xref: /linux/net/ceph/messenger.c (revision 9f7d35d9f7a184ffb591b090b2cbf63d2d599c02)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 static void queue_con(struct ceph_connection *con);
171 static void cancel_con(struct ceph_connection *con);
172 static void ceph_con_workfn(struct work_struct *);
173 static void con_fault(struct ceph_connection *con);
174 
175 /*
176  * Nicely render a sockaddr as a string.  An array of formatted
177  * strings is used, to approximate reentrancy.
178  */
179 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
180 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
181 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
182 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
183 
184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
185 static atomic_t addr_str_seq = ATOMIC_INIT(0);
186 
187 static struct page *zero_page;		/* used in certain error cases */
188 
189 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
190 {
191 	int i;
192 	char *s;
193 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
194 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
195 
196 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
197 	s = addr_str[i];
198 
199 	switch (ss->ss_family) {
200 	case AF_INET:
201 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
202 			 ntohs(in4->sin_port));
203 		break;
204 
205 	case AF_INET6:
206 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
207 			 ntohs(in6->sin6_port));
208 		break;
209 
210 	default:
211 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
212 			 ss->ss_family);
213 	}
214 
215 	return s;
216 }
217 EXPORT_SYMBOL(ceph_pr_addr);
218 
219 static void encode_my_addr(struct ceph_messenger *msgr)
220 {
221 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
222 	ceph_encode_addr(&msgr->my_enc_addr);
223 }
224 
225 /*
226  * work queue for all reading and writing to/from the socket.
227  */
228 static struct workqueue_struct *ceph_msgr_wq;
229 
230 static int ceph_msgr_slab_init(void)
231 {
232 	BUG_ON(ceph_msg_cache);
233 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
234 	if (!ceph_msg_cache)
235 		return -ENOMEM;
236 
237 	return 0;
238 }
239 
240 static void ceph_msgr_slab_exit(void)
241 {
242 	BUG_ON(!ceph_msg_cache);
243 	kmem_cache_destroy(ceph_msg_cache);
244 	ceph_msg_cache = NULL;
245 }
246 
247 static void _ceph_msgr_exit(void)
248 {
249 	if (ceph_msgr_wq) {
250 		destroy_workqueue(ceph_msgr_wq);
251 		ceph_msgr_wq = NULL;
252 	}
253 
254 	BUG_ON(zero_page == NULL);
255 	put_page(zero_page);
256 	zero_page = NULL;
257 
258 	ceph_msgr_slab_exit();
259 }
260 
261 int __init ceph_msgr_init(void)
262 {
263 	if (ceph_msgr_slab_init())
264 		return -ENOMEM;
265 
266 	BUG_ON(zero_page != NULL);
267 	zero_page = ZERO_PAGE(0);
268 	get_page(zero_page);
269 
270 	/*
271 	 * The number of active work items is limited by the number of
272 	 * connections, so leave @max_active at default.
273 	 */
274 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
275 	if (ceph_msgr_wq)
276 		return 0;
277 
278 	pr_err("msgr_init failed to create workqueue\n");
279 	_ceph_msgr_exit();
280 
281 	return -ENOMEM;
282 }
283 
284 void ceph_msgr_exit(void)
285 {
286 	BUG_ON(ceph_msgr_wq == NULL);
287 
288 	_ceph_msgr_exit();
289 }
290 
291 void ceph_msgr_flush(void)
292 {
293 	flush_workqueue(ceph_msgr_wq);
294 }
295 EXPORT_SYMBOL(ceph_msgr_flush);
296 
297 /* Connection socket state transition functions */
298 
299 static void con_sock_state_init(struct ceph_connection *con)
300 {
301 	int old_state;
302 
303 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
304 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
305 		printk("%s: unexpected old state %d\n", __func__, old_state);
306 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
307 	     CON_SOCK_STATE_CLOSED);
308 }
309 
310 static void con_sock_state_connecting(struct ceph_connection *con)
311 {
312 	int old_state;
313 
314 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
315 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
316 		printk("%s: unexpected old state %d\n", __func__, old_state);
317 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
318 	     CON_SOCK_STATE_CONNECTING);
319 }
320 
321 static void con_sock_state_connected(struct ceph_connection *con)
322 {
323 	int old_state;
324 
325 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
326 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
327 		printk("%s: unexpected old state %d\n", __func__, old_state);
328 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 	     CON_SOCK_STATE_CONNECTED);
330 }
331 
332 static void con_sock_state_closing(struct ceph_connection *con)
333 {
334 	int old_state;
335 
336 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
337 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
338 			old_state != CON_SOCK_STATE_CONNECTED &&
339 			old_state != CON_SOCK_STATE_CLOSING))
340 		printk("%s: unexpected old state %d\n", __func__, old_state);
341 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
342 	     CON_SOCK_STATE_CLOSING);
343 }
344 
345 static void con_sock_state_closed(struct ceph_connection *con)
346 {
347 	int old_state;
348 
349 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
350 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
351 		    old_state != CON_SOCK_STATE_CLOSING &&
352 		    old_state != CON_SOCK_STATE_CONNECTING &&
353 		    old_state != CON_SOCK_STATE_CLOSED))
354 		printk("%s: unexpected old state %d\n", __func__, old_state);
355 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 	     CON_SOCK_STATE_CLOSED);
357 }
358 
359 /*
360  * socket callback functions
361  */
362 
363 /* data available on socket, or listen socket received a connect */
364 static void ceph_sock_data_ready(struct sock *sk)
365 {
366 	struct ceph_connection *con = sk->sk_user_data;
367 	if (atomic_read(&con->msgr->stopping)) {
368 		return;
369 	}
370 
371 	if (sk->sk_state != TCP_CLOSE_WAIT) {
372 		dout("%s on %p state = %lu, queueing work\n", __func__,
373 		     con, con->state);
374 		queue_con(con);
375 	}
376 }
377 
378 /* socket has buffer space for writing */
379 static void ceph_sock_write_space(struct sock *sk)
380 {
381 	struct ceph_connection *con = sk->sk_user_data;
382 
383 	/* only queue to workqueue if there is data we want to write,
384 	 * and there is sufficient space in the socket buffer to accept
385 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
386 	 * doesn't get called again until try_write() fills the socket
387 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
388 	 * and net/core/stream.c:sk_stream_write_space().
389 	 */
390 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
391 		if (sk_stream_is_writeable(sk)) {
392 			dout("%s %p queueing write work\n", __func__, con);
393 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
394 			queue_con(con);
395 		}
396 	} else {
397 		dout("%s %p nothing to write\n", __func__, con);
398 	}
399 }
400 
401 /* socket's state has changed */
402 static void ceph_sock_state_change(struct sock *sk)
403 {
404 	struct ceph_connection *con = sk->sk_user_data;
405 
406 	dout("%s %p state = %lu sk_state = %u\n", __func__,
407 	     con, con->state, sk->sk_state);
408 
409 	switch (sk->sk_state) {
410 	case TCP_CLOSE:
411 		dout("%s TCP_CLOSE\n", __func__);
412 		/* fall through */
413 	case TCP_CLOSE_WAIT:
414 		dout("%s TCP_CLOSE_WAIT\n", __func__);
415 		con_sock_state_closing(con);
416 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
417 		queue_con(con);
418 		break;
419 	case TCP_ESTABLISHED:
420 		dout("%s TCP_ESTABLISHED\n", __func__);
421 		con_sock_state_connected(con);
422 		queue_con(con);
423 		break;
424 	default:	/* Everything else is uninteresting */
425 		break;
426 	}
427 }
428 
429 /*
430  * set up socket callbacks
431  */
432 static void set_sock_callbacks(struct socket *sock,
433 			       struct ceph_connection *con)
434 {
435 	struct sock *sk = sock->sk;
436 	sk->sk_user_data = con;
437 	sk->sk_data_ready = ceph_sock_data_ready;
438 	sk->sk_write_space = ceph_sock_write_space;
439 	sk->sk_state_change = ceph_sock_state_change;
440 }
441 
442 
443 /*
444  * socket helpers
445  */
446 
447 /*
448  * initiate connection to a remote socket.
449  */
450 static int ceph_tcp_connect(struct ceph_connection *con)
451 {
452 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
453 	struct socket *sock;
454 	unsigned int noio_flag;
455 	int ret;
456 
457 	BUG_ON(con->sock);
458 
459 	/* sock_create_kern() allocates with GFP_KERNEL */
460 	noio_flag = memalloc_noio_save();
461 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
462 			       SOCK_STREAM, IPPROTO_TCP, &sock);
463 	memalloc_noio_restore(noio_flag);
464 	if (ret)
465 		return ret;
466 	sock->sk->sk_allocation = GFP_NOFS;
467 
468 #ifdef CONFIG_LOCKDEP
469 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
470 #endif
471 
472 	set_sock_callbacks(sock, con);
473 
474 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
475 
476 	con_sock_state_connecting(con);
477 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
478 				 O_NONBLOCK);
479 	if (ret == -EINPROGRESS) {
480 		dout("connect %s EINPROGRESS sk_state = %u\n",
481 		     ceph_pr_addr(&con->peer_addr.in_addr),
482 		     sock->sk->sk_state);
483 	} else if (ret < 0) {
484 		pr_err("connect %s error %d\n",
485 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
486 		sock_release(sock);
487 		return ret;
488 	}
489 
490 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
491 		int optval = 1;
492 
493 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
494 					(char *)&optval, sizeof(optval));
495 		if (ret)
496 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
497 			       ret);
498 	}
499 
500 	con->sock = sock;
501 	return 0;
502 }
503 
504 /*
505  * If @buf is NULL, discard up to @len bytes.
506  */
507 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
508 {
509 	struct kvec iov = {buf, len};
510 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
511 	int r;
512 
513 	if (!buf)
514 		msg.msg_flags |= MSG_TRUNC;
515 
516 	iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
517 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
518 	if (r == -EAGAIN)
519 		r = 0;
520 	return r;
521 }
522 
523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 		     int page_offset, size_t length)
525 {
526 	struct bio_vec bvec = {
527 		.bv_page = page,
528 		.bv_offset = page_offset,
529 		.bv_len = length
530 	};
531 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
532 	int r;
533 
534 	BUG_ON(page_offset + length > PAGE_SIZE);
535 	iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
536 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
537 	if (r == -EAGAIN)
538 		r = 0;
539 	return r;
540 }
541 
542 /*
543  * write something.  @more is true if caller will be sending more data
544  * shortly.
545  */
546 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
547 			    size_t kvlen, size_t len, bool more)
548 {
549 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
550 	int r;
551 
552 	if (more)
553 		msg.msg_flags |= MSG_MORE;
554 	else
555 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
556 
557 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
558 	if (r == -EAGAIN)
559 		r = 0;
560 	return r;
561 }
562 
563 /*
564  * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
565  */
566 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
567 			     int offset, size_t size, int more)
568 {
569 	ssize_t (*sendpage)(struct socket *sock, struct page *page,
570 			    int offset, size_t size, int flags);
571 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more;
572 	int ret;
573 
574 	/*
575 	 * sendpage cannot properly handle pages with page_count == 0,
576 	 * we need to fall back to sendmsg if that's the case.
577 	 *
578 	 * Same goes for slab pages: skb_can_coalesce() allows
579 	 * coalescing neighboring slab objects into a single frag which
580 	 * triggers one of hardened usercopy checks.
581 	 */
582 	if (page_count(page) >= 1 && !PageSlab(page))
583 		sendpage = sock->ops->sendpage;
584 	else
585 		sendpage = sock_no_sendpage;
586 
587 	ret = sendpage(sock, page, offset, size, flags);
588 	if (ret == -EAGAIN)
589 		ret = 0;
590 
591 	return ret;
592 }
593 
594 /*
595  * Shutdown/close the socket for the given connection.
596  */
597 static int con_close_socket(struct ceph_connection *con)
598 {
599 	int rc = 0;
600 
601 	dout("con_close_socket on %p sock %p\n", con, con->sock);
602 	if (con->sock) {
603 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
604 		sock_release(con->sock);
605 		con->sock = NULL;
606 	}
607 
608 	/*
609 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
610 	 * independent of the connection mutex, and we could have
611 	 * received a socket close event before we had the chance to
612 	 * shut the socket down.
613 	 */
614 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
615 
616 	con_sock_state_closed(con);
617 	return rc;
618 }
619 
620 /*
621  * Reset a connection.  Discard all incoming and outgoing messages
622  * and clear *_seq state.
623  */
624 static void ceph_msg_remove(struct ceph_msg *msg)
625 {
626 	list_del_init(&msg->list_head);
627 
628 	ceph_msg_put(msg);
629 }
630 static void ceph_msg_remove_list(struct list_head *head)
631 {
632 	while (!list_empty(head)) {
633 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
634 							list_head);
635 		ceph_msg_remove(msg);
636 	}
637 }
638 
639 static void reset_connection(struct ceph_connection *con)
640 {
641 	/* reset connection, out_queue, msg_ and connect_seq */
642 	/* discard existing out_queue and msg_seq */
643 	dout("reset_connection %p\n", con);
644 	ceph_msg_remove_list(&con->out_queue);
645 	ceph_msg_remove_list(&con->out_sent);
646 
647 	if (con->in_msg) {
648 		BUG_ON(con->in_msg->con != con);
649 		ceph_msg_put(con->in_msg);
650 		con->in_msg = NULL;
651 	}
652 
653 	con->connect_seq = 0;
654 	con->out_seq = 0;
655 	if (con->out_msg) {
656 		BUG_ON(con->out_msg->con != con);
657 		ceph_msg_put(con->out_msg);
658 		con->out_msg = NULL;
659 	}
660 	con->in_seq = 0;
661 	con->in_seq_acked = 0;
662 
663 	con->out_skip = 0;
664 }
665 
666 /*
667  * mark a peer down.  drop any open connections.
668  */
669 void ceph_con_close(struct ceph_connection *con)
670 {
671 	mutex_lock(&con->mutex);
672 	dout("con_close %p peer %s\n", con,
673 	     ceph_pr_addr(&con->peer_addr.in_addr));
674 	con->state = CON_STATE_CLOSED;
675 
676 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
677 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
678 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
679 	con_flag_clear(con, CON_FLAG_BACKOFF);
680 
681 	reset_connection(con);
682 	con->peer_global_seq = 0;
683 	cancel_con(con);
684 	con_close_socket(con);
685 	mutex_unlock(&con->mutex);
686 }
687 EXPORT_SYMBOL(ceph_con_close);
688 
689 /*
690  * Reopen a closed connection, with a new peer address.
691  */
692 void ceph_con_open(struct ceph_connection *con,
693 		   __u8 entity_type, __u64 entity_num,
694 		   struct ceph_entity_addr *addr)
695 {
696 	mutex_lock(&con->mutex);
697 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
698 
699 	WARN_ON(con->state != CON_STATE_CLOSED);
700 	con->state = CON_STATE_PREOPEN;
701 
702 	con->peer_name.type = (__u8) entity_type;
703 	con->peer_name.num = cpu_to_le64(entity_num);
704 
705 	memcpy(&con->peer_addr, addr, sizeof(*addr));
706 	con->delay = 0;      /* reset backoff memory */
707 	mutex_unlock(&con->mutex);
708 	queue_con(con);
709 }
710 EXPORT_SYMBOL(ceph_con_open);
711 
712 /*
713  * return true if this connection ever successfully opened
714  */
715 bool ceph_con_opened(struct ceph_connection *con)
716 {
717 	return con->connect_seq > 0;
718 }
719 
720 /*
721  * initialize a new connection.
722  */
723 void ceph_con_init(struct ceph_connection *con, void *private,
724 	const struct ceph_connection_operations *ops,
725 	struct ceph_messenger *msgr)
726 {
727 	dout("con_init %p\n", con);
728 	memset(con, 0, sizeof(*con));
729 	con->private = private;
730 	con->ops = ops;
731 	con->msgr = msgr;
732 
733 	con_sock_state_init(con);
734 
735 	mutex_init(&con->mutex);
736 	INIT_LIST_HEAD(&con->out_queue);
737 	INIT_LIST_HEAD(&con->out_sent);
738 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
739 
740 	con->state = CON_STATE_CLOSED;
741 }
742 EXPORT_SYMBOL(ceph_con_init);
743 
744 
745 /*
746  * We maintain a global counter to order connection attempts.  Get
747  * a unique seq greater than @gt.
748  */
749 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
750 {
751 	u32 ret;
752 
753 	spin_lock(&msgr->global_seq_lock);
754 	if (msgr->global_seq < gt)
755 		msgr->global_seq = gt;
756 	ret = ++msgr->global_seq;
757 	spin_unlock(&msgr->global_seq_lock);
758 	return ret;
759 }
760 
761 static void con_out_kvec_reset(struct ceph_connection *con)
762 {
763 	BUG_ON(con->out_skip);
764 
765 	con->out_kvec_left = 0;
766 	con->out_kvec_bytes = 0;
767 	con->out_kvec_cur = &con->out_kvec[0];
768 }
769 
770 static void con_out_kvec_add(struct ceph_connection *con,
771 				size_t size, void *data)
772 {
773 	int index = con->out_kvec_left;
774 
775 	BUG_ON(con->out_skip);
776 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
777 
778 	con->out_kvec[index].iov_len = size;
779 	con->out_kvec[index].iov_base = data;
780 	con->out_kvec_left++;
781 	con->out_kvec_bytes += size;
782 }
783 
784 /*
785  * Chop off a kvec from the end.  Return residual number of bytes for
786  * that kvec, i.e. how many bytes would have been written if the kvec
787  * hadn't been nuked.
788  */
789 static int con_out_kvec_skip(struct ceph_connection *con)
790 {
791 	int off = con->out_kvec_cur - con->out_kvec;
792 	int skip = 0;
793 
794 	if (con->out_kvec_bytes > 0) {
795 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
796 		BUG_ON(con->out_kvec_bytes < skip);
797 		BUG_ON(!con->out_kvec_left);
798 		con->out_kvec_bytes -= skip;
799 		con->out_kvec_left--;
800 	}
801 
802 	return skip;
803 }
804 
805 #ifdef CONFIG_BLOCK
806 
807 /*
808  * For a bio data item, a piece is whatever remains of the next
809  * entry in the current bio iovec, or the first entry in the next
810  * bio in the list.
811  */
812 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
813 					size_t length)
814 {
815 	struct ceph_msg_data *data = cursor->data;
816 	struct ceph_bio_iter *it = &cursor->bio_iter;
817 
818 	cursor->resid = min_t(size_t, length, data->bio_length);
819 	*it = data->bio_pos;
820 	if (cursor->resid < it->iter.bi_size)
821 		it->iter.bi_size = cursor->resid;
822 
823 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
824 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
825 }
826 
827 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
828 						size_t *page_offset,
829 						size_t *length)
830 {
831 	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
832 					   cursor->bio_iter.iter);
833 
834 	*page_offset = bv.bv_offset;
835 	*length = bv.bv_len;
836 	return bv.bv_page;
837 }
838 
839 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
840 					size_t bytes)
841 {
842 	struct ceph_bio_iter *it = &cursor->bio_iter;
843 
844 	BUG_ON(bytes > cursor->resid);
845 	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
846 	cursor->resid -= bytes;
847 	bio_advance_iter(it->bio, &it->iter, bytes);
848 
849 	if (!cursor->resid) {
850 		BUG_ON(!cursor->last_piece);
851 		return false;   /* no more data */
852 	}
853 
854 	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done))
855 		return false;	/* more bytes to process in this segment */
856 
857 	if (!it->iter.bi_size) {
858 		it->bio = it->bio->bi_next;
859 		it->iter = it->bio->bi_iter;
860 		if (cursor->resid < it->iter.bi_size)
861 			it->iter.bi_size = cursor->resid;
862 	}
863 
864 	BUG_ON(cursor->last_piece);
865 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
866 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
867 	return true;
868 }
869 #endif /* CONFIG_BLOCK */
870 
871 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
872 					size_t length)
873 {
874 	struct ceph_msg_data *data = cursor->data;
875 	struct bio_vec *bvecs = data->bvec_pos.bvecs;
876 
877 	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
878 	cursor->bvec_iter = data->bvec_pos.iter;
879 	cursor->bvec_iter.bi_size = cursor->resid;
880 
881 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
882 	cursor->last_piece =
883 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
884 }
885 
886 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
887 						size_t *page_offset,
888 						size_t *length)
889 {
890 	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
891 					   cursor->bvec_iter);
892 
893 	*page_offset = bv.bv_offset;
894 	*length = bv.bv_len;
895 	return bv.bv_page;
896 }
897 
898 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
899 					size_t bytes)
900 {
901 	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
902 
903 	BUG_ON(bytes > cursor->resid);
904 	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
905 	cursor->resid -= bytes;
906 	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
907 
908 	if (!cursor->resid) {
909 		BUG_ON(!cursor->last_piece);
910 		return false;   /* no more data */
911 	}
912 
913 	if (!bytes || cursor->bvec_iter.bi_bvec_done)
914 		return false;	/* more bytes to process in this segment */
915 
916 	BUG_ON(cursor->last_piece);
917 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
918 	cursor->last_piece =
919 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
920 	return true;
921 }
922 
923 /*
924  * For a page array, a piece comes from the first page in the array
925  * that has not already been fully consumed.
926  */
927 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
928 					size_t length)
929 {
930 	struct ceph_msg_data *data = cursor->data;
931 	int page_count;
932 
933 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
934 
935 	BUG_ON(!data->pages);
936 	BUG_ON(!data->length);
937 
938 	cursor->resid = min(length, data->length);
939 	page_count = calc_pages_for(data->alignment, (u64)data->length);
940 	cursor->page_offset = data->alignment & ~PAGE_MASK;
941 	cursor->page_index = 0;
942 	BUG_ON(page_count > (int)USHRT_MAX);
943 	cursor->page_count = (unsigned short)page_count;
944 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
945 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
946 }
947 
948 static struct page *
949 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
950 					size_t *page_offset, size_t *length)
951 {
952 	struct ceph_msg_data *data = cursor->data;
953 
954 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
955 
956 	BUG_ON(cursor->page_index >= cursor->page_count);
957 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
958 
959 	*page_offset = cursor->page_offset;
960 	if (cursor->last_piece)
961 		*length = cursor->resid;
962 	else
963 		*length = PAGE_SIZE - *page_offset;
964 
965 	return data->pages[cursor->page_index];
966 }
967 
968 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
969 						size_t bytes)
970 {
971 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
972 
973 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
974 
975 	/* Advance the cursor page offset */
976 
977 	cursor->resid -= bytes;
978 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
979 	if (!bytes || cursor->page_offset)
980 		return false;	/* more bytes to process in the current page */
981 
982 	if (!cursor->resid)
983 		return false;   /* no more data */
984 
985 	/* Move on to the next page; offset is already at 0 */
986 
987 	BUG_ON(cursor->page_index >= cursor->page_count);
988 	cursor->page_index++;
989 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
990 
991 	return true;
992 }
993 
994 /*
995  * For a pagelist, a piece is whatever remains to be consumed in the
996  * first page in the list, or the front of the next page.
997  */
998 static void
999 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1000 					size_t length)
1001 {
1002 	struct ceph_msg_data *data = cursor->data;
1003 	struct ceph_pagelist *pagelist;
1004 	struct page *page;
1005 
1006 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1007 
1008 	pagelist = data->pagelist;
1009 	BUG_ON(!pagelist);
1010 
1011 	if (!length)
1012 		return;		/* pagelist can be assigned but empty */
1013 
1014 	BUG_ON(list_empty(&pagelist->head));
1015 	page = list_first_entry(&pagelist->head, struct page, lru);
1016 
1017 	cursor->resid = min(length, pagelist->length);
1018 	cursor->page = page;
1019 	cursor->offset = 0;
1020 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1021 }
1022 
1023 static struct page *
1024 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1025 				size_t *page_offset, size_t *length)
1026 {
1027 	struct ceph_msg_data *data = cursor->data;
1028 	struct ceph_pagelist *pagelist;
1029 
1030 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1031 
1032 	pagelist = data->pagelist;
1033 	BUG_ON(!pagelist);
1034 
1035 	BUG_ON(!cursor->page);
1036 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1037 
1038 	/* offset of first page in pagelist is always 0 */
1039 	*page_offset = cursor->offset & ~PAGE_MASK;
1040 	if (cursor->last_piece)
1041 		*length = cursor->resid;
1042 	else
1043 		*length = PAGE_SIZE - *page_offset;
1044 
1045 	return cursor->page;
1046 }
1047 
1048 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1049 						size_t bytes)
1050 {
1051 	struct ceph_msg_data *data = cursor->data;
1052 	struct ceph_pagelist *pagelist;
1053 
1054 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1055 
1056 	pagelist = data->pagelist;
1057 	BUG_ON(!pagelist);
1058 
1059 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1060 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1061 
1062 	/* Advance the cursor offset */
1063 
1064 	cursor->resid -= bytes;
1065 	cursor->offset += bytes;
1066 	/* offset of first page in pagelist is always 0 */
1067 	if (!bytes || cursor->offset & ~PAGE_MASK)
1068 		return false;	/* more bytes to process in the current page */
1069 
1070 	if (!cursor->resid)
1071 		return false;   /* no more data */
1072 
1073 	/* Move on to the next page */
1074 
1075 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1076 	cursor->page = list_next_entry(cursor->page, lru);
1077 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1078 
1079 	return true;
1080 }
1081 
1082 /*
1083  * Message data is handled (sent or received) in pieces, where each
1084  * piece resides on a single page.  The network layer might not
1085  * consume an entire piece at once.  A data item's cursor keeps
1086  * track of which piece is next to process and how much remains to
1087  * be processed in that piece.  It also tracks whether the current
1088  * piece is the last one in the data item.
1089  */
1090 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1091 {
1092 	size_t length = cursor->total_resid;
1093 
1094 	switch (cursor->data->type) {
1095 	case CEPH_MSG_DATA_PAGELIST:
1096 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1097 		break;
1098 	case CEPH_MSG_DATA_PAGES:
1099 		ceph_msg_data_pages_cursor_init(cursor, length);
1100 		break;
1101 #ifdef CONFIG_BLOCK
1102 	case CEPH_MSG_DATA_BIO:
1103 		ceph_msg_data_bio_cursor_init(cursor, length);
1104 		break;
1105 #endif /* CONFIG_BLOCK */
1106 	case CEPH_MSG_DATA_BVECS:
1107 		ceph_msg_data_bvecs_cursor_init(cursor, length);
1108 		break;
1109 	case CEPH_MSG_DATA_NONE:
1110 	default:
1111 		/* BUG(); */
1112 		break;
1113 	}
1114 	cursor->need_crc = true;
1115 }
1116 
1117 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1118 {
1119 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1120 
1121 	BUG_ON(!length);
1122 	BUG_ON(length > msg->data_length);
1123 	BUG_ON(!msg->num_data_items);
1124 
1125 	cursor->total_resid = length;
1126 	cursor->data = msg->data;
1127 
1128 	__ceph_msg_data_cursor_init(cursor);
1129 }
1130 
1131 /*
1132  * Return the page containing the next piece to process for a given
1133  * data item, and supply the page offset and length of that piece.
1134  * Indicate whether this is the last piece in this data item.
1135  */
1136 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1137 					size_t *page_offset, size_t *length,
1138 					bool *last_piece)
1139 {
1140 	struct page *page;
1141 
1142 	switch (cursor->data->type) {
1143 	case CEPH_MSG_DATA_PAGELIST:
1144 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1145 		break;
1146 	case CEPH_MSG_DATA_PAGES:
1147 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1148 		break;
1149 #ifdef CONFIG_BLOCK
1150 	case CEPH_MSG_DATA_BIO:
1151 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1152 		break;
1153 #endif /* CONFIG_BLOCK */
1154 	case CEPH_MSG_DATA_BVECS:
1155 		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1156 		break;
1157 	case CEPH_MSG_DATA_NONE:
1158 	default:
1159 		page = NULL;
1160 		break;
1161 	}
1162 
1163 	BUG_ON(!page);
1164 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1165 	BUG_ON(!*length);
1166 	BUG_ON(*length > cursor->resid);
1167 	if (last_piece)
1168 		*last_piece = cursor->last_piece;
1169 
1170 	return page;
1171 }
1172 
1173 /*
1174  * Returns true if the result moves the cursor on to the next piece
1175  * of the data item.
1176  */
1177 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1178 				  size_t bytes)
1179 {
1180 	bool new_piece;
1181 
1182 	BUG_ON(bytes > cursor->resid);
1183 	switch (cursor->data->type) {
1184 	case CEPH_MSG_DATA_PAGELIST:
1185 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1186 		break;
1187 	case CEPH_MSG_DATA_PAGES:
1188 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1189 		break;
1190 #ifdef CONFIG_BLOCK
1191 	case CEPH_MSG_DATA_BIO:
1192 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1193 		break;
1194 #endif /* CONFIG_BLOCK */
1195 	case CEPH_MSG_DATA_BVECS:
1196 		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1197 		break;
1198 	case CEPH_MSG_DATA_NONE:
1199 	default:
1200 		BUG();
1201 		break;
1202 	}
1203 	cursor->total_resid -= bytes;
1204 
1205 	if (!cursor->resid && cursor->total_resid) {
1206 		WARN_ON(!cursor->last_piece);
1207 		cursor->data++;
1208 		__ceph_msg_data_cursor_init(cursor);
1209 		new_piece = true;
1210 	}
1211 	cursor->need_crc = new_piece;
1212 }
1213 
1214 static size_t sizeof_footer(struct ceph_connection *con)
1215 {
1216 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1217 	    sizeof(struct ceph_msg_footer) :
1218 	    sizeof(struct ceph_msg_footer_old);
1219 }
1220 
1221 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1222 {
1223 	/* Initialize data cursor */
1224 
1225 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1226 }
1227 
1228 /*
1229  * Prepare footer for currently outgoing message, and finish things
1230  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1231  */
1232 static void prepare_write_message_footer(struct ceph_connection *con)
1233 {
1234 	struct ceph_msg *m = con->out_msg;
1235 
1236 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1237 
1238 	dout("prepare_write_message_footer %p\n", con);
1239 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1240 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1241 		if (con->ops->sign_message)
1242 			con->ops->sign_message(m);
1243 		else
1244 			m->footer.sig = 0;
1245 	} else {
1246 		m->old_footer.flags = m->footer.flags;
1247 	}
1248 	con->out_more = m->more_to_follow;
1249 	con->out_msg_done = true;
1250 }
1251 
1252 /*
1253  * Prepare headers for the next outgoing message.
1254  */
1255 static void prepare_write_message(struct ceph_connection *con)
1256 {
1257 	struct ceph_msg *m;
1258 	u32 crc;
1259 
1260 	con_out_kvec_reset(con);
1261 	con->out_msg_done = false;
1262 
1263 	/* Sneak an ack in there first?  If we can get it into the same
1264 	 * TCP packet that's a good thing. */
1265 	if (con->in_seq > con->in_seq_acked) {
1266 		con->in_seq_acked = con->in_seq;
1267 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1268 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1269 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1270 			&con->out_temp_ack);
1271 	}
1272 
1273 	BUG_ON(list_empty(&con->out_queue));
1274 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1275 	con->out_msg = m;
1276 	BUG_ON(m->con != con);
1277 
1278 	/* put message on sent list */
1279 	ceph_msg_get(m);
1280 	list_move_tail(&m->list_head, &con->out_sent);
1281 
1282 	/*
1283 	 * only assign outgoing seq # if we haven't sent this message
1284 	 * yet.  if it is requeued, resend with it's original seq.
1285 	 */
1286 	if (m->needs_out_seq) {
1287 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1288 		m->needs_out_seq = false;
1289 
1290 		if (con->ops->reencode_message)
1291 			con->ops->reencode_message(m);
1292 	}
1293 
1294 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1295 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1296 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1297 	     m->data_length);
1298 	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1299 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1300 
1301 	/* tag + hdr + front + middle */
1302 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1303 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1304 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1305 
1306 	if (m->middle)
1307 		con_out_kvec_add(con, m->middle->vec.iov_len,
1308 			m->middle->vec.iov_base);
1309 
1310 	/* fill in hdr crc and finalize hdr */
1311 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1312 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1313 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1314 
1315 	/* fill in front and middle crc, footer */
1316 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1317 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1318 	if (m->middle) {
1319 		crc = crc32c(0, m->middle->vec.iov_base,
1320 				m->middle->vec.iov_len);
1321 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1322 	} else
1323 		con->out_msg->footer.middle_crc = 0;
1324 	dout("%s front_crc %u middle_crc %u\n", __func__,
1325 	     le32_to_cpu(con->out_msg->footer.front_crc),
1326 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1327 	con->out_msg->footer.flags = 0;
1328 
1329 	/* is there a data payload? */
1330 	con->out_msg->footer.data_crc = 0;
1331 	if (m->data_length) {
1332 		prepare_message_data(con->out_msg, m->data_length);
1333 		con->out_more = 1;  /* data + footer will follow */
1334 	} else {
1335 		/* no, queue up footer too and be done */
1336 		prepare_write_message_footer(con);
1337 	}
1338 
1339 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1340 }
1341 
1342 /*
1343  * Prepare an ack.
1344  */
1345 static void prepare_write_ack(struct ceph_connection *con)
1346 {
1347 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1348 	     con->in_seq_acked, con->in_seq);
1349 	con->in_seq_acked = con->in_seq;
1350 
1351 	con_out_kvec_reset(con);
1352 
1353 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1354 
1355 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1356 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1357 				&con->out_temp_ack);
1358 
1359 	con->out_more = 1;  /* more will follow.. eventually.. */
1360 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1361 }
1362 
1363 /*
1364  * Prepare to share the seq during handshake
1365  */
1366 static void prepare_write_seq(struct ceph_connection *con)
1367 {
1368 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1369 	     con->in_seq_acked, con->in_seq);
1370 	con->in_seq_acked = con->in_seq;
1371 
1372 	con_out_kvec_reset(con);
1373 
1374 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1375 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1376 			 &con->out_temp_ack);
1377 
1378 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1379 }
1380 
1381 /*
1382  * Prepare to write keepalive byte.
1383  */
1384 static void prepare_write_keepalive(struct ceph_connection *con)
1385 {
1386 	dout("prepare_write_keepalive %p\n", con);
1387 	con_out_kvec_reset(con);
1388 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1389 		struct timespec64 now;
1390 
1391 		ktime_get_real_ts64(&now);
1392 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1393 		ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1394 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1395 				 &con->out_temp_keepalive2);
1396 	} else {
1397 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1398 	}
1399 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1400 }
1401 
1402 /*
1403  * Connection negotiation.
1404  */
1405 
1406 static int get_connect_authorizer(struct ceph_connection *con)
1407 {
1408 	struct ceph_auth_handshake *auth;
1409 	int auth_proto;
1410 
1411 	if (!con->ops->get_authorizer) {
1412 		con->auth = NULL;
1413 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1414 		con->out_connect.authorizer_len = 0;
1415 		return 0;
1416 	}
1417 
1418 	auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1419 	if (IS_ERR(auth))
1420 		return PTR_ERR(auth);
1421 
1422 	con->auth = auth;
1423 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1424 	con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1425 	return 0;
1426 }
1427 
1428 /*
1429  * We connected to a peer and are saying hello.
1430  */
1431 static void prepare_write_banner(struct ceph_connection *con)
1432 {
1433 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1434 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1435 					&con->msgr->my_enc_addr);
1436 
1437 	con->out_more = 0;
1438 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1439 }
1440 
1441 static void __prepare_write_connect(struct ceph_connection *con)
1442 {
1443 	con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1444 	if (con->auth)
1445 		con_out_kvec_add(con, con->auth->authorizer_buf_len,
1446 				 con->auth->authorizer_buf);
1447 
1448 	con->out_more = 0;
1449 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1450 }
1451 
1452 static int prepare_write_connect(struct ceph_connection *con)
1453 {
1454 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1455 	int proto;
1456 	int ret;
1457 
1458 	switch (con->peer_name.type) {
1459 	case CEPH_ENTITY_TYPE_MON:
1460 		proto = CEPH_MONC_PROTOCOL;
1461 		break;
1462 	case CEPH_ENTITY_TYPE_OSD:
1463 		proto = CEPH_OSDC_PROTOCOL;
1464 		break;
1465 	case CEPH_ENTITY_TYPE_MDS:
1466 		proto = CEPH_MDSC_PROTOCOL;
1467 		break;
1468 	default:
1469 		BUG();
1470 	}
1471 
1472 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1473 	     con->connect_seq, global_seq, proto);
1474 
1475 	con->out_connect.features =
1476 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1477 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1478 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1479 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1480 	con->out_connect.protocol_version = cpu_to_le32(proto);
1481 	con->out_connect.flags = 0;
1482 
1483 	ret = get_connect_authorizer(con);
1484 	if (ret)
1485 		return ret;
1486 
1487 	__prepare_write_connect(con);
1488 	return 0;
1489 }
1490 
1491 /*
1492  * write as much of pending kvecs to the socket as we can.
1493  *  1 -> done
1494  *  0 -> socket full, but more to do
1495  * <0 -> error
1496  */
1497 static int write_partial_kvec(struct ceph_connection *con)
1498 {
1499 	int ret;
1500 
1501 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1502 	while (con->out_kvec_bytes > 0) {
1503 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1504 				       con->out_kvec_left, con->out_kvec_bytes,
1505 				       con->out_more);
1506 		if (ret <= 0)
1507 			goto out;
1508 		con->out_kvec_bytes -= ret;
1509 		if (con->out_kvec_bytes == 0)
1510 			break;            /* done */
1511 
1512 		/* account for full iov entries consumed */
1513 		while (ret >= con->out_kvec_cur->iov_len) {
1514 			BUG_ON(!con->out_kvec_left);
1515 			ret -= con->out_kvec_cur->iov_len;
1516 			con->out_kvec_cur++;
1517 			con->out_kvec_left--;
1518 		}
1519 		/* and for a partially-consumed entry */
1520 		if (ret) {
1521 			con->out_kvec_cur->iov_len -= ret;
1522 			con->out_kvec_cur->iov_base += ret;
1523 		}
1524 	}
1525 	con->out_kvec_left = 0;
1526 	ret = 1;
1527 out:
1528 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1529 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1530 	return ret;  /* done! */
1531 }
1532 
1533 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1534 				unsigned int page_offset,
1535 				unsigned int length)
1536 {
1537 	char *kaddr;
1538 
1539 	kaddr = kmap(page);
1540 	BUG_ON(kaddr == NULL);
1541 	crc = crc32c(crc, kaddr + page_offset, length);
1542 	kunmap(page);
1543 
1544 	return crc;
1545 }
1546 /*
1547  * Write as much message data payload as we can.  If we finish, queue
1548  * up the footer.
1549  *  1 -> done, footer is now queued in out_kvec[].
1550  *  0 -> socket full, but more to do
1551  * <0 -> error
1552  */
1553 static int write_partial_message_data(struct ceph_connection *con)
1554 {
1555 	struct ceph_msg *msg = con->out_msg;
1556 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1557 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1558 	int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1559 	u32 crc;
1560 
1561 	dout("%s %p msg %p\n", __func__, con, msg);
1562 
1563 	if (!msg->num_data_items)
1564 		return -EINVAL;
1565 
1566 	/*
1567 	 * Iterate through each page that contains data to be
1568 	 * written, and send as much as possible for each.
1569 	 *
1570 	 * If we are calculating the data crc (the default), we will
1571 	 * need to map the page.  If we have no pages, they have
1572 	 * been revoked, so use the zero page.
1573 	 */
1574 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1575 	while (cursor->total_resid) {
1576 		struct page *page;
1577 		size_t page_offset;
1578 		size_t length;
1579 		int ret;
1580 
1581 		if (!cursor->resid) {
1582 			ceph_msg_data_advance(cursor, 0);
1583 			continue;
1584 		}
1585 
1586 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
1587 		if (length == cursor->total_resid)
1588 			more = MSG_MORE;
1589 		ret = ceph_tcp_sendpage(con->sock, page, page_offset, length,
1590 					more);
1591 		if (ret <= 0) {
1592 			if (do_datacrc)
1593 				msg->footer.data_crc = cpu_to_le32(crc);
1594 
1595 			return ret;
1596 		}
1597 		if (do_datacrc && cursor->need_crc)
1598 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1599 		ceph_msg_data_advance(cursor, (size_t)ret);
1600 	}
1601 
1602 	dout("%s %p msg %p done\n", __func__, con, msg);
1603 
1604 	/* prepare and queue up footer, too */
1605 	if (do_datacrc)
1606 		msg->footer.data_crc = cpu_to_le32(crc);
1607 	else
1608 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1609 	con_out_kvec_reset(con);
1610 	prepare_write_message_footer(con);
1611 
1612 	return 1;	/* must return > 0 to indicate success */
1613 }
1614 
1615 /*
1616  * write some zeros
1617  */
1618 static int write_partial_skip(struct ceph_connection *con)
1619 {
1620 	int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1621 	int ret;
1622 
1623 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1624 	while (con->out_skip > 0) {
1625 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1626 
1627 		if (size == con->out_skip)
1628 			more = MSG_MORE;
1629 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more);
1630 		if (ret <= 0)
1631 			goto out;
1632 		con->out_skip -= ret;
1633 	}
1634 	ret = 1;
1635 out:
1636 	return ret;
1637 }
1638 
1639 /*
1640  * Prepare to read connection handshake, or an ack.
1641  */
1642 static void prepare_read_banner(struct ceph_connection *con)
1643 {
1644 	dout("prepare_read_banner %p\n", con);
1645 	con->in_base_pos = 0;
1646 }
1647 
1648 static void prepare_read_connect(struct ceph_connection *con)
1649 {
1650 	dout("prepare_read_connect %p\n", con);
1651 	con->in_base_pos = 0;
1652 }
1653 
1654 static void prepare_read_ack(struct ceph_connection *con)
1655 {
1656 	dout("prepare_read_ack %p\n", con);
1657 	con->in_base_pos = 0;
1658 }
1659 
1660 static void prepare_read_seq(struct ceph_connection *con)
1661 {
1662 	dout("prepare_read_seq %p\n", con);
1663 	con->in_base_pos = 0;
1664 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1665 }
1666 
1667 static void prepare_read_tag(struct ceph_connection *con)
1668 {
1669 	dout("prepare_read_tag %p\n", con);
1670 	con->in_base_pos = 0;
1671 	con->in_tag = CEPH_MSGR_TAG_READY;
1672 }
1673 
1674 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1675 {
1676 	dout("prepare_read_keepalive_ack %p\n", con);
1677 	con->in_base_pos = 0;
1678 }
1679 
1680 /*
1681  * Prepare to read a message.
1682  */
1683 static int prepare_read_message(struct ceph_connection *con)
1684 {
1685 	dout("prepare_read_message %p\n", con);
1686 	BUG_ON(con->in_msg != NULL);
1687 	con->in_base_pos = 0;
1688 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1689 	return 0;
1690 }
1691 
1692 
1693 static int read_partial(struct ceph_connection *con,
1694 			int end, int size, void *object)
1695 {
1696 	while (con->in_base_pos < end) {
1697 		int left = end - con->in_base_pos;
1698 		int have = size - left;
1699 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1700 		if (ret <= 0)
1701 			return ret;
1702 		con->in_base_pos += ret;
1703 	}
1704 	return 1;
1705 }
1706 
1707 
1708 /*
1709  * Read all or part of the connect-side handshake on a new connection
1710  */
1711 static int read_partial_banner(struct ceph_connection *con)
1712 {
1713 	int size;
1714 	int end;
1715 	int ret;
1716 
1717 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1718 
1719 	/* peer's banner */
1720 	size = strlen(CEPH_BANNER);
1721 	end = size;
1722 	ret = read_partial(con, end, size, con->in_banner);
1723 	if (ret <= 0)
1724 		goto out;
1725 
1726 	size = sizeof (con->actual_peer_addr);
1727 	end += size;
1728 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1729 	if (ret <= 0)
1730 		goto out;
1731 
1732 	size = sizeof (con->peer_addr_for_me);
1733 	end += size;
1734 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1735 	if (ret <= 0)
1736 		goto out;
1737 
1738 out:
1739 	return ret;
1740 }
1741 
1742 static int read_partial_connect(struct ceph_connection *con)
1743 {
1744 	int size;
1745 	int end;
1746 	int ret;
1747 
1748 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1749 
1750 	size = sizeof (con->in_reply);
1751 	end = size;
1752 	ret = read_partial(con, end, size, &con->in_reply);
1753 	if (ret <= 0)
1754 		goto out;
1755 
1756 	if (con->auth) {
1757 		size = le32_to_cpu(con->in_reply.authorizer_len);
1758 		if (size > con->auth->authorizer_reply_buf_len) {
1759 			pr_err("authorizer reply too big: %d > %zu\n", size,
1760 			       con->auth->authorizer_reply_buf_len);
1761 			ret = -EINVAL;
1762 			goto out;
1763 		}
1764 
1765 		end += size;
1766 		ret = read_partial(con, end, size,
1767 				   con->auth->authorizer_reply_buf);
1768 		if (ret <= 0)
1769 			goto out;
1770 	}
1771 
1772 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1773 	     con, (int)con->in_reply.tag,
1774 	     le32_to_cpu(con->in_reply.connect_seq),
1775 	     le32_to_cpu(con->in_reply.global_seq));
1776 out:
1777 	return ret;
1778 }
1779 
1780 /*
1781  * Verify the hello banner looks okay.
1782  */
1783 static int verify_hello(struct ceph_connection *con)
1784 {
1785 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1786 		pr_err("connect to %s got bad banner\n",
1787 		       ceph_pr_addr(&con->peer_addr.in_addr));
1788 		con->error_msg = "protocol error, bad banner";
1789 		return -1;
1790 	}
1791 	return 0;
1792 }
1793 
1794 static bool addr_is_blank(struct sockaddr_storage *ss)
1795 {
1796 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1797 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1798 
1799 	switch (ss->ss_family) {
1800 	case AF_INET:
1801 		return addr->s_addr == htonl(INADDR_ANY);
1802 	case AF_INET6:
1803 		return ipv6_addr_any(addr6);
1804 	default:
1805 		return true;
1806 	}
1807 }
1808 
1809 static int addr_port(struct sockaddr_storage *ss)
1810 {
1811 	switch (ss->ss_family) {
1812 	case AF_INET:
1813 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1814 	case AF_INET6:
1815 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1816 	}
1817 	return 0;
1818 }
1819 
1820 static void addr_set_port(struct sockaddr_storage *ss, int p)
1821 {
1822 	switch (ss->ss_family) {
1823 	case AF_INET:
1824 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1825 		break;
1826 	case AF_INET6:
1827 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1828 		break;
1829 	}
1830 }
1831 
1832 /*
1833  * Unlike other *_pton function semantics, zero indicates success.
1834  */
1835 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1836 		char delim, const char **ipend)
1837 {
1838 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1839 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1840 
1841 	memset(ss, 0, sizeof(*ss));
1842 
1843 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1844 		ss->ss_family = AF_INET;
1845 		return 0;
1846 	}
1847 
1848 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1849 		ss->ss_family = AF_INET6;
1850 		return 0;
1851 	}
1852 
1853 	return -EINVAL;
1854 }
1855 
1856 /*
1857  * Extract hostname string and resolve using kernel DNS facility.
1858  */
1859 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1860 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1861 		struct sockaddr_storage *ss, char delim, const char **ipend)
1862 {
1863 	const char *end, *delim_p;
1864 	char *colon_p, *ip_addr = NULL;
1865 	int ip_len, ret;
1866 
1867 	/*
1868 	 * The end of the hostname occurs immediately preceding the delimiter or
1869 	 * the port marker (':') where the delimiter takes precedence.
1870 	 */
1871 	delim_p = memchr(name, delim, namelen);
1872 	colon_p = memchr(name, ':', namelen);
1873 
1874 	if (delim_p && colon_p)
1875 		end = delim_p < colon_p ? delim_p : colon_p;
1876 	else if (!delim_p && colon_p)
1877 		end = colon_p;
1878 	else {
1879 		end = delim_p;
1880 		if (!end) /* case: hostname:/ */
1881 			end = name + namelen;
1882 	}
1883 
1884 	if (end <= name)
1885 		return -EINVAL;
1886 
1887 	/* do dns_resolve upcall */
1888 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1889 	if (ip_len > 0)
1890 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1891 	else
1892 		ret = -ESRCH;
1893 
1894 	kfree(ip_addr);
1895 
1896 	*ipend = end;
1897 
1898 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1899 			ret, ret ? "failed" : ceph_pr_addr(ss));
1900 
1901 	return ret;
1902 }
1903 #else
1904 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1905 		struct sockaddr_storage *ss, char delim, const char **ipend)
1906 {
1907 	return -EINVAL;
1908 }
1909 #endif
1910 
1911 /*
1912  * Parse a server name (IP or hostname). If a valid IP address is not found
1913  * then try to extract a hostname to resolve using userspace DNS upcall.
1914  */
1915 static int ceph_parse_server_name(const char *name, size_t namelen,
1916 			struct sockaddr_storage *ss, char delim, const char **ipend)
1917 {
1918 	int ret;
1919 
1920 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1921 	if (ret)
1922 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1923 
1924 	return ret;
1925 }
1926 
1927 /*
1928  * Parse an ip[:port] list into an addr array.  Use the default
1929  * monitor port if a port isn't specified.
1930  */
1931 int ceph_parse_ips(const char *c, const char *end,
1932 		   struct ceph_entity_addr *addr,
1933 		   int max_count, int *count)
1934 {
1935 	int i, ret = -EINVAL;
1936 	const char *p = c;
1937 
1938 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1939 	for (i = 0; i < max_count; i++) {
1940 		const char *ipend;
1941 		struct sockaddr_storage *ss = &addr[i].in_addr;
1942 		int port;
1943 		char delim = ',';
1944 
1945 		if (*p == '[') {
1946 			delim = ']';
1947 			p++;
1948 		}
1949 
1950 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1951 		if (ret)
1952 			goto bad;
1953 		ret = -EINVAL;
1954 
1955 		p = ipend;
1956 
1957 		if (delim == ']') {
1958 			if (*p != ']') {
1959 				dout("missing matching ']'\n");
1960 				goto bad;
1961 			}
1962 			p++;
1963 		}
1964 
1965 		/* port? */
1966 		if (p < end && *p == ':') {
1967 			port = 0;
1968 			p++;
1969 			while (p < end && *p >= '0' && *p <= '9') {
1970 				port = (port * 10) + (*p - '0');
1971 				p++;
1972 			}
1973 			if (port == 0)
1974 				port = CEPH_MON_PORT;
1975 			else if (port > 65535)
1976 				goto bad;
1977 		} else {
1978 			port = CEPH_MON_PORT;
1979 		}
1980 
1981 		addr_set_port(ss, port);
1982 
1983 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1984 
1985 		if (p == end)
1986 			break;
1987 		if (*p != ',')
1988 			goto bad;
1989 		p++;
1990 	}
1991 
1992 	if (p != end)
1993 		goto bad;
1994 
1995 	if (count)
1996 		*count = i + 1;
1997 	return 0;
1998 
1999 bad:
2000 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2001 	return ret;
2002 }
2003 EXPORT_SYMBOL(ceph_parse_ips);
2004 
2005 static int process_banner(struct ceph_connection *con)
2006 {
2007 	dout("process_banner on %p\n", con);
2008 
2009 	if (verify_hello(con) < 0)
2010 		return -1;
2011 
2012 	ceph_decode_addr(&con->actual_peer_addr);
2013 	ceph_decode_addr(&con->peer_addr_for_me);
2014 
2015 	/*
2016 	 * Make sure the other end is who we wanted.  note that the other
2017 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2018 	 * them the benefit of the doubt.
2019 	 */
2020 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2021 		   sizeof(con->peer_addr)) != 0 &&
2022 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2023 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2024 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2025 			ceph_pr_addr(&con->peer_addr.in_addr),
2026 			(int)le32_to_cpu(con->peer_addr.nonce),
2027 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2028 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2029 		con->error_msg = "wrong peer at address";
2030 		return -1;
2031 	}
2032 
2033 	/*
2034 	 * did we learn our address?
2035 	 */
2036 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2037 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2038 
2039 		memcpy(&con->msgr->inst.addr.in_addr,
2040 		       &con->peer_addr_for_me.in_addr,
2041 		       sizeof(con->peer_addr_for_me.in_addr));
2042 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2043 		encode_my_addr(con->msgr);
2044 		dout("process_banner learned my addr is %s\n",
2045 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2046 	}
2047 
2048 	return 0;
2049 }
2050 
2051 static int process_connect(struct ceph_connection *con)
2052 {
2053 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2054 	u64 req_feat = from_msgr(con->msgr)->required_features;
2055 	u64 server_feat = le64_to_cpu(con->in_reply.features);
2056 	int ret;
2057 
2058 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2059 
2060 	if (con->auth) {
2061 		/*
2062 		 * Any connection that defines ->get_authorizer()
2063 		 * should also define ->add_authorizer_challenge() and
2064 		 * ->verify_authorizer_reply().
2065 		 *
2066 		 * See get_connect_authorizer().
2067 		 */
2068 		if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2069 			ret = con->ops->add_authorizer_challenge(
2070 				    con, con->auth->authorizer_reply_buf,
2071 				    le32_to_cpu(con->in_reply.authorizer_len));
2072 			if (ret < 0)
2073 				return ret;
2074 
2075 			con_out_kvec_reset(con);
2076 			__prepare_write_connect(con);
2077 			prepare_read_connect(con);
2078 			return 0;
2079 		}
2080 
2081 		ret = con->ops->verify_authorizer_reply(con);
2082 		if (ret < 0) {
2083 			con->error_msg = "bad authorize reply";
2084 			return ret;
2085 		}
2086 	}
2087 
2088 	switch (con->in_reply.tag) {
2089 	case CEPH_MSGR_TAG_FEATURES:
2090 		pr_err("%s%lld %s feature set mismatch,"
2091 		       " my %llx < server's %llx, missing %llx\n",
2092 		       ENTITY_NAME(con->peer_name),
2093 		       ceph_pr_addr(&con->peer_addr.in_addr),
2094 		       sup_feat, server_feat, server_feat & ~sup_feat);
2095 		con->error_msg = "missing required protocol features";
2096 		reset_connection(con);
2097 		return -1;
2098 
2099 	case CEPH_MSGR_TAG_BADPROTOVER:
2100 		pr_err("%s%lld %s protocol version mismatch,"
2101 		       " my %d != server's %d\n",
2102 		       ENTITY_NAME(con->peer_name),
2103 		       ceph_pr_addr(&con->peer_addr.in_addr),
2104 		       le32_to_cpu(con->out_connect.protocol_version),
2105 		       le32_to_cpu(con->in_reply.protocol_version));
2106 		con->error_msg = "protocol version mismatch";
2107 		reset_connection(con);
2108 		return -1;
2109 
2110 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2111 		con->auth_retry++;
2112 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2113 		     con->auth_retry);
2114 		if (con->auth_retry == 2) {
2115 			con->error_msg = "connect authorization failure";
2116 			return -1;
2117 		}
2118 		con_out_kvec_reset(con);
2119 		ret = prepare_write_connect(con);
2120 		if (ret < 0)
2121 			return ret;
2122 		prepare_read_connect(con);
2123 		break;
2124 
2125 	case CEPH_MSGR_TAG_RESETSESSION:
2126 		/*
2127 		 * If we connected with a large connect_seq but the peer
2128 		 * has no record of a session with us (no connection, or
2129 		 * connect_seq == 0), they will send RESETSESION to indicate
2130 		 * that they must have reset their session, and may have
2131 		 * dropped messages.
2132 		 */
2133 		dout("process_connect got RESET peer seq %u\n",
2134 		     le32_to_cpu(con->in_reply.connect_seq));
2135 		pr_err("%s%lld %s connection reset\n",
2136 		       ENTITY_NAME(con->peer_name),
2137 		       ceph_pr_addr(&con->peer_addr.in_addr));
2138 		reset_connection(con);
2139 		con_out_kvec_reset(con);
2140 		ret = prepare_write_connect(con);
2141 		if (ret < 0)
2142 			return ret;
2143 		prepare_read_connect(con);
2144 
2145 		/* Tell ceph about it. */
2146 		mutex_unlock(&con->mutex);
2147 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2148 		if (con->ops->peer_reset)
2149 			con->ops->peer_reset(con);
2150 		mutex_lock(&con->mutex);
2151 		if (con->state != CON_STATE_NEGOTIATING)
2152 			return -EAGAIN;
2153 		break;
2154 
2155 	case CEPH_MSGR_TAG_RETRY_SESSION:
2156 		/*
2157 		 * If we sent a smaller connect_seq than the peer has, try
2158 		 * again with a larger value.
2159 		 */
2160 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2161 		     le32_to_cpu(con->out_connect.connect_seq),
2162 		     le32_to_cpu(con->in_reply.connect_seq));
2163 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2164 		con_out_kvec_reset(con);
2165 		ret = prepare_write_connect(con);
2166 		if (ret < 0)
2167 			return ret;
2168 		prepare_read_connect(con);
2169 		break;
2170 
2171 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2172 		/*
2173 		 * If we sent a smaller global_seq than the peer has, try
2174 		 * again with a larger value.
2175 		 */
2176 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2177 		     con->peer_global_seq,
2178 		     le32_to_cpu(con->in_reply.global_seq));
2179 		get_global_seq(con->msgr,
2180 			       le32_to_cpu(con->in_reply.global_seq));
2181 		con_out_kvec_reset(con);
2182 		ret = prepare_write_connect(con);
2183 		if (ret < 0)
2184 			return ret;
2185 		prepare_read_connect(con);
2186 		break;
2187 
2188 	case CEPH_MSGR_TAG_SEQ:
2189 	case CEPH_MSGR_TAG_READY:
2190 		if (req_feat & ~server_feat) {
2191 			pr_err("%s%lld %s protocol feature mismatch,"
2192 			       " my required %llx > server's %llx, need %llx\n",
2193 			       ENTITY_NAME(con->peer_name),
2194 			       ceph_pr_addr(&con->peer_addr.in_addr),
2195 			       req_feat, server_feat, req_feat & ~server_feat);
2196 			con->error_msg = "missing required protocol features";
2197 			reset_connection(con);
2198 			return -1;
2199 		}
2200 
2201 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2202 		con->state = CON_STATE_OPEN;
2203 		con->auth_retry = 0;    /* we authenticated; clear flag */
2204 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2205 		con->connect_seq++;
2206 		con->peer_features = server_feat;
2207 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2208 		     con->peer_global_seq,
2209 		     le32_to_cpu(con->in_reply.connect_seq),
2210 		     con->connect_seq);
2211 		WARN_ON(con->connect_seq !=
2212 			le32_to_cpu(con->in_reply.connect_seq));
2213 
2214 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2215 			con_flag_set(con, CON_FLAG_LOSSYTX);
2216 
2217 		con->delay = 0;      /* reset backoff memory */
2218 
2219 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2220 			prepare_write_seq(con);
2221 			prepare_read_seq(con);
2222 		} else {
2223 			prepare_read_tag(con);
2224 		}
2225 		break;
2226 
2227 	case CEPH_MSGR_TAG_WAIT:
2228 		/*
2229 		 * If there is a connection race (we are opening
2230 		 * connections to each other), one of us may just have
2231 		 * to WAIT.  This shouldn't happen if we are the
2232 		 * client.
2233 		 */
2234 		con->error_msg = "protocol error, got WAIT as client";
2235 		return -1;
2236 
2237 	default:
2238 		con->error_msg = "protocol error, garbage tag during connect";
2239 		return -1;
2240 	}
2241 	return 0;
2242 }
2243 
2244 
2245 /*
2246  * read (part of) an ack
2247  */
2248 static int read_partial_ack(struct ceph_connection *con)
2249 {
2250 	int size = sizeof (con->in_temp_ack);
2251 	int end = size;
2252 
2253 	return read_partial(con, end, size, &con->in_temp_ack);
2254 }
2255 
2256 /*
2257  * We can finally discard anything that's been acked.
2258  */
2259 static void process_ack(struct ceph_connection *con)
2260 {
2261 	struct ceph_msg *m;
2262 	u64 ack = le64_to_cpu(con->in_temp_ack);
2263 	u64 seq;
2264 	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2265 	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2266 
2267 	/*
2268 	 * In the reconnect case, con_fault() has requeued messages
2269 	 * in out_sent. We should cleanup old messages according to
2270 	 * the reconnect seq.
2271 	 */
2272 	while (!list_empty(list)) {
2273 		m = list_first_entry(list, struct ceph_msg, list_head);
2274 		if (reconnect && m->needs_out_seq)
2275 			break;
2276 		seq = le64_to_cpu(m->hdr.seq);
2277 		if (seq > ack)
2278 			break;
2279 		dout("got ack for seq %llu type %d at %p\n", seq,
2280 		     le16_to_cpu(m->hdr.type), m);
2281 		m->ack_stamp = jiffies;
2282 		ceph_msg_remove(m);
2283 	}
2284 
2285 	prepare_read_tag(con);
2286 }
2287 
2288 
2289 static int read_partial_message_section(struct ceph_connection *con,
2290 					struct kvec *section,
2291 					unsigned int sec_len, u32 *crc)
2292 {
2293 	int ret, left;
2294 
2295 	BUG_ON(!section);
2296 
2297 	while (section->iov_len < sec_len) {
2298 		BUG_ON(section->iov_base == NULL);
2299 		left = sec_len - section->iov_len;
2300 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2301 				       section->iov_len, left);
2302 		if (ret <= 0)
2303 			return ret;
2304 		section->iov_len += ret;
2305 	}
2306 	if (section->iov_len == sec_len)
2307 		*crc = crc32c(0, section->iov_base, section->iov_len);
2308 
2309 	return 1;
2310 }
2311 
2312 static int read_partial_msg_data(struct ceph_connection *con)
2313 {
2314 	struct ceph_msg *msg = con->in_msg;
2315 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2316 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2317 	struct page *page;
2318 	size_t page_offset;
2319 	size_t length;
2320 	u32 crc = 0;
2321 	int ret;
2322 
2323 	if (!msg->num_data_items)
2324 		return -EIO;
2325 
2326 	if (do_datacrc)
2327 		crc = con->in_data_crc;
2328 	while (cursor->total_resid) {
2329 		if (!cursor->resid) {
2330 			ceph_msg_data_advance(cursor, 0);
2331 			continue;
2332 		}
2333 
2334 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2335 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2336 		if (ret <= 0) {
2337 			if (do_datacrc)
2338 				con->in_data_crc = crc;
2339 
2340 			return ret;
2341 		}
2342 
2343 		if (do_datacrc)
2344 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2345 		ceph_msg_data_advance(cursor, (size_t)ret);
2346 	}
2347 	if (do_datacrc)
2348 		con->in_data_crc = crc;
2349 
2350 	return 1;	/* must return > 0 to indicate success */
2351 }
2352 
2353 /*
2354  * read (part of) a message.
2355  */
2356 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2357 
2358 static int read_partial_message(struct ceph_connection *con)
2359 {
2360 	struct ceph_msg *m = con->in_msg;
2361 	int size;
2362 	int end;
2363 	int ret;
2364 	unsigned int front_len, middle_len, data_len;
2365 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2366 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2367 	u64 seq;
2368 	u32 crc;
2369 
2370 	dout("read_partial_message con %p msg %p\n", con, m);
2371 
2372 	/* header */
2373 	size = sizeof (con->in_hdr);
2374 	end = size;
2375 	ret = read_partial(con, end, size, &con->in_hdr);
2376 	if (ret <= 0)
2377 		return ret;
2378 
2379 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2380 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2381 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2382 		       crc, con->in_hdr.crc);
2383 		return -EBADMSG;
2384 	}
2385 
2386 	front_len = le32_to_cpu(con->in_hdr.front_len);
2387 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2388 		return -EIO;
2389 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2390 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2391 		return -EIO;
2392 	data_len = le32_to_cpu(con->in_hdr.data_len);
2393 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2394 		return -EIO;
2395 
2396 	/* verify seq# */
2397 	seq = le64_to_cpu(con->in_hdr.seq);
2398 	if ((s64)seq - (s64)con->in_seq < 1) {
2399 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2400 			ENTITY_NAME(con->peer_name),
2401 			ceph_pr_addr(&con->peer_addr.in_addr),
2402 			seq, con->in_seq + 1);
2403 		con->in_base_pos = -front_len - middle_len - data_len -
2404 			sizeof_footer(con);
2405 		con->in_tag = CEPH_MSGR_TAG_READY;
2406 		return 1;
2407 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2408 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2409 		       seq, con->in_seq + 1);
2410 		con->error_msg = "bad message sequence # for incoming message";
2411 		return -EBADE;
2412 	}
2413 
2414 	/* allocate message? */
2415 	if (!con->in_msg) {
2416 		int skip = 0;
2417 
2418 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2419 		     front_len, data_len);
2420 		ret = ceph_con_in_msg_alloc(con, &skip);
2421 		if (ret < 0)
2422 			return ret;
2423 
2424 		BUG_ON(!con->in_msg ^ skip);
2425 		if (skip) {
2426 			/* skip this message */
2427 			dout("alloc_msg said skip message\n");
2428 			con->in_base_pos = -front_len - middle_len - data_len -
2429 				sizeof_footer(con);
2430 			con->in_tag = CEPH_MSGR_TAG_READY;
2431 			con->in_seq++;
2432 			return 1;
2433 		}
2434 
2435 		BUG_ON(!con->in_msg);
2436 		BUG_ON(con->in_msg->con != con);
2437 		m = con->in_msg;
2438 		m->front.iov_len = 0;    /* haven't read it yet */
2439 		if (m->middle)
2440 			m->middle->vec.iov_len = 0;
2441 
2442 		/* prepare for data payload, if any */
2443 
2444 		if (data_len)
2445 			prepare_message_data(con->in_msg, data_len);
2446 	}
2447 
2448 	/* front */
2449 	ret = read_partial_message_section(con, &m->front, front_len,
2450 					   &con->in_front_crc);
2451 	if (ret <= 0)
2452 		return ret;
2453 
2454 	/* middle */
2455 	if (m->middle) {
2456 		ret = read_partial_message_section(con, &m->middle->vec,
2457 						   middle_len,
2458 						   &con->in_middle_crc);
2459 		if (ret <= 0)
2460 			return ret;
2461 	}
2462 
2463 	/* (page) data */
2464 	if (data_len) {
2465 		ret = read_partial_msg_data(con);
2466 		if (ret <= 0)
2467 			return ret;
2468 	}
2469 
2470 	/* footer */
2471 	size = sizeof_footer(con);
2472 	end += size;
2473 	ret = read_partial(con, end, size, &m->footer);
2474 	if (ret <= 0)
2475 		return ret;
2476 
2477 	if (!need_sign) {
2478 		m->footer.flags = m->old_footer.flags;
2479 		m->footer.sig = 0;
2480 	}
2481 
2482 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2483 	     m, front_len, m->footer.front_crc, middle_len,
2484 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2485 
2486 	/* crc ok? */
2487 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2488 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2489 		       m, con->in_front_crc, m->footer.front_crc);
2490 		return -EBADMSG;
2491 	}
2492 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2493 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2494 		       m, con->in_middle_crc, m->footer.middle_crc);
2495 		return -EBADMSG;
2496 	}
2497 	if (do_datacrc &&
2498 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2499 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2500 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2501 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2502 		return -EBADMSG;
2503 	}
2504 
2505 	if (need_sign && con->ops->check_message_signature &&
2506 	    con->ops->check_message_signature(m)) {
2507 		pr_err("read_partial_message %p signature check failed\n", m);
2508 		return -EBADMSG;
2509 	}
2510 
2511 	return 1; /* done! */
2512 }
2513 
2514 /*
2515  * Process message.  This happens in the worker thread.  The callback should
2516  * be careful not to do anything that waits on other incoming messages or it
2517  * may deadlock.
2518  */
2519 static void process_message(struct ceph_connection *con)
2520 {
2521 	struct ceph_msg *msg = con->in_msg;
2522 
2523 	BUG_ON(con->in_msg->con != con);
2524 	con->in_msg = NULL;
2525 
2526 	/* if first message, set peer_name */
2527 	if (con->peer_name.type == 0)
2528 		con->peer_name = msg->hdr.src;
2529 
2530 	con->in_seq++;
2531 	mutex_unlock(&con->mutex);
2532 
2533 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2534 	     msg, le64_to_cpu(msg->hdr.seq),
2535 	     ENTITY_NAME(msg->hdr.src),
2536 	     le16_to_cpu(msg->hdr.type),
2537 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2538 	     le32_to_cpu(msg->hdr.front_len),
2539 	     le32_to_cpu(msg->hdr.data_len),
2540 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2541 	con->ops->dispatch(con, msg);
2542 
2543 	mutex_lock(&con->mutex);
2544 }
2545 
2546 static int read_keepalive_ack(struct ceph_connection *con)
2547 {
2548 	struct ceph_timespec ceph_ts;
2549 	size_t size = sizeof(ceph_ts);
2550 	int ret = read_partial(con, size, size, &ceph_ts);
2551 	if (ret <= 0)
2552 		return ret;
2553 	ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2554 	prepare_read_tag(con);
2555 	return 1;
2556 }
2557 
2558 /*
2559  * Write something to the socket.  Called in a worker thread when the
2560  * socket appears to be writeable and we have something ready to send.
2561  */
2562 static int try_write(struct ceph_connection *con)
2563 {
2564 	int ret = 1;
2565 
2566 	dout("try_write start %p state %lu\n", con, con->state);
2567 	if (con->state != CON_STATE_PREOPEN &&
2568 	    con->state != CON_STATE_CONNECTING &&
2569 	    con->state != CON_STATE_NEGOTIATING &&
2570 	    con->state != CON_STATE_OPEN)
2571 		return 0;
2572 
2573 	/* open the socket first? */
2574 	if (con->state == CON_STATE_PREOPEN) {
2575 		BUG_ON(con->sock);
2576 		con->state = CON_STATE_CONNECTING;
2577 
2578 		con_out_kvec_reset(con);
2579 		prepare_write_banner(con);
2580 		prepare_read_banner(con);
2581 
2582 		BUG_ON(con->in_msg);
2583 		con->in_tag = CEPH_MSGR_TAG_READY;
2584 		dout("try_write initiating connect on %p new state %lu\n",
2585 		     con, con->state);
2586 		ret = ceph_tcp_connect(con);
2587 		if (ret < 0) {
2588 			con->error_msg = "connect error";
2589 			goto out;
2590 		}
2591 	}
2592 
2593 more:
2594 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2595 	BUG_ON(!con->sock);
2596 
2597 	/* kvec data queued? */
2598 	if (con->out_kvec_left) {
2599 		ret = write_partial_kvec(con);
2600 		if (ret <= 0)
2601 			goto out;
2602 	}
2603 	if (con->out_skip) {
2604 		ret = write_partial_skip(con);
2605 		if (ret <= 0)
2606 			goto out;
2607 	}
2608 
2609 	/* msg pages? */
2610 	if (con->out_msg) {
2611 		if (con->out_msg_done) {
2612 			ceph_msg_put(con->out_msg);
2613 			con->out_msg = NULL;   /* we're done with this one */
2614 			goto do_next;
2615 		}
2616 
2617 		ret = write_partial_message_data(con);
2618 		if (ret == 1)
2619 			goto more;  /* we need to send the footer, too! */
2620 		if (ret == 0)
2621 			goto out;
2622 		if (ret < 0) {
2623 			dout("try_write write_partial_message_data err %d\n",
2624 			     ret);
2625 			goto out;
2626 		}
2627 	}
2628 
2629 do_next:
2630 	if (con->state == CON_STATE_OPEN) {
2631 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2632 			prepare_write_keepalive(con);
2633 			goto more;
2634 		}
2635 		/* is anything else pending? */
2636 		if (!list_empty(&con->out_queue)) {
2637 			prepare_write_message(con);
2638 			goto more;
2639 		}
2640 		if (con->in_seq > con->in_seq_acked) {
2641 			prepare_write_ack(con);
2642 			goto more;
2643 		}
2644 	}
2645 
2646 	/* Nothing to do! */
2647 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2648 	dout("try_write nothing else to write.\n");
2649 	ret = 0;
2650 out:
2651 	dout("try_write done on %p ret %d\n", con, ret);
2652 	return ret;
2653 }
2654 
2655 /*
2656  * Read what we can from the socket.
2657  */
2658 static int try_read(struct ceph_connection *con)
2659 {
2660 	int ret = -1;
2661 
2662 more:
2663 	dout("try_read start on %p state %lu\n", con, con->state);
2664 	if (con->state != CON_STATE_CONNECTING &&
2665 	    con->state != CON_STATE_NEGOTIATING &&
2666 	    con->state != CON_STATE_OPEN)
2667 		return 0;
2668 
2669 	BUG_ON(!con->sock);
2670 
2671 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2672 	     con->in_base_pos);
2673 
2674 	if (con->state == CON_STATE_CONNECTING) {
2675 		dout("try_read connecting\n");
2676 		ret = read_partial_banner(con);
2677 		if (ret <= 0)
2678 			goto out;
2679 		ret = process_banner(con);
2680 		if (ret < 0)
2681 			goto out;
2682 
2683 		con->state = CON_STATE_NEGOTIATING;
2684 
2685 		/*
2686 		 * Received banner is good, exchange connection info.
2687 		 * Do not reset out_kvec, as sending our banner raced
2688 		 * with receiving peer banner after connect completed.
2689 		 */
2690 		ret = prepare_write_connect(con);
2691 		if (ret < 0)
2692 			goto out;
2693 		prepare_read_connect(con);
2694 
2695 		/* Send connection info before awaiting response */
2696 		goto out;
2697 	}
2698 
2699 	if (con->state == CON_STATE_NEGOTIATING) {
2700 		dout("try_read negotiating\n");
2701 		ret = read_partial_connect(con);
2702 		if (ret <= 0)
2703 			goto out;
2704 		ret = process_connect(con);
2705 		if (ret < 0)
2706 			goto out;
2707 		goto more;
2708 	}
2709 
2710 	WARN_ON(con->state != CON_STATE_OPEN);
2711 
2712 	if (con->in_base_pos < 0) {
2713 		/*
2714 		 * skipping + discarding content.
2715 		 */
2716 		ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2717 		if (ret <= 0)
2718 			goto out;
2719 		dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2720 		con->in_base_pos += ret;
2721 		if (con->in_base_pos)
2722 			goto more;
2723 	}
2724 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2725 		/*
2726 		 * what's next?
2727 		 */
2728 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2729 		if (ret <= 0)
2730 			goto out;
2731 		dout("try_read got tag %d\n", (int)con->in_tag);
2732 		switch (con->in_tag) {
2733 		case CEPH_MSGR_TAG_MSG:
2734 			prepare_read_message(con);
2735 			break;
2736 		case CEPH_MSGR_TAG_ACK:
2737 			prepare_read_ack(con);
2738 			break;
2739 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2740 			prepare_read_keepalive_ack(con);
2741 			break;
2742 		case CEPH_MSGR_TAG_CLOSE:
2743 			con_close_socket(con);
2744 			con->state = CON_STATE_CLOSED;
2745 			goto out;
2746 		default:
2747 			goto bad_tag;
2748 		}
2749 	}
2750 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2751 		ret = read_partial_message(con);
2752 		if (ret <= 0) {
2753 			switch (ret) {
2754 			case -EBADMSG:
2755 				con->error_msg = "bad crc/signature";
2756 				/* fall through */
2757 			case -EBADE:
2758 				ret = -EIO;
2759 				break;
2760 			case -EIO:
2761 				con->error_msg = "io error";
2762 				break;
2763 			}
2764 			goto out;
2765 		}
2766 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2767 			goto more;
2768 		process_message(con);
2769 		if (con->state == CON_STATE_OPEN)
2770 			prepare_read_tag(con);
2771 		goto more;
2772 	}
2773 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2774 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2775 		/*
2776 		 * the final handshake seq exchange is semantically
2777 		 * equivalent to an ACK
2778 		 */
2779 		ret = read_partial_ack(con);
2780 		if (ret <= 0)
2781 			goto out;
2782 		process_ack(con);
2783 		goto more;
2784 	}
2785 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2786 		ret = read_keepalive_ack(con);
2787 		if (ret <= 0)
2788 			goto out;
2789 		goto more;
2790 	}
2791 
2792 out:
2793 	dout("try_read done on %p ret %d\n", con, ret);
2794 	return ret;
2795 
2796 bad_tag:
2797 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2798 	con->error_msg = "protocol error, garbage tag";
2799 	ret = -1;
2800 	goto out;
2801 }
2802 
2803 
2804 /*
2805  * Atomically queue work on a connection after the specified delay.
2806  * Bump @con reference to avoid races with connection teardown.
2807  * Returns 0 if work was queued, or an error code otherwise.
2808  */
2809 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2810 {
2811 	if (!con->ops->get(con)) {
2812 		dout("%s %p ref count 0\n", __func__, con);
2813 		return -ENOENT;
2814 	}
2815 
2816 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2817 		dout("%s %p - already queued\n", __func__, con);
2818 		con->ops->put(con);
2819 		return -EBUSY;
2820 	}
2821 
2822 	dout("%s %p %lu\n", __func__, con, delay);
2823 	return 0;
2824 }
2825 
2826 static void queue_con(struct ceph_connection *con)
2827 {
2828 	(void) queue_con_delay(con, 0);
2829 }
2830 
2831 static void cancel_con(struct ceph_connection *con)
2832 {
2833 	if (cancel_delayed_work(&con->work)) {
2834 		dout("%s %p\n", __func__, con);
2835 		con->ops->put(con);
2836 	}
2837 }
2838 
2839 static bool con_sock_closed(struct ceph_connection *con)
2840 {
2841 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2842 		return false;
2843 
2844 #define CASE(x)								\
2845 	case CON_STATE_ ## x:						\
2846 		con->error_msg = "socket closed (con state " #x ")";	\
2847 		break;
2848 
2849 	switch (con->state) {
2850 	CASE(CLOSED);
2851 	CASE(PREOPEN);
2852 	CASE(CONNECTING);
2853 	CASE(NEGOTIATING);
2854 	CASE(OPEN);
2855 	CASE(STANDBY);
2856 	default:
2857 		pr_warn("%s con %p unrecognized state %lu\n",
2858 			__func__, con, con->state);
2859 		con->error_msg = "unrecognized con state";
2860 		BUG();
2861 		break;
2862 	}
2863 #undef CASE
2864 
2865 	return true;
2866 }
2867 
2868 static bool con_backoff(struct ceph_connection *con)
2869 {
2870 	int ret;
2871 
2872 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2873 		return false;
2874 
2875 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2876 	if (ret) {
2877 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2878 			con, con->delay);
2879 		BUG_ON(ret == -ENOENT);
2880 		con_flag_set(con, CON_FLAG_BACKOFF);
2881 	}
2882 
2883 	return true;
2884 }
2885 
2886 /* Finish fault handling; con->mutex must *not* be held here */
2887 
2888 static void con_fault_finish(struct ceph_connection *con)
2889 {
2890 	dout("%s %p\n", __func__, con);
2891 
2892 	/*
2893 	 * in case we faulted due to authentication, invalidate our
2894 	 * current tickets so that we can get new ones.
2895 	 */
2896 	if (con->auth_retry) {
2897 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2898 		if (con->ops->invalidate_authorizer)
2899 			con->ops->invalidate_authorizer(con);
2900 		con->auth_retry = 0;
2901 	}
2902 
2903 	if (con->ops->fault)
2904 		con->ops->fault(con);
2905 }
2906 
2907 /*
2908  * Do some work on a connection.  Drop a connection ref when we're done.
2909  */
2910 static void ceph_con_workfn(struct work_struct *work)
2911 {
2912 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2913 						   work.work);
2914 	bool fault;
2915 
2916 	mutex_lock(&con->mutex);
2917 	while (true) {
2918 		int ret;
2919 
2920 		if ((fault = con_sock_closed(con))) {
2921 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2922 			break;
2923 		}
2924 		if (con_backoff(con)) {
2925 			dout("%s: con %p BACKOFF\n", __func__, con);
2926 			break;
2927 		}
2928 		if (con->state == CON_STATE_STANDBY) {
2929 			dout("%s: con %p STANDBY\n", __func__, con);
2930 			break;
2931 		}
2932 		if (con->state == CON_STATE_CLOSED) {
2933 			dout("%s: con %p CLOSED\n", __func__, con);
2934 			BUG_ON(con->sock);
2935 			break;
2936 		}
2937 		if (con->state == CON_STATE_PREOPEN) {
2938 			dout("%s: con %p PREOPEN\n", __func__, con);
2939 			BUG_ON(con->sock);
2940 		}
2941 
2942 		ret = try_read(con);
2943 		if (ret < 0) {
2944 			if (ret == -EAGAIN)
2945 				continue;
2946 			if (!con->error_msg)
2947 				con->error_msg = "socket error on read";
2948 			fault = true;
2949 			break;
2950 		}
2951 
2952 		ret = try_write(con);
2953 		if (ret < 0) {
2954 			if (ret == -EAGAIN)
2955 				continue;
2956 			if (!con->error_msg)
2957 				con->error_msg = "socket error on write";
2958 			fault = true;
2959 		}
2960 
2961 		break;	/* If we make it to here, we're done */
2962 	}
2963 	if (fault)
2964 		con_fault(con);
2965 	mutex_unlock(&con->mutex);
2966 
2967 	if (fault)
2968 		con_fault_finish(con);
2969 
2970 	con->ops->put(con);
2971 }
2972 
2973 /*
2974  * Generic error/fault handler.  A retry mechanism is used with
2975  * exponential backoff
2976  */
2977 static void con_fault(struct ceph_connection *con)
2978 {
2979 	dout("fault %p state %lu to peer %s\n",
2980 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2981 
2982 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2983 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2984 	con->error_msg = NULL;
2985 
2986 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2987 	       con->state != CON_STATE_NEGOTIATING &&
2988 	       con->state != CON_STATE_OPEN);
2989 
2990 	con_close_socket(con);
2991 
2992 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2993 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2994 		con->state = CON_STATE_CLOSED;
2995 		return;
2996 	}
2997 
2998 	if (con->in_msg) {
2999 		BUG_ON(con->in_msg->con != con);
3000 		ceph_msg_put(con->in_msg);
3001 		con->in_msg = NULL;
3002 	}
3003 
3004 	/* Requeue anything that hasn't been acked */
3005 	list_splice_init(&con->out_sent, &con->out_queue);
3006 
3007 	/* If there are no messages queued or keepalive pending, place
3008 	 * the connection in a STANDBY state */
3009 	if (list_empty(&con->out_queue) &&
3010 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3011 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3012 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3013 		con->state = CON_STATE_STANDBY;
3014 	} else {
3015 		/* retry after a delay. */
3016 		con->state = CON_STATE_PREOPEN;
3017 		if (con->delay == 0)
3018 			con->delay = BASE_DELAY_INTERVAL;
3019 		else if (con->delay < MAX_DELAY_INTERVAL)
3020 			con->delay *= 2;
3021 		con_flag_set(con, CON_FLAG_BACKOFF);
3022 		queue_con(con);
3023 	}
3024 }
3025 
3026 
3027 
3028 /*
3029  * initialize a new messenger instance
3030  */
3031 void ceph_messenger_init(struct ceph_messenger *msgr,
3032 			 struct ceph_entity_addr *myaddr)
3033 {
3034 	spin_lock_init(&msgr->global_seq_lock);
3035 
3036 	if (myaddr)
3037 		msgr->inst.addr = *myaddr;
3038 
3039 	/* select a random nonce */
3040 	msgr->inst.addr.type = 0;
3041 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3042 	encode_my_addr(msgr);
3043 
3044 	atomic_set(&msgr->stopping, 0);
3045 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3046 
3047 	dout("%s %p\n", __func__, msgr);
3048 }
3049 EXPORT_SYMBOL(ceph_messenger_init);
3050 
3051 void ceph_messenger_fini(struct ceph_messenger *msgr)
3052 {
3053 	put_net(read_pnet(&msgr->net));
3054 }
3055 EXPORT_SYMBOL(ceph_messenger_fini);
3056 
3057 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3058 {
3059 	if (msg->con)
3060 		msg->con->ops->put(msg->con);
3061 
3062 	msg->con = con ? con->ops->get(con) : NULL;
3063 	BUG_ON(msg->con != con);
3064 }
3065 
3066 static void clear_standby(struct ceph_connection *con)
3067 {
3068 	/* come back from STANDBY? */
3069 	if (con->state == CON_STATE_STANDBY) {
3070 		dout("clear_standby %p and ++connect_seq\n", con);
3071 		con->state = CON_STATE_PREOPEN;
3072 		con->connect_seq++;
3073 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3074 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3075 	}
3076 }
3077 
3078 /*
3079  * Queue up an outgoing message on the given connection.
3080  */
3081 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3082 {
3083 	/* set src+dst */
3084 	msg->hdr.src = con->msgr->inst.name;
3085 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3086 	msg->needs_out_seq = true;
3087 
3088 	mutex_lock(&con->mutex);
3089 
3090 	if (con->state == CON_STATE_CLOSED) {
3091 		dout("con_send %p closed, dropping %p\n", con, msg);
3092 		ceph_msg_put(msg);
3093 		mutex_unlock(&con->mutex);
3094 		return;
3095 	}
3096 
3097 	msg_con_set(msg, con);
3098 
3099 	BUG_ON(!list_empty(&msg->list_head));
3100 	list_add_tail(&msg->list_head, &con->out_queue);
3101 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3102 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3103 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3104 	     le32_to_cpu(msg->hdr.front_len),
3105 	     le32_to_cpu(msg->hdr.middle_len),
3106 	     le32_to_cpu(msg->hdr.data_len));
3107 
3108 	clear_standby(con);
3109 	mutex_unlock(&con->mutex);
3110 
3111 	/* if there wasn't anything waiting to send before, queue
3112 	 * new work */
3113 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3114 		queue_con(con);
3115 }
3116 EXPORT_SYMBOL(ceph_con_send);
3117 
3118 /*
3119  * Revoke a message that was previously queued for send
3120  */
3121 void ceph_msg_revoke(struct ceph_msg *msg)
3122 {
3123 	struct ceph_connection *con = msg->con;
3124 
3125 	if (!con) {
3126 		dout("%s msg %p null con\n", __func__, msg);
3127 		return;		/* Message not in our possession */
3128 	}
3129 
3130 	mutex_lock(&con->mutex);
3131 	if (!list_empty(&msg->list_head)) {
3132 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3133 		list_del_init(&msg->list_head);
3134 		msg->hdr.seq = 0;
3135 
3136 		ceph_msg_put(msg);
3137 	}
3138 	if (con->out_msg == msg) {
3139 		BUG_ON(con->out_skip);
3140 		/* footer */
3141 		if (con->out_msg_done) {
3142 			con->out_skip += con_out_kvec_skip(con);
3143 		} else {
3144 			BUG_ON(!msg->data_length);
3145 			con->out_skip += sizeof_footer(con);
3146 		}
3147 		/* data, middle, front */
3148 		if (msg->data_length)
3149 			con->out_skip += msg->cursor.total_resid;
3150 		if (msg->middle)
3151 			con->out_skip += con_out_kvec_skip(con);
3152 		con->out_skip += con_out_kvec_skip(con);
3153 
3154 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3155 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3156 		msg->hdr.seq = 0;
3157 		con->out_msg = NULL;
3158 		ceph_msg_put(msg);
3159 	}
3160 
3161 	mutex_unlock(&con->mutex);
3162 }
3163 
3164 /*
3165  * Revoke a message that we may be reading data into
3166  */
3167 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3168 {
3169 	struct ceph_connection *con = msg->con;
3170 
3171 	if (!con) {
3172 		dout("%s msg %p null con\n", __func__, msg);
3173 		return;		/* Message not in our possession */
3174 	}
3175 
3176 	mutex_lock(&con->mutex);
3177 	if (con->in_msg == msg) {
3178 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3179 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3180 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3181 
3182 		/* skip rest of message */
3183 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3184 		con->in_base_pos = con->in_base_pos -
3185 				sizeof(struct ceph_msg_header) -
3186 				front_len -
3187 				middle_len -
3188 				data_len -
3189 				sizeof(struct ceph_msg_footer);
3190 		ceph_msg_put(con->in_msg);
3191 		con->in_msg = NULL;
3192 		con->in_tag = CEPH_MSGR_TAG_READY;
3193 		con->in_seq++;
3194 	} else {
3195 		dout("%s %p in_msg %p msg %p no-op\n",
3196 		     __func__, con, con->in_msg, msg);
3197 	}
3198 	mutex_unlock(&con->mutex);
3199 }
3200 
3201 /*
3202  * Queue a keepalive byte to ensure the tcp connection is alive.
3203  */
3204 void ceph_con_keepalive(struct ceph_connection *con)
3205 {
3206 	dout("con_keepalive %p\n", con);
3207 	mutex_lock(&con->mutex);
3208 	clear_standby(con);
3209 	mutex_unlock(&con->mutex);
3210 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3211 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3212 		queue_con(con);
3213 }
3214 EXPORT_SYMBOL(ceph_con_keepalive);
3215 
3216 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3217 			       unsigned long interval)
3218 {
3219 	if (interval > 0 &&
3220 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3221 		struct timespec64 now;
3222 		struct timespec64 ts;
3223 		ktime_get_real_ts64(&now);
3224 		jiffies_to_timespec64(interval, &ts);
3225 		ts = timespec64_add(con->last_keepalive_ack, ts);
3226 		return timespec64_compare(&now, &ts) >= 0;
3227 	}
3228 	return false;
3229 }
3230 
3231 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3232 {
3233 	BUG_ON(msg->num_data_items >= msg->max_data_items);
3234 	return &msg->data[msg->num_data_items++];
3235 }
3236 
3237 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3238 {
3239 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3240 		ceph_pagelist_release(data->pagelist);
3241 }
3242 
3243 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3244 		size_t length, size_t alignment)
3245 {
3246 	struct ceph_msg_data *data;
3247 
3248 	BUG_ON(!pages);
3249 	BUG_ON(!length);
3250 
3251 	data = ceph_msg_data_add(msg);
3252 	data->type = CEPH_MSG_DATA_PAGES;
3253 	data->pages = pages;
3254 	data->length = length;
3255 	data->alignment = alignment & ~PAGE_MASK;
3256 
3257 	msg->data_length += length;
3258 }
3259 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3260 
3261 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3262 				struct ceph_pagelist *pagelist)
3263 {
3264 	struct ceph_msg_data *data;
3265 
3266 	BUG_ON(!pagelist);
3267 	BUG_ON(!pagelist->length);
3268 
3269 	data = ceph_msg_data_add(msg);
3270 	data->type = CEPH_MSG_DATA_PAGELIST;
3271 	refcount_inc(&pagelist->refcnt);
3272 	data->pagelist = pagelist;
3273 
3274 	msg->data_length += pagelist->length;
3275 }
3276 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3277 
3278 #ifdef	CONFIG_BLOCK
3279 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3280 			   u32 length)
3281 {
3282 	struct ceph_msg_data *data;
3283 
3284 	data = ceph_msg_data_add(msg);
3285 	data->type = CEPH_MSG_DATA_BIO;
3286 	data->bio_pos = *bio_pos;
3287 	data->bio_length = length;
3288 
3289 	msg->data_length += length;
3290 }
3291 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3292 #endif	/* CONFIG_BLOCK */
3293 
3294 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3295 			     struct ceph_bvec_iter *bvec_pos)
3296 {
3297 	struct ceph_msg_data *data;
3298 
3299 	data = ceph_msg_data_add(msg);
3300 	data->type = CEPH_MSG_DATA_BVECS;
3301 	data->bvec_pos = *bvec_pos;
3302 
3303 	msg->data_length += bvec_pos->iter.bi_size;
3304 }
3305 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3306 
3307 /*
3308  * construct a new message with given type, size
3309  * the new msg has a ref count of 1.
3310  */
3311 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3312 			       gfp_t flags, bool can_fail)
3313 {
3314 	struct ceph_msg *m;
3315 
3316 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3317 	if (m == NULL)
3318 		goto out;
3319 
3320 	m->hdr.type = cpu_to_le16(type);
3321 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3322 	m->hdr.front_len = cpu_to_le32(front_len);
3323 
3324 	INIT_LIST_HEAD(&m->list_head);
3325 	kref_init(&m->kref);
3326 
3327 	/* front */
3328 	if (front_len) {
3329 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3330 		if (m->front.iov_base == NULL) {
3331 			dout("ceph_msg_new can't allocate %d bytes\n",
3332 			     front_len);
3333 			goto out2;
3334 		}
3335 	} else {
3336 		m->front.iov_base = NULL;
3337 	}
3338 	m->front_alloc_len = m->front.iov_len = front_len;
3339 
3340 	if (max_data_items) {
3341 		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3342 					flags);
3343 		if (!m->data)
3344 			goto out2;
3345 
3346 		m->max_data_items = max_data_items;
3347 	}
3348 
3349 	dout("ceph_msg_new %p front %d\n", m, front_len);
3350 	return m;
3351 
3352 out2:
3353 	ceph_msg_put(m);
3354 out:
3355 	if (!can_fail) {
3356 		pr_err("msg_new can't create type %d front %d\n", type,
3357 		       front_len);
3358 		WARN_ON(1);
3359 	} else {
3360 		dout("msg_new can't create type %d front %d\n", type,
3361 		     front_len);
3362 	}
3363 	return NULL;
3364 }
3365 EXPORT_SYMBOL(ceph_msg_new2);
3366 
3367 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3368 			      bool can_fail)
3369 {
3370 	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3371 }
3372 EXPORT_SYMBOL(ceph_msg_new);
3373 
3374 /*
3375  * Allocate "middle" portion of a message, if it is needed and wasn't
3376  * allocated by alloc_msg.  This allows us to read a small fixed-size
3377  * per-type header in the front and then gracefully fail (i.e.,
3378  * propagate the error to the caller based on info in the front) when
3379  * the middle is too large.
3380  */
3381 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3382 {
3383 	int type = le16_to_cpu(msg->hdr.type);
3384 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3385 
3386 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3387 	     ceph_msg_type_name(type), middle_len);
3388 	BUG_ON(!middle_len);
3389 	BUG_ON(msg->middle);
3390 
3391 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3392 	if (!msg->middle)
3393 		return -ENOMEM;
3394 	return 0;
3395 }
3396 
3397 /*
3398  * Allocate a message for receiving an incoming message on a
3399  * connection, and save the result in con->in_msg.  Uses the
3400  * connection's private alloc_msg op if available.
3401  *
3402  * Returns 0 on success, or a negative error code.
3403  *
3404  * On success, if we set *skip = 1:
3405  *  - the next message should be skipped and ignored.
3406  *  - con->in_msg == NULL
3407  * or if we set *skip = 0:
3408  *  - con->in_msg is non-null.
3409  * On error (ENOMEM, EAGAIN, ...),
3410  *  - con->in_msg == NULL
3411  */
3412 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3413 {
3414 	struct ceph_msg_header *hdr = &con->in_hdr;
3415 	int middle_len = le32_to_cpu(hdr->middle_len);
3416 	struct ceph_msg *msg;
3417 	int ret = 0;
3418 
3419 	BUG_ON(con->in_msg != NULL);
3420 	BUG_ON(!con->ops->alloc_msg);
3421 
3422 	mutex_unlock(&con->mutex);
3423 	msg = con->ops->alloc_msg(con, hdr, skip);
3424 	mutex_lock(&con->mutex);
3425 	if (con->state != CON_STATE_OPEN) {
3426 		if (msg)
3427 			ceph_msg_put(msg);
3428 		return -EAGAIN;
3429 	}
3430 	if (msg) {
3431 		BUG_ON(*skip);
3432 		msg_con_set(msg, con);
3433 		con->in_msg = msg;
3434 	} else {
3435 		/*
3436 		 * Null message pointer means either we should skip
3437 		 * this message or we couldn't allocate memory.  The
3438 		 * former is not an error.
3439 		 */
3440 		if (*skip)
3441 			return 0;
3442 
3443 		con->error_msg = "error allocating memory for incoming message";
3444 		return -ENOMEM;
3445 	}
3446 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3447 
3448 	if (middle_len && !con->in_msg->middle) {
3449 		ret = ceph_alloc_middle(con, con->in_msg);
3450 		if (ret < 0) {
3451 			ceph_msg_put(con->in_msg);
3452 			con->in_msg = NULL;
3453 		}
3454 	}
3455 
3456 	return ret;
3457 }
3458 
3459 
3460 /*
3461  * Free a generically kmalloc'd message.
3462  */
3463 static void ceph_msg_free(struct ceph_msg *m)
3464 {
3465 	dout("%s %p\n", __func__, m);
3466 	kvfree(m->front.iov_base);
3467 	kfree(m->data);
3468 	kmem_cache_free(ceph_msg_cache, m);
3469 }
3470 
3471 static void ceph_msg_release(struct kref *kref)
3472 {
3473 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3474 	int i;
3475 
3476 	dout("%s %p\n", __func__, m);
3477 	WARN_ON(!list_empty(&m->list_head));
3478 
3479 	msg_con_set(m, NULL);
3480 
3481 	/* drop middle, data, if any */
3482 	if (m->middle) {
3483 		ceph_buffer_put(m->middle);
3484 		m->middle = NULL;
3485 	}
3486 
3487 	for (i = 0; i < m->num_data_items; i++)
3488 		ceph_msg_data_destroy(&m->data[i]);
3489 
3490 	if (m->pool)
3491 		ceph_msgpool_put(m->pool, m);
3492 	else
3493 		ceph_msg_free(m);
3494 }
3495 
3496 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3497 {
3498 	dout("%s %p (was %d)\n", __func__, msg,
3499 	     kref_read(&msg->kref));
3500 	kref_get(&msg->kref);
3501 	return msg;
3502 }
3503 EXPORT_SYMBOL(ceph_msg_get);
3504 
3505 void ceph_msg_put(struct ceph_msg *msg)
3506 {
3507 	dout("%s %p (was %d)\n", __func__, msg,
3508 	     kref_read(&msg->kref));
3509 	kref_put(&msg->kref, ceph_msg_release);
3510 }
3511 EXPORT_SYMBOL(ceph_msg_put);
3512 
3513 void ceph_msg_dump(struct ceph_msg *msg)
3514 {
3515 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3516 		 msg->front_alloc_len, msg->data_length);
3517 	print_hex_dump(KERN_DEBUG, "header: ",
3518 		       DUMP_PREFIX_OFFSET, 16, 1,
3519 		       &msg->hdr, sizeof(msg->hdr), true);
3520 	print_hex_dump(KERN_DEBUG, " front: ",
3521 		       DUMP_PREFIX_OFFSET, 16, 1,
3522 		       msg->front.iov_base, msg->front.iov_len, true);
3523 	if (msg->middle)
3524 		print_hex_dump(KERN_DEBUG, "middle: ",
3525 			       DUMP_PREFIX_OFFSET, 16, 1,
3526 			       msg->middle->vec.iov_base,
3527 			       msg->middle->vec.iov_len, true);
3528 	print_hex_dump(KERN_DEBUG, "footer: ",
3529 		       DUMP_PREFIX_OFFSET, 16, 1,
3530 		       &msg->footer, sizeof(msg->footer), true);
3531 }
3532 EXPORT_SYMBOL(ceph_msg_dump);
3533