namelen,
1376 			struct sockaddr_storage *ss, char delim, const char **ipend)
1377 {
1378 	int ret;
1379 
1380 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1381 	if (ret)
1382 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1383 
1384 	return ret;
1385 }
1386 
1387 /*
1388  * Parse an ip[:port] list into an addr array.  Use the default
1389  * monitor port if a port isn't specified.
1390  */
1391 int ceph_parse_ips(const char *c, const char *end,
1392 		   struct ceph_entity_addr *addr,
1393 		   int max_count, int *count)
1394 {
1395 	int i, ret = -EINVAL;
1396 	const char *p = c;
1397 
1398 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1399 	for (i = 0; i < max_count; i++) {
1400 		const char *ipend;
1401 		struct sockaddr_storage *ss = &addr[i].in_addr;
1402 		int port;
1403 		char delim = ',';
1404 
1405 		if (*p == '[') {
1406 			delim = ']';
1407 			p++;
1408 		}
1409 
1410 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1411 		if (ret)
1412 			goto bad;
1413 		ret = -EINVAL;
1414 
1415 		p = ipend;
1416 
1417 		if (delim == ']') {
1418 			if (*p != ']') {
1419 				dout("missing matching ']'\n");
1420 				goto bad;
1421 			}
1422 			p++;
1423 		}
1424 
1425 		/* port? */
1426 		if (p < end && *p == ':') {
1427 			port = 0;
1428 			p++;
1429 			while (p < end && *p >= '0' && *p <= '9') {
1430 				port = (port * 10) + (*p - '0');
1431 				p++;
1432 			}
1433 			if (port > 65535 || port == 0)
1434 				goto bad;
1435 		} else {
1436 			port = CEPH_MON_PORT;
1437 		}
1438 
1439 		addr_set_port(ss, port);
1440 
1441 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1442 
1443 		if (p == end)
1444 			break;
1445 		if (*p != ',')
1446 			goto bad;
1447 		p++;
1448 	}
1449 
1450 	if (p != end)
1451 		goto bad;
1452 
1453 	if (count)
1454 		*count = i + 1;
1455 	return 0;
1456 
1457 bad:
1458 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1459 	return ret;
1460 }
1461 EXPORT_SYMBOL(ceph_parse_ips);
1462 
1463 static int process_banner(struct ceph_connection *con)
1464 {
1465 	dout("process_banner on %p\n", con);
1466 
1467 	if (verify_hello(con) < 0)
1468 		return -1;
1469 
1470 	ceph_decode_addr(&con->actual_peer_addr);
1471 	ceph_decode_addr(&con->peer_addr_for_me);
1472 
1473 	/*
1474 	 * Make sure the other end is who we wanted.  note that the other
1475 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1476 	 * them the benefit of the doubt.
1477 	 */
1478 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1479 		   sizeof(con->peer_addr)) != 0 &&
1480 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1481 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1482 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1483 			   ceph_pr_addr(&con->peer_addr.in_addr),
1484 			   (int)le32_to_cpu(con->peer_addr.nonce),
1485 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1486 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1487 		con->error_msg = "wrong peer at address";
1488 		return -1;
1489 	}
1490 
1491 	/*
1492 	 * did we learn our address?
1493 	 */
1494 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1495 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1496 
1497 		memcpy(&con->msgr->inst.addr.in_addr,
1498 		       &con->peer_addr_for_me.in_addr,
1499 		       sizeof(con->peer_addr_for_me.in_addr));
1500 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1501 		encode_my_addr(con->msgr);
1502 		dout("process_banner learned my addr is %s\n",
1503 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 static void fail_protocol(struct ceph_connection *con)
1510 {
1511 	reset_connection(con);
1512 	BUG_ON(con->state != CON_STATE_NEGOTIATING);
1513 	con->state = CON_STATE_CLOSED;
1514 }
1515 
1516 static int process_connect(struct ceph_connection *con)
1517 {
1518 	u64 sup_feat = con->msgr->supported_features;
1519 	u64 req_feat = con->msgr->required_features;
1520 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1521 	int ret;
1522 
1523 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1524 
1525 	switch (con->in_reply.tag) {
1526 	case CEPH_MSGR_TAG_FEATURES:
1527 		pr_err("%s%lld %s feature set mismatch,"
1528 		       " my %llx < server's %llx, missing %llx\n",
1529 		       ENTITY_NAME(con->peer_name),
1530 		       ceph_pr_addr(&con->peer_addr.in_addr),
1531 		       sup_feat, server_feat, server_feat & ~sup_feat);
1532 		con->error_msg = "missing required protocol features";
1533 		fail_protocol(con);
1534 		return -1;
1535 
1536 	case CEPH_MSGR_TAG_BADPROTOVER:
1537 		pr_err("%s%lld %s protocol version mismatch,"
1538 		       " my %d != server's %d\n",
1539 		       ENTITY_NAME(con->peer_name),
1540 		       ceph_pr_addr(&con->peer_addr.in_addr),
1541 		       le32_to_cpu(con->out_connect.protocol_version),
1542 		       le32_to_cpu(con->in_reply.protocol_version));
1543 		con->error_msg = "protocol version mismatch";
1544 		fail_protocol(con);
1545 		return -1;
1546 
1547 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1548 		con->auth_retry++;
1549 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1550 		     con->auth_retry);
1551 		if (con->auth_retry == 2) {
1552 			con->error_msg = "connect authorization failure";
1553 			return -1;
1554 		}
1555 		con->auth_retry = 1;
1556 		con_out_kvec_reset(con);
1557 		ret = prepare_write_connect(con);
1558 		if (ret < 0)
1559 			return ret;
1560 		prepare_read_connect(con);
1561 		break;
1562 
1563 	case CEPH_MSGR_TAG_RESETSESSION:
1564 		/*
1565 		 * If we connected with a large connect_seq but the peer
1566 		 * has no record of a session with us (no connection, or
1567 		 * connect_seq == 0), they will send RESETSESION to indicate
1568 		 * that they must have reset their session, and may have
1569 		 * dropped messages.
1570 		 */
1571 		dout("process_connect got RESET peer seq %u\n",
1572 		     le32_to_cpu(con->in_reply.connect_seq));
1573 		pr_err("%s%lld %s connection reset\n",
1574 		       ENTITY_NAME(con->peer_name),
1575 		       ceph_pr_addr(&con->peer_addr.in_addr));
1576 		reset_connection(con);
1577 		con_out_kvec_reset(con);
1578 		ret = prepare_write_connect(con);
1579 		if (ret < 0)
1580 			return ret;
1581 		prepare_read_connect(con);
1582 
1583 		/* Tell ceph about it. */
1584 		mutex_unlock(&con->mutex);
1585 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1586 		if (con->ops->peer_reset)
1587 			con->ops->peer_reset(con);
1588 		mutex_lock(&con->mutex);
1589 		if (con->state != CON_STATE_NEGOTIATING)
1590 			return -EAGAIN;
1591 		break;
1592 
1593 	case CEPH_MSGR_TAG_RETRY_SESSION:
1594 		/*
1595 		 * If we sent a smaller connect_seq than the peer has, try
1596 		 * again with a larger value.
1597 		 */
1598 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1599 		     le32_to_cpu(con->out_connect.connect_seq),
1600 		     le32_to_cpu(con->in_reply.connect_seq));
1601 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1602 		con_out_kvec_reset(con);
1603 		ret = prepare_write_connect(con);
1604 		if (ret < 0)
1605 			return ret;
1606 		prepare_read_connect(con);
1607 		break;
1608 
1609 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1610 		/*
1611 		 * If we sent a smaller global_seq than the peer has, try
1612 		 * again with a larger value.
1613 		 */
1614 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1615 		     con->peer_global_seq,
1616 		     le32_to_cpu(con->in_reply.global_seq));
1617 		get_global_seq(con->msgr,
1618 			       le32_to_cpu(con->in_reply.global_seq));
1619 		con_out_kvec_reset(con);
1620 		ret = prepare_write_connect(con);
1621 		if (ret < 0)
1622 			return ret;
1623 		prepare_read_connect(con);
1624 		break;
1625 
1626 	case CEPH_MSGR_TAG_READY:
1627 		if (req_feat & ~server_feat) {
1628 			pr_err("%s%lld %s protocol feature mismatch,"
1629 			       " my required %llx > server's %llx, need %llx\n",
1630 			       ENTITY_NAME(con->peer_name),
1631 			       ceph_pr_addr(&con->peer_addr.in_addr),
1632 			       req_feat, server_feat, req_feat & ~server_feat);
1633 			con->error_msg = "missing required protocol features";
1634 			fail_protocol(con);
1635 			return -1;
1636 		}
1637 
1638 		BUG_ON(con->state != CON_STATE_NEGOTIATING);
1639 		con->state = CON_STATE_OPEN;
1640 
1641 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1642 		con->connect_seq++;
1643 		con->peer_features = server_feat;
1644 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1645 		     con->peer_global_seq,
1646 		     le32_to_cpu(con->in_reply.connect_seq),
1647 		     con->connect_seq);
1648 		WARN_ON(con->connect_seq !=
1649 			le32_to_cpu(con->in_reply.connect_seq));
1650 
1651 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1652 			set_bit(CON_FLAG_LOSSYTX, &con->flags);
1653 
1654 		con->delay = 0;      /* reset backoff memory */
1655 
1656 		prepare_read_tag(con);
1657 		break;
1658 
1659 	case CEPH_MSGR_TAG_WAIT:
1660 		/*
1661 		 * If there is a connection race (we are opening
1662 		 * connections to each other), one of us may just have
1663 		 * to WAIT.  This shouldn't happen if we are the
1664 		 * client.
1665 		 */
1666 		pr_err("process_connect got WAIT as client\n");
1667 		con->error_msg = "protocol error, got WAIT as client";
1668 		return -1;
1669 
1670 	default:
1671 		pr_err("connect protocol error, will retry\n");
1672 		con->error_msg = "protocol error, garbage tag during connect";
1673 		return -1;
1674 	}
1675 	return 0;
1676 }
1677 
1678 
1679 /*
1680  * read (part of) an ack
1681  */
1682 static int read_partial_ack(struct ceph_connection *con)
1683 {
1684 	int size = sizeof (con->in_temp_ack);
1685 	int end = size;
1686 
1687 	return read_partial(con, end, size, &con->in_temp_ack);
1688 }
1689 
1690 
1691 /*
1692  * We can finally discard anything that's been acked.
1693  */
1694 static void process_ack(struct ceph_connection *con)
1695 {
1696 	struct ceph_msg *m;
1697 	u64 ack = le64_to_cpu(con->in_temp_ack);
1698 	u64 seq;
1699 
1700 	while (!list_empty(&con->out_sent)) {
1701 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1702 				     list_head);
1703 		seq = le64_to_cpu(m->hdr.seq);
1704 		if (seq > ack)
1705 			break;
1706 		dout("got ack for seq %llu type %d at %p\n", seq,
1707 		     le16_to_cpu(m->hdr.type), m);
1708 		m->ack_stamp = jiffies;
1709 		ceph_msg_remove(m);
1710 	}
1711 	prepare_read_tag(con);
1712 }
1713 
1714 
1715 
1716 
1717 static int read_partial_message_section(struct ceph_connection *con,
1718 					struct kvec *section,
1719 					unsigned int sec_len, u32 *crc)
1720 {
1721 	int ret, left;
1722 
1723 	BUG_ON(!section);
1724 
1725 	while (section->iov_len < sec_len) {
1726 		BUG_ON(section->iov_base == NULL);
1727 		left = sec_len - section->iov_len;
1728 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1729 				       section->iov_len, left);
1730 		if (ret <= 0)
1731 			return ret;
1732 		section->iov_len += ret;
1733 	}
1734 	if (section->iov_len == sec_len)
1735 		*crc = crc32c(0, section->iov_base, section->iov_len);
1736 
1737 	return 1;
1738 }
1739 
1740 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1741 
1742 static int read_partial_message_pages(struct ceph_connection *con,
1743 				      struct page **pages,
1744 				      unsigned int data_len, bool do_datacrc)
1745 {
1746 	void *p;
1747 	int ret;
1748 	int left;
1749 
1750 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1751 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1752 	/* (page) data */
1753 	BUG_ON(pages == NULL);
1754 	p = kmap(pages[con->in_msg_pos.page]);
1755 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1756 			       left);
1757 	if (ret > 0 && do_datacrc)
1758 		con->in_data_crc =
1759 			crc32c(con->in_data_crc,
1760 				  p + con->in_msg_pos.page_pos, ret);
1761 	kunmap(pages[con->in_msg_pos.page]);
1762 	if (ret <= 0)
1763 		return ret;
1764 	con->in_msg_pos.data_pos += ret;
1765 	con->in_msg_pos.page_pos += ret;
1766 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1767 		con->in_msg_pos.page_pos = 0;
1768 		con->in_msg_pos.page++;
1769 	}
1770 
1771 	return ret;
1772 }
1773 
1774 #ifdef CONFIG_BLOCK
1775 static int read_partial_message_bio(struct ceph_connection *con,
1776 				    struct bio **bio_iter, int *bio_seg,
1777 				    unsigned int data_len, bool do_datacrc)
1778 {
1779 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1780 	void *p;
1781 	int ret, left;
1782 
1783 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1784 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1785 
1786 	p = kmap(bv->bv_page) + bv->bv_offset;
1787 
1788 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1789 			       left);
1790 	if (ret > 0 && do_datacrc)
1791 		con->in_data_crc =
1792 			crc32c(con->in_data_crc,
1793 				  p + con->in_msg_pos.page_pos, ret);
1794 	kunmap(bv->bv_page);
1795 	if (ret <= 0)
1796 		return ret;
1797 	con->in_msg_pos.data_pos += ret;
1798 	con->in_msg_pos.page_pos += ret;
1799 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1800 		con->in_msg_pos.page_pos = 0;
1801 		iter_bio_next(bio_iter, bio_seg);
1802 	}
1803 
1804 	return ret;
1805 }
1806 #endif
1807 
1808 /*
1809  * read (part of) a message.
1810  */
1811 static int read_partial_message(struct ceph_connection *con)
1812 {
1813 	struct ceph_msg *m = con->in_msg;
1814 	int size;
1815 	int end;
1816 	int ret;
1817 	unsigned int front_len, middle_len, data_len;
1818 	bool do_datacrc = !con->msgr->nocrc;
1819 	u64 seq;
1820 	u32 crc;
1821 
1822 	dout("read_partial_message con %p msg %p\n", con, m);
1823 
1824 	/* header */
1825 	size = sizeof (con->in_hdr);
1826 	end = size;
1827 	ret = read_partial(con, end, size, &con->in_hdr);
1828 	if (ret <= 0)
1829 		return ret;
1830 
1831 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1832 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
1833 		pr_err("read_partial_message bad hdr "
1834 		       " crc %u != expected %u\n",
1835 		       crc, con->in_hdr.crc);
1836 		return -EBADMSG;
1837 	}
1838 
1839 	front_len = le32_to_cpu(con->in_hdr.front_len);
1840 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1841 		return -EIO;
1842 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1843 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1844 		return -EIO;
1845 	data_len = le32_to_cpu(con->in_hdr.data_len);
1846 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1847 		return -EIO;
1848 
1849 	/* verify seq# */
1850 	seq = le64_to_cpu(con->in_hdr.seq);
1851 	if ((s64)seq - (s64)con->in_seq < 1) {
1852 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1853 			ENTITY_NAME(con->peer_name),
1854 			ceph_pr_addr(&con->peer_addr.in_addr),
1855 			seq, con->in_seq + 1);
1856 		con->in_base_pos = -front_len - middle_len - data_len -
1857 			sizeof(m->footer);
1858 		con->in_tag = CEPH_MSGR_TAG_READY;
1859 		return 0;
1860 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1861 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1862 		       seq, con->in_seq + 1);
1863 		con->error_msg = "bad message sequence # for incoming message";
1864 		return -EBADMSG;
1865 	}
1866 
1867 	/* allocate message? */
1868 	if (!con->in_msg) {
1869 		int skip = 0;
1870 
1871 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1872 		     con->in_hdr.front_len, con->in_hdr.data_len);
1873 		ret = ceph_con_in_msg_alloc(con, &skip);
1874 		if (ret < 0)
1875 			return ret;
1876 		if (skip) {
1877 			/* skip this message */
1878 			dout("alloc_msg said skip message\n");
1879 			BUG_ON(con->in_msg);
1880 			con->in_base_pos = -front_len - middle_len - data_len -
1881 				sizeof(m->footer);
1882 			con->in_tag = CEPH_MSGR_TAG_READY;
1883 			con->in_seq++;
1884 			return 0;
1885 		}
1886 
1887 		BUG_ON(!con->in_msg);
1888 		BUG_ON(con->in_msg->con != con);
1889 		m = con->in_msg;
1890 		m->front.iov_len = 0;    /* haven't read it yet */
1891 		if (m->middle)
1892 			m->middle->vec.iov_len = 0;
1893 
1894 		con->in_msg_pos.page = 0;
1895 		if (m->pages)
1896 			con->in_msg_pos.page_pos = m->page_alignment;
1897 		else
1898 			con->in_msg_pos.page_pos = 0;
1899 		con->in_msg_pos.data_pos = 0;
1900 
1901 #ifdef CONFIG_BLOCK
1902 		if (m->bio)
1903 			init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1904 #endif
1905 	}
1906 
1907 	/* front */
1908 	ret = read_partial_message_section(con, &m->front, front_len,
1909 					   &con->in_front_crc);
1910 	if (ret <= 0)
1911 		return ret;
1912 
1913 	/* middle */
1914 	if (m->middle) {
1915 		ret = read_partial_message_section(con, &m->middle->vec,
1916 						   middle_len,
1917 						   &con->in_middle_crc);
1918 		if (ret <= 0)
1919 			return ret;
1920 	}
1921 
1922 	/* (page) data */
1923 	while (con->in_msg_pos.data_pos < data_len) {
1924 		if (m->pages) {
1925 			ret = read_partial_message_pages(con, m->pages,
1926 						 data_len, do_datacrc);
1927 			if (ret <= 0)
1928 				return ret;
1929 #ifdef CONFIG_BLOCK
1930 		} else if (m->bio) {
1931 			BUG_ON(!m->bio_iter);
1932 			ret = read_partial_message_bio(con,
1933 						 &m->bio_iter, &m->bio_seg,
1934 						 data_len, do_datacrc);
1935 			if (ret <= 0)
1936 				return ret;
1937 #endif
1938 		} else {
1939 			BUG_ON(1);
1940 		}
1941 	}
1942 
1943 	/* footer */
1944 	size = sizeof (m->footer);
1945 	end += size;
1946 	ret = read_partial(con, end, size, &m->footer);
1947 	if (ret <= 0)
1948 		return ret;
1949 
1950 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1951 	     m, front_len, m->footer.front_crc, middle_len,
1952 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1953 
1954 	/* crc ok? */
1955 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1956 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1957 		       m, con->in_front_crc, m->footer.front_crc);
1958 		return -EBADMSG;
1959 	}
1960 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1961 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1962 		       m, con->in_middle_crc, m->footer.middle_crc);
1963 		return -EBADMSG;
1964 	}
1965 	if (do_datacrc &&
1966 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1967 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1968 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1969 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1970 		return -EBADMSG;
1971 	}
1972 
1973 	return 1; /* done! */
1974 }
1975 
1976 /*
1977  * Process message.  This happens in the worker thread.  The callback should
1978  * be careful not to do anything that waits on other incoming messages or it
1979  * may deadlock.
1980  */
1981 static void process_message(struct ceph_connection *con)
1982 {
1983 	struct ceph_msg *msg;
1984 
1985 	BUG_ON(con->in_msg->con != con);
1986 	con->in_msg->con = NULL;
1987 	msg = con->in_msg;
1988 	con->in_msg = NULL;
1989 	con->ops->put(con);
1990 
1991 	/* if first message, set peer_name */
1992 	if (con->peer_name.type == 0)
1993 		con->peer_name = msg->hdr.src;
1994 
1995 	con->in_seq++;
1996 	mutex_unlock(&con->mutex);
1997 
1998 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1999 	     msg, le64_to_cpu(msg->hdr.seq),
2000 	     ENTITY_NAME(msg->hdr.src),
2001 	     le16_to_cpu(msg->hdr.type),
2002 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2003 	     le32_to_cpu(msg->hdr.front_len),
2004 	     le32_to_cpu(msg->hdr.data_len),
2005 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2006 	con->ops->dispatch(con, msg);
2007 
2008 	mutex_lock(&con->mutex);
2009 }
2010 
2011 
2012 /*
2013  * Write something to the socket.  Called in a worker thread when the
2014  * socket appears to be writeable and we have something ready to send.
2015  */
2016 static int try_write(struct ceph_connection *con)
2017 {
2018 	int ret = 1;
2019 
2020 	dout("try_write start %p state %lu\n", con, con->state);
2021 
2022 more:
2023 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2024 
2025 	/* open the socket first? */
2026 	if (con->state == CON_STATE_PREOPEN) {
2027 		BUG_ON(con->sock);
2028 		con->state = CON_STATE_CONNECTING;
2029 
2030 		con_out_kvec_reset(con);
2031 		prepare_write_banner(con);
2032 		prepare_read_banner(con);
2033 
2034 		BUG_ON(con->in_msg);
2035 		con->in_tag = CEPH_MSGR_TAG_READY;
2036 		dout("try_write initiating connect on %p new state %lu\n",
2037 		     con, con->state);
2038 		ret = ceph_tcp_connect(con);
2039 		if (ret < 0) {
2040 			con->error_msg = "connect error";
2041 			goto out;
2042 		}
2043 	}
2044 
2045 more_kvec:
2046 	/* kvec data queued? */
2047 	if (con->out_skip) {
2048 		ret = write_partial_skip(con);
2049 		if (ret <= 0)
2050 			goto out;
2051 	}
2052 	if (con->out_kvec_left) {
2053 		ret = write_partial_kvec(con);
2054 		if (ret <= 0)
2055 			goto out;
2056 	}
2057 
2058 	/* msg pages? */
2059 	if (con->out_msg) {
2060 		if (con->out_msg_done) {
2061 			ceph_msg_put(con->out_msg);
2062 			con->out_msg = NULL;   /* we're done with this one */
2063 			goto do_next;
2064 		}
2065 
2066 		ret = write_partial_msg_pages(con);
2067 		if (ret == 1)
2068 			goto more_kvec;  /* we need to send the footer, too! */
2069 		if (ret == 0)
2070 			goto out;
2071 		if (ret < 0) {
2072 			dout("try_write write_partial_msg_pages err %d\n",
2073 			     ret);
2074 			goto out;
2075 		}
2076 	}
2077 
2078 do_next:
2079 	if (con->state == CON_STATE_OPEN) {
2080 		/* is anything else pending? */
2081 		if (!list_empty(&con->out_queue)) {
2082 			prepare_write_message(con);
2083 			goto more;
2084 		}
2085 		if (con->in_seq > con->in_seq_acked) {
2086 			prepare_write_ack(con);
2087 			goto more;
2088 		}
2089 		if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2090 				       &con->flags)) {
2091 			prepare_write_keepalive(con);
2092 			goto more;
2093 		}
2094 	}
2095 
2096 	/* Nothing to do! */
2097 	clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2098 	dout("try_write nothing else to write.\n");
2099 	ret = 0;
2100 out:
2101 	dout("try_write done on %p ret %d\n", con, ret);
2102 	return ret;
2103 }
2104 
2105 
2106 
2107 /*
2108  * Read what we can from the socket.
2109  */
2110 static int try_read(struct ceph_connection *con)
2111 {
2112 	int ret = -1;
2113 
2114 more:
2115 	dout("try_read start on %p state %lu\n", con, con->state);
2116 	if (con->state != CON_STATE_CONNECTING &&
2117 	    con->state != CON_STATE_NEGOTIATING &&
2118 	    con->state != CON_STATE_OPEN)
2119 		return 0;
2120 
2121 	BUG_ON(!con->sock);
2122 
2123 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2124 	     con->in_base_pos);
2125 
2126 	if (con->state == CON_STATE_CONNECTING) {
2127 		dout("try_read connecting\n");
2128 		ret = read_partial_banner(con);
2129 		if (ret <= 0)
2130 			goto out;
2131 		ret = process_banner(con);
2132 		if (ret < 0)
2133 			goto out;
2134 
2135 		BUG_ON(con->state != CON_STATE_CONNECTING);
2136 		con->state = CON_STATE_NEGOTIATING;
2137 
2138 		/*
2139 		 * Received banner is good, exchange connection info.
2140 		 * Do not reset out_kvec, as sending our banner raced
2141 		 * with receiving peer banner after connect completed.
2142 		 */
2143 		ret = prepare_write_connect(con);
2144 		if (ret < 0)
2145 			goto out;
2146 		prepare_read_connect(con);
2147 
2148 		/* Send connection info before awaiting response */
2149 		goto out;
2150 	}
2151 
2152 	if (con->state == CON_STATE_NEGOTIATING) {
2153 		dout("try_read negotiating\n");
2154 		ret = read_partial_connect(con);
2155 		if (ret <= 0)
2156 			goto out;
2157 		ret = process_connect(con);
2158 		if (ret < 0)
2159 			goto out;
2160 		goto more;
2161 	}
2162 
2163 	BUG_ON(con->state != CON_STATE_OPEN);
2164 
2165 	if (con->in_base_pos < 0) {
2166 		/*
2167 		 * skipping + discarding content.
2168 		 *
2169 		 * FIXME: there must be a better way to do this!
2170 		 */
2171 		static char buf[SKIP_BUF_SIZE];
2172 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2173 
2174 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2175 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2176 		if (ret <= 0)
2177 			goto out;
2178 		con->in_base_pos += ret;
2179 		if (con->in_base_pos)
2180 			goto more;
2181 	}
2182 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2183 		/*
2184 		 * what's next?
2185 		 */
2186 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2187 		if (ret <= 0)
2188 			goto out;
2189 		dout("try_read got tag %d\n", (int)con->in_tag);
2190 		switch (con->in_tag) {
2191 		case CEPH_MSGR_TAG_MSG:
2192 			prepare_read_message(con);
2193 			break;
2194 		case CEPH_MSGR_TAG_ACK:
2195 			prepare_read_ack(con);
2196 			break;
2197 		case CEPH_MSGR_TAG_CLOSE:
2198 			con_close_socket(con);
2199 			con->state = CON_STATE_CLOSED;
2200 			goto out;
2201 		default:
2202 			goto bad_tag;
2203 		}
2204 	}
2205 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2206 		ret = read_partial_message(con);
2207 		if (ret <= 0) {
2208 			switch (ret) {
2209 			case -EBADMSG:
2210 				con->error_msg = "bad crc";
2211 				ret = -EIO;
2212 				break;
2213 			case -EIO:
2214 				con->error_msg = "io error";
2215 				break;
2216 			}
2217 			goto out;
2218 		}
2219 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2220 			goto more;
2221 		process_message(con);
2222 		if (con->state == CON_STATE_OPEN)
2223 			prepare_read_tag(con);
2224 		goto more;
2225 	}
2226 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2227 		ret = read_partial_ack(con);
2228 		if (ret <= 0)
2229 			goto out;
2230 		process_ack(con);
2231 		goto more;
2232 	}
2233 
2234 out:
2235 	dout("try_read done on %p ret %d\n", con, ret);
2236 	return ret;
2237 
2238 bad_tag:
2239 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2240 	con->error_msg = "protocol error, garbage tag";
2241 	ret = -1;
2242 	goto out;
2243 }
2244 
2245 
2246 /*
2247  * Atomically queue work on a connection.  Bump @con reference to
2248  * avoid races with connection teardown.
2249  */
2250 static void queue_con(struct ceph_connection *con)
2251 {
2252 	if (!con->ops->get(con)) {
2253 		dout("queue_con %p ref count 0\n", con);
2254 		return;
2255 	}
2256 
2257 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2258 		dout("queue_con %p - already queued\n", con);
2259 		con->ops->put(con);
2260 	} else {
2261 		dout("queue_con %p\n", con);
2262 	}
2263 }
2264 
2265 /*
2266  * Do some work on a connection.  Drop a connection ref when we're done.
2267  */
2268 static void con_work(struct work_struct *work)
2269 {
2270 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2271 						   work.work);
2272 	int ret;
2273 
2274 	mutex_lock(&con->mutex);
2275 restart:
2276 	if (test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags)) {
2277 		switch (con->state) {
2278 		case CON_STATE_CONNECTING:
2279 			con->error_msg = "connection failed";
2280 			break;
2281 		case CON_STATE_NEGOTIATING:
2282 			con->error_msg = "negotiation failed";
2283 			break;
2284 		case CON_STATE_OPEN:
2285 			con->error_msg = "socket closed";
2286 			break;
2287 		default:
2288 			dout("unrecognized con state %d\n", (int)con->state);
2289 			con->error_msg = "unrecognized con state";
2290 			BUG();
2291 		}
2292 		goto fault;
2293 	}
2294 
2295 	if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2296 		dout("con_work %p backing off\n", con);
2297 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2298 				       round_jiffies_relative(con->delay))) {
2299 			dout("con_work %p backoff %lu\n", con, con->delay);
2300 			mutex_unlock(&con->mutex);
2301 			return;
2302 		} else {
2303 			con->ops->put(con);
2304 			dout("con_work %p FAILED to back off %lu\n", con,
2305 			     con->delay);
2306 		}
2307 	}
2308 
2309 	if (con->state == CON_STATE_STANDBY) {
2310 		dout("con_work %p STANDBY\n", con);
2311 		goto done;
2312 	}
2313 	if (con->state == CON_STATE_CLOSED) {
2314 		dout("con_work %p CLOSED\n", con);
2315 		BUG_ON(con->sock);
2316 		goto done;
2317 	}
2318 	if (con->state == CON_STATE_PREOPEN) {
2319 		dout("con_work OPENING\n");
2320 		BUG_ON(con->sock);
2321 	}
2322 
2323 	ret = try_read(con);
2324 	if (ret == -EAGAIN)
2325 		goto restart;
2326 	if (ret < 0) {
2327 		con->error_msg = "socket error on read";
2328 		goto fault;
2329 	}
2330 
2331 	ret = try_write(con);
2332 	if (ret == -EAGAIN)
2333 		goto restart;
2334 	if (ret < 0) {
2335 		con->error_msg = "socket error on write";
2336 		goto fault;
2337 	}
2338 
2339 done:
2340 	mutex_unlock(&con->mutex);
2341 done_unlocked:
2342 	con->ops->put(con);
2343 	return;
2344 
2345 fault:
2346 	ceph_fault(con);     /* error/fault path */
2347 	goto done_unlocked;
2348 }
2349 
2350 
2351 /*
2352  * Generic error/fault handler.  A retry mechanism is used with
2353  * exponential backoff
2354  */
2355 static void ceph_fault(struct ceph_connection *con)
2356 	__releases(con->mutex)
2357 {
2358 	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2359 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2360 	dout("fault %p state %lu to peer %s\n",
2361 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2362 
2363 	BUG_ON(con->state != CON_STATE_CONNECTING &&
2364 	       con->state != CON_STATE_NEGOTIATING &&
2365 	       con->state != CON_STATE_OPEN);
2366 
2367 	con_close_socket(con);
2368 
2369 	if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2370 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2371 		con->state = CON_STATE_CLOSED;
2372 		goto out_unlock;
2373 	}
2374 
2375 	if (con->in_msg) {
2376 		BUG_ON(con->in_msg->con != con);
2377 		con->in_msg->con = NULL;
2378 		ceph_msg_put(con->in_msg);
2379 		con->in_msg = NULL;
2380 		con->ops->put(con);
2381 	}
2382 
2383 	/* Requeue anything that hasn't been acked */
2384 	list_splice_init(&con->out_sent, &con->out_queue);
2385 
2386 	/* If there are no messages queued or keepalive pending, place
2387 	 * the connection in a STANDBY state */
2388 	if (list_empty(&con->out_queue) &&
2389 	    !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2390 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2391 		clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2392 		con->state = CON_STATE_STANDBY;
2393 	} else {
2394 		/* retry after a delay. */
2395 		con->state = CON_STATE_PREOPEN;
2396 		if (con->delay == 0)
2397 			con->delay = BASE_DELAY_INTERVAL;
2398 		else if (con->delay < MAX_DELAY_INTERVAL)
2399 			con->delay *= 2;
2400 		con->ops->get(con);
2401 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2402 				       round_jiffies_relative(con->delay))) {
2403 			dout("fault queued %p delay %lu\n", con, con->delay);
2404 		} else {
2405 			con->ops->put(con);
2406 			dout("fault failed to queue %p delay %lu, backoff\n",
2407 			     con, con->delay);
2408 			/*
2409 			 * In many cases we see a socket state change
2410 			 * while con_work is running and end up
2411 			 * queuing (non-delayed) work, such that we
2412 			 * can't backoff with a delay.  Set a flag so
2413 			 * that when con_work restarts we schedule the
2414 			 * delay then.
2415 			 */
2416 			set_bit(CON_FLAG_BACKOFF, &con->flags);
2417 		}
2418 	}
2419 
2420 out_unlock:
2421 	mutex_unlock(&con->mutex);
2422 	/*
2423 	 * in case we faulted due to authentication, invalidate our
2424 	 * current tickets so that we can get new ones.
2425 	 */
2426 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2427 		dout("calling invalidate_authorizer()\n");
2428 		con->ops->invalidate_authorizer(con);
2429 	}
2430 
2431 	if (con->ops->fault)
2432 		con->ops->fault(con);
2433 }
2434 
2435 
2436 
2437 /*
2438  * initialize a new messenger instance
2439  */
2440 void ceph_messenger_init(struct ceph_messenger *msgr,
2441 			struct ceph_entity_addr *myaddr,
2442 			u32 supported_features,
2443 			u32 required_features,
2444 			bool nocrc)
2445 {
2446 	msgr->supported_features = supported_features;
2447 	msgr->required_features = required_features;
2448 
2449 	spin_lock_init(&msgr->global_seq_lock);
2450 
2451 	if (myaddr)
2452 		msgr->inst.addr = *myaddr;
2453 
2454 	/* select a random nonce */
2455 	msgr->inst.addr.type = 0;
2456 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2457 	encode_my_addr(msgr);
2458 	msgr->nocrc = nocrc;
2459 
2460 	atomic_set(&msgr->stopping, 0);
2461 
2462 	dout("%s %p\n", __func__, msgr);
2463 }
2464 EXPORT_SYMBOL(ceph_messenger_init);
2465 
2466 static void clear_standby(struct ceph_connection *con)
2467 {
2468 	/* come back from STANDBY? */
2469 	if (con->state == CON_STATE_STANDBY) {
2470 		dout("clear_standby %p and ++connect_seq\n", con);
2471 		con->state = CON_STATE_PREOPEN;
2472 		con->connect_seq++;
2473 		WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2474 		WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2475 	}
2476 }
2477 
2478 /*
2479  * Queue up an outgoing message on the given connection.
2480  */
2481 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2482 {
2483 	/* set src+dst */
2484 	msg->hdr.src = con->msgr->inst.name;
2485 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2486 	msg->needs_out_seq = true;
2487 
2488 	mutex_lock(&con->mutex);
2489 
2490 	if (con->state == CON_STATE_CLOSED) {
2491 		dout("con_send %p closed, dropping %p\n", con, msg);
2492 		ceph_msg_put(msg);
2493 		mutex_unlock(&con->mutex);
2494 		return;
2495 	}
2496 
2497 	BUG_ON(msg->con != NULL);
2498 	msg->con = con->ops->get(con);
2499 	BUG_ON(msg->con == NULL);
2500 
2501 	BUG_ON(!list_empty(&msg->list_head));
2502 	list_add_tail(&msg->list_head, &con->out_queue);
2503 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2504 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2505 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2506 	     le32_to_cpu(msg->hdr.front_len),
2507 	     le32_to_cpu(msg->hdr.middle_len),
2508 	     le32_to_cpu(msg->hdr.data_len));
2509 
2510 	clear_standby(con);
2511 	mutex_unlock(&con->mutex);
2512 
2513 	/* if there wasn't anything waiting to send before, queue
2514 	 * new work */
2515 	if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2516 		queue_con(con);
2517 }
2518 EXPORT_SYMBOL(ceph_con_send);
2519 
2520 /*
2521  * Revoke a message that was previously queued for send
2522  */
2523 void ceph_msg_revoke(struct ceph_msg *msg)
2524 {
2525 	struct ceph_connection *con = msg->con;
2526 
2527 	if (!con)
2528 		return;		/* Message not in our possession */
2529 
2530 	mutex_lock(&con->mutex);
2531 	if (!list_empty(&msg->list_head)) {
2532 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2533 		list_del_init(&msg->list_head);
2534 		BUG_ON(msg->con == NULL);
2535 		msg->con->ops->put(msg->con);
2536 		msg->con = NULL;
2537 		msg->hdr.seq = 0;
2538 
2539 		ceph_msg_put(msg);
2540 	}
2541 	if (con->out_msg == msg) {
2542 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
2543 		con->out_msg = NULL;
2544 		if (con->out_kvec_is_msg) {
2545 			con->out_skip = con->out_kvec_bytes;
2546 			con->out_kvec_is_msg = false;
2547 		}
2548 		msg->hdr.seq = 0;
2549 
2550 		ceph_msg_put(msg);
2551 	}
2552 	mutex_unlock(&con->mutex);
2553 }
2554 
2555 /*
2556  * Revoke a message that we may be reading data into
2557  */
2558 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2559 {
2560 	struct ceph_connection *con;
2561 
2562 	BUG_ON(msg == NULL);
2563 	if (!msg->con) {
2564 		dout("%s msg %p null con\n", __func__, msg);
2565 
2566 		return;		/* Message not in our possession */
2567 	}
2568 
2569 	con = msg->con;
2570 	mutex_lock(&con->mutex);
2571 	if (con->in_msg == msg) {
2572 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2573 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2574 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2575 
2576 		/* skip rest of message */
2577 		dout("%s %p msg %p revoked\n", __func__, con, msg);
2578 		con->in_base_pos = con->in_base_pos -
2579 				sizeof(struct ceph_msg_header) -
2580 				front_len -
2581 				middle_len -
2582 				data_len -
2583 				sizeof(struct ceph_msg_footer);
2584 		ceph_msg_put(con->in_msg);
2585 		con->in_msg = NULL;
2586 		con->in_tag = CEPH_MSGR_TAG_READY;
2587 		con->in_seq++;
2588 	} else {
2589 		dout("%s %p in_msg %p msg %p no-op\n",
2590 		     __func__, con, con->in_msg, msg);
2591 	}
2592 	mutex_unlock(&con->mutex);
2593 }
2594 
2595 /*
2596  * Queue a keepalive byte to ensure the tcp connection is alive.
2597  */
2598 void ceph_con_keepalive(struct ceph_connection *con)
2599 {
2600 	dout("con_keepalive %p\n", con);
2601 	mutex_lock(&con->mutex);
2602 	clear_standby(con);
2603 	mutex_unlock(&con->mutex);
2604 	if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2605 	    test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2606 		queue_con(con);
2607 }
2608 EXPORT_SYMBOL(ceph_con_keepalive);
2609 
2610 
2611 /*
2612  * construct a new message with given type, size
2613  * the new msg has a ref count of 1.
2614  */
2615 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2616 			      bool can_fail)
2617 {
2618 	struct ceph_msg *m;
2619 
2620 	m = kmalloc(sizeof(*m), flags);
2621 	if (m == NULL)
2622 		goto out;
2623 	kref_init(&m->kref);
2624 
2625 	m->con = NULL;
2626 	INIT_LIST_HEAD(&m->list_head);
2627 
2628 	m->hdr.tid = 0;
2629 	m->hdr.type = cpu_to_le16(type);
2630 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2631 	m->hdr.version = 0;
2632 	m->hdr.front_len = cpu_to_le32(front_len);
2633 	m->hdr.middle_len = 0;
2634 	m->hdr.data_len = 0;
2635 	m->hdr.data_off = 0;
2636 	m->hdr.reserved = 0;
2637 	m->footer.front_crc = 0;
2638 	m->footer.middle_crc = 0;
2639 	m->footer.data_crc = 0;
2640 	m->footer.flags = 0;
2641 	m->front_max = front_len;
2642 	m->front_is_vmalloc = false;
2643 	m->more_to_follow = false;
2644 	m->ack_stamp = 0;
2645 	m->pool = NULL;
2646 
2647 	/* middle */
2648 	m->middle = NULL;
2649 
2650 	/* data */
2651 	m->nr_pages = 0;
2652 	m->page_alignment = 0;
2653 	m->pages = NULL;
2654 	m->pagelist = NULL;
2655 	m->bio = NULL;
2656 	m->bio_iter = NULL;
2657 	m->bio_seg = 0;
2658 	m->trail = NULL;
2659 
2660 	/* front */
2661 	if (front_len) {
2662 		if (front_len > PAGE_CACHE_SIZE) {
2663 			m->front.iov_base = __vmalloc(front_len, flags,
2664 						      PAGE_KERNEL);
2665 			m->front_is_vmalloc = true;
2666 		} else {
2667 			m->front.iov_base = kmalloc(front_len, flags);
2668 		}
2669 		if (m->front.iov_base == NULL) {
2670 			dout("ceph_msg_new can't allocate %d bytes\n",
2671 			     front_len);
2672 			goto out2;
2673 		}
2674 	} else {
2675 		m->front.iov_base = NULL;
2676 	}
2677 	m->front.iov_len = front_len;
2678 
2679 	dout("ceph_msg_new %p front %d\n", m, front_len);
2680 	return m;
2681 
2682 out2:
2683 	ceph_msg_put(m);
2684 out:
2685 	if (!can_fail) {
2686 		pr_err("msg_new can't create type %d front %d\n", type,
2687 		       front_len);
2688 		WARN_ON(1);
2689 	} else {
2690 		dout("msg_new can't create type %d front %d\n", type,
2691 		     front_len);
2692 	}
2693 	return NULL;
2694 }
2695 EXPORT_SYMBOL(ceph_msg_new);
2696 
2697 /*
2698  * Allocate "middle" portion of a message, if it is needed and wasn't
2699  * allocated by alloc_msg.  This allows us to read a small fixed-size
2700  * per-type header in the front and then gracefully fail (i.e.,
2701  * propagate the error to the caller based on info in the front) when
2702  * the middle is too large.
2703  */
2704 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2705 {
2706 	int type = le16_to_cpu(msg->hdr.type);
2707 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2708 
2709 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2710 	     ceph_msg_type_name(type), middle_len);
2711 	BUG_ON(!middle_len);
2712 	BUG_ON(msg->middle);
2713 
2714 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2715 	if (!msg->middle)
2716 		return -ENOMEM;
2717 	return 0;
2718 }
2719 
2720 /*
2721  * Allocate a message for receiving an incoming message on a
2722  * connection, and save the result in con->in_msg.  Uses the
2723  * connection's private alloc_msg op if available.
2724  *
2725  * Returns 0 on success, or a negative error code.
2726  *
2727  * On success, if we set *skip = 1:
2728  *  - the next message should be skipped and ignored.
2729  *  - con->in_msg == NULL
2730  * or if we set *skip = 0:
2731  *  - con->in_msg is non-null.
2732  * On error (ENOMEM, EAGAIN, ...),
2733  *  - con->in_msg == NULL
2734  */
2735 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2736 {
2737 	struct ceph_msg_header *hdr = &con->in_hdr;
2738 	int type = le16_to_cpu(hdr->type);
2739 	int front_len = le32_to_cpu(hdr->front_len);
2740 	int middle_len = le32_to_cpu(hdr->middle_len);
2741 	int ret = 0;
2742 
2743 	BUG_ON(con->in_msg != NULL);
2744 
2745 	if (con->ops->alloc_msg) {
2746 		struct ceph_msg *msg;
2747 
2748 		mutex_unlock(&con->mutex);
2749 		msg = con->ops->alloc_msg(con, hdr, skip);
2750 		mutex_lock(&con->mutex);
2751 		if (con->state != CON_STATE_OPEN) {
2752 			ceph_msg_put(msg);
2753 			return -EAGAIN;
2754 		}
2755 		con->in_msg = msg;
2756 		if (con->in_msg) {
2757 			con->in_msg->con = con->ops->get(con);
2758 			BUG_ON(con->in_msg->con == NULL);
2759 		}
2760 		if (*skip) {
2761 			con->in_msg = NULL;
2762 			return 0;
2763 		}
2764 		if (!con->in_msg) {
2765 			con->error_msg =
2766 				"error allocating memory for incoming message";
2767 			return -ENOMEM;
2768 		}
2769 	}
2770 	if (!con->in_msg) {
2771 		con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2772 		if (!con->in_msg) {
2773 			pr_err("unable to allocate msg type %d len %d\n",
2774 			       type, front_len);
2775 			return -ENOMEM;
2776 		}
2777 		con->in_msg->con = con->ops->get(con);
2778 		BUG_ON(con->in_msg->con == NULL);
2779 		con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2780 	}
2781 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2782 
2783 	if (middle_len && !con->in_msg->middle) {
2784 		ret = ceph_alloc_middle(con, con->in_msg);
2785 		if (ret < 0) {
2786 			ceph_msg_put(con->in_msg);
2787 			con->in_msg = NULL;
2788 		}
2789 	}
2790 
2791 	return ret;
2792 }
2793 
2794 
2795 /*
2796  * Free a generically kmalloc'd message.
2797  */
2798 void ceph_msg_kfree(struct ceph_msg *m)
2799 {
2800 	dout("msg_kfree %p\n", m);
2801 	if (m->front_is_vmalloc)
2802 		vfree(m->front.iov_base);
2803 	else
2804 		kfree(m->front.iov_base);
2805 	kfree(m);
2806 }
2807 
2808 /*
2809  * Drop a msg ref.  Destroy as needed.
2810  */
2811 void ceph_msg_last_put(struct kref *kref)
2812 {
2813 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2814 
2815 	dout("ceph_msg_put last one on %p\n", m);
2816 	WARN_ON(!list_empty(&m->list_head));
2817 
2818 	/* drop middle, data, if any */
2819 	if (m->middle) {
2820 		ceph_buffer_put(m->middle);
2821 		m->middle = NULL;
2822 	}
2823 	m->nr_pages = 0;
2824 	m->pages = NULL;
2825 
2826 	if (m->pagelist) {
2827 		ceph_pagelist_release(m->pagelist);
2828 		kfree(m->pagelist);
2829 		m->pagelist = NULL;
2830 	}
2831 
2832 	m->trail = NULL;
2833 
2834 	if (m->pool)
2835 		ceph_msgpool_put(m->pool, m);
2836 	else
2837 		ceph_msg_kfree(m);
2838 }
2839 EXPORT_SYMBOL(ceph_msg_last_put);
2840 
2841 void ceph_msg_dump(struct ceph_msg *msg)
2842 {
2843 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2844 		 msg->front_max, msg->nr_pages);
2845 	print_hex_dump(KERN_DEBUG, "header: ",
2846 		       DUMP_PREFIX_OFFSET, 16, 1,
2847 		       &msg->hdr, sizeof(msg->hdr), true);
2848 	print_hex_dump(KERN_DEBUG, " front: ",
2849 		       DUMP_PREFIX_OFFSET, 16, 1,
2850 		       msg->front.iov_base, msg->front.iov_len, true);
2851 	if (msg->middle)
2852 		print_hex_dump(KERN_DEBUG, "middle: ",
2853 			       DUMP_PREFIX_OFFSET, 16, 1,
2854 			       msg->middle->vec.iov_base,
2855 			       msg->middle->vec.iov_len, true);
2856 	print_hex_dump(KERN_DEBUG, "footer: ",
2857 		       DUMP_PREFIX_OFFSET, 16, 1,
2858 		       &msg->footer, sizeof(msg->footer), true);
2859 }
2860 EXPORT_SYMBOL(ceph_msg_dump);
2861