xref: /linux/net/ceph/messenger.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16 
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22 
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31 
32 /*
33  * We track the state of the socket on a given connection using
34  * values defined below.  The transition to a new socket state is
35  * handled by a function which verifies we aren't coming from an
36  * unexpected state.
37  *
38  *      --------
39  *      | NEW* |  transient initial state
40  *      --------
41  *          | con_sock_state_init()
42  *          v
43  *      ----------
44  *      | CLOSED |  initialized, but no socket (and no
45  *      ----------  TCP connection)
46  *       ^      \
47  *       |       \ con_sock_state_connecting()
48  *       |        ----------------------
49  *       |                              \
50  *       + con_sock_state_closed()       \
51  *       |+---------------------------    \
52  *       | \                          \    \
53  *       |  -----------                \    \
54  *       |  | CLOSING |  socket event;  \    \
55  *       |  -----------  await close     \    \
56  *       |       ^                        \   |
57  *       |       |                         \  |
58  *       |       + con_sock_state_closing() \ |
59  *       |      / \                         | |
60  *       |     /   ---------------          | |
61  *       |    /                   \         v v
62  *       |   /                    --------------
63  *       |  /    -----------------| CONNECTING |  socket created, TCP
64  *       |  |   /                 --------------  connect initiated
65  *       |  |   | con_sock_state_connected()
66  *       |  |   v
67  *      -------------
68  *      | CONNECTED |  TCP connection established
69  *      -------------
70  *
71  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72  */
73 
74 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
79 
80 /*
81  * connection states
82  */
83 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
84 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
89 
90 /*
91  * ceph_connection flag bits
92  */
93 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
94 				       * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
99 
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104 
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108 
109 /*
110  * When skipping (ignoring) a block of input we read it into a "skip
111  * buffer," which is this many bytes in size.
112  */
113 #define SKIP_BUF_SIZE	1024
114 
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118 
119 /*
120  * Nicely render a sockaddr as a string.  An array of formatted
121  * strings is used, to approximate reentrancy.
122  */
123 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
124 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
127 
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130 
131 static struct page *zero_page;		/* used in certain error cases */
132 
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135 	int i;
136 	char *s;
137 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139 
140 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141 	s = addr_str[i];
142 
143 	switch (ss->ss_family) {
144 	case AF_INET:
145 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146 			 ntohs(in4->sin_port));
147 		break;
148 
149 	case AF_INET6:
150 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151 			 ntohs(in6->sin6_port));
152 		break;
153 
154 	default:
155 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156 			 ss->ss_family);
157 	}
158 
159 	return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162 
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166 	ceph_encode_addr(&msgr->my_enc_addr);
167 }
168 
169 /*
170  * work queue for all reading and writing to/from the socket.
171  */
172 static struct workqueue_struct *ceph_msgr_wq;
173 
174 void _ceph_msgr_exit(void)
175 {
176 	if (ceph_msgr_wq) {
177 		destroy_workqueue(ceph_msgr_wq);
178 		ceph_msgr_wq = NULL;
179 	}
180 
181 	BUG_ON(zero_page == NULL);
182 	kunmap(zero_page);
183 	page_cache_release(zero_page);
184 	zero_page = NULL;
185 }
186 
187 int ceph_msgr_init(void)
188 {
189 	BUG_ON(zero_page != NULL);
190 	zero_page = ZERO_PAGE(0);
191 	page_cache_get(zero_page);
192 
193 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194 	if (ceph_msgr_wq)
195 		return 0;
196 
197 	pr_err("msgr_init failed to create workqueue\n");
198 	_ceph_msgr_exit();
199 
200 	return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203 
204 void ceph_msgr_exit(void)
205 {
206 	BUG_ON(ceph_msgr_wq == NULL);
207 
208 	_ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211 
212 void ceph_msgr_flush(void)
213 {
214 	flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217 
218 /* Connection socket state transition functions */
219 
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222 	int old_state;
223 
224 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226 		printk("%s: unexpected old state %d\n", __func__, old_state);
227 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228 	     CON_SOCK_STATE_CLOSED);
229 }
230 
231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233 	int old_state;
234 
235 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237 		printk("%s: unexpected old state %d\n", __func__, old_state);
238 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239 	     CON_SOCK_STATE_CONNECTING);
240 }
241 
242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244 	int old_state;
245 
246 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248 		printk("%s: unexpected old state %d\n", __func__, old_state);
249 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250 	     CON_SOCK_STATE_CONNECTED);
251 }
252 
253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255 	int old_state;
256 
257 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259 			old_state != CON_SOCK_STATE_CONNECTED &&
260 			old_state != CON_SOCK_STATE_CLOSING))
261 		printk("%s: unexpected old state %d\n", __func__, old_state);
262 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263 	     CON_SOCK_STATE_CLOSING);
264 }
265 
266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268 	int old_state;
269 
270 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272 		    old_state != CON_SOCK_STATE_CLOSING &&
273 		    old_state != CON_SOCK_STATE_CONNECTING &&
274 		    old_state != CON_SOCK_STATE_CLOSED))
275 		printk("%s: unexpected old state %d\n", __func__, old_state);
276 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277 	     CON_SOCK_STATE_CLOSED);
278 }
279 
280 /*
281  * socket callback functions
282  */
283 
284 /* data available on socket, or listen socket received a connect */
285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287 	struct ceph_connection *con = sk->sk_user_data;
288 	if (atomic_read(&con->msgr->stopping)) {
289 		return;
290 	}
291 
292 	if (sk->sk_state != TCP_CLOSE_WAIT) {
293 		dout("%s on %p state = %lu, queueing work\n", __func__,
294 		     con, con->state);
295 		queue_con(con);
296 	}
297 }
298 
299 /* socket has buffer space for writing */
300 static void ceph_sock_write_space(struct sock *sk)
301 {
302 	struct ceph_connection *con = sk->sk_user_data;
303 
304 	/* only queue to workqueue if there is data we want to write,
305 	 * and there is sufficient space in the socket buffer to accept
306 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
307 	 * doesn't get called again until try_write() fills the socket
308 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309 	 * and net/core/stream.c:sk_stream_write_space().
310 	 */
311 	if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312 		if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313 			dout("%s %p queueing write work\n", __func__, con);
314 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315 			queue_con(con);
316 		}
317 	} else {
318 		dout("%s %p nothing to write\n", __func__, con);
319 	}
320 }
321 
322 /* socket's state has changed */
323 static void ceph_sock_state_change(struct sock *sk)
324 {
325 	struct ceph_connection *con = sk->sk_user_data;
326 
327 	dout("%s %p state = %lu sk_state = %u\n", __func__,
328 	     con, con->state, sk->sk_state);
329 
330 	switch (sk->sk_state) {
331 	case TCP_CLOSE:
332 		dout("%s TCP_CLOSE\n", __func__);
333 	case TCP_CLOSE_WAIT:
334 		dout("%s TCP_CLOSE_WAIT\n", __func__);
335 		con_sock_state_closing(con);
336 		set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337 		queue_con(con);
338 		break;
339 	case TCP_ESTABLISHED:
340 		dout("%s TCP_ESTABLISHED\n", __func__);
341 		con_sock_state_connected(con);
342 		queue_con(con);
343 		break;
344 	default:	/* Everything else is uninteresting */
345 		break;
346 	}
347 }
348 
349 /*
350  * set up socket callbacks
351  */
352 static void set_sock_callbacks(struct socket *sock,
353 			       struct ceph_connection *con)
354 {
355 	struct sock *sk = sock->sk;
356 	sk->sk_user_data = con;
357 	sk->sk_data_ready = ceph_sock_data_ready;
358 	sk->sk_write_space = ceph_sock_write_space;
359 	sk->sk_state_change = ceph_sock_state_change;
360 }
361 
362 
363 /*
364  * socket helpers
365  */
366 
367 /*
368  * initiate connection to a remote socket.
369  */
370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373 	struct socket *sock;
374 	int ret;
375 
376 	BUG_ON(con->sock);
377 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378 			       IPPROTO_TCP, &sock);
379 	if (ret)
380 		return ret;
381 	sock->sk->sk_allocation = GFP_NOFS;
382 
383 #ifdef CONFIG_LOCKDEP
384 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386 
387 	set_sock_callbacks(sock, con);
388 
389 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390 
391 	con_sock_state_connecting(con);
392 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393 				 O_NONBLOCK);
394 	if (ret == -EINPROGRESS) {
395 		dout("connect %s EINPROGRESS sk_state = %u\n",
396 		     ceph_pr_addr(&con->peer_addr.in_addr),
397 		     sock->sk->sk_state);
398 	} else if (ret < 0) {
399 		pr_err("connect %s error %d\n",
400 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
401 		sock_release(sock);
402 		con->error_msg = "connect error";
403 
404 		return ret;
405 	}
406 	con->sock = sock;
407 	return 0;
408 }
409 
410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412 	struct kvec iov = {buf, len};
413 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414 	int r;
415 
416 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417 	if (r == -EAGAIN)
418 		r = 0;
419 	return r;
420 }
421 
422 /*
423  * write something.  @more is true if caller will be sending more data
424  * shortly.
425  */
426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427 		     size_t kvlen, size_t len, int more)
428 {
429 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430 	int r;
431 
432 	if (more)
433 		msg.msg_flags |= MSG_MORE;
434 	else
435 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
436 
437 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438 	if (r == -EAGAIN)
439 		r = 0;
440 	return r;
441 }
442 
443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444 		     int offset, size_t size, int more)
445 {
446 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447 	int ret;
448 
449 	ret = kernel_sendpage(sock, page, offset, size, flags);
450 	if (ret == -EAGAIN)
451 		ret = 0;
452 
453 	return ret;
454 }
455 
456 
457 /*
458  * Shutdown/close the socket for the given connection.
459  */
460 static int con_close_socket(struct ceph_connection *con)
461 {
462 	int rc = 0;
463 
464 	dout("con_close_socket on %p sock %p\n", con, con->sock);
465 	if (con->sock) {
466 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467 		sock_release(con->sock);
468 		con->sock = NULL;
469 	}
470 
471 	/*
472 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
473 	 * independent of the connection mutex, and we could have
474 	 * received a socket close event before we had the chance to
475 	 * shut the socket down.
476 	 */
477 	clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
478 
479 	con_sock_state_closed(con);
480 	return rc;
481 }
482 
483 /*
484  * Reset a connection.  Discard all incoming and outgoing messages
485  * and clear *_seq state.
486  */
487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489 	list_del_init(&msg->list_head);
490 	BUG_ON(msg->con == NULL);
491 	msg->con->ops->put(msg->con);
492 	msg->con = NULL;
493 
494 	ceph_msg_put(msg);
495 }
496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498 	while (!list_empty(head)) {
499 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500 							list_head);
501 		ceph_msg_remove(msg);
502 	}
503 }
504 
505 static void reset_connection(struct ceph_connection *con)
506 {
507 	/* reset connection, out_queue, msg_ and connect_seq */
508 	/* discard existing out_queue and msg_seq */
509 	ceph_msg_remove_list(&con->out_queue);
510 	ceph_msg_remove_list(&con->out_sent);
511 
512 	if (con->in_msg) {
513 		BUG_ON(con->in_msg->con != con);
514 		con->in_msg->con = NULL;
515 		ceph_msg_put(con->in_msg);
516 		con->in_msg = NULL;
517 		con->ops->put(con);
518 	}
519 
520 	con->connect_seq = 0;
521 	con->out_seq = 0;
522 	if (con->out_msg) {
523 		ceph_msg_put(con->out_msg);
524 		con->out_msg = NULL;
525 	}
526 	con->in_seq = 0;
527 	con->in_seq_acked = 0;
528 }
529 
530 /*
531  * mark a peer down.  drop any open connections.
532  */
533 void ceph_con_close(struct ceph_connection *con)
534 {
535 	mutex_lock(&con->mutex);
536 	dout("con_close %p peer %s\n", con,
537 	     ceph_pr_addr(&con->peer_addr.in_addr));
538 	con->state = CON_STATE_CLOSED;
539 
540 	clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
541 	clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
542 	clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
543 	clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
544 	clear_bit(CON_FLAG_BACKOFF, &con->flags);
545 
546 	reset_connection(con);
547 	con->peer_global_seq = 0;
548 	cancel_delayed_work(&con->work);
549 	con_close_socket(con);
550 	mutex_unlock(&con->mutex);
551 }
552 EXPORT_SYMBOL(ceph_con_close);
553 
554 /*
555  * Reopen a closed connection, with a new peer address.
556  */
557 void ceph_con_open(struct ceph_connection *con,
558 		   __u8 entity_type, __u64 entity_num,
559 		   struct ceph_entity_addr *addr)
560 {
561 	mutex_lock(&con->mutex);
562 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
563 
564 	BUG_ON(con->state != CON_STATE_CLOSED);
565 	con->state = CON_STATE_PREOPEN;
566 
567 	con->peer_name.type = (__u8) entity_type;
568 	con->peer_name.num = cpu_to_le64(entity_num);
569 
570 	memcpy(&con->peer_addr, addr, sizeof(*addr));
571 	con->delay = 0;      /* reset backoff memory */
572 	mutex_unlock(&con->mutex);
573 	queue_con(con);
574 }
575 EXPORT_SYMBOL(ceph_con_open);
576 
577 /*
578  * return true if this connection ever successfully opened
579  */
580 bool ceph_con_opened(struct ceph_connection *con)
581 {
582 	return con->connect_seq > 0;
583 }
584 
585 /*
586  * initialize a new connection.
587  */
588 void ceph_con_init(struct ceph_connection *con, void *private,
589 	const struct ceph_connection_operations *ops,
590 	struct ceph_messenger *msgr)
591 {
592 	dout("con_init %p\n", con);
593 	memset(con, 0, sizeof(*con));
594 	con->private = private;
595 	con->ops = ops;
596 	con->msgr = msgr;
597 
598 	con_sock_state_init(con);
599 
600 	mutex_init(&con->mutex);
601 	INIT_LIST_HEAD(&con->out_queue);
602 	INIT_LIST_HEAD(&con->out_sent);
603 	INIT_DELAYED_WORK(&con->work, con_work);
604 
605 	con->state = CON_STATE_CLOSED;
606 }
607 EXPORT_SYMBOL(ceph_con_init);
608 
609 
610 /*
611  * We maintain a global counter to order connection attempts.  Get
612  * a unique seq greater than @gt.
613  */
614 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
615 {
616 	u32 ret;
617 
618 	spin_lock(&msgr->global_seq_lock);
619 	if (msgr->global_seq < gt)
620 		msgr->global_seq = gt;
621 	ret = ++msgr->global_seq;
622 	spin_unlock(&msgr->global_seq_lock);
623 	return ret;
624 }
625 
626 static void con_out_kvec_reset(struct ceph_connection *con)
627 {
628 	con->out_kvec_left = 0;
629 	con->out_kvec_bytes = 0;
630 	con->out_kvec_cur = &con->out_kvec[0];
631 }
632 
633 static void con_out_kvec_add(struct ceph_connection *con,
634 				size_t size, void *data)
635 {
636 	int index;
637 
638 	index = con->out_kvec_left;
639 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
640 
641 	con->out_kvec[index].iov_len = size;
642 	con->out_kvec[index].iov_base = data;
643 	con->out_kvec_left++;
644 	con->out_kvec_bytes += size;
645 }
646 
647 #ifdef CONFIG_BLOCK
648 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
649 {
650 	if (!bio) {
651 		*iter = NULL;
652 		*seg = 0;
653 		return;
654 	}
655 	*iter = bio;
656 	*seg = bio->bi_idx;
657 }
658 
659 static void iter_bio_next(struct bio **bio_iter, int *seg)
660 {
661 	if (*bio_iter == NULL)
662 		return;
663 
664 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
665 
666 	(*seg)++;
667 	if (*seg == (*bio_iter)->bi_vcnt)
668 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
669 }
670 #endif
671 
672 static void prepare_write_message_data(struct ceph_connection *con)
673 {
674 	struct ceph_msg *msg = con->out_msg;
675 
676 	BUG_ON(!msg);
677 	BUG_ON(!msg->hdr.data_len);
678 
679 	/* initialize page iterator */
680 	con->out_msg_pos.page = 0;
681 	if (msg->pages)
682 		con->out_msg_pos.page_pos = msg->page_alignment;
683 	else
684 		con->out_msg_pos.page_pos = 0;
685 #ifdef CONFIG_BLOCK
686 	if (msg->bio)
687 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
688 #endif
689 	con->out_msg_pos.data_pos = 0;
690 	con->out_msg_pos.did_page_crc = false;
691 	con->out_more = 1;  /* data + footer will follow */
692 }
693 
694 /*
695  * Prepare footer for currently outgoing message, and finish things
696  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
697  */
698 static void prepare_write_message_footer(struct ceph_connection *con)
699 {
700 	struct ceph_msg *m = con->out_msg;
701 	int v = con->out_kvec_left;
702 
703 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
704 
705 	dout("prepare_write_message_footer %p\n", con);
706 	con->out_kvec_is_msg = true;
707 	con->out_kvec[v].iov_base = &m->footer;
708 	con->out_kvec[v].iov_len = sizeof(m->footer);
709 	con->out_kvec_bytes += sizeof(m->footer);
710 	con->out_kvec_left++;
711 	con->out_more = m->more_to_follow;
712 	con->out_msg_done = true;
713 }
714 
715 /*
716  * Prepare headers for the next outgoing message.
717  */
718 static void prepare_write_message(struct ceph_connection *con)
719 {
720 	struct ceph_msg *m;
721 	u32 crc;
722 
723 	con_out_kvec_reset(con);
724 	con->out_kvec_is_msg = true;
725 	con->out_msg_done = false;
726 
727 	/* Sneak an ack in there first?  If we can get it into the same
728 	 * TCP packet that's a good thing. */
729 	if (con->in_seq > con->in_seq_acked) {
730 		con->in_seq_acked = con->in_seq;
731 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
733 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
734 			&con->out_temp_ack);
735 	}
736 
737 	BUG_ON(list_empty(&con->out_queue));
738 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
739 	con->out_msg = m;
740 	BUG_ON(m->con != con);
741 
742 	/* put message on sent list */
743 	ceph_msg_get(m);
744 	list_move_tail(&m->list_head, &con->out_sent);
745 
746 	/*
747 	 * only assign outgoing seq # if we haven't sent this message
748 	 * yet.  if it is requeued, resend with it's original seq.
749 	 */
750 	if (m->needs_out_seq) {
751 		m->hdr.seq = cpu_to_le64(++con->out_seq);
752 		m->needs_out_seq = false;
753 	}
754 #ifdef CONFIG_BLOCK
755 	else
756 		m->bio_iter = NULL;
757 #endif
758 
759 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
760 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
761 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
762 	     le32_to_cpu(m->hdr.data_len),
763 	     m->nr_pages);
764 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
765 
766 	/* tag + hdr + front + middle */
767 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
768 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
769 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
770 
771 	if (m->middle)
772 		con_out_kvec_add(con, m->middle->vec.iov_len,
773 			m->middle->vec.iov_base);
774 
775 	/* fill in crc (except data pages), footer */
776 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
777 	con->out_msg->hdr.crc = cpu_to_le32(crc);
778 	con->out_msg->footer.flags = 0;
779 
780 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
781 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
782 	if (m->middle) {
783 		crc = crc32c(0, m->middle->vec.iov_base,
784 				m->middle->vec.iov_len);
785 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
786 	} else
787 		con->out_msg->footer.middle_crc = 0;
788 	dout("%s front_crc %u middle_crc %u\n", __func__,
789 	     le32_to_cpu(con->out_msg->footer.front_crc),
790 	     le32_to_cpu(con->out_msg->footer.middle_crc));
791 
792 	/* is there a data payload? */
793 	con->out_msg->footer.data_crc = 0;
794 	if (m->hdr.data_len)
795 		prepare_write_message_data(con);
796 	else
797 		/* no, queue up footer too and be done */
798 		prepare_write_message_footer(con);
799 
800 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
801 }
802 
803 /*
804  * Prepare an ack.
805  */
806 static void prepare_write_ack(struct ceph_connection *con)
807 {
808 	dout("prepare_write_ack %p %llu -> %llu\n", con,
809 	     con->in_seq_acked, con->in_seq);
810 	con->in_seq_acked = con->in_seq;
811 
812 	con_out_kvec_reset(con);
813 
814 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
815 
816 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
817 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
818 				&con->out_temp_ack);
819 
820 	con->out_more = 1;  /* more will follow.. eventually.. */
821 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
822 }
823 
824 /*
825  * Prepare to write keepalive byte.
826  */
827 static void prepare_write_keepalive(struct ceph_connection *con)
828 {
829 	dout("prepare_write_keepalive %p\n", con);
830 	con_out_kvec_reset(con);
831 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
832 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
833 }
834 
835 /*
836  * Connection negotiation.
837  */
838 
839 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
840 						int *auth_proto)
841 {
842 	struct ceph_auth_handshake *auth;
843 
844 	if (!con->ops->get_authorizer) {
845 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
846 		con->out_connect.authorizer_len = 0;
847 		return NULL;
848 	}
849 
850 	/* Can't hold the mutex while getting authorizer */
851 	mutex_unlock(&con->mutex);
852 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
853 	mutex_lock(&con->mutex);
854 
855 	if (IS_ERR(auth))
856 		return auth;
857 	if (con->state != CON_STATE_NEGOTIATING)
858 		return ERR_PTR(-EAGAIN);
859 
860 	con->auth_reply_buf = auth->authorizer_reply_buf;
861 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
862 	return auth;
863 }
864 
865 /*
866  * We connected to a peer and are saying hello.
867  */
868 static void prepare_write_banner(struct ceph_connection *con)
869 {
870 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
871 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
872 					&con->msgr->my_enc_addr);
873 
874 	con->out_more = 0;
875 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
876 }
877 
878 static int prepare_write_connect(struct ceph_connection *con)
879 {
880 	unsigned int global_seq = get_global_seq(con->msgr, 0);
881 	int proto;
882 	int auth_proto;
883 	struct ceph_auth_handshake *auth;
884 
885 	switch (con->peer_name.type) {
886 	case CEPH_ENTITY_TYPE_MON:
887 		proto = CEPH_MONC_PROTOCOL;
888 		break;
889 	case CEPH_ENTITY_TYPE_OSD:
890 		proto = CEPH_OSDC_PROTOCOL;
891 		break;
892 	case CEPH_ENTITY_TYPE_MDS:
893 		proto = CEPH_MDSC_PROTOCOL;
894 		break;
895 	default:
896 		BUG();
897 	}
898 
899 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
900 	     con->connect_seq, global_seq, proto);
901 
902 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
903 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
904 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
905 	con->out_connect.global_seq = cpu_to_le32(global_seq);
906 	con->out_connect.protocol_version = cpu_to_le32(proto);
907 	con->out_connect.flags = 0;
908 
909 	auth_proto = CEPH_AUTH_UNKNOWN;
910 	auth = get_connect_authorizer(con, &auth_proto);
911 	if (IS_ERR(auth))
912 		return PTR_ERR(auth);
913 
914 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
915 	con->out_connect.authorizer_len = auth ?
916 		cpu_to_le32(auth->authorizer_buf_len) : 0;
917 
918 	con_out_kvec_add(con, sizeof (con->out_connect),
919 					&con->out_connect);
920 	if (auth && auth->authorizer_buf_len)
921 		con_out_kvec_add(con, auth->authorizer_buf_len,
922 					auth->authorizer_buf);
923 
924 	con->out_more = 0;
925 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
926 
927 	return 0;
928 }
929 
930 /*
931  * write as much of pending kvecs to the socket as we can.
932  *  1 -> done
933  *  0 -> socket full, but more to do
934  * <0 -> error
935  */
936 static int write_partial_kvec(struct ceph_connection *con)
937 {
938 	int ret;
939 
940 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
941 	while (con->out_kvec_bytes > 0) {
942 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
943 				       con->out_kvec_left, con->out_kvec_bytes,
944 				       con->out_more);
945 		if (ret <= 0)
946 			goto out;
947 		con->out_kvec_bytes -= ret;
948 		if (con->out_kvec_bytes == 0)
949 			break;            /* done */
950 
951 		/* account for full iov entries consumed */
952 		while (ret >= con->out_kvec_cur->iov_len) {
953 			BUG_ON(!con->out_kvec_left);
954 			ret -= con->out_kvec_cur->iov_len;
955 			con->out_kvec_cur++;
956 			con->out_kvec_left--;
957 		}
958 		/* and for a partially-consumed entry */
959 		if (ret) {
960 			con->out_kvec_cur->iov_len -= ret;
961 			con->out_kvec_cur->iov_base += ret;
962 		}
963 	}
964 	con->out_kvec_left = 0;
965 	con->out_kvec_is_msg = false;
966 	ret = 1;
967 out:
968 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
969 	     con->out_kvec_bytes, con->out_kvec_left, ret);
970 	return ret;  /* done! */
971 }
972 
973 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
974 			size_t len, size_t sent, bool in_trail)
975 {
976 	struct ceph_msg *msg = con->out_msg;
977 
978 	BUG_ON(!msg);
979 	BUG_ON(!sent);
980 
981 	con->out_msg_pos.data_pos += sent;
982 	con->out_msg_pos.page_pos += sent;
983 	if (sent < len)
984 		return;
985 
986 	BUG_ON(sent != len);
987 	con->out_msg_pos.page_pos = 0;
988 	con->out_msg_pos.page++;
989 	con->out_msg_pos.did_page_crc = false;
990 	if (in_trail)
991 		list_move_tail(&page->lru,
992 			       &msg->trail->head);
993 	else if (msg->pagelist)
994 		list_move_tail(&page->lru,
995 			       &msg->pagelist->head);
996 #ifdef CONFIG_BLOCK
997 	else if (msg->bio)
998 		iter_bio_next(&msg->bio_iter, &msg->bio_seg);
999 #endif
1000 }
1001 
1002 /*
1003  * Write as much message data payload as we can.  If we finish, queue
1004  * up the footer.
1005  *  1 -> done, footer is now queued in out_kvec[].
1006  *  0 -> socket full, but more to do
1007  * <0 -> error
1008  */
1009 static int write_partial_msg_pages(struct ceph_connection *con)
1010 {
1011 	struct ceph_msg *msg = con->out_msg;
1012 	unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1013 	size_t len;
1014 	bool do_datacrc = !con->msgr->nocrc;
1015 	int ret;
1016 	int total_max_write;
1017 	bool in_trail = false;
1018 	const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1019 	const size_t trail_off = data_len - trail_len;
1020 
1021 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1022 	     con, msg, con->out_msg_pos.page, msg->nr_pages,
1023 	     con->out_msg_pos.page_pos);
1024 
1025 	/*
1026 	 * Iterate through each page that contains data to be
1027 	 * written, and send as much as possible for each.
1028 	 *
1029 	 * If we are calculating the data crc (the default), we will
1030 	 * need to map the page.  If we have no pages, they have
1031 	 * been revoked, so use the zero page.
1032 	 */
1033 	while (data_len > con->out_msg_pos.data_pos) {
1034 		struct page *page = NULL;
1035 		int max_write = PAGE_SIZE;
1036 		int bio_offset = 0;
1037 
1038 		in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1039 		if (!in_trail)
1040 			total_max_write = trail_off - con->out_msg_pos.data_pos;
1041 
1042 		if (in_trail) {
1043 			total_max_write = data_len - con->out_msg_pos.data_pos;
1044 
1045 			page = list_first_entry(&msg->trail->head,
1046 						struct page, lru);
1047 		} else if (msg->pages) {
1048 			page = msg->pages[con->out_msg_pos.page];
1049 		} else if (msg->pagelist) {
1050 			page = list_first_entry(&msg->pagelist->head,
1051 						struct page, lru);
1052 #ifdef CONFIG_BLOCK
1053 		} else if (msg->bio) {
1054 			struct bio_vec *bv;
1055 
1056 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1057 			page = bv->bv_page;
1058 			bio_offset = bv->bv_offset;
1059 			max_write = bv->bv_len;
1060 #endif
1061 		} else {
1062 			page = zero_page;
1063 		}
1064 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
1065 			    total_max_write);
1066 
1067 		if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1068 			void *base;
1069 			u32 crc = le32_to_cpu(msg->footer.data_crc);
1070 			char *kaddr;
1071 
1072 			kaddr = kmap(page);
1073 			BUG_ON(kaddr == NULL);
1074 			base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1075 			crc = crc32c(crc, base, len);
1076 			msg->footer.data_crc = cpu_to_le32(crc);
1077 			con->out_msg_pos.did_page_crc = true;
1078 		}
1079 		ret = ceph_tcp_sendpage(con->sock, page,
1080 				      con->out_msg_pos.page_pos + bio_offset,
1081 				      len, 1);
1082 
1083 		if (do_datacrc)
1084 			kunmap(page);
1085 
1086 		if (ret <= 0)
1087 			goto out;
1088 
1089 		out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1090 	}
1091 
1092 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1093 
1094 	/* prepare and queue up footer, too */
1095 	if (!do_datacrc)
1096 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1097 	con_out_kvec_reset(con);
1098 	prepare_write_message_footer(con);
1099 	ret = 1;
1100 out:
1101 	return ret;
1102 }
1103 
1104 /*
1105  * write some zeros
1106  */
1107 static int write_partial_skip(struct ceph_connection *con)
1108 {
1109 	int ret;
1110 
1111 	while (con->out_skip > 0) {
1112 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1113 
1114 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1115 		if (ret <= 0)
1116 			goto out;
1117 		con->out_skip -= ret;
1118 	}
1119 	ret = 1;
1120 out:
1121 	return ret;
1122 }
1123 
1124 /*
1125  * Prepare to read connection handshake, or an ack.
1126  */
1127 static void prepare_read_banner(struct ceph_connection *con)
1128 {
1129 	dout("prepare_read_banner %p\n", con);
1130 	con->in_base_pos = 0;
1131 }
1132 
1133 static void prepare_read_connect(struct ceph_connection *con)
1134 {
1135 	dout("prepare_read_connect %p\n", con);
1136 	con->in_base_pos = 0;
1137 }
1138 
1139 static void prepare_read_ack(struct ceph_connection *con)
1140 {
1141 	dout("prepare_read_ack %p\n", con);
1142 	con->in_base_pos = 0;
1143 }
1144 
1145 static void prepare_read_tag(struct ceph_connection *con)
1146 {
1147 	dout("prepare_read_tag %p\n", con);
1148 	con->in_base_pos = 0;
1149 	con->in_tag = CEPH_MSGR_TAG_READY;
1150 }
1151 
1152 /*
1153  * Prepare to read a message.
1154  */
1155 static int prepare_read_message(struct ceph_connection *con)
1156 {
1157 	dout("prepare_read_message %p\n", con);
1158 	BUG_ON(con->in_msg != NULL);
1159 	con->in_base_pos = 0;
1160 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1161 	return 0;
1162 }
1163 
1164 
1165 static int read_partial(struct ceph_connection *con,
1166 			int end, int size, void *object)
1167 {
1168 	while (con->in_base_pos < end) {
1169 		int left = end - con->in_base_pos;
1170 		int have = size - left;
1171 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1172 		if (ret <= 0)
1173 			return ret;
1174 		con->in_base_pos += ret;
1175 	}
1176 	return 1;
1177 }
1178 
1179 
1180 /*
1181  * Read all or part of the connect-side handshake on a new connection
1182  */
1183 static int read_partial_banner(struct ceph_connection *con)
1184 {
1185 	int size;
1186 	int end;
1187 	int ret;
1188 
1189 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1190 
1191 	/* peer's banner */
1192 	size = strlen(CEPH_BANNER);
1193 	end = size;
1194 	ret = read_partial(con, end, size, con->in_banner);
1195 	if (ret <= 0)
1196 		goto out;
1197 
1198 	size = sizeof (con->actual_peer_addr);
1199 	end += size;
1200 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1201 	if (ret <= 0)
1202 		goto out;
1203 
1204 	size = sizeof (con->peer_addr_for_me);
1205 	end += size;
1206 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1207 	if (ret <= 0)
1208 		goto out;
1209 
1210 out:
1211 	return ret;
1212 }
1213 
1214 static int read_partial_connect(struct ceph_connection *con)
1215 {
1216 	int size;
1217 	int end;
1218 	int ret;
1219 
1220 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1221 
1222 	size = sizeof (con->in_reply);
1223 	end = size;
1224 	ret = read_partial(con, end, size, &con->in_reply);
1225 	if (ret <= 0)
1226 		goto out;
1227 
1228 	size = le32_to_cpu(con->in_reply.authorizer_len);
1229 	end += size;
1230 	ret = read_partial(con, end, size, con->auth_reply_buf);
1231 	if (ret <= 0)
1232 		goto out;
1233 
1234 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1235 	     con, (int)con->in_reply.tag,
1236 	     le32_to_cpu(con->in_reply.connect_seq),
1237 	     le32_to_cpu(con->in_reply.global_seq));
1238 out:
1239 	return ret;
1240 
1241 }
1242 
1243 /*
1244  * Verify the hello banner looks okay.
1245  */
1246 static int verify_hello(struct ceph_connection *con)
1247 {
1248 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1249 		pr_err("connect to %s got bad banner\n",
1250 		       ceph_pr_addr(&con->peer_addr.in_addr));
1251 		con->error_msg = "protocol error, bad banner";
1252 		return -1;
1253 	}
1254 	return 0;
1255 }
1256 
1257 static bool addr_is_blank(struct sockaddr_storage *ss)
1258 {
1259 	switch (ss->ss_family) {
1260 	case AF_INET:
1261 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1262 	case AF_INET6:
1263 		return
1264 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1265 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1266 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1267 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1268 	}
1269 	return false;
1270 }
1271 
1272 static int addr_port(struct sockaddr_storage *ss)
1273 {
1274 	switch (ss->ss_family) {
1275 	case AF_INET:
1276 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1277 	case AF_INET6:
1278 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1279 	}
1280 	return 0;
1281 }
1282 
1283 static void addr_set_port(struct sockaddr_storage *ss, int p)
1284 {
1285 	switch (ss->ss_family) {
1286 	case AF_INET:
1287 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1288 		break;
1289 	case AF_INET6:
1290 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1291 		break;
1292 	}
1293 }
1294 
1295 /*
1296  * Unlike other *_pton function semantics, zero indicates success.
1297  */
1298 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1299 		char delim, const char **ipend)
1300 {
1301 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1302 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1303 
1304 	memset(ss, 0, sizeof(*ss));
1305 
1306 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1307 		ss->ss_family = AF_INET;
1308 		return 0;
1309 	}
1310 
1311 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1312 		ss->ss_family = AF_INET6;
1313 		return 0;
1314 	}
1315 
1316 	return -EINVAL;
1317 }
1318 
1319 /*
1320  * Extract hostname string and resolve using kernel DNS facility.
1321  */
1322 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1323 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1324 		struct sockaddr_storage *ss, char delim, const char **ipend)
1325 {
1326 	const char *end, *delim_p;
1327 	char *colon_p, *ip_addr = NULL;
1328 	int ip_len, ret;
1329 
1330 	/*
1331 	 * The end of the hostname occurs immediately preceding the delimiter or
1332 	 * the port marker (':') where the delimiter takes precedence.
1333 	 */
1334 	delim_p = memchr(name, delim, namelen);
1335 	colon_p = memchr(name, ':', namelen);
1336 
1337 	if (delim_p && colon_p)
1338 		end = delim_p < colon_p ? delim_p : colon_p;
1339 	else if (!delim_p && colon_p)
1340 		end = colon_p;
1341 	else {
1342 		end = delim_p;
1343 		if (!end) /* case: hostname:/ */
1344 			end = name + namelen;
1345 	}
1346 
1347 	if (end <= name)
1348 		return -EINVAL;
1349 
1350 	/* do dns_resolve upcall */
1351 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1352 	if (ip_len > 0)
1353 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1354 	else
1355 		ret = -ESRCH;
1356 
1357 	kfree(ip_addr);
1358 
1359 	*ipend = end;
1360 
1361 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1362 			ret, ret ? "failed" : ceph_pr_addr(ss));
1363 
1364 	return ret;
1365 }
1366 #else
1367 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1368 		struct sockaddr_storage *ss, char delim, const char **ipend)
1369 {
1370 	return -EINVAL;
1371 }
1372 #endif
1373 
1374 /*
1375  * Parse a server name (IP or hostname). If a valid IP address is not found
1376  * then try to extract a hostname to resolve using userspace DNS upcall.
1377  */
1378 static int ceph_parse_server_name(const char *name, size_t namelen,
1379 			struct sockaddr_storage *ss, char delim, const char **ipend)
1380 {
1381 	int ret;
1382 
1383 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1384 	if (ret)
1385 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1386 
1387 	return ret;
1388 }
1389 
1390 /*
1391  * Parse an ip[:port] list into an addr array.  Use the default
1392  * monitor port if a port isn't specified.
1393  */
1394 int ceph_parse_ips(const char *c, const char *end,
1395 		   struct ceph_entity_addr *addr,
1396 		   int max_count, int *count)
1397 {
1398 	int i, ret = -EINVAL;
1399 	const char *p = c;
1400 
1401 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1402 	for (i = 0; i < max_count; i++) {
1403 		const char *ipend;
1404 		struct sockaddr_storage *ss = &addr[i].in_addr;
1405 		int port;
1406 		char delim = ',';
1407 
1408 		if (*p == '[') {
1409 			delim = ']';
1410 			p++;
1411 		}
1412 
1413 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1414 		if (ret)
1415 			goto bad;
1416 		ret = -EINVAL;
1417 
1418 		p = ipend;
1419 
1420 		if (delim == ']') {
1421 			if (*p != ']') {
1422 				dout("missing matching ']'\n");
1423 				goto bad;
1424 			}
1425 			p++;
1426 		}
1427 
1428 		/* port? */
1429 		if (p < end && *p == ':') {
1430 			port = 0;
1431 			p++;
1432 			while (p < end && *p >= '0' && *p <= '9') {
1433 				port = (port * 10) + (*p - '0');
1434 				p++;
1435 			}
1436 			if (port > 65535 || port == 0)
1437 				goto bad;
1438 		} else {
1439 			port = CEPH_MON_PORT;
1440 		}
1441 
1442 		addr_set_port(ss, port);
1443 
1444 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1445 
1446 		if (p == end)
1447 			break;
1448 		if (*p != ',')
1449 			goto bad;
1450 		p++;
1451 	}
1452 
1453 	if (p != end)
1454 		goto bad;
1455 
1456 	if (count)
1457 		*count = i + 1;
1458 	return 0;
1459 
1460 bad:
1461 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1462 	return ret;
1463 }
1464 EXPORT_SYMBOL(ceph_parse_ips);
1465 
1466 static int process_banner(struct ceph_connection *con)
1467 {
1468 	dout("process_banner on %p\n", con);
1469 
1470 	if (verify_hello(con) < 0)
1471 		return -1;
1472 
1473 	ceph_decode_addr(&con->actual_peer_addr);
1474 	ceph_decode_addr(&con->peer_addr_for_me);
1475 
1476 	/*
1477 	 * Make sure the other end is who we wanted.  note that the other
1478 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1479 	 * them the benefit of the doubt.
1480 	 */
1481 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1482 		   sizeof(con->peer_addr)) != 0 &&
1483 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1484 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1485 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1486 			   ceph_pr_addr(&con->peer_addr.in_addr),
1487 			   (int)le32_to_cpu(con->peer_addr.nonce),
1488 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1489 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1490 		con->error_msg = "wrong peer at address";
1491 		return -1;
1492 	}
1493 
1494 	/*
1495 	 * did we learn our address?
1496 	 */
1497 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1498 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1499 
1500 		memcpy(&con->msgr->inst.addr.in_addr,
1501 		       &con->peer_addr_for_me.in_addr,
1502 		       sizeof(con->peer_addr_for_me.in_addr));
1503 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1504 		encode_my_addr(con->msgr);
1505 		dout("process_banner learned my addr is %s\n",
1506 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1507 	}
1508 
1509 	return 0;
1510 }
1511 
1512 static void fail_protocol(struct ceph_connection *con)
1513 {
1514 	reset_connection(con);
1515 	BUG_ON(con->state != CON_STATE_NEGOTIATING);
1516 	con->state = CON_STATE_CLOSED;
1517 }
1518 
1519 static int process_connect(struct ceph_connection *con)
1520 {
1521 	u64 sup_feat = con->msgr->supported_features;
1522 	u64 req_feat = con->msgr->required_features;
1523 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1524 	int ret;
1525 
1526 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1527 
1528 	switch (con->in_reply.tag) {
1529 	case CEPH_MSGR_TAG_FEATURES:
1530 		pr_err("%s%lld %s feature set mismatch,"
1531 		       " my %llx < server's %llx, missing %llx\n",
1532 		       ENTITY_NAME(con->peer_name),
1533 		       ceph_pr_addr(&con->peer_addr.in_addr),
1534 		       sup_feat, server_feat, server_feat & ~sup_feat);
1535 		con->error_msg = "missing required protocol features";
1536 		fail_protocol(con);
1537 		return -1;
1538 
1539 	case CEPH_MSGR_TAG_BADPROTOVER:
1540 		pr_err("%s%lld %s protocol version mismatch,"
1541 		       " my %d != server's %d\n",
1542 		       ENTITY_NAME(con->peer_name),
1543 		       ceph_pr_addr(&con->peer_addr.in_addr),
1544 		       le32_to_cpu(con->out_connect.protocol_version),
1545 		       le32_to_cpu(con->in_reply.protocol_version));
1546 		con->error_msg = "protocol version mismatch";
1547 		fail_protocol(con);
1548 		return -1;
1549 
1550 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1551 		con->auth_retry++;
1552 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1553 		     con->auth_retry);
1554 		if (con->auth_retry == 2) {
1555 			con->error_msg = "connect authorization failure";
1556 			return -1;
1557 		}
1558 		con->auth_retry = 1;
1559 		con_out_kvec_reset(con);
1560 		ret = prepare_write_connect(con);
1561 		if (ret < 0)
1562 			return ret;
1563 		prepare_read_connect(con);
1564 		break;
1565 
1566 	case CEPH_MSGR_TAG_RESETSESSION:
1567 		/*
1568 		 * If we connected with a large connect_seq but the peer
1569 		 * has no record of a session with us (no connection, or
1570 		 * connect_seq == 0), they will send RESETSESION to indicate
1571 		 * that they must have reset their session, and may have
1572 		 * dropped messages.
1573 		 */
1574 		dout("process_connect got RESET peer seq %u\n",
1575 		     le32_to_cpu(con->in_reply.connect_seq));
1576 		pr_err("%s%lld %s connection reset\n",
1577 		       ENTITY_NAME(con->peer_name),
1578 		       ceph_pr_addr(&con->peer_addr.in_addr));
1579 		reset_connection(con);
1580 		con_out_kvec_reset(con);
1581 		ret = prepare_write_connect(con);
1582 		if (ret < 0)
1583 			return ret;
1584 		prepare_read_connect(con);
1585 
1586 		/* Tell ceph about it. */
1587 		mutex_unlock(&con->mutex);
1588 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1589 		if (con->ops->peer_reset)
1590 			con->ops->peer_reset(con);
1591 		mutex_lock(&con->mutex);
1592 		if (con->state != CON_STATE_NEGOTIATING)
1593 			return -EAGAIN;
1594 		break;
1595 
1596 	case CEPH_MSGR_TAG_RETRY_SESSION:
1597 		/*
1598 		 * If we sent a smaller connect_seq than the peer has, try
1599 		 * again with a larger value.
1600 		 */
1601 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1602 		     le32_to_cpu(con->out_connect.connect_seq),
1603 		     le32_to_cpu(con->in_reply.connect_seq));
1604 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1605 		con_out_kvec_reset(con);
1606 		ret = prepare_write_connect(con);
1607 		if (ret < 0)
1608 			return ret;
1609 		prepare_read_connect(con);
1610 		break;
1611 
1612 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1613 		/*
1614 		 * If we sent a smaller global_seq than the peer has, try
1615 		 * again with a larger value.
1616 		 */
1617 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1618 		     con->peer_global_seq,
1619 		     le32_to_cpu(con->in_reply.global_seq));
1620 		get_global_seq(con->msgr,
1621 			       le32_to_cpu(con->in_reply.global_seq));
1622 		con_out_kvec_reset(con);
1623 		ret = prepare_write_connect(con);
1624 		if (ret < 0)
1625 			return ret;
1626 		prepare_read_connect(con);
1627 		break;
1628 
1629 	case CEPH_MSGR_TAG_READY:
1630 		if (req_feat & ~server_feat) {
1631 			pr_err("%s%lld %s protocol feature mismatch,"
1632 			       " my required %llx > server's %llx, need %llx\n",
1633 			       ENTITY_NAME(con->peer_name),
1634 			       ceph_pr_addr(&con->peer_addr.in_addr),
1635 			       req_feat, server_feat, req_feat & ~server_feat);
1636 			con->error_msg = "missing required protocol features";
1637 			fail_protocol(con);
1638 			return -1;
1639 		}
1640 
1641 		BUG_ON(con->state != CON_STATE_NEGOTIATING);
1642 		con->state = CON_STATE_OPEN;
1643 
1644 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1645 		con->connect_seq++;
1646 		con->peer_features = server_feat;
1647 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1648 		     con->peer_global_seq,
1649 		     le32_to_cpu(con->in_reply.connect_seq),
1650 		     con->connect_seq);
1651 		WARN_ON(con->connect_seq !=
1652 			le32_to_cpu(con->in_reply.connect_seq));
1653 
1654 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1655 			set_bit(CON_FLAG_LOSSYTX, &con->flags);
1656 
1657 		con->delay = 0;      /* reset backoff memory */
1658 
1659 		prepare_read_tag(con);
1660 		break;
1661 
1662 	case CEPH_MSGR_TAG_WAIT:
1663 		/*
1664 		 * If there is a connection race (we are opening
1665 		 * connections to each other), one of us may just have
1666 		 * to WAIT.  This shouldn't happen if we are the
1667 		 * client.
1668 		 */
1669 		pr_err("process_connect got WAIT as client\n");
1670 		con->error_msg = "protocol error, got WAIT as client";
1671 		return -1;
1672 
1673 	default:
1674 		pr_err("connect protocol error, will retry\n");
1675 		con->error_msg = "protocol error, garbage tag during connect";
1676 		return -1;
1677 	}
1678 	return 0;
1679 }
1680 
1681 
1682 /*
1683  * read (part of) an ack
1684  */
1685 static int read_partial_ack(struct ceph_connection *con)
1686 {
1687 	int size = sizeof (con->in_temp_ack);
1688 	int end = size;
1689 
1690 	return read_partial(con, end, size, &con->in_temp_ack);
1691 }
1692 
1693 
1694 /*
1695  * We can finally discard anything that's been acked.
1696  */
1697 static void process_ack(struct ceph_connection *con)
1698 {
1699 	struct ceph_msg *m;
1700 	u64 ack = le64_to_cpu(con->in_temp_ack);
1701 	u64 seq;
1702 
1703 	while (!list_empty(&con->out_sent)) {
1704 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1705 				     list_head);
1706 		seq = le64_to_cpu(m->hdr.seq);
1707 		if (seq > ack)
1708 			break;
1709 		dout("got ack for seq %llu type %d at %p\n", seq,
1710 		     le16_to_cpu(m->hdr.type), m);
1711 		m->ack_stamp = jiffies;
1712 		ceph_msg_remove(m);
1713 	}
1714 	prepare_read_tag(con);
1715 }
1716 
1717 
1718 
1719 
1720 static int read_partial_message_section(struct ceph_connection *con,
1721 					struct kvec *section,
1722 					unsigned int sec_len, u32 *crc)
1723 {
1724 	int ret, left;
1725 
1726 	BUG_ON(!section);
1727 
1728 	while (section->iov_len < sec_len) {
1729 		BUG_ON(section->iov_base == NULL);
1730 		left = sec_len - section->iov_len;
1731 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1732 				       section->iov_len, left);
1733 		if (ret <= 0)
1734 			return ret;
1735 		section->iov_len += ret;
1736 	}
1737 	if (section->iov_len == sec_len)
1738 		*crc = crc32c(0, section->iov_base, section->iov_len);
1739 
1740 	return 1;
1741 }
1742 
1743 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1744 
1745 static int read_partial_message_pages(struct ceph_connection *con,
1746 				      struct page **pages,
1747 				      unsigned int data_len, bool do_datacrc)
1748 {
1749 	void *p;
1750 	int ret;
1751 	int left;
1752 
1753 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1754 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1755 	/* (page) data */
1756 	BUG_ON(pages == NULL);
1757 	p = kmap(pages[con->in_msg_pos.page]);
1758 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1759 			       left);
1760 	if (ret > 0 && do_datacrc)
1761 		con->in_data_crc =
1762 			crc32c(con->in_data_crc,
1763 				  p + con->in_msg_pos.page_pos, ret);
1764 	kunmap(pages[con->in_msg_pos.page]);
1765 	if (ret <= 0)
1766 		return ret;
1767 	con->in_msg_pos.data_pos += ret;
1768 	con->in_msg_pos.page_pos += ret;
1769 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1770 		con->in_msg_pos.page_pos = 0;
1771 		con->in_msg_pos.page++;
1772 	}
1773 
1774 	return ret;
1775 }
1776 
1777 #ifdef CONFIG_BLOCK
1778 static int read_partial_message_bio(struct ceph_connection *con,
1779 				    struct bio **bio_iter, int *bio_seg,
1780 				    unsigned int data_len, bool do_datacrc)
1781 {
1782 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1783 	void *p;
1784 	int ret, left;
1785 
1786 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1787 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1788 
1789 	p = kmap(bv->bv_page) + bv->bv_offset;
1790 
1791 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1792 			       left);
1793 	if (ret > 0 && do_datacrc)
1794 		con->in_data_crc =
1795 			crc32c(con->in_data_crc,
1796 				  p + con->in_msg_pos.page_pos, ret);
1797 	kunmap(bv->bv_page);
1798 	if (ret <= 0)
1799 		return ret;
1800 	con->in_msg_pos.data_pos += ret;
1801 	con->in_msg_pos.page_pos += ret;
1802 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1803 		con->in_msg_pos.page_pos = 0;
1804 		iter_bio_next(bio_iter, bio_seg);
1805 	}
1806 
1807 	return ret;
1808 }
1809 #endif
1810 
1811 /*
1812  * read (part of) a message.
1813  */
1814 static int read_partial_message(struct ceph_connection *con)
1815 {
1816 	struct ceph_msg *m = con->in_msg;
1817 	int size;
1818 	int end;
1819 	int ret;
1820 	unsigned int front_len, middle_len, data_len;
1821 	bool do_datacrc = !con->msgr->nocrc;
1822 	u64 seq;
1823 	u32 crc;
1824 
1825 	dout("read_partial_message con %p msg %p\n", con, m);
1826 
1827 	/* header */
1828 	size = sizeof (con->in_hdr);
1829 	end = size;
1830 	ret = read_partial(con, end, size, &con->in_hdr);
1831 	if (ret <= 0)
1832 		return ret;
1833 
1834 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1835 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
1836 		pr_err("read_partial_message bad hdr "
1837 		       " crc %u != expected %u\n",
1838 		       crc, con->in_hdr.crc);
1839 		return -EBADMSG;
1840 	}
1841 
1842 	front_len = le32_to_cpu(con->in_hdr.front_len);
1843 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1844 		return -EIO;
1845 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1846 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1847 		return -EIO;
1848 	data_len = le32_to_cpu(con->in_hdr.data_len);
1849 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1850 		return -EIO;
1851 
1852 	/* verify seq# */
1853 	seq = le64_to_cpu(con->in_hdr.seq);
1854 	if ((s64)seq - (s64)con->in_seq < 1) {
1855 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1856 			ENTITY_NAME(con->peer_name),
1857 			ceph_pr_addr(&con->peer_addr.in_addr),
1858 			seq, con->in_seq + 1);
1859 		con->in_base_pos = -front_len - middle_len - data_len -
1860 			sizeof(m->footer);
1861 		con->in_tag = CEPH_MSGR_TAG_READY;
1862 		return 0;
1863 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1864 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1865 		       seq, con->in_seq + 1);
1866 		con->error_msg = "bad message sequence # for incoming message";
1867 		return -EBADMSG;
1868 	}
1869 
1870 	/* allocate message? */
1871 	if (!con->in_msg) {
1872 		int skip = 0;
1873 
1874 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1875 		     con->in_hdr.front_len, con->in_hdr.data_len);
1876 		ret = ceph_con_in_msg_alloc(con, &skip);
1877 		if (ret < 0)
1878 			return ret;
1879 		if (skip) {
1880 			/* skip this message */
1881 			dout("alloc_msg said skip message\n");
1882 			BUG_ON(con->in_msg);
1883 			con->in_base_pos = -front_len - middle_len - data_len -
1884 				sizeof(m->footer);
1885 			con->in_tag = CEPH_MSGR_TAG_READY;
1886 			con->in_seq++;
1887 			return 0;
1888 		}
1889 
1890 		BUG_ON(!con->in_msg);
1891 		BUG_ON(con->in_msg->con != con);
1892 		m = con->in_msg;
1893 		m->front.iov_len = 0;    /* haven't read it yet */
1894 		if (m->middle)
1895 			m->middle->vec.iov_len = 0;
1896 
1897 		con->in_msg_pos.page = 0;
1898 		if (m->pages)
1899 			con->in_msg_pos.page_pos = m->page_alignment;
1900 		else
1901 			con->in_msg_pos.page_pos = 0;
1902 		con->in_msg_pos.data_pos = 0;
1903 
1904 #ifdef CONFIG_BLOCK
1905 		if (m->bio)
1906 			init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1907 #endif
1908 	}
1909 
1910 	/* front */
1911 	ret = read_partial_message_section(con, &m->front, front_len,
1912 					   &con->in_front_crc);
1913 	if (ret <= 0)
1914 		return ret;
1915 
1916 	/* middle */
1917 	if (m->middle) {
1918 		ret = read_partial_message_section(con, &m->middle->vec,
1919 						   middle_len,
1920 						   &con->in_middle_crc);
1921 		if (ret <= 0)
1922 			return ret;
1923 	}
1924 
1925 	/* (page) data */
1926 	while (con->in_msg_pos.data_pos < data_len) {
1927 		if (m->pages) {
1928 			ret = read_partial_message_pages(con, m->pages,
1929 						 data_len, do_datacrc);
1930 			if (ret <= 0)
1931 				return ret;
1932 #ifdef CONFIG_BLOCK
1933 		} else if (m->bio) {
1934 			BUG_ON(!m->bio_iter);
1935 			ret = read_partial_message_bio(con,
1936 						 &m->bio_iter, &m->bio_seg,
1937 						 data_len, do_datacrc);
1938 			if (ret <= 0)
1939 				return ret;
1940 #endif
1941 		} else {
1942 			BUG_ON(1);
1943 		}
1944 	}
1945 
1946 	/* footer */
1947 	size = sizeof (m->footer);
1948 	end += size;
1949 	ret = read_partial(con, end, size, &m->footer);
1950 	if (ret <= 0)
1951 		return ret;
1952 
1953 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1954 	     m, front_len, m->footer.front_crc, middle_len,
1955 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1956 
1957 	/* crc ok? */
1958 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1959 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1960 		       m, con->in_front_crc, m->footer.front_crc);
1961 		return -EBADMSG;
1962 	}
1963 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1964 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1965 		       m, con->in_middle_crc, m->footer.middle_crc);
1966 		return -EBADMSG;
1967 	}
1968 	if (do_datacrc &&
1969 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1970 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1971 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1972 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1973 		return -EBADMSG;
1974 	}
1975 
1976 	return 1; /* done! */
1977 }
1978 
1979 /*
1980  * Process message.  This happens in the worker thread.  The callback should
1981  * be careful not to do anything that waits on other incoming messages or it
1982  * may deadlock.
1983  */
1984 static void process_message(struct ceph_connection *con)
1985 {
1986 	struct ceph_msg *msg;
1987 
1988 	BUG_ON(con->in_msg->con != con);
1989 	con->in_msg->con = NULL;
1990 	msg = con->in_msg;
1991 	con->in_msg = NULL;
1992 	con->ops->put(con);
1993 
1994 	/* if first message, set peer_name */
1995 	if (con->peer_name.type == 0)
1996 		con->peer_name = msg->hdr.src;
1997 
1998 	con->in_seq++;
1999 	mutex_unlock(&con->mutex);
2000 
2001 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2002 	     msg, le64_to_cpu(msg->hdr.seq),
2003 	     ENTITY_NAME(msg->hdr.src),
2004 	     le16_to_cpu(msg->hdr.type),
2005 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2006 	     le32_to_cpu(msg->hdr.front_len),
2007 	     le32_to_cpu(msg->hdr.data_len),
2008 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2009 	con->ops->dispatch(con, msg);
2010 
2011 	mutex_lock(&con->mutex);
2012 }
2013 
2014 
2015 /*
2016  * Write something to the socket.  Called in a worker thread when the
2017  * socket appears to be writeable and we have something ready to send.
2018  */
2019 static int try_write(struct ceph_connection *con)
2020 {
2021 	int ret = 1;
2022 
2023 	dout("try_write start %p state %lu\n", con, con->state);
2024 
2025 more:
2026 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2027 
2028 	/* open the socket first? */
2029 	if (con->state == CON_STATE_PREOPEN) {
2030 		BUG_ON(con->sock);
2031 		con->state = CON_STATE_CONNECTING;
2032 
2033 		con_out_kvec_reset(con);
2034 		prepare_write_banner(con);
2035 		prepare_read_banner(con);
2036 
2037 		BUG_ON(con->in_msg);
2038 		con->in_tag = CEPH_MSGR_TAG_READY;
2039 		dout("try_write initiating connect on %p new state %lu\n",
2040 		     con, con->state);
2041 		ret = ceph_tcp_connect(con);
2042 		if (ret < 0) {
2043 			con->error_msg = "connect error";
2044 			goto out;
2045 		}
2046 	}
2047 
2048 more_kvec:
2049 	/* kvec data queued? */
2050 	if (con->out_skip) {
2051 		ret = write_partial_skip(con);
2052 		if (ret <= 0)
2053 			goto out;
2054 	}
2055 	if (con->out_kvec_left) {
2056 		ret = write_partial_kvec(con);
2057 		if (ret <= 0)
2058 			goto out;
2059 	}
2060 
2061 	/* msg pages? */
2062 	if (con->out_msg) {
2063 		if (con->out_msg_done) {
2064 			ceph_msg_put(con->out_msg);
2065 			con->out_msg = NULL;   /* we're done with this one */
2066 			goto do_next;
2067 		}
2068 
2069 		ret = write_partial_msg_pages(con);
2070 		if (ret == 1)
2071 			goto more_kvec;  /* we need to send the footer, too! */
2072 		if (ret == 0)
2073 			goto out;
2074 		if (ret < 0) {
2075 			dout("try_write write_partial_msg_pages err %d\n",
2076 			     ret);
2077 			goto out;
2078 		}
2079 	}
2080 
2081 do_next:
2082 	if (con->state == CON_STATE_OPEN) {
2083 		/* is anything else pending? */
2084 		if (!list_empty(&con->out_queue)) {
2085 			prepare_write_message(con);
2086 			goto more;
2087 		}
2088 		if (con->in_seq > con->in_seq_acked) {
2089 			prepare_write_ack(con);
2090 			goto more;
2091 		}
2092 		if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2093 				       &con->flags)) {
2094 			prepare_write_keepalive(con);
2095 			goto more;
2096 		}
2097 	}
2098 
2099 	/* Nothing to do! */
2100 	clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2101 	dout("try_write nothing else to write.\n");
2102 	ret = 0;
2103 out:
2104 	dout("try_write done on %p ret %d\n", con, ret);
2105 	return ret;
2106 }
2107 
2108 
2109 
2110 /*
2111  * Read what we can from the socket.
2112  */
2113 static int try_read(struct ceph_connection *con)
2114 {
2115 	int ret = -1;
2116 
2117 more:
2118 	dout("try_read start on %p state %lu\n", con, con->state);
2119 	if (con->state != CON_STATE_CONNECTING &&
2120 	    con->state != CON_STATE_NEGOTIATING &&
2121 	    con->state != CON_STATE_OPEN)
2122 		return 0;
2123 
2124 	BUG_ON(!con->sock);
2125 
2126 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2127 	     con->in_base_pos);
2128 
2129 	if (con->state == CON_STATE_CONNECTING) {
2130 		dout("try_read connecting\n");
2131 		ret = read_partial_banner(con);
2132 		if (ret <= 0)
2133 			goto out;
2134 		ret = process_banner(con);
2135 		if (ret < 0)
2136 			goto out;
2137 
2138 		BUG_ON(con->state != CON_STATE_CONNECTING);
2139 		con->state = CON_STATE_NEGOTIATING;
2140 
2141 		/*
2142 		 * Received banner is good, exchange connection info.
2143 		 * Do not reset out_kvec, as sending our banner raced
2144 		 * with receiving peer banner after connect completed.
2145 		 */
2146 		ret = prepare_write_connect(con);
2147 		if (ret < 0)
2148 			goto out;
2149 		prepare_read_connect(con);
2150 
2151 		/* Send connection info before awaiting response */
2152 		goto out;
2153 	}
2154 
2155 	if (con->state == CON_STATE_NEGOTIATING) {
2156 		dout("try_read negotiating\n");
2157 		ret = read_partial_connect(con);
2158 		if (ret <= 0)
2159 			goto out;
2160 		ret = process_connect(con);
2161 		if (ret < 0)
2162 			goto out;
2163 		goto more;
2164 	}
2165 
2166 	BUG_ON(con->state != CON_STATE_OPEN);
2167 
2168 	if (con->in_base_pos < 0) {
2169 		/*
2170 		 * skipping + discarding content.
2171 		 *
2172 		 * FIXME: there must be a better way to do this!
2173 		 */
2174 		static char buf[SKIP_BUF_SIZE];
2175 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2176 
2177 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2178 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2179 		if (ret <= 0)
2180 			goto out;
2181 		con->in_base_pos += ret;
2182 		if (con->in_base_pos)
2183 			goto more;
2184 	}
2185 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2186 		/*
2187 		 * what's next?
2188 		 */
2189 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2190 		if (ret <= 0)
2191 			goto out;
2192 		dout("try_read got tag %d\n", (int)con->in_tag);
2193 		switch (con->in_tag) {
2194 		case CEPH_MSGR_TAG_MSG:
2195 			prepare_read_message(con);
2196 			break;
2197 		case CEPH_MSGR_TAG_ACK:
2198 			prepare_read_ack(con);
2199 			break;
2200 		case CEPH_MSGR_TAG_CLOSE:
2201 			con_close_socket(con);
2202 			con->state = CON_STATE_CLOSED;
2203 			goto out;
2204 		default:
2205 			goto bad_tag;
2206 		}
2207 	}
2208 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2209 		ret = read_partial_message(con);
2210 		if (ret <= 0) {
2211 			switch (ret) {
2212 			case -EBADMSG:
2213 				con->error_msg = "bad crc";
2214 				ret = -EIO;
2215 				break;
2216 			case -EIO:
2217 				con->error_msg = "io error";
2218 				break;
2219 			}
2220 			goto out;
2221 		}
2222 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2223 			goto more;
2224 		process_message(con);
2225 		if (con->state == CON_STATE_OPEN)
2226 			prepare_read_tag(con);
2227 		goto more;
2228 	}
2229 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2230 		ret = read_partial_ack(con);
2231 		if (ret <= 0)
2232 			goto out;
2233 		process_ack(con);
2234 		goto more;
2235 	}
2236 
2237 out:
2238 	dout("try_read done on %p ret %d\n", con, ret);
2239 	return ret;
2240 
2241 bad_tag:
2242 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2243 	con->error_msg = "protocol error, garbage tag";
2244 	ret = -1;
2245 	goto out;
2246 }
2247 
2248 
2249 /*
2250  * Atomically queue work on a connection.  Bump @con reference to
2251  * avoid races with connection teardown.
2252  */
2253 static void queue_con(struct ceph_connection *con)
2254 {
2255 	if (!con->ops->get(con)) {
2256 		dout("queue_con %p ref count 0\n", con);
2257 		return;
2258 	}
2259 
2260 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2261 		dout("queue_con %p - already queued\n", con);
2262 		con->ops->put(con);
2263 	} else {
2264 		dout("queue_con %p\n", con);
2265 	}
2266 }
2267 
2268 /*
2269  * Do some work on a connection.  Drop a connection ref when we're done.
2270  */
2271 static void con_work(struct work_struct *work)
2272 {
2273 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2274 						   work.work);
2275 	int ret;
2276 
2277 	mutex_lock(&con->mutex);
2278 restart:
2279 	if (test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags)) {
2280 		switch (con->state) {
2281 		case CON_STATE_CONNECTING:
2282 			con->error_msg = "connection failed";
2283 			break;
2284 		case CON_STATE_NEGOTIATING:
2285 			con->error_msg = "negotiation failed";
2286 			break;
2287 		case CON_STATE_OPEN:
2288 			con->error_msg = "socket closed";
2289 			break;
2290 		default:
2291 			dout("unrecognized con state %d\n", (int)con->state);
2292 			con->error_msg = "unrecognized con state";
2293 			BUG();
2294 		}
2295 		goto fault;
2296 	}
2297 
2298 	if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2299 		dout("con_work %p backing off\n", con);
2300 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2301 				       round_jiffies_relative(con->delay))) {
2302 			dout("con_work %p backoff %lu\n", con, con->delay);
2303 			mutex_unlock(&con->mutex);
2304 			return;
2305 		} else {
2306 			con->ops->put(con);
2307 			dout("con_work %p FAILED to back off %lu\n", con,
2308 			     con->delay);
2309 		}
2310 	}
2311 
2312 	if (con->state == CON_STATE_STANDBY) {
2313 		dout("con_work %p STANDBY\n", con);
2314 		goto done;
2315 	}
2316 	if (con->state == CON_STATE_CLOSED) {
2317 		dout("con_work %p CLOSED\n", con);
2318 		BUG_ON(con->sock);
2319 		goto done;
2320 	}
2321 	if (con->state == CON_STATE_PREOPEN) {
2322 		dout("con_work OPENING\n");
2323 		BUG_ON(con->sock);
2324 	}
2325 
2326 	ret = try_read(con);
2327 	if (ret == -EAGAIN)
2328 		goto restart;
2329 	if (ret < 0) {
2330 		con->error_msg = "socket error on read";
2331 		goto fault;
2332 	}
2333 
2334 	ret = try_write(con);
2335 	if (ret == -EAGAIN)
2336 		goto restart;
2337 	if (ret < 0) {
2338 		con->error_msg = "socket error on write";
2339 		goto fault;
2340 	}
2341 
2342 done:
2343 	mutex_unlock(&con->mutex);
2344 done_unlocked:
2345 	con->ops->put(con);
2346 	return;
2347 
2348 fault:
2349 	ceph_fault(con);     /* error/fault path */
2350 	goto done_unlocked;
2351 }
2352 
2353 
2354 /*
2355  * Generic error/fault handler.  A retry mechanism is used with
2356  * exponential backoff
2357  */
2358 static void ceph_fault(struct ceph_connection *con)
2359 	__releases(con->mutex)
2360 {
2361 	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2362 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2363 	dout("fault %p state %lu to peer %s\n",
2364 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2365 
2366 	BUG_ON(con->state != CON_STATE_CONNECTING &&
2367 	       con->state != CON_STATE_NEGOTIATING &&
2368 	       con->state != CON_STATE_OPEN);
2369 
2370 	con_close_socket(con);
2371 
2372 	if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2373 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2374 		con->state = CON_STATE_CLOSED;
2375 		goto out_unlock;
2376 	}
2377 
2378 	if (con->in_msg) {
2379 		BUG_ON(con->in_msg->con != con);
2380 		con->in_msg->con = NULL;
2381 		ceph_msg_put(con->in_msg);
2382 		con->in_msg = NULL;
2383 		con->ops->put(con);
2384 	}
2385 
2386 	/* Requeue anything that hasn't been acked */
2387 	list_splice_init(&con->out_sent, &con->out_queue);
2388 
2389 	/* If there are no messages queued or keepalive pending, place
2390 	 * the connection in a STANDBY state */
2391 	if (list_empty(&con->out_queue) &&
2392 	    !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2393 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2394 		clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2395 		con->state = CON_STATE_STANDBY;
2396 	} else {
2397 		/* retry after a delay. */
2398 		con->state = CON_STATE_PREOPEN;
2399 		if (con->delay == 0)
2400 			con->delay = BASE_DELAY_INTERVAL;
2401 		else if (con->delay < MAX_DELAY_INTERVAL)
2402 			con->delay *= 2;
2403 		con->ops->get(con);
2404 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2405 				       round_jiffies_relative(con->delay))) {
2406 			dout("fault queued %p delay %lu\n", con, con->delay);
2407 		} else {
2408 			con->ops->put(con);
2409 			dout("fault failed to queue %p delay %lu, backoff\n",
2410 			     con, con->delay);
2411 			/*
2412 			 * In many cases we see a socket state change
2413 			 * while con_work is running and end up
2414 			 * queuing (non-delayed) work, such that we
2415 			 * can't backoff with a delay.  Set a flag so
2416 			 * that when con_work restarts we schedule the
2417 			 * delay then.
2418 			 */
2419 			set_bit(CON_FLAG_BACKOFF, &con->flags);
2420 		}
2421 	}
2422 
2423 out_unlock:
2424 	mutex_unlock(&con->mutex);
2425 	/*
2426 	 * in case we faulted due to authentication, invalidate our
2427 	 * current tickets so that we can get new ones.
2428 	 */
2429 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2430 		dout("calling invalidate_authorizer()\n");
2431 		con->ops->invalidate_authorizer(con);
2432 	}
2433 
2434 	if (con->ops->fault)
2435 		con->ops->fault(con);
2436 }
2437 
2438 
2439 
2440 /*
2441  * initialize a new messenger instance
2442  */
2443 void ceph_messenger_init(struct ceph_messenger *msgr,
2444 			struct ceph_entity_addr *myaddr,
2445 			u32 supported_features,
2446 			u32 required_features,
2447 			bool nocrc)
2448 {
2449 	msgr->supported_features = supported_features;
2450 	msgr->required_features = required_features;
2451 
2452 	spin_lock_init(&msgr->global_seq_lock);
2453 
2454 	if (myaddr)
2455 		msgr->inst.addr = *myaddr;
2456 
2457 	/* select a random nonce */
2458 	msgr->inst.addr.type = 0;
2459 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2460 	encode_my_addr(msgr);
2461 	msgr->nocrc = nocrc;
2462 
2463 	atomic_set(&msgr->stopping, 0);
2464 
2465 	dout("%s %p\n", __func__, msgr);
2466 }
2467 EXPORT_SYMBOL(ceph_messenger_init);
2468 
2469 static void clear_standby(struct ceph_connection *con)
2470 {
2471 	/* come back from STANDBY? */
2472 	if (con->state == CON_STATE_STANDBY) {
2473 		dout("clear_standby %p and ++connect_seq\n", con);
2474 		con->state = CON_STATE_PREOPEN;
2475 		con->connect_seq++;
2476 		WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2477 		WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2478 	}
2479 }
2480 
2481 /*
2482  * Queue up an outgoing message on the given connection.
2483  */
2484 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2485 {
2486 	/* set src+dst */
2487 	msg->hdr.src = con->msgr->inst.name;
2488 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2489 	msg->needs_out_seq = true;
2490 
2491 	mutex_lock(&con->mutex);
2492 
2493 	if (con->state == CON_STATE_CLOSED) {
2494 		dout("con_send %p closed, dropping %p\n", con, msg);
2495 		ceph_msg_put(msg);
2496 		mutex_unlock(&con->mutex);
2497 		return;
2498 	}
2499 
2500 	BUG_ON(msg->con != NULL);
2501 	msg->con = con->ops->get(con);
2502 	BUG_ON(msg->con == NULL);
2503 
2504 	BUG_ON(!list_empty(&msg->list_head));
2505 	list_add_tail(&msg->list_head, &con->out_queue);
2506 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2507 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2508 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2509 	     le32_to_cpu(msg->hdr.front_len),
2510 	     le32_to_cpu(msg->hdr.middle_len),
2511 	     le32_to_cpu(msg->hdr.data_len));
2512 
2513 	clear_standby(con);
2514 	mutex_unlock(&con->mutex);
2515 
2516 	/* if there wasn't anything waiting to send before, queue
2517 	 * new work */
2518 	if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2519 		queue_con(con);
2520 }
2521 EXPORT_SYMBOL(ceph_con_send);
2522 
2523 /*
2524  * Revoke a message that was previously queued for send
2525  */
2526 void ceph_msg_revoke(struct ceph_msg *msg)
2527 {
2528 	struct ceph_connection *con = msg->con;
2529 
2530 	if (!con)
2531 		return;		/* Message not in our possession */
2532 
2533 	mutex_lock(&con->mutex);
2534 	if (!list_empty(&msg->list_head)) {
2535 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2536 		list_del_init(&msg->list_head);
2537 		BUG_ON(msg->con == NULL);
2538 		msg->con->ops->put(msg->con);
2539 		msg->con = NULL;
2540 		msg->hdr.seq = 0;
2541 
2542 		ceph_msg_put(msg);
2543 	}
2544 	if (con->out_msg == msg) {
2545 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
2546 		con->out_msg = NULL;
2547 		if (con->out_kvec_is_msg) {
2548 			con->out_skip = con->out_kvec_bytes;
2549 			con->out_kvec_is_msg = false;
2550 		}
2551 		msg->hdr.seq = 0;
2552 
2553 		ceph_msg_put(msg);
2554 	}
2555 	mutex_unlock(&con->mutex);
2556 }
2557 
2558 /*
2559  * Revoke a message that we may be reading data into
2560  */
2561 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2562 {
2563 	struct ceph_connection *con;
2564 
2565 	BUG_ON(msg == NULL);
2566 	if (!msg->con) {
2567 		dout("%s msg %p null con\n", __func__, msg);
2568 
2569 		return;		/* Message not in our possession */
2570 	}
2571 
2572 	con = msg->con;
2573 	mutex_lock(&con->mutex);
2574 	if (con->in_msg == msg) {
2575 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2576 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2577 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2578 
2579 		/* skip rest of message */
2580 		dout("%s %p msg %p revoked\n", __func__, con, msg);
2581 		con->in_base_pos = con->in_base_pos -
2582 				sizeof(struct ceph_msg_header) -
2583 				front_len -
2584 				middle_len -
2585 				data_len -
2586 				sizeof(struct ceph_msg_footer);
2587 		ceph_msg_put(con->in_msg);
2588 		con->in_msg = NULL;
2589 		con->in_tag = CEPH_MSGR_TAG_READY;
2590 		con->in_seq++;
2591 	} else {
2592 		dout("%s %p in_msg %p msg %p no-op\n",
2593 		     __func__, con, con->in_msg, msg);
2594 	}
2595 	mutex_unlock(&con->mutex);
2596 }
2597 
2598 /*
2599  * Queue a keepalive byte to ensure the tcp connection is alive.
2600  */
2601 void ceph_con_keepalive(struct ceph_connection *con)
2602 {
2603 	dout("con_keepalive %p\n", con);
2604 	mutex_lock(&con->mutex);
2605 	clear_standby(con);
2606 	mutex_unlock(&con->mutex);
2607 	if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2608 	    test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2609 		queue_con(con);
2610 }
2611 EXPORT_SYMBOL(ceph_con_keepalive);
2612 
2613 
2614 /*
2615  * construct a new message with given type, size
2616  * the new msg has a ref count of 1.
2617  */
2618 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2619 			      bool can_fail)
2620 {
2621 	struct ceph_msg *m;
2622 
2623 	m = kmalloc(sizeof(*m), flags);
2624 	if (m == NULL)
2625 		goto out;
2626 	kref_init(&m->kref);
2627 
2628 	m->con = NULL;
2629 	INIT_LIST_HEAD(&m->list_head);
2630 
2631 	m->hdr.tid = 0;
2632 	m->hdr.type = cpu_to_le16(type);
2633 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2634 	m->hdr.version = 0;
2635 	m->hdr.front_len = cpu_to_le32(front_len);
2636 	m->hdr.middle_len = 0;
2637 	m->hdr.data_len = 0;
2638 	m->hdr.data_off = 0;
2639 	m->hdr.reserved = 0;
2640 	m->footer.front_crc = 0;
2641 	m->footer.middle_crc = 0;
2642 	m->footer.data_crc = 0;
2643 	m->footer.flags = 0;
2644 	m->front_max = front_len;
2645 	m->front_is_vmalloc = false;
2646 	m->more_to_follow = false;
2647 	m->ack_stamp = 0;
2648 	m->pool = NULL;
2649 
2650 	/* middle */
2651 	m->middle = NULL;
2652 
2653 	/* data */
2654 	m->nr_pages = 0;
2655 	m->page_alignment = 0;
2656 	m->pages = NULL;
2657 	m->pagelist = NULL;
2658 	m->bio = NULL;
2659 	m->bio_iter = NULL;
2660 	m->bio_seg = 0;
2661 	m->trail = NULL;
2662 
2663 	/* front */
2664 	if (front_len) {
2665 		if (front_len > PAGE_CACHE_SIZE) {
2666 			m->front.iov_base = __vmalloc(front_len, flags,
2667 						      PAGE_KERNEL);
2668 			m->front_is_vmalloc = true;
2669 		} else {
2670 			m->front.iov_base = kmalloc(front_len, flags);
2671 		}
2672 		if (m->front.iov_base == NULL) {
2673 			dout("ceph_msg_new can't allocate %d bytes\n",
2674 			     front_len);
2675 			goto out2;
2676 		}
2677 	} else {
2678 		m->front.iov_base = NULL;
2679 	}
2680 	m->front.iov_len = front_len;
2681 
2682 	dout("ceph_msg_new %p front %d\n", m, front_len);
2683 	return m;
2684 
2685 out2:
2686 	ceph_msg_put(m);
2687 out:
2688 	if (!can_fail) {
2689 		pr_err("msg_new can't create type %d front %d\n", type,
2690 		       front_len);
2691 		WARN_ON(1);
2692 	} else {
2693 		dout("msg_new can't create type %d front %d\n", type,
2694 		     front_len);
2695 	}
2696 	return NULL;
2697 }
2698 EXPORT_SYMBOL(ceph_msg_new);
2699 
2700 /*
2701  * Allocate "middle" portion of a message, if it is needed and wasn't
2702  * allocated by alloc_msg.  This allows us to read a small fixed-size
2703  * per-type header in the front and then gracefully fail (i.e.,
2704  * propagate the error to the caller based on info in the front) when
2705  * the middle is too large.
2706  */
2707 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2708 {
2709 	int type = le16_to_cpu(msg->hdr.type);
2710 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2711 
2712 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2713 	     ceph_msg_type_name(type), middle_len);
2714 	BUG_ON(!middle_len);
2715 	BUG_ON(msg->middle);
2716 
2717 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2718 	if (!msg->middle)
2719 		return -ENOMEM;
2720 	return 0;
2721 }
2722 
2723 /*
2724  * Allocate a message for receiving an incoming message on a
2725  * connection, and save the result in con->in_msg.  Uses the
2726  * connection's private alloc_msg op if available.
2727  *
2728  * Returns 0 on success, or a negative error code.
2729  *
2730  * On success, if we set *skip = 1:
2731  *  - the next message should be skipped and ignored.
2732  *  - con->in_msg == NULL
2733  * or if we set *skip = 0:
2734  *  - con->in_msg is non-null.
2735  * On error (ENOMEM, EAGAIN, ...),
2736  *  - con->in_msg == NULL
2737  */
2738 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2739 {
2740 	struct ceph_msg_header *hdr = &con->in_hdr;
2741 	int type = le16_to_cpu(hdr->type);
2742 	int front_len = le32_to_cpu(hdr->front_len);
2743 	int middle_len = le32_to_cpu(hdr->middle_len);
2744 	int ret = 0;
2745 
2746 	BUG_ON(con->in_msg != NULL);
2747 
2748 	if (con->ops->alloc_msg) {
2749 		struct ceph_msg *msg;
2750 
2751 		mutex_unlock(&con->mutex);
2752 		msg = con->ops->alloc_msg(con, hdr, skip);
2753 		mutex_lock(&con->mutex);
2754 		if (con->state != CON_STATE_OPEN) {
2755 			ceph_msg_put(msg);
2756 			return -EAGAIN;
2757 		}
2758 		con->in_msg = msg;
2759 		if (con->in_msg) {
2760 			con->in_msg->con = con->ops->get(con);
2761 			BUG_ON(con->in_msg->con == NULL);
2762 		}
2763 		if (*skip) {
2764 			con->in_msg = NULL;
2765 			return 0;
2766 		}
2767 		if (!con->in_msg) {
2768 			con->error_msg =
2769 				"error allocating memory for incoming message";
2770 			return -ENOMEM;
2771 		}
2772 	}
2773 	if (!con->in_msg) {
2774 		con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2775 		if (!con->in_msg) {
2776 			pr_err("unable to allocate msg type %d len %d\n",
2777 			       type, front_len);
2778 			return -ENOMEM;
2779 		}
2780 		con->in_msg->con = con->ops->get(con);
2781 		BUG_ON(con->in_msg->con == NULL);
2782 		con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2783 	}
2784 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2785 
2786 	if (middle_len && !con->in_msg->middle) {
2787 		ret = ceph_alloc_middle(con, con->in_msg);
2788 		if (ret < 0) {
2789 			ceph_msg_put(con->in_msg);
2790 			con->in_msg = NULL;
2791 		}
2792 	}
2793 
2794 	return ret;
2795 }
2796 
2797 
2798 /*
2799  * Free a generically kmalloc'd message.
2800  */
2801 void ceph_msg_kfree(struct ceph_msg *m)
2802 {
2803 	dout("msg_kfree %p\n", m);
2804 	if (m->front_is_vmalloc)
2805 		vfree(m->front.iov_base);
2806 	else
2807 		kfree(m->front.iov_base);
2808 	kfree(m);
2809 }
2810 
2811 /*
2812  * Drop a msg ref.  Destroy as needed.
2813  */
2814 void ceph_msg_last_put(struct kref *kref)
2815 {
2816 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2817 
2818 	dout("ceph_msg_put last one on %p\n", m);
2819 	WARN_ON(!list_empty(&m->list_head));
2820 
2821 	/* drop middle, data, if any */
2822 	if (m->middle) {
2823 		ceph_buffer_put(m->middle);
2824 		m->middle = NULL;
2825 	}
2826 	m->nr_pages = 0;
2827 	m->pages = NULL;
2828 
2829 	if (m->pagelist) {
2830 		ceph_pagelist_release(m->pagelist);
2831 		kfree(m->pagelist);
2832 		m->pagelist = NULL;
2833 	}
2834 
2835 	m->trail = NULL;
2836 
2837 	if (m->pool)
2838 		ceph_msgpool_put(m->pool, m);
2839 	else
2840 		ceph_msg_kfree(m);
2841 }
2842 EXPORT_SYMBOL(ceph_msg_last_put);
2843 
2844 void ceph_msg_dump(struct ceph_msg *msg)
2845 {
2846 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2847 		 msg->front_max, msg->nr_pages);
2848 	print_hex_dump(KERN_DEBUG, "header: ",
2849 		       DUMP_PREFIX_OFFSET, 16, 1,
2850 		       &msg->hdr, sizeof(msg->hdr), true);
2851 	print_hex_dump(KERN_DEBUG, " front: ",
2852 		       DUMP_PREFIX_OFFSET, 16, 1,
2853 		       msg->front.iov_base, msg->front.iov_len, true);
2854 	if (msg->middle)
2855 		print_hex_dump(KERN_DEBUG, "middle: ",
2856 			       DUMP_PREFIX_OFFSET, 16, 1,
2857 			       msg->middle->vec.iov_base,
2858 			       msg->middle->vec.iov_len, true);
2859 	print_hex_dump(KERN_DEBUG, "footer: ",
2860 		       DUMP_PREFIX_OFFSET, 16, 1,
2861 		       &msg->footer, sizeof(msg->footer), true);
2862 }
2863 EXPORT_SYMBOL(ceph_msg_dump);
2864