xref: /linux/net/ceph/messenger.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef	CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif	/* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18 
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25 
26 /*
27  * Ceph uses the messenger to exchange ceph_msg messages with other
28  * hosts in the system.  The messenger provides ordered and reliable
29  * delivery.  We tolerate TCP disconnects by reconnecting (with
30  * exponential backoff) in the case of a fault (disconnection, bad
31  * crc, protocol error).  Acks allow sent messages to be discarded by
32  * the sender.
33  */
34 
35 /*
36  * We track the state of the socket on a given connection using
37  * values defined below.  The transition to a new socket state is
38  * handled by a function which verifies we aren't coming from an
39  * unexpected state.
40  *
41  *      --------
42  *      | NEW* |  transient initial state
43  *      --------
44  *          | con_sock_state_init()
45  *          v
46  *      ----------
47  *      | CLOSED |  initialized, but no socket (and no
48  *      ----------  TCP connection)
49  *       ^      \
50  *       |       \ con_sock_state_connecting()
51  *       |        ----------------------
52  *       |                              \
53  *       + con_sock_state_closed()       \
54  *       |+---------------------------    \
55  *       | \                          \    \
56  *       |  -----------                \    \
57  *       |  | CLOSING |  socket event;  \    \
58  *       |  -----------  await close     \    \
59  *       |       ^                        \   |
60  *       |       |                         \  |
61  *       |       + con_sock_state_closing() \ |
62  *       |      / \                         | |
63  *       |     /   ---------------          | |
64  *       |    /                   \         v v
65  *       |   /                    --------------
66  *       |  /    -----------------| CONNECTING |  socket created, TCP
67  *       |  |   /                 --------------  connect initiated
68  *       |  |   | con_sock_state_connected()
69  *       |  |   v
70  *      -------------
71  *      | CONNECTED |  TCP connection established
72  *      -------------
73  *
74  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
75  */
76 
77 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
78 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
79 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
80 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
81 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
82 
83 /*
84  * connection states
85  */
86 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
87 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
88 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
89 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
90 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
91 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
92 
93 /*
94  * ceph_connection flag bits
95  */
96 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
97 				       * messages on errors */
98 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
99 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
100 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
101 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
102 
103 static bool con_flag_valid(unsigned long con_flag)
104 {
105 	switch (con_flag) {
106 	case CON_FLAG_LOSSYTX:
107 	case CON_FLAG_KEEPALIVE_PENDING:
108 	case CON_FLAG_WRITE_PENDING:
109 	case CON_FLAG_SOCK_CLOSED:
110 	case CON_FLAG_BACKOFF:
111 		return true;
112 	default:
113 		return false;
114 	}
115 }
116 
117 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
118 {
119 	BUG_ON(!con_flag_valid(con_flag));
120 
121 	clear_bit(con_flag, &con->flags);
122 }
123 
124 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
125 {
126 	BUG_ON(!con_flag_valid(con_flag));
127 
128 	set_bit(con_flag, &con->flags);
129 }
130 
131 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
132 {
133 	BUG_ON(!con_flag_valid(con_flag));
134 
135 	return test_bit(con_flag, &con->flags);
136 }
137 
138 static bool con_flag_test_and_clear(struct ceph_connection *con,
139 					unsigned long con_flag)
140 {
141 	BUG_ON(!con_flag_valid(con_flag));
142 
143 	return test_and_clear_bit(con_flag, &con->flags);
144 }
145 
146 static bool con_flag_test_and_set(struct ceph_connection *con,
147 					unsigned long con_flag)
148 {
149 	BUG_ON(!con_flag_valid(con_flag));
150 
151 	return test_and_set_bit(con_flag, &con->flags);
152 }
153 
154 /* Slab caches for frequently-allocated structures */
155 
156 static struct kmem_cache	*ceph_msg_cache;
157 static struct kmem_cache	*ceph_msg_data_cache;
158 
159 /* static tag bytes (protocol control messages) */
160 static char tag_msg = CEPH_MSGR_TAG_MSG;
161 static char tag_ack = CEPH_MSGR_TAG_ACK;
162 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
163 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
164 
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168 
169 /*
170  * When skipping (ignoring) a block of input we read it into a "skip
171  * buffer," which is this many bytes in size.
172  */
173 #define SKIP_BUF_SIZE	1024
174 
175 static void queue_con(struct ceph_connection *con);
176 static void cancel_con(struct ceph_connection *con);
177 static void ceph_con_workfn(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179 
180 /*
181  * Nicely render a sockaddr as a string.  An array of formatted
182  * strings is used, to approximate reentrancy.
183  */
184 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
185 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
188 
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191 
192 static struct page *zero_page;		/* used in certain error cases */
193 
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 	int i;
197 	char *s;
198 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200 
201 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 	s = addr_str[i];
203 
204 	switch (ss->ss_family) {
205 	case AF_INET:
206 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 			 ntohs(in4->sin_port));
208 		break;
209 
210 	case AF_INET6:
211 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 			 ntohs(in6->sin6_port));
213 		break;
214 
215 	default:
216 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 			 ss->ss_family);
218 	}
219 
220 	return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223 
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 	ceph_encode_addr(&msgr->my_enc_addr);
228 }
229 
230 /*
231  * work queue for all reading and writing to/from the socket.
232  */
233 static struct workqueue_struct *ceph_msgr_wq;
234 
235 static int ceph_msgr_slab_init(void)
236 {
237 	BUG_ON(ceph_msg_cache);
238 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
239 	if (!ceph_msg_cache)
240 		return -ENOMEM;
241 
242 	BUG_ON(ceph_msg_data_cache);
243 	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
244 	if (ceph_msg_data_cache)
245 		return 0;
246 
247 	kmem_cache_destroy(ceph_msg_cache);
248 	ceph_msg_cache = NULL;
249 
250 	return -ENOMEM;
251 }
252 
253 static void ceph_msgr_slab_exit(void)
254 {
255 	BUG_ON(!ceph_msg_data_cache);
256 	kmem_cache_destroy(ceph_msg_data_cache);
257 	ceph_msg_data_cache = NULL;
258 
259 	BUG_ON(!ceph_msg_cache);
260 	kmem_cache_destroy(ceph_msg_cache);
261 	ceph_msg_cache = NULL;
262 }
263 
264 static void _ceph_msgr_exit(void)
265 {
266 	if (ceph_msgr_wq) {
267 		destroy_workqueue(ceph_msgr_wq);
268 		ceph_msgr_wq = NULL;
269 	}
270 
271 	BUG_ON(zero_page == NULL);
272 	put_page(zero_page);
273 	zero_page = NULL;
274 
275 	ceph_msgr_slab_exit();
276 }
277 
278 int ceph_msgr_init(void)
279 {
280 	if (ceph_msgr_slab_init())
281 		return -ENOMEM;
282 
283 	BUG_ON(zero_page != NULL);
284 	zero_page = ZERO_PAGE(0);
285 	get_page(zero_page);
286 
287 	/*
288 	 * The number of active work items is limited by the number of
289 	 * connections, so leave @max_active at default.
290 	 */
291 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
292 	if (ceph_msgr_wq)
293 		return 0;
294 
295 	pr_err("msgr_init failed to create workqueue\n");
296 	_ceph_msgr_exit();
297 
298 	return -ENOMEM;
299 }
300 EXPORT_SYMBOL(ceph_msgr_init);
301 
302 void ceph_msgr_exit(void)
303 {
304 	BUG_ON(ceph_msgr_wq == NULL);
305 
306 	_ceph_msgr_exit();
307 }
308 EXPORT_SYMBOL(ceph_msgr_exit);
309 
310 void ceph_msgr_flush(void)
311 {
312 	flush_workqueue(ceph_msgr_wq);
313 }
314 EXPORT_SYMBOL(ceph_msgr_flush);
315 
316 /* Connection socket state transition functions */
317 
318 static void con_sock_state_init(struct ceph_connection *con)
319 {
320 	int old_state;
321 
322 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
324 		printk("%s: unexpected old state %d\n", __func__, old_state);
325 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
326 	     CON_SOCK_STATE_CLOSED);
327 }
328 
329 static void con_sock_state_connecting(struct ceph_connection *con)
330 {
331 	int old_state;
332 
333 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
334 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
335 		printk("%s: unexpected old state %d\n", __func__, old_state);
336 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337 	     CON_SOCK_STATE_CONNECTING);
338 }
339 
340 static void con_sock_state_connected(struct ceph_connection *con)
341 {
342 	int old_state;
343 
344 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
345 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
346 		printk("%s: unexpected old state %d\n", __func__, old_state);
347 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
348 	     CON_SOCK_STATE_CONNECTED);
349 }
350 
351 static void con_sock_state_closing(struct ceph_connection *con)
352 {
353 	int old_state;
354 
355 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
356 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
357 			old_state != CON_SOCK_STATE_CONNECTED &&
358 			old_state != CON_SOCK_STATE_CLOSING))
359 		printk("%s: unexpected old state %d\n", __func__, old_state);
360 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
361 	     CON_SOCK_STATE_CLOSING);
362 }
363 
364 static void con_sock_state_closed(struct ceph_connection *con)
365 {
366 	int old_state;
367 
368 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
369 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
370 		    old_state != CON_SOCK_STATE_CLOSING &&
371 		    old_state != CON_SOCK_STATE_CONNECTING &&
372 		    old_state != CON_SOCK_STATE_CLOSED))
373 		printk("%s: unexpected old state %d\n", __func__, old_state);
374 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
375 	     CON_SOCK_STATE_CLOSED);
376 }
377 
378 /*
379  * socket callback functions
380  */
381 
382 /* data available on socket, or listen socket received a connect */
383 static void ceph_sock_data_ready(struct sock *sk)
384 {
385 	struct ceph_connection *con = sk->sk_user_data;
386 	if (atomic_read(&con->msgr->stopping)) {
387 		return;
388 	}
389 
390 	if (sk->sk_state != TCP_CLOSE_WAIT) {
391 		dout("%s on %p state = %lu, queueing work\n", __func__,
392 		     con, con->state);
393 		queue_con(con);
394 	}
395 }
396 
397 /* socket has buffer space for writing */
398 static void ceph_sock_write_space(struct sock *sk)
399 {
400 	struct ceph_connection *con = sk->sk_user_data;
401 
402 	/* only queue to workqueue if there is data we want to write,
403 	 * and there is sufficient space in the socket buffer to accept
404 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
405 	 * doesn't get called again until try_write() fills the socket
406 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
407 	 * and net/core/stream.c:sk_stream_write_space().
408 	 */
409 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
410 		if (sk_stream_is_writeable(sk)) {
411 			dout("%s %p queueing write work\n", __func__, con);
412 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
413 			queue_con(con);
414 		}
415 	} else {
416 		dout("%s %p nothing to write\n", __func__, con);
417 	}
418 }
419 
420 /* socket's state has changed */
421 static void ceph_sock_state_change(struct sock *sk)
422 {
423 	struct ceph_connection *con = sk->sk_user_data;
424 
425 	dout("%s %p state = %lu sk_state = %u\n", __func__,
426 	     con, con->state, sk->sk_state);
427 
428 	switch (sk->sk_state) {
429 	case TCP_CLOSE:
430 		dout("%s TCP_CLOSE\n", __func__);
431 	case TCP_CLOSE_WAIT:
432 		dout("%s TCP_CLOSE_WAIT\n", __func__);
433 		con_sock_state_closing(con);
434 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
435 		queue_con(con);
436 		break;
437 	case TCP_ESTABLISHED:
438 		dout("%s TCP_ESTABLISHED\n", __func__);
439 		con_sock_state_connected(con);
440 		queue_con(con);
441 		break;
442 	default:	/* Everything else is uninteresting */
443 		break;
444 	}
445 }
446 
447 /*
448  * set up socket callbacks
449  */
450 static void set_sock_callbacks(struct socket *sock,
451 			       struct ceph_connection *con)
452 {
453 	struct sock *sk = sock->sk;
454 	sk->sk_user_data = con;
455 	sk->sk_data_ready = ceph_sock_data_ready;
456 	sk->sk_write_space = ceph_sock_write_space;
457 	sk->sk_state_change = ceph_sock_state_change;
458 }
459 
460 
461 /*
462  * socket helpers
463  */
464 
465 /*
466  * initiate connection to a remote socket.
467  */
468 static int ceph_tcp_connect(struct ceph_connection *con)
469 {
470 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
471 	struct socket *sock;
472 	int ret;
473 
474 	BUG_ON(con->sock);
475 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
476 			       SOCK_STREAM, IPPROTO_TCP, &sock);
477 	if (ret)
478 		return ret;
479 	sock->sk->sk_allocation = GFP_NOFS;
480 
481 #ifdef CONFIG_LOCKDEP
482 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
483 #endif
484 
485 	set_sock_callbacks(sock, con);
486 
487 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
488 
489 	con_sock_state_connecting(con);
490 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
491 				 O_NONBLOCK);
492 	if (ret == -EINPROGRESS) {
493 		dout("connect %s EINPROGRESS sk_state = %u\n",
494 		     ceph_pr_addr(&con->peer_addr.in_addr),
495 		     sock->sk->sk_state);
496 	} else if (ret < 0) {
497 		pr_err("connect %s error %d\n",
498 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
499 		sock_release(sock);
500 		return ret;
501 	}
502 
503 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
504 		int optval = 1;
505 
506 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
507 					(char *)&optval, sizeof(optval));
508 		if (ret)
509 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
510 			       ret);
511 	}
512 
513 	con->sock = sock;
514 	return 0;
515 }
516 
517 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
518 {
519 	struct kvec iov = {buf, len};
520 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
521 	int r;
522 
523 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
524 	if (r == -EAGAIN)
525 		r = 0;
526 	return r;
527 }
528 
529 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
530 		     int page_offset, size_t length)
531 {
532 	void *kaddr;
533 	int ret;
534 
535 	BUG_ON(page_offset + length > PAGE_SIZE);
536 
537 	kaddr = kmap(page);
538 	BUG_ON(!kaddr);
539 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
540 	kunmap(page);
541 
542 	return ret;
543 }
544 
545 /*
546  * write something.  @more is true if caller will be sending more data
547  * shortly.
548  */
549 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
550 		     size_t kvlen, size_t len, int more)
551 {
552 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
553 	int r;
554 
555 	if (more)
556 		msg.msg_flags |= MSG_MORE;
557 	else
558 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
559 
560 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
561 	if (r == -EAGAIN)
562 		r = 0;
563 	return r;
564 }
565 
566 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
567 		     int offset, size_t size, bool more)
568 {
569 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
570 	int ret;
571 
572 	ret = kernel_sendpage(sock, page, offset, size, flags);
573 	if (ret == -EAGAIN)
574 		ret = 0;
575 
576 	return ret;
577 }
578 
579 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
580 		     int offset, size_t size, bool more)
581 {
582 	int ret;
583 	struct kvec iov;
584 
585 	/* sendpage cannot properly handle pages with page_count == 0,
586 	 * we need to fallback to sendmsg if that's the case */
587 	if (page_count(page) >= 1)
588 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
589 
590 	iov.iov_base = kmap(page) + offset;
591 	iov.iov_len = size;
592 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
593 	kunmap(page);
594 
595 	return ret;
596 }
597 
598 /*
599  * Shutdown/close the socket for the given connection.
600  */
601 static int con_close_socket(struct ceph_connection *con)
602 {
603 	int rc = 0;
604 
605 	dout("con_close_socket on %p sock %p\n", con, con->sock);
606 	if (con->sock) {
607 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
608 		sock_release(con->sock);
609 		con->sock = NULL;
610 	}
611 
612 	/*
613 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
614 	 * independent of the connection mutex, and we could have
615 	 * received a socket close event before we had the chance to
616 	 * shut the socket down.
617 	 */
618 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
619 
620 	con_sock_state_closed(con);
621 	return rc;
622 }
623 
624 /*
625  * Reset a connection.  Discard all incoming and outgoing messages
626  * and clear *_seq state.
627  */
628 static void ceph_msg_remove(struct ceph_msg *msg)
629 {
630 	list_del_init(&msg->list_head);
631 
632 	ceph_msg_put(msg);
633 }
634 static void ceph_msg_remove_list(struct list_head *head)
635 {
636 	while (!list_empty(head)) {
637 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
638 							list_head);
639 		ceph_msg_remove(msg);
640 	}
641 }
642 
643 static void reset_connection(struct ceph_connection *con)
644 {
645 	/* reset connection, out_queue, msg_ and connect_seq */
646 	/* discard existing out_queue and msg_seq */
647 	dout("reset_connection %p\n", con);
648 	ceph_msg_remove_list(&con->out_queue);
649 	ceph_msg_remove_list(&con->out_sent);
650 
651 	if (con->in_msg) {
652 		BUG_ON(con->in_msg->con != con);
653 		ceph_msg_put(con->in_msg);
654 		con->in_msg = NULL;
655 	}
656 
657 	con->connect_seq = 0;
658 	con->out_seq = 0;
659 	if (con->out_msg) {
660 		BUG_ON(con->out_msg->con != con);
661 		ceph_msg_put(con->out_msg);
662 		con->out_msg = NULL;
663 	}
664 	con->in_seq = 0;
665 	con->in_seq_acked = 0;
666 
667 	con->out_skip = 0;
668 }
669 
670 /*
671  * mark a peer down.  drop any open connections.
672  */
673 void ceph_con_close(struct ceph_connection *con)
674 {
675 	mutex_lock(&con->mutex);
676 	dout("con_close %p peer %s\n", con,
677 	     ceph_pr_addr(&con->peer_addr.in_addr));
678 	con->state = CON_STATE_CLOSED;
679 
680 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
681 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
682 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
683 	con_flag_clear(con, CON_FLAG_BACKOFF);
684 
685 	reset_connection(con);
686 	con->peer_global_seq = 0;
687 	cancel_con(con);
688 	con_close_socket(con);
689 	mutex_unlock(&con->mutex);
690 }
691 EXPORT_SYMBOL(ceph_con_close);
692 
693 /*
694  * Reopen a closed connection, with a new peer address.
695  */
696 void ceph_con_open(struct ceph_connection *con,
697 		   __u8 entity_type, __u64 entity_num,
698 		   struct ceph_entity_addr *addr)
699 {
700 	mutex_lock(&con->mutex);
701 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
702 
703 	WARN_ON(con->state != CON_STATE_CLOSED);
704 	con->state = CON_STATE_PREOPEN;
705 
706 	con->peer_name.type = (__u8) entity_type;
707 	con->peer_name.num = cpu_to_le64(entity_num);
708 
709 	memcpy(&con->peer_addr, addr, sizeof(*addr));
710 	con->delay = 0;      /* reset backoff memory */
711 	mutex_unlock(&con->mutex);
712 	queue_con(con);
713 }
714 EXPORT_SYMBOL(ceph_con_open);
715 
716 /*
717  * return true if this connection ever successfully opened
718  */
719 bool ceph_con_opened(struct ceph_connection *con)
720 {
721 	return con->connect_seq > 0;
722 }
723 
724 /*
725  * initialize a new connection.
726  */
727 void ceph_con_init(struct ceph_connection *con, void *private,
728 	const struct ceph_connection_operations *ops,
729 	struct ceph_messenger *msgr)
730 {
731 	dout("con_init %p\n", con);
732 	memset(con, 0, sizeof(*con));
733 	con->private = private;
734 	con->ops = ops;
735 	con->msgr = msgr;
736 
737 	con_sock_state_init(con);
738 
739 	mutex_init(&con->mutex);
740 	INIT_LIST_HEAD(&con->out_queue);
741 	INIT_LIST_HEAD(&con->out_sent);
742 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
743 
744 	con->state = CON_STATE_CLOSED;
745 }
746 EXPORT_SYMBOL(ceph_con_init);
747 
748 
749 /*
750  * We maintain a global counter to order connection attempts.  Get
751  * a unique seq greater than @gt.
752  */
753 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
754 {
755 	u32 ret;
756 
757 	spin_lock(&msgr->global_seq_lock);
758 	if (msgr->global_seq < gt)
759 		msgr->global_seq = gt;
760 	ret = ++msgr->global_seq;
761 	spin_unlock(&msgr->global_seq_lock);
762 	return ret;
763 }
764 
765 static void con_out_kvec_reset(struct ceph_connection *con)
766 {
767 	BUG_ON(con->out_skip);
768 
769 	con->out_kvec_left = 0;
770 	con->out_kvec_bytes = 0;
771 	con->out_kvec_cur = &con->out_kvec[0];
772 }
773 
774 static void con_out_kvec_add(struct ceph_connection *con,
775 				size_t size, void *data)
776 {
777 	int index = con->out_kvec_left;
778 
779 	BUG_ON(con->out_skip);
780 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
781 
782 	con->out_kvec[index].iov_len = size;
783 	con->out_kvec[index].iov_base = data;
784 	con->out_kvec_left++;
785 	con->out_kvec_bytes += size;
786 }
787 
788 /*
789  * Chop off a kvec from the end.  Return residual number of bytes for
790  * that kvec, i.e. how many bytes would have been written if the kvec
791  * hadn't been nuked.
792  */
793 static int con_out_kvec_skip(struct ceph_connection *con)
794 {
795 	int off = con->out_kvec_cur - con->out_kvec;
796 	int skip = 0;
797 
798 	if (con->out_kvec_bytes > 0) {
799 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
800 		BUG_ON(con->out_kvec_bytes < skip);
801 		BUG_ON(!con->out_kvec_left);
802 		con->out_kvec_bytes -= skip;
803 		con->out_kvec_left--;
804 	}
805 
806 	return skip;
807 }
808 
809 #ifdef CONFIG_BLOCK
810 
811 /*
812  * For a bio data item, a piece is whatever remains of the next
813  * entry in the current bio iovec, or the first entry in the next
814  * bio in the list.
815  */
816 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
817 					size_t length)
818 {
819 	struct ceph_msg_data *data = cursor->data;
820 	struct bio *bio;
821 
822 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
823 
824 	bio = data->bio;
825 	BUG_ON(!bio);
826 
827 	cursor->resid = min(length, data->bio_length);
828 	cursor->bio = bio;
829 	cursor->bvec_iter = bio->bi_iter;
830 	cursor->last_piece =
831 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
832 }
833 
834 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
835 						size_t *page_offset,
836 						size_t *length)
837 {
838 	struct ceph_msg_data *data = cursor->data;
839 	struct bio *bio;
840 	struct bio_vec bio_vec;
841 
842 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
843 
844 	bio = cursor->bio;
845 	BUG_ON(!bio);
846 
847 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
848 
849 	*page_offset = (size_t) bio_vec.bv_offset;
850 	BUG_ON(*page_offset >= PAGE_SIZE);
851 	if (cursor->last_piece) /* pagelist offset is always 0 */
852 		*length = cursor->resid;
853 	else
854 		*length = (size_t) bio_vec.bv_len;
855 	BUG_ON(*length > cursor->resid);
856 	BUG_ON(*page_offset + *length > PAGE_SIZE);
857 
858 	return bio_vec.bv_page;
859 }
860 
861 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
862 					size_t bytes)
863 {
864 	struct bio *bio;
865 	struct bio_vec bio_vec;
866 
867 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
868 
869 	bio = cursor->bio;
870 	BUG_ON(!bio);
871 
872 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
873 
874 	/* Advance the cursor offset */
875 
876 	BUG_ON(cursor->resid < bytes);
877 	cursor->resid -= bytes;
878 
879 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
880 
881 	if (bytes < bio_vec.bv_len)
882 		return false;	/* more bytes to process in this segment */
883 
884 	/* Move on to the next segment, and possibly the next bio */
885 
886 	if (!cursor->bvec_iter.bi_size) {
887 		bio = bio->bi_next;
888 		cursor->bio = bio;
889 		if (bio)
890 			cursor->bvec_iter = bio->bi_iter;
891 		else
892 			memset(&cursor->bvec_iter, 0,
893 			       sizeof(cursor->bvec_iter));
894 	}
895 
896 	if (!cursor->last_piece) {
897 		BUG_ON(!cursor->resid);
898 		BUG_ON(!bio);
899 		/* A short read is OK, so use <= rather than == */
900 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
901 			cursor->last_piece = true;
902 	}
903 
904 	return true;
905 }
906 #endif /* CONFIG_BLOCK */
907 
908 /*
909  * For a page array, a piece comes from the first page in the array
910  * that has not already been fully consumed.
911  */
912 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
913 					size_t length)
914 {
915 	struct ceph_msg_data *data = cursor->data;
916 	int page_count;
917 
918 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
919 
920 	BUG_ON(!data->pages);
921 	BUG_ON(!data->length);
922 
923 	cursor->resid = min(length, data->length);
924 	page_count = calc_pages_for(data->alignment, (u64)data->length);
925 	cursor->page_offset = data->alignment & ~PAGE_MASK;
926 	cursor->page_index = 0;
927 	BUG_ON(page_count > (int)USHRT_MAX);
928 	cursor->page_count = (unsigned short)page_count;
929 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
930 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
931 }
932 
933 static struct page *
934 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
935 					size_t *page_offset, size_t *length)
936 {
937 	struct ceph_msg_data *data = cursor->data;
938 
939 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
940 
941 	BUG_ON(cursor->page_index >= cursor->page_count);
942 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
943 
944 	*page_offset = cursor->page_offset;
945 	if (cursor->last_piece)
946 		*length = cursor->resid;
947 	else
948 		*length = PAGE_SIZE - *page_offset;
949 
950 	return data->pages[cursor->page_index];
951 }
952 
953 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
954 						size_t bytes)
955 {
956 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
957 
958 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
959 
960 	/* Advance the cursor page offset */
961 
962 	cursor->resid -= bytes;
963 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
964 	if (!bytes || cursor->page_offset)
965 		return false;	/* more bytes to process in the current page */
966 
967 	if (!cursor->resid)
968 		return false;   /* no more data */
969 
970 	/* Move on to the next page; offset is already at 0 */
971 
972 	BUG_ON(cursor->page_index >= cursor->page_count);
973 	cursor->page_index++;
974 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
975 
976 	return true;
977 }
978 
979 /*
980  * For a pagelist, a piece is whatever remains to be consumed in the
981  * first page in the list, or the front of the next page.
982  */
983 static void
984 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
985 					size_t length)
986 {
987 	struct ceph_msg_data *data = cursor->data;
988 	struct ceph_pagelist *pagelist;
989 	struct page *page;
990 
991 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
992 
993 	pagelist = data->pagelist;
994 	BUG_ON(!pagelist);
995 
996 	if (!length)
997 		return;		/* pagelist can be assigned but empty */
998 
999 	BUG_ON(list_empty(&pagelist->head));
1000 	page = list_first_entry(&pagelist->head, struct page, lru);
1001 
1002 	cursor->resid = min(length, pagelist->length);
1003 	cursor->page = page;
1004 	cursor->offset = 0;
1005 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1006 }
1007 
1008 static struct page *
1009 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1010 				size_t *page_offset, size_t *length)
1011 {
1012 	struct ceph_msg_data *data = cursor->data;
1013 	struct ceph_pagelist *pagelist;
1014 
1015 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1016 
1017 	pagelist = data->pagelist;
1018 	BUG_ON(!pagelist);
1019 
1020 	BUG_ON(!cursor->page);
1021 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1022 
1023 	/* offset of first page in pagelist is always 0 */
1024 	*page_offset = cursor->offset & ~PAGE_MASK;
1025 	if (cursor->last_piece)
1026 		*length = cursor->resid;
1027 	else
1028 		*length = PAGE_SIZE - *page_offset;
1029 
1030 	return cursor->page;
1031 }
1032 
1033 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1034 						size_t bytes)
1035 {
1036 	struct ceph_msg_data *data = cursor->data;
1037 	struct ceph_pagelist *pagelist;
1038 
1039 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1040 
1041 	pagelist = data->pagelist;
1042 	BUG_ON(!pagelist);
1043 
1044 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1045 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1046 
1047 	/* Advance the cursor offset */
1048 
1049 	cursor->resid -= bytes;
1050 	cursor->offset += bytes;
1051 	/* offset of first page in pagelist is always 0 */
1052 	if (!bytes || cursor->offset & ~PAGE_MASK)
1053 		return false;	/* more bytes to process in the current page */
1054 
1055 	if (!cursor->resid)
1056 		return false;   /* no more data */
1057 
1058 	/* Move on to the next page */
1059 
1060 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1061 	cursor->page = list_next_entry(cursor->page, lru);
1062 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1063 
1064 	return true;
1065 }
1066 
1067 /*
1068  * Message data is handled (sent or received) in pieces, where each
1069  * piece resides on a single page.  The network layer might not
1070  * consume an entire piece at once.  A data item's cursor keeps
1071  * track of which piece is next to process and how much remains to
1072  * be processed in that piece.  It also tracks whether the current
1073  * piece is the last one in the data item.
1074  */
1075 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1076 {
1077 	size_t length = cursor->total_resid;
1078 
1079 	switch (cursor->data->type) {
1080 	case CEPH_MSG_DATA_PAGELIST:
1081 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1082 		break;
1083 	case CEPH_MSG_DATA_PAGES:
1084 		ceph_msg_data_pages_cursor_init(cursor, length);
1085 		break;
1086 #ifdef CONFIG_BLOCK
1087 	case CEPH_MSG_DATA_BIO:
1088 		ceph_msg_data_bio_cursor_init(cursor, length);
1089 		break;
1090 #endif /* CONFIG_BLOCK */
1091 	case CEPH_MSG_DATA_NONE:
1092 	default:
1093 		/* BUG(); */
1094 		break;
1095 	}
1096 	cursor->need_crc = true;
1097 }
1098 
1099 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1100 {
1101 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1102 	struct ceph_msg_data *data;
1103 
1104 	BUG_ON(!length);
1105 	BUG_ON(length > msg->data_length);
1106 	BUG_ON(list_empty(&msg->data));
1107 
1108 	cursor->data_head = &msg->data;
1109 	cursor->total_resid = length;
1110 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1111 	cursor->data = data;
1112 
1113 	__ceph_msg_data_cursor_init(cursor);
1114 }
1115 
1116 /*
1117  * Return the page containing the next piece to process for a given
1118  * data item, and supply the page offset and length of that piece.
1119  * Indicate whether this is the last piece in this data item.
1120  */
1121 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1122 					size_t *page_offset, size_t *length,
1123 					bool *last_piece)
1124 {
1125 	struct page *page;
1126 
1127 	switch (cursor->data->type) {
1128 	case CEPH_MSG_DATA_PAGELIST:
1129 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1130 		break;
1131 	case CEPH_MSG_DATA_PAGES:
1132 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1133 		break;
1134 #ifdef CONFIG_BLOCK
1135 	case CEPH_MSG_DATA_BIO:
1136 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1137 		break;
1138 #endif /* CONFIG_BLOCK */
1139 	case CEPH_MSG_DATA_NONE:
1140 	default:
1141 		page = NULL;
1142 		break;
1143 	}
1144 	BUG_ON(!page);
1145 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1146 	BUG_ON(!*length);
1147 	if (last_piece)
1148 		*last_piece = cursor->last_piece;
1149 
1150 	return page;
1151 }
1152 
1153 /*
1154  * Returns true if the result moves the cursor on to the next piece
1155  * of the data item.
1156  */
1157 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1158 				size_t bytes)
1159 {
1160 	bool new_piece;
1161 
1162 	BUG_ON(bytes > cursor->resid);
1163 	switch (cursor->data->type) {
1164 	case CEPH_MSG_DATA_PAGELIST:
1165 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1166 		break;
1167 	case CEPH_MSG_DATA_PAGES:
1168 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1169 		break;
1170 #ifdef CONFIG_BLOCK
1171 	case CEPH_MSG_DATA_BIO:
1172 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1173 		break;
1174 #endif /* CONFIG_BLOCK */
1175 	case CEPH_MSG_DATA_NONE:
1176 	default:
1177 		BUG();
1178 		break;
1179 	}
1180 	cursor->total_resid -= bytes;
1181 
1182 	if (!cursor->resid && cursor->total_resid) {
1183 		WARN_ON(!cursor->last_piece);
1184 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1185 		cursor->data = list_next_entry(cursor->data, links);
1186 		__ceph_msg_data_cursor_init(cursor);
1187 		new_piece = true;
1188 	}
1189 	cursor->need_crc = new_piece;
1190 
1191 	return new_piece;
1192 }
1193 
1194 static size_t sizeof_footer(struct ceph_connection *con)
1195 {
1196 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1197 	    sizeof(struct ceph_msg_footer) :
1198 	    sizeof(struct ceph_msg_footer_old);
1199 }
1200 
1201 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1202 {
1203 	BUG_ON(!msg);
1204 	BUG_ON(!data_len);
1205 
1206 	/* Initialize data cursor */
1207 
1208 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1209 }
1210 
1211 /*
1212  * Prepare footer for currently outgoing message, and finish things
1213  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1214  */
1215 static void prepare_write_message_footer(struct ceph_connection *con)
1216 {
1217 	struct ceph_msg *m = con->out_msg;
1218 
1219 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1220 
1221 	dout("prepare_write_message_footer %p\n", con);
1222 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1223 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1224 		if (con->ops->sign_message)
1225 			con->ops->sign_message(m);
1226 		else
1227 			m->footer.sig = 0;
1228 	} else {
1229 		m->old_footer.flags = m->footer.flags;
1230 	}
1231 	con->out_more = m->more_to_follow;
1232 	con->out_msg_done = true;
1233 }
1234 
1235 /*
1236  * Prepare headers for the next outgoing message.
1237  */
1238 static void prepare_write_message(struct ceph_connection *con)
1239 {
1240 	struct ceph_msg *m;
1241 	u32 crc;
1242 
1243 	con_out_kvec_reset(con);
1244 	con->out_msg_done = false;
1245 
1246 	/* Sneak an ack in there first?  If we can get it into the same
1247 	 * TCP packet that's a good thing. */
1248 	if (con->in_seq > con->in_seq_acked) {
1249 		con->in_seq_acked = con->in_seq;
1250 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1251 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1252 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1253 			&con->out_temp_ack);
1254 	}
1255 
1256 	BUG_ON(list_empty(&con->out_queue));
1257 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1258 	con->out_msg = m;
1259 	BUG_ON(m->con != con);
1260 
1261 	/* put message on sent list */
1262 	ceph_msg_get(m);
1263 	list_move_tail(&m->list_head, &con->out_sent);
1264 
1265 	/*
1266 	 * only assign outgoing seq # if we haven't sent this message
1267 	 * yet.  if it is requeued, resend with it's original seq.
1268 	 */
1269 	if (m->needs_out_seq) {
1270 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1271 		m->needs_out_seq = false;
1272 	}
1273 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1274 
1275 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1276 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1277 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1278 	     m->data_length);
1279 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1280 
1281 	/* tag + hdr + front + middle */
1282 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1283 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1284 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1285 
1286 	if (m->middle)
1287 		con_out_kvec_add(con, m->middle->vec.iov_len,
1288 			m->middle->vec.iov_base);
1289 
1290 	/* fill in hdr crc and finalize hdr */
1291 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1292 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1293 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1294 
1295 	/* fill in front and middle crc, footer */
1296 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1297 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1298 	if (m->middle) {
1299 		crc = crc32c(0, m->middle->vec.iov_base,
1300 				m->middle->vec.iov_len);
1301 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1302 	} else
1303 		con->out_msg->footer.middle_crc = 0;
1304 	dout("%s front_crc %u middle_crc %u\n", __func__,
1305 	     le32_to_cpu(con->out_msg->footer.front_crc),
1306 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1307 	con->out_msg->footer.flags = 0;
1308 
1309 	/* is there a data payload? */
1310 	con->out_msg->footer.data_crc = 0;
1311 	if (m->data_length) {
1312 		prepare_message_data(con->out_msg, m->data_length);
1313 		con->out_more = 1;  /* data + footer will follow */
1314 	} else {
1315 		/* no, queue up footer too and be done */
1316 		prepare_write_message_footer(con);
1317 	}
1318 
1319 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1320 }
1321 
1322 /*
1323  * Prepare an ack.
1324  */
1325 static void prepare_write_ack(struct ceph_connection *con)
1326 {
1327 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1328 	     con->in_seq_acked, con->in_seq);
1329 	con->in_seq_acked = con->in_seq;
1330 
1331 	con_out_kvec_reset(con);
1332 
1333 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1334 
1335 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1336 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1337 				&con->out_temp_ack);
1338 
1339 	con->out_more = 1;  /* more will follow.. eventually.. */
1340 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1341 }
1342 
1343 /*
1344  * Prepare to share the seq during handshake
1345  */
1346 static void prepare_write_seq(struct ceph_connection *con)
1347 {
1348 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1349 	     con->in_seq_acked, con->in_seq);
1350 	con->in_seq_acked = con->in_seq;
1351 
1352 	con_out_kvec_reset(con);
1353 
1354 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1355 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1356 			 &con->out_temp_ack);
1357 
1358 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1359 }
1360 
1361 /*
1362  * Prepare to write keepalive byte.
1363  */
1364 static void prepare_write_keepalive(struct ceph_connection *con)
1365 {
1366 	dout("prepare_write_keepalive %p\n", con);
1367 	con_out_kvec_reset(con);
1368 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1369 		struct timespec now = CURRENT_TIME;
1370 
1371 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1372 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1373 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1374 				 &con->out_temp_keepalive2);
1375 	} else {
1376 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1377 	}
1378 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1379 }
1380 
1381 /*
1382  * Connection negotiation.
1383  */
1384 
1385 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1386 						int *auth_proto)
1387 {
1388 	struct ceph_auth_handshake *auth;
1389 
1390 	if (!con->ops->get_authorizer) {
1391 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1392 		con->out_connect.authorizer_len = 0;
1393 		return NULL;
1394 	}
1395 
1396 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1397 	if (IS_ERR(auth))
1398 		return auth;
1399 
1400 	con->auth_reply_buf = auth->authorizer_reply_buf;
1401 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1402 	return auth;
1403 }
1404 
1405 /*
1406  * We connected to a peer and are saying hello.
1407  */
1408 static void prepare_write_banner(struct ceph_connection *con)
1409 {
1410 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1411 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1412 					&con->msgr->my_enc_addr);
1413 
1414 	con->out_more = 0;
1415 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1416 }
1417 
1418 static int prepare_write_connect(struct ceph_connection *con)
1419 {
1420 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1421 	int proto;
1422 	int auth_proto;
1423 	struct ceph_auth_handshake *auth;
1424 
1425 	switch (con->peer_name.type) {
1426 	case CEPH_ENTITY_TYPE_MON:
1427 		proto = CEPH_MONC_PROTOCOL;
1428 		break;
1429 	case CEPH_ENTITY_TYPE_OSD:
1430 		proto = CEPH_OSDC_PROTOCOL;
1431 		break;
1432 	case CEPH_ENTITY_TYPE_MDS:
1433 		proto = CEPH_MDSC_PROTOCOL;
1434 		break;
1435 	default:
1436 		BUG();
1437 	}
1438 
1439 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1440 	     con->connect_seq, global_seq, proto);
1441 
1442 	con->out_connect.features =
1443 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1444 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1445 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1446 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1447 	con->out_connect.protocol_version = cpu_to_le32(proto);
1448 	con->out_connect.flags = 0;
1449 
1450 	auth_proto = CEPH_AUTH_UNKNOWN;
1451 	auth = get_connect_authorizer(con, &auth_proto);
1452 	if (IS_ERR(auth))
1453 		return PTR_ERR(auth);
1454 
1455 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1456 	con->out_connect.authorizer_len = auth ?
1457 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1458 
1459 	con_out_kvec_add(con, sizeof (con->out_connect),
1460 					&con->out_connect);
1461 	if (auth && auth->authorizer_buf_len)
1462 		con_out_kvec_add(con, auth->authorizer_buf_len,
1463 					auth->authorizer_buf);
1464 
1465 	con->out_more = 0;
1466 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1467 
1468 	return 0;
1469 }
1470 
1471 /*
1472  * write as much of pending kvecs to the socket as we can.
1473  *  1 -> done
1474  *  0 -> socket full, but more to do
1475  * <0 -> error
1476  */
1477 static int write_partial_kvec(struct ceph_connection *con)
1478 {
1479 	int ret;
1480 
1481 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1482 	while (con->out_kvec_bytes > 0) {
1483 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1484 				       con->out_kvec_left, con->out_kvec_bytes,
1485 				       con->out_more);
1486 		if (ret <= 0)
1487 			goto out;
1488 		con->out_kvec_bytes -= ret;
1489 		if (con->out_kvec_bytes == 0)
1490 			break;            /* done */
1491 
1492 		/* account for full iov entries consumed */
1493 		while (ret >= con->out_kvec_cur->iov_len) {
1494 			BUG_ON(!con->out_kvec_left);
1495 			ret -= con->out_kvec_cur->iov_len;
1496 			con->out_kvec_cur++;
1497 			con->out_kvec_left--;
1498 		}
1499 		/* and for a partially-consumed entry */
1500 		if (ret) {
1501 			con->out_kvec_cur->iov_len -= ret;
1502 			con->out_kvec_cur->iov_base += ret;
1503 		}
1504 	}
1505 	con->out_kvec_left = 0;
1506 	ret = 1;
1507 out:
1508 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1509 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1510 	return ret;  /* done! */
1511 }
1512 
1513 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1514 				unsigned int page_offset,
1515 				unsigned int length)
1516 {
1517 	char *kaddr;
1518 
1519 	kaddr = kmap(page);
1520 	BUG_ON(kaddr == NULL);
1521 	crc = crc32c(crc, kaddr + page_offset, length);
1522 	kunmap(page);
1523 
1524 	return crc;
1525 }
1526 /*
1527  * Write as much message data payload as we can.  If we finish, queue
1528  * up the footer.
1529  *  1 -> done, footer is now queued in out_kvec[].
1530  *  0 -> socket full, but more to do
1531  * <0 -> error
1532  */
1533 static int write_partial_message_data(struct ceph_connection *con)
1534 {
1535 	struct ceph_msg *msg = con->out_msg;
1536 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1537 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1538 	u32 crc;
1539 
1540 	dout("%s %p msg %p\n", __func__, con, msg);
1541 
1542 	if (list_empty(&msg->data))
1543 		return -EINVAL;
1544 
1545 	/*
1546 	 * Iterate through each page that contains data to be
1547 	 * written, and send as much as possible for each.
1548 	 *
1549 	 * If we are calculating the data crc (the default), we will
1550 	 * need to map the page.  If we have no pages, they have
1551 	 * been revoked, so use the zero page.
1552 	 */
1553 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1554 	while (cursor->resid) {
1555 		struct page *page;
1556 		size_t page_offset;
1557 		size_t length;
1558 		bool last_piece;
1559 		bool need_crc;
1560 		int ret;
1561 
1562 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1563 					  &last_piece);
1564 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1565 					length, !last_piece);
1566 		if (ret <= 0) {
1567 			if (do_datacrc)
1568 				msg->footer.data_crc = cpu_to_le32(crc);
1569 
1570 			return ret;
1571 		}
1572 		if (do_datacrc && cursor->need_crc)
1573 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1574 		need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1575 	}
1576 
1577 	dout("%s %p msg %p done\n", __func__, con, msg);
1578 
1579 	/* prepare and queue up footer, too */
1580 	if (do_datacrc)
1581 		msg->footer.data_crc = cpu_to_le32(crc);
1582 	else
1583 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1584 	con_out_kvec_reset(con);
1585 	prepare_write_message_footer(con);
1586 
1587 	return 1;	/* must return > 0 to indicate success */
1588 }
1589 
1590 /*
1591  * write some zeros
1592  */
1593 static int write_partial_skip(struct ceph_connection *con)
1594 {
1595 	int ret;
1596 
1597 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1598 	while (con->out_skip > 0) {
1599 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1600 
1601 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1602 		if (ret <= 0)
1603 			goto out;
1604 		con->out_skip -= ret;
1605 	}
1606 	ret = 1;
1607 out:
1608 	return ret;
1609 }
1610 
1611 /*
1612  * Prepare to read connection handshake, or an ack.
1613  */
1614 static void prepare_read_banner(struct ceph_connection *con)
1615 {
1616 	dout("prepare_read_banner %p\n", con);
1617 	con->in_base_pos = 0;
1618 }
1619 
1620 static void prepare_read_connect(struct ceph_connection *con)
1621 {
1622 	dout("prepare_read_connect %p\n", con);
1623 	con->in_base_pos = 0;
1624 }
1625 
1626 static void prepare_read_ack(struct ceph_connection *con)
1627 {
1628 	dout("prepare_read_ack %p\n", con);
1629 	con->in_base_pos = 0;
1630 }
1631 
1632 static void prepare_read_seq(struct ceph_connection *con)
1633 {
1634 	dout("prepare_read_seq %p\n", con);
1635 	con->in_base_pos = 0;
1636 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1637 }
1638 
1639 static void prepare_read_tag(struct ceph_connection *con)
1640 {
1641 	dout("prepare_read_tag %p\n", con);
1642 	con->in_base_pos = 0;
1643 	con->in_tag = CEPH_MSGR_TAG_READY;
1644 }
1645 
1646 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1647 {
1648 	dout("prepare_read_keepalive_ack %p\n", con);
1649 	con->in_base_pos = 0;
1650 }
1651 
1652 /*
1653  * Prepare to read a message.
1654  */
1655 static int prepare_read_message(struct ceph_connection *con)
1656 {
1657 	dout("prepare_read_message %p\n", con);
1658 	BUG_ON(con->in_msg != NULL);
1659 	con->in_base_pos = 0;
1660 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1661 	return 0;
1662 }
1663 
1664 
1665 static int read_partial(struct ceph_connection *con,
1666 			int end, int size, void *object)
1667 {
1668 	while (con->in_base_pos < end) {
1669 		int left = end - con->in_base_pos;
1670 		int have = size - left;
1671 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1672 		if (ret <= 0)
1673 			return ret;
1674 		con->in_base_pos += ret;
1675 	}
1676 	return 1;
1677 }
1678 
1679 
1680 /*
1681  * Read all or part of the connect-side handshake on a new connection
1682  */
1683 static int read_partial_banner(struct ceph_connection *con)
1684 {
1685 	int size;
1686 	int end;
1687 	int ret;
1688 
1689 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1690 
1691 	/* peer's banner */
1692 	size = strlen(CEPH_BANNER);
1693 	end = size;
1694 	ret = read_partial(con, end, size, con->in_banner);
1695 	if (ret <= 0)
1696 		goto out;
1697 
1698 	size = sizeof (con->actual_peer_addr);
1699 	end += size;
1700 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1701 	if (ret <= 0)
1702 		goto out;
1703 
1704 	size = sizeof (con->peer_addr_for_me);
1705 	end += size;
1706 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1707 	if (ret <= 0)
1708 		goto out;
1709 
1710 out:
1711 	return ret;
1712 }
1713 
1714 static int read_partial_connect(struct ceph_connection *con)
1715 {
1716 	int size;
1717 	int end;
1718 	int ret;
1719 
1720 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1721 
1722 	size = sizeof (con->in_reply);
1723 	end = size;
1724 	ret = read_partial(con, end, size, &con->in_reply);
1725 	if (ret <= 0)
1726 		goto out;
1727 
1728 	size = le32_to_cpu(con->in_reply.authorizer_len);
1729 	end += size;
1730 	ret = read_partial(con, end, size, con->auth_reply_buf);
1731 	if (ret <= 0)
1732 		goto out;
1733 
1734 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1735 	     con, (int)con->in_reply.tag,
1736 	     le32_to_cpu(con->in_reply.connect_seq),
1737 	     le32_to_cpu(con->in_reply.global_seq));
1738 out:
1739 	return ret;
1740 
1741 }
1742 
1743 /*
1744  * Verify the hello banner looks okay.
1745  */
1746 static int verify_hello(struct ceph_connection *con)
1747 {
1748 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1749 		pr_err("connect to %s got bad banner\n",
1750 		       ceph_pr_addr(&con->peer_addr.in_addr));
1751 		con->error_msg = "protocol error, bad banner";
1752 		return -1;
1753 	}
1754 	return 0;
1755 }
1756 
1757 static bool addr_is_blank(struct sockaddr_storage *ss)
1758 {
1759 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1760 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1761 
1762 	switch (ss->ss_family) {
1763 	case AF_INET:
1764 		return addr->s_addr == htonl(INADDR_ANY);
1765 	case AF_INET6:
1766 		return ipv6_addr_any(addr6);
1767 	default:
1768 		return true;
1769 	}
1770 }
1771 
1772 static int addr_port(struct sockaddr_storage *ss)
1773 {
1774 	switch (ss->ss_family) {
1775 	case AF_INET:
1776 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1777 	case AF_INET6:
1778 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1779 	}
1780 	return 0;
1781 }
1782 
1783 static void addr_set_port(struct sockaddr_storage *ss, int p)
1784 {
1785 	switch (ss->ss_family) {
1786 	case AF_INET:
1787 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1788 		break;
1789 	case AF_INET6:
1790 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1791 		break;
1792 	}
1793 }
1794 
1795 /*
1796  * Unlike other *_pton function semantics, zero indicates success.
1797  */
1798 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1799 		char delim, const char **ipend)
1800 {
1801 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1802 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1803 
1804 	memset(ss, 0, sizeof(*ss));
1805 
1806 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1807 		ss->ss_family = AF_INET;
1808 		return 0;
1809 	}
1810 
1811 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1812 		ss->ss_family = AF_INET6;
1813 		return 0;
1814 	}
1815 
1816 	return -EINVAL;
1817 }
1818 
1819 /*
1820  * Extract hostname string and resolve using kernel DNS facility.
1821  */
1822 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1823 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1824 		struct sockaddr_storage *ss, char delim, const char **ipend)
1825 {
1826 	const char *end, *delim_p;
1827 	char *colon_p, *ip_addr = NULL;
1828 	int ip_len, ret;
1829 
1830 	/*
1831 	 * The end of the hostname occurs immediately preceding the delimiter or
1832 	 * the port marker (':') where the delimiter takes precedence.
1833 	 */
1834 	delim_p = memchr(name, delim, namelen);
1835 	colon_p = memchr(name, ':', namelen);
1836 
1837 	if (delim_p && colon_p)
1838 		end = delim_p < colon_p ? delim_p : colon_p;
1839 	else if (!delim_p && colon_p)
1840 		end = colon_p;
1841 	else {
1842 		end = delim_p;
1843 		if (!end) /* case: hostname:/ */
1844 			end = name + namelen;
1845 	}
1846 
1847 	if (end <= name)
1848 		return -EINVAL;
1849 
1850 	/* do dns_resolve upcall */
1851 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1852 	if (ip_len > 0)
1853 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1854 	else
1855 		ret = -ESRCH;
1856 
1857 	kfree(ip_addr);
1858 
1859 	*ipend = end;
1860 
1861 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1862 			ret, ret ? "failed" : ceph_pr_addr(ss));
1863 
1864 	return ret;
1865 }
1866 #else
1867 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1868 		struct sockaddr_storage *ss, char delim, const char **ipend)
1869 {
1870 	return -EINVAL;
1871 }
1872 #endif
1873 
1874 /*
1875  * Parse a server name (IP or hostname). If a valid IP address is not found
1876  * then try to extract a hostname to resolve using userspace DNS upcall.
1877  */
1878 static int ceph_parse_server_name(const char *name, size_t namelen,
1879 			struct sockaddr_storage *ss, char delim, const char **ipend)
1880 {
1881 	int ret;
1882 
1883 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1884 	if (ret)
1885 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1886 
1887 	return ret;
1888 }
1889 
1890 /*
1891  * Parse an ip[:port] list into an addr array.  Use the default
1892  * monitor port if a port isn't specified.
1893  */
1894 int ceph_parse_ips(const char *c, const char *end,
1895 		   struct ceph_entity_addr *addr,
1896 		   int max_count, int *count)
1897 {
1898 	int i, ret = -EINVAL;
1899 	const char *p = c;
1900 
1901 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1902 	for (i = 0; i < max_count; i++) {
1903 		const char *ipend;
1904 		struct sockaddr_storage *ss = &addr[i].in_addr;
1905 		int port;
1906 		char delim = ',';
1907 
1908 		if (*p == '[') {
1909 			delim = ']';
1910 			p++;
1911 		}
1912 
1913 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1914 		if (ret)
1915 			goto bad;
1916 		ret = -EINVAL;
1917 
1918 		p = ipend;
1919 
1920 		if (delim == ']') {
1921 			if (*p != ']') {
1922 				dout("missing matching ']'\n");
1923 				goto bad;
1924 			}
1925 			p++;
1926 		}
1927 
1928 		/* port? */
1929 		if (p < end && *p == ':') {
1930 			port = 0;
1931 			p++;
1932 			while (p < end && *p >= '0' && *p <= '9') {
1933 				port = (port * 10) + (*p - '0');
1934 				p++;
1935 			}
1936 			if (port == 0)
1937 				port = CEPH_MON_PORT;
1938 			else if (port > 65535)
1939 				goto bad;
1940 		} else {
1941 			port = CEPH_MON_PORT;
1942 		}
1943 
1944 		addr_set_port(ss, port);
1945 
1946 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1947 
1948 		if (p == end)
1949 			break;
1950 		if (*p != ',')
1951 			goto bad;
1952 		p++;
1953 	}
1954 
1955 	if (p != end)
1956 		goto bad;
1957 
1958 	if (count)
1959 		*count = i + 1;
1960 	return 0;
1961 
1962 bad:
1963 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL(ceph_parse_ips);
1967 
1968 static int process_banner(struct ceph_connection *con)
1969 {
1970 	dout("process_banner on %p\n", con);
1971 
1972 	if (verify_hello(con) < 0)
1973 		return -1;
1974 
1975 	ceph_decode_addr(&con->actual_peer_addr);
1976 	ceph_decode_addr(&con->peer_addr_for_me);
1977 
1978 	/*
1979 	 * Make sure the other end is who we wanted.  note that the other
1980 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1981 	 * them the benefit of the doubt.
1982 	 */
1983 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1984 		   sizeof(con->peer_addr)) != 0 &&
1985 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1986 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1987 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1988 			ceph_pr_addr(&con->peer_addr.in_addr),
1989 			(int)le32_to_cpu(con->peer_addr.nonce),
1990 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1991 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1992 		con->error_msg = "wrong peer at address";
1993 		return -1;
1994 	}
1995 
1996 	/*
1997 	 * did we learn our address?
1998 	 */
1999 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2000 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2001 
2002 		memcpy(&con->msgr->inst.addr.in_addr,
2003 		       &con->peer_addr_for_me.in_addr,
2004 		       sizeof(con->peer_addr_for_me.in_addr));
2005 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2006 		encode_my_addr(con->msgr);
2007 		dout("process_banner learned my addr is %s\n",
2008 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2009 	}
2010 
2011 	return 0;
2012 }
2013 
2014 static int process_connect(struct ceph_connection *con)
2015 {
2016 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2017 	u64 req_feat = from_msgr(con->msgr)->required_features;
2018 	u64 server_feat = ceph_sanitize_features(
2019 				le64_to_cpu(con->in_reply.features));
2020 	int ret;
2021 
2022 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2023 
2024 	if (con->auth_reply_buf) {
2025 		/*
2026 		 * Any connection that defines ->get_authorizer()
2027 		 * should also define ->verify_authorizer_reply().
2028 		 * See get_connect_authorizer().
2029 		 */
2030 		ret = con->ops->verify_authorizer_reply(con);
2031 		if (ret < 0) {
2032 			con->error_msg = "bad authorize reply";
2033 			return ret;
2034 		}
2035 	}
2036 
2037 	switch (con->in_reply.tag) {
2038 	case CEPH_MSGR_TAG_FEATURES:
2039 		pr_err("%s%lld %s feature set mismatch,"
2040 		       " my %llx < server's %llx, missing %llx\n",
2041 		       ENTITY_NAME(con->peer_name),
2042 		       ceph_pr_addr(&con->peer_addr.in_addr),
2043 		       sup_feat, server_feat, server_feat & ~sup_feat);
2044 		con->error_msg = "missing required protocol features";
2045 		reset_connection(con);
2046 		return -1;
2047 
2048 	case CEPH_MSGR_TAG_BADPROTOVER:
2049 		pr_err("%s%lld %s protocol version mismatch,"
2050 		       " my %d != server's %d\n",
2051 		       ENTITY_NAME(con->peer_name),
2052 		       ceph_pr_addr(&con->peer_addr.in_addr),
2053 		       le32_to_cpu(con->out_connect.protocol_version),
2054 		       le32_to_cpu(con->in_reply.protocol_version));
2055 		con->error_msg = "protocol version mismatch";
2056 		reset_connection(con);
2057 		return -1;
2058 
2059 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2060 		con->auth_retry++;
2061 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2062 		     con->auth_retry);
2063 		if (con->auth_retry == 2) {
2064 			con->error_msg = "connect authorization failure";
2065 			return -1;
2066 		}
2067 		con_out_kvec_reset(con);
2068 		ret = prepare_write_connect(con);
2069 		if (ret < 0)
2070 			return ret;
2071 		prepare_read_connect(con);
2072 		break;
2073 
2074 	case CEPH_MSGR_TAG_RESETSESSION:
2075 		/*
2076 		 * If we connected with a large connect_seq but the peer
2077 		 * has no record of a session with us (no connection, or
2078 		 * connect_seq == 0), they will send RESETSESION to indicate
2079 		 * that they must have reset their session, and may have
2080 		 * dropped messages.
2081 		 */
2082 		dout("process_connect got RESET peer seq %u\n",
2083 		     le32_to_cpu(con->in_reply.connect_seq));
2084 		pr_err("%s%lld %s connection reset\n",
2085 		       ENTITY_NAME(con->peer_name),
2086 		       ceph_pr_addr(&con->peer_addr.in_addr));
2087 		reset_connection(con);
2088 		con_out_kvec_reset(con);
2089 		ret = prepare_write_connect(con);
2090 		if (ret < 0)
2091 			return ret;
2092 		prepare_read_connect(con);
2093 
2094 		/* Tell ceph about it. */
2095 		mutex_unlock(&con->mutex);
2096 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2097 		if (con->ops->peer_reset)
2098 			con->ops->peer_reset(con);
2099 		mutex_lock(&con->mutex);
2100 		if (con->state != CON_STATE_NEGOTIATING)
2101 			return -EAGAIN;
2102 		break;
2103 
2104 	case CEPH_MSGR_TAG_RETRY_SESSION:
2105 		/*
2106 		 * If we sent a smaller connect_seq than the peer has, try
2107 		 * again with a larger value.
2108 		 */
2109 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2110 		     le32_to_cpu(con->out_connect.connect_seq),
2111 		     le32_to_cpu(con->in_reply.connect_seq));
2112 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2113 		con_out_kvec_reset(con);
2114 		ret = prepare_write_connect(con);
2115 		if (ret < 0)
2116 			return ret;
2117 		prepare_read_connect(con);
2118 		break;
2119 
2120 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2121 		/*
2122 		 * If we sent a smaller global_seq than the peer has, try
2123 		 * again with a larger value.
2124 		 */
2125 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2126 		     con->peer_global_seq,
2127 		     le32_to_cpu(con->in_reply.global_seq));
2128 		get_global_seq(con->msgr,
2129 			       le32_to_cpu(con->in_reply.global_seq));
2130 		con_out_kvec_reset(con);
2131 		ret = prepare_write_connect(con);
2132 		if (ret < 0)
2133 			return ret;
2134 		prepare_read_connect(con);
2135 		break;
2136 
2137 	case CEPH_MSGR_TAG_SEQ:
2138 	case CEPH_MSGR_TAG_READY:
2139 		if (req_feat & ~server_feat) {
2140 			pr_err("%s%lld %s protocol feature mismatch,"
2141 			       " my required %llx > server's %llx, need %llx\n",
2142 			       ENTITY_NAME(con->peer_name),
2143 			       ceph_pr_addr(&con->peer_addr.in_addr),
2144 			       req_feat, server_feat, req_feat & ~server_feat);
2145 			con->error_msg = "missing required protocol features";
2146 			reset_connection(con);
2147 			return -1;
2148 		}
2149 
2150 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2151 		con->state = CON_STATE_OPEN;
2152 		con->auth_retry = 0;    /* we authenticated; clear flag */
2153 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2154 		con->connect_seq++;
2155 		con->peer_features = server_feat;
2156 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2157 		     con->peer_global_seq,
2158 		     le32_to_cpu(con->in_reply.connect_seq),
2159 		     con->connect_seq);
2160 		WARN_ON(con->connect_seq !=
2161 			le32_to_cpu(con->in_reply.connect_seq));
2162 
2163 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2164 			con_flag_set(con, CON_FLAG_LOSSYTX);
2165 
2166 		con->delay = 0;      /* reset backoff memory */
2167 
2168 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2169 			prepare_write_seq(con);
2170 			prepare_read_seq(con);
2171 		} else {
2172 			prepare_read_tag(con);
2173 		}
2174 		break;
2175 
2176 	case CEPH_MSGR_TAG_WAIT:
2177 		/*
2178 		 * If there is a connection race (we are opening
2179 		 * connections to each other), one of us may just have
2180 		 * to WAIT.  This shouldn't happen if we are the
2181 		 * client.
2182 		 */
2183 		con->error_msg = "protocol error, got WAIT as client";
2184 		return -1;
2185 
2186 	default:
2187 		con->error_msg = "protocol error, garbage tag during connect";
2188 		return -1;
2189 	}
2190 	return 0;
2191 }
2192 
2193 
2194 /*
2195  * read (part of) an ack
2196  */
2197 static int read_partial_ack(struct ceph_connection *con)
2198 {
2199 	int size = sizeof (con->in_temp_ack);
2200 	int end = size;
2201 
2202 	return read_partial(con, end, size, &con->in_temp_ack);
2203 }
2204 
2205 /*
2206  * We can finally discard anything that's been acked.
2207  */
2208 static void process_ack(struct ceph_connection *con)
2209 {
2210 	struct ceph_msg *m;
2211 	u64 ack = le64_to_cpu(con->in_temp_ack);
2212 	u64 seq;
2213 
2214 	while (!list_empty(&con->out_sent)) {
2215 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2216 				     list_head);
2217 		seq = le64_to_cpu(m->hdr.seq);
2218 		if (seq > ack)
2219 			break;
2220 		dout("got ack for seq %llu type %d at %p\n", seq,
2221 		     le16_to_cpu(m->hdr.type), m);
2222 		m->ack_stamp = jiffies;
2223 		ceph_msg_remove(m);
2224 	}
2225 	prepare_read_tag(con);
2226 }
2227 
2228 
2229 static int read_partial_message_section(struct ceph_connection *con,
2230 					struct kvec *section,
2231 					unsigned int sec_len, u32 *crc)
2232 {
2233 	int ret, left;
2234 
2235 	BUG_ON(!section);
2236 
2237 	while (section->iov_len < sec_len) {
2238 		BUG_ON(section->iov_base == NULL);
2239 		left = sec_len - section->iov_len;
2240 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2241 				       section->iov_len, left);
2242 		if (ret <= 0)
2243 			return ret;
2244 		section->iov_len += ret;
2245 	}
2246 	if (section->iov_len == sec_len)
2247 		*crc = crc32c(0, section->iov_base, section->iov_len);
2248 
2249 	return 1;
2250 }
2251 
2252 static int read_partial_msg_data(struct ceph_connection *con)
2253 {
2254 	struct ceph_msg *msg = con->in_msg;
2255 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2256 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2257 	struct page *page;
2258 	size_t page_offset;
2259 	size_t length;
2260 	u32 crc = 0;
2261 	int ret;
2262 
2263 	BUG_ON(!msg);
2264 	if (list_empty(&msg->data))
2265 		return -EIO;
2266 
2267 	if (do_datacrc)
2268 		crc = con->in_data_crc;
2269 	while (cursor->resid) {
2270 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2271 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2272 		if (ret <= 0) {
2273 			if (do_datacrc)
2274 				con->in_data_crc = crc;
2275 
2276 			return ret;
2277 		}
2278 
2279 		if (do_datacrc)
2280 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2281 		(void) ceph_msg_data_advance(cursor, (size_t)ret);
2282 	}
2283 	if (do_datacrc)
2284 		con->in_data_crc = crc;
2285 
2286 	return 1;	/* must return > 0 to indicate success */
2287 }
2288 
2289 /*
2290  * read (part of) a message.
2291  */
2292 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2293 
2294 static int read_partial_message(struct ceph_connection *con)
2295 {
2296 	struct ceph_msg *m = con->in_msg;
2297 	int size;
2298 	int end;
2299 	int ret;
2300 	unsigned int front_len, middle_len, data_len;
2301 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2302 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2303 	u64 seq;
2304 	u32 crc;
2305 
2306 	dout("read_partial_message con %p msg %p\n", con, m);
2307 
2308 	/* header */
2309 	size = sizeof (con->in_hdr);
2310 	end = size;
2311 	ret = read_partial(con, end, size, &con->in_hdr);
2312 	if (ret <= 0)
2313 		return ret;
2314 
2315 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2316 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2317 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2318 		       crc, con->in_hdr.crc);
2319 		return -EBADMSG;
2320 	}
2321 
2322 	front_len = le32_to_cpu(con->in_hdr.front_len);
2323 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2324 		return -EIO;
2325 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2326 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2327 		return -EIO;
2328 	data_len = le32_to_cpu(con->in_hdr.data_len);
2329 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2330 		return -EIO;
2331 
2332 	/* verify seq# */
2333 	seq = le64_to_cpu(con->in_hdr.seq);
2334 	if ((s64)seq - (s64)con->in_seq < 1) {
2335 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2336 			ENTITY_NAME(con->peer_name),
2337 			ceph_pr_addr(&con->peer_addr.in_addr),
2338 			seq, con->in_seq + 1);
2339 		con->in_base_pos = -front_len - middle_len - data_len -
2340 			sizeof_footer(con);
2341 		con->in_tag = CEPH_MSGR_TAG_READY;
2342 		return 1;
2343 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2344 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2345 		       seq, con->in_seq + 1);
2346 		con->error_msg = "bad message sequence # for incoming message";
2347 		return -EBADE;
2348 	}
2349 
2350 	/* allocate message? */
2351 	if (!con->in_msg) {
2352 		int skip = 0;
2353 
2354 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2355 		     front_len, data_len);
2356 		ret = ceph_con_in_msg_alloc(con, &skip);
2357 		if (ret < 0)
2358 			return ret;
2359 
2360 		BUG_ON(!con->in_msg ^ skip);
2361 		if (skip) {
2362 			/* skip this message */
2363 			dout("alloc_msg said skip message\n");
2364 			con->in_base_pos = -front_len - middle_len - data_len -
2365 				sizeof_footer(con);
2366 			con->in_tag = CEPH_MSGR_TAG_READY;
2367 			con->in_seq++;
2368 			return 1;
2369 		}
2370 
2371 		BUG_ON(!con->in_msg);
2372 		BUG_ON(con->in_msg->con != con);
2373 		m = con->in_msg;
2374 		m->front.iov_len = 0;    /* haven't read it yet */
2375 		if (m->middle)
2376 			m->middle->vec.iov_len = 0;
2377 
2378 		/* prepare for data payload, if any */
2379 
2380 		if (data_len)
2381 			prepare_message_data(con->in_msg, data_len);
2382 	}
2383 
2384 	/* front */
2385 	ret = read_partial_message_section(con, &m->front, front_len,
2386 					   &con->in_front_crc);
2387 	if (ret <= 0)
2388 		return ret;
2389 
2390 	/* middle */
2391 	if (m->middle) {
2392 		ret = read_partial_message_section(con, &m->middle->vec,
2393 						   middle_len,
2394 						   &con->in_middle_crc);
2395 		if (ret <= 0)
2396 			return ret;
2397 	}
2398 
2399 	/* (page) data */
2400 	if (data_len) {
2401 		ret = read_partial_msg_data(con);
2402 		if (ret <= 0)
2403 			return ret;
2404 	}
2405 
2406 	/* footer */
2407 	size = sizeof_footer(con);
2408 	end += size;
2409 	ret = read_partial(con, end, size, &m->footer);
2410 	if (ret <= 0)
2411 		return ret;
2412 
2413 	if (!need_sign) {
2414 		m->footer.flags = m->old_footer.flags;
2415 		m->footer.sig = 0;
2416 	}
2417 
2418 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2419 	     m, front_len, m->footer.front_crc, middle_len,
2420 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2421 
2422 	/* crc ok? */
2423 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2424 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2425 		       m, con->in_front_crc, m->footer.front_crc);
2426 		return -EBADMSG;
2427 	}
2428 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2429 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2430 		       m, con->in_middle_crc, m->footer.middle_crc);
2431 		return -EBADMSG;
2432 	}
2433 	if (do_datacrc &&
2434 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2435 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2436 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2437 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2438 		return -EBADMSG;
2439 	}
2440 
2441 	if (need_sign && con->ops->check_message_signature &&
2442 	    con->ops->check_message_signature(m)) {
2443 		pr_err("read_partial_message %p signature check failed\n", m);
2444 		return -EBADMSG;
2445 	}
2446 
2447 	return 1; /* done! */
2448 }
2449 
2450 /*
2451  * Process message.  This happens in the worker thread.  The callback should
2452  * be careful not to do anything that waits on other incoming messages or it
2453  * may deadlock.
2454  */
2455 static void process_message(struct ceph_connection *con)
2456 {
2457 	struct ceph_msg *msg = con->in_msg;
2458 
2459 	BUG_ON(con->in_msg->con != con);
2460 	con->in_msg = NULL;
2461 
2462 	/* if first message, set peer_name */
2463 	if (con->peer_name.type == 0)
2464 		con->peer_name = msg->hdr.src;
2465 
2466 	con->in_seq++;
2467 	mutex_unlock(&con->mutex);
2468 
2469 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2470 	     msg, le64_to_cpu(msg->hdr.seq),
2471 	     ENTITY_NAME(msg->hdr.src),
2472 	     le16_to_cpu(msg->hdr.type),
2473 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2474 	     le32_to_cpu(msg->hdr.front_len),
2475 	     le32_to_cpu(msg->hdr.data_len),
2476 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2477 	con->ops->dispatch(con, msg);
2478 
2479 	mutex_lock(&con->mutex);
2480 }
2481 
2482 static int read_keepalive_ack(struct ceph_connection *con)
2483 {
2484 	struct ceph_timespec ceph_ts;
2485 	size_t size = sizeof(ceph_ts);
2486 	int ret = read_partial(con, size, size, &ceph_ts);
2487 	if (ret <= 0)
2488 		return ret;
2489 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2490 	prepare_read_tag(con);
2491 	return 1;
2492 }
2493 
2494 /*
2495  * Write something to the socket.  Called in a worker thread when the
2496  * socket appears to be writeable and we have something ready to send.
2497  */
2498 static int try_write(struct ceph_connection *con)
2499 {
2500 	int ret = 1;
2501 
2502 	dout("try_write start %p state %lu\n", con, con->state);
2503 
2504 more:
2505 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2506 
2507 	/* open the socket first? */
2508 	if (con->state == CON_STATE_PREOPEN) {
2509 		BUG_ON(con->sock);
2510 		con->state = CON_STATE_CONNECTING;
2511 
2512 		con_out_kvec_reset(con);
2513 		prepare_write_banner(con);
2514 		prepare_read_banner(con);
2515 
2516 		BUG_ON(con->in_msg);
2517 		con->in_tag = CEPH_MSGR_TAG_READY;
2518 		dout("try_write initiating connect on %p new state %lu\n",
2519 		     con, con->state);
2520 		ret = ceph_tcp_connect(con);
2521 		if (ret < 0) {
2522 			con->error_msg = "connect error";
2523 			goto out;
2524 		}
2525 	}
2526 
2527 more_kvec:
2528 	/* kvec data queued? */
2529 	if (con->out_kvec_left) {
2530 		ret = write_partial_kvec(con);
2531 		if (ret <= 0)
2532 			goto out;
2533 	}
2534 	if (con->out_skip) {
2535 		ret = write_partial_skip(con);
2536 		if (ret <= 0)
2537 			goto out;
2538 	}
2539 
2540 	/* msg pages? */
2541 	if (con->out_msg) {
2542 		if (con->out_msg_done) {
2543 			ceph_msg_put(con->out_msg);
2544 			con->out_msg = NULL;   /* we're done with this one */
2545 			goto do_next;
2546 		}
2547 
2548 		ret = write_partial_message_data(con);
2549 		if (ret == 1)
2550 			goto more_kvec;  /* we need to send the footer, too! */
2551 		if (ret == 0)
2552 			goto out;
2553 		if (ret < 0) {
2554 			dout("try_write write_partial_message_data err %d\n",
2555 			     ret);
2556 			goto out;
2557 		}
2558 	}
2559 
2560 do_next:
2561 	if (con->state == CON_STATE_OPEN) {
2562 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2563 			prepare_write_keepalive(con);
2564 			goto more;
2565 		}
2566 		/* is anything else pending? */
2567 		if (!list_empty(&con->out_queue)) {
2568 			prepare_write_message(con);
2569 			goto more;
2570 		}
2571 		if (con->in_seq > con->in_seq_acked) {
2572 			prepare_write_ack(con);
2573 			goto more;
2574 		}
2575 	}
2576 
2577 	/* Nothing to do! */
2578 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2579 	dout("try_write nothing else to write.\n");
2580 	ret = 0;
2581 out:
2582 	dout("try_write done on %p ret %d\n", con, ret);
2583 	return ret;
2584 }
2585 
2586 
2587 
2588 /*
2589  * Read what we can from the socket.
2590  */
2591 static int try_read(struct ceph_connection *con)
2592 {
2593 	int ret = -1;
2594 
2595 more:
2596 	dout("try_read start on %p state %lu\n", con, con->state);
2597 	if (con->state != CON_STATE_CONNECTING &&
2598 	    con->state != CON_STATE_NEGOTIATING &&
2599 	    con->state != CON_STATE_OPEN)
2600 		return 0;
2601 
2602 	BUG_ON(!con->sock);
2603 
2604 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2605 	     con->in_base_pos);
2606 
2607 	if (con->state == CON_STATE_CONNECTING) {
2608 		dout("try_read connecting\n");
2609 		ret = read_partial_banner(con);
2610 		if (ret <= 0)
2611 			goto out;
2612 		ret = process_banner(con);
2613 		if (ret < 0)
2614 			goto out;
2615 
2616 		con->state = CON_STATE_NEGOTIATING;
2617 
2618 		/*
2619 		 * Received banner is good, exchange connection info.
2620 		 * Do not reset out_kvec, as sending our banner raced
2621 		 * with receiving peer banner after connect completed.
2622 		 */
2623 		ret = prepare_write_connect(con);
2624 		if (ret < 0)
2625 			goto out;
2626 		prepare_read_connect(con);
2627 
2628 		/* Send connection info before awaiting response */
2629 		goto out;
2630 	}
2631 
2632 	if (con->state == CON_STATE_NEGOTIATING) {
2633 		dout("try_read negotiating\n");
2634 		ret = read_partial_connect(con);
2635 		if (ret <= 0)
2636 			goto out;
2637 		ret = process_connect(con);
2638 		if (ret < 0)
2639 			goto out;
2640 		goto more;
2641 	}
2642 
2643 	WARN_ON(con->state != CON_STATE_OPEN);
2644 
2645 	if (con->in_base_pos < 0) {
2646 		/*
2647 		 * skipping + discarding content.
2648 		 *
2649 		 * FIXME: there must be a better way to do this!
2650 		 */
2651 		static char buf[SKIP_BUF_SIZE];
2652 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2653 
2654 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2655 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2656 		if (ret <= 0)
2657 			goto out;
2658 		con->in_base_pos += ret;
2659 		if (con->in_base_pos)
2660 			goto more;
2661 	}
2662 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2663 		/*
2664 		 * what's next?
2665 		 */
2666 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2667 		if (ret <= 0)
2668 			goto out;
2669 		dout("try_read got tag %d\n", (int)con->in_tag);
2670 		switch (con->in_tag) {
2671 		case CEPH_MSGR_TAG_MSG:
2672 			prepare_read_message(con);
2673 			break;
2674 		case CEPH_MSGR_TAG_ACK:
2675 			prepare_read_ack(con);
2676 			break;
2677 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2678 			prepare_read_keepalive_ack(con);
2679 			break;
2680 		case CEPH_MSGR_TAG_CLOSE:
2681 			con_close_socket(con);
2682 			con->state = CON_STATE_CLOSED;
2683 			goto out;
2684 		default:
2685 			goto bad_tag;
2686 		}
2687 	}
2688 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2689 		ret = read_partial_message(con);
2690 		if (ret <= 0) {
2691 			switch (ret) {
2692 			case -EBADMSG:
2693 				con->error_msg = "bad crc/signature";
2694 				/* fall through */
2695 			case -EBADE:
2696 				ret = -EIO;
2697 				break;
2698 			case -EIO:
2699 				con->error_msg = "io error";
2700 				break;
2701 			}
2702 			goto out;
2703 		}
2704 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2705 			goto more;
2706 		process_message(con);
2707 		if (con->state == CON_STATE_OPEN)
2708 			prepare_read_tag(con);
2709 		goto more;
2710 	}
2711 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2712 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2713 		/*
2714 		 * the final handshake seq exchange is semantically
2715 		 * equivalent to an ACK
2716 		 */
2717 		ret = read_partial_ack(con);
2718 		if (ret <= 0)
2719 			goto out;
2720 		process_ack(con);
2721 		goto more;
2722 	}
2723 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2724 		ret = read_keepalive_ack(con);
2725 		if (ret <= 0)
2726 			goto out;
2727 		goto more;
2728 	}
2729 
2730 out:
2731 	dout("try_read done on %p ret %d\n", con, ret);
2732 	return ret;
2733 
2734 bad_tag:
2735 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2736 	con->error_msg = "protocol error, garbage tag";
2737 	ret = -1;
2738 	goto out;
2739 }
2740 
2741 
2742 /*
2743  * Atomically queue work on a connection after the specified delay.
2744  * Bump @con reference to avoid races with connection teardown.
2745  * Returns 0 if work was queued, or an error code otherwise.
2746  */
2747 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2748 {
2749 	if (!con->ops->get(con)) {
2750 		dout("%s %p ref count 0\n", __func__, con);
2751 		return -ENOENT;
2752 	}
2753 
2754 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2755 		dout("%s %p - already queued\n", __func__, con);
2756 		con->ops->put(con);
2757 		return -EBUSY;
2758 	}
2759 
2760 	dout("%s %p %lu\n", __func__, con, delay);
2761 	return 0;
2762 }
2763 
2764 static void queue_con(struct ceph_connection *con)
2765 {
2766 	(void) queue_con_delay(con, 0);
2767 }
2768 
2769 static void cancel_con(struct ceph_connection *con)
2770 {
2771 	if (cancel_delayed_work(&con->work)) {
2772 		dout("%s %p\n", __func__, con);
2773 		con->ops->put(con);
2774 	}
2775 }
2776 
2777 static bool con_sock_closed(struct ceph_connection *con)
2778 {
2779 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2780 		return false;
2781 
2782 #define CASE(x)								\
2783 	case CON_STATE_ ## x:						\
2784 		con->error_msg = "socket closed (con state " #x ")";	\
2785 		break;
2786 
2787 	switch (con->state) {
2788 	CASE(CLOSED);
2789 	CASE(PREOPEN);
2790 	CASE(CONNECTING);
2791 	CASE(NEGOTIATING);
2792 	CASE(OPEN);
2793 	CASE(STANDBY);
2794 	default:
2795 		pr_warn("%s con %p unrecognized state %lu\n",
2796 			__func__, con, con->state);
2797 		con->error_msg = "unrecognized con state";
2798 		BUG();
2799 		break;
2800 	}
2801 #undef CASE
2802 
2803 	return true;
2804 }
2805 
2806 static bool con_backoff(struct ceph_connection *con)
2807 {
2808 	int ret;
2809 
2810 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2811 		return false;
2812 
2813 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2814 	if (ret) {
2815 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2816 			con, con->delay);
2817 		BUG_ON(ret == -ENOENT);
2818 		con_flag_set(con, CON_FLAG_BACKOFF);
2819 	}
2820 
2821 	return true;
2822 }
2823 
2824 /* Finish fault handling; con->mutex must *not* be held here */
2825 
2826 static void con_fault_finish(struct ceph_connection *con)
2827 {
2828 	dout("%s %p\n", __func__, con);
2829 
2830 	/*
2831 	 * in case we faulted due to authentication, invalidate our
2832 	 * current tickets so that we can get new ones.
2833 	 */
2834 	if (con->auth_retry) {
2835 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2836 		if (con->ops->invalidate_authorizer)
2837 			con->ops->invalidate_authorizer(con);
2838 		con->auth_retry = 0;
2839 	}
2840 
2841 	if (con->ops->fault)
2842 		con->ops->fault(con);
2843 }
2844 
2845 /*
2846  * Do some work on a connection.  Drop a connection ref when we're done.
2847  */
2848 static void ceph_con_workfn(struct work_struct *work)
2849 {
2850 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2851 						   work.work);
2852 	bool fault;
2853 
2854 	mutex_lock(&con->mutex);
2855 	while (true) {
2856 		int ret;
2857 
2858 		if ((fault = con_sock_closed(con))) {
2859 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2860 			break;
2861 		}
2862 		if (con_backoff(con)) {
2863 			dout("%s: con %p BACKOFF\n", __func__, con);
2864 			break;
2865 		}
2866 		if (con->state == CON_STATE_STANDBY) {
2867 			dout("%s: con %p STANDBY\n", __func__, con);
2868 			break;
2869 		}
2870 		if (con->state == CON_STATE_CLOSED) {
2871 			dout("%s: con %p CLOSED\n", __func__, con);
2872 			BUG_ON(con->sock);
2873 			break;
2874 		}
2875 		if (con->state == CON_STATE_PREOPEN) {
2876 			dout("%s: con %p PREOPEN\n", __func__, con);
2877 			BUG_ON(con->sock);
2878 		}
2879 
2880 		ret = try_read(con);
2881 		if (ret < 0) {
2882 			if (ret == -EAGAIN)
2883 				continue;
2884 			if (!con->error_msg)
2885 				con->error_msg = "socket error on read";
2886 			fault = true;
2887 			break;
2888 		}
2889 
2890 		ret = try_write(con);
2891 		if (ret < 0) {
2892 			if (ret == -EAGAIN)
2893 				continue;
2894 			if (!con->error_msg)
2895 				con->error_msg = "socket error on write";
2896 			fault = true;
2897 		}
2898 
2899 		break;	/* If we make it to here, we're done */
2900 	}
2901 	if (fault)
2902 		con_fault(con);
2903 	mutex_unlock(&con->mutex);
2904 
2905 	if (fault)
2906 		con_fault_finish(con);
2907 
2908 	con->ops->put(con);
2909 }
2910 
2911 /*
2912  * Generic error/fault handler.  A retry mechanism is used with
2913  * exponential backoff
2914  */
2915 static void con_fault(struct ceph_connection *con)
2916 {
2917 	dout("fault %p state %lu to peer %s\n",
2918 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2919 
2920 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2921 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2922 	con->error_msg = NULL;
2923 
2924 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2925 	       con->state != CON_STATE_NEGOTIATING &&
2926 	       con->state != CON_STATE_OPEN);
2927 
2928 	con_close_socket(con);
2929 
2930 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2931 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2932 		con->state = CON_STATE_CLOSED;
2933 		return;
2934 	}
2935 
2936 	if (con->in_msg) {
2937 		BUG_ON(con->in_msg->con != con);
2938 		ceph_msg_put(con->in_msg);
2939 		con->in_msg = NULL;
2940 	}
2941 
2942 	/* Requeue anything that hasn't been acked */
2943 	list_splice_init(&con->out_sent, &con->out_queue);
2944 
2945 	/* If there are no messages queued or keepalive pending, place
2946 	 * the connection in a STANDBY state */
2947 	if (list_empty(&con->out_queue) &&
2948 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2949 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2950 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2951 		con->state = CON_STATE_STANDBY;
2952 	} else {
2953 		/* retry after a delay. */
2954 		con->state = CON_STATE_PREOPEN;
2955 		if (con->delay == 0)
2956 			con->delay = BASE_DELAY_INTERVAL;
2957 		else if (con->delay < MAX_DELAY_INTERVAL)
2958 			con->delay *= 2;
2959 		con_flag_set(con, CON_FLAG_BACKOFF);
2960 		queue_con(con);
2961 	}
2962 }
2963 
2964 
2965 
2966 /*
2967  * initialize a new messenger instance
2968  */
2969 void ceph_messenger_init(struct ceph_messenger *msgr,
2970 			 struct ceph_entity_addr *myaddr)
2971 {
2972 	spin_lock_init(&msgr->global_seq_lock);
2973 
2974 	if (myaddr)
2975 		msgr->inst.addr = *myaddr;
2976 
2977 	/* select a random nonce */
2978 	msgr->inst.addr.type = 0;
2979 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2980 	encode_my_addr(msgr);
2981 
2982 	atomic_set(&msgr->stopping, 0);
2983 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2984 
2985 	dout("%s %p\n", __func__, msgr);
2986 }
2987 EXPORT_SYMBOL(ceph_messenger_init);
2988 
2989 void ceph_messenger_fini(struct ceph_messenger *msgr)
2990 {
2991 	put_net(read_pnet(&msgr->net));
2992 }
2993 EXPORT_SYMBOL(ceph_messenger_fini);
2994 
2995 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
2996 {
2997 	if (msg->con)
2998 		msg->con->ops->put(msg->con);
2999 
3000 	msg->con = con ? con->ops->get(con) : NULL;
3001 	BUG_ON(msg->con != con);
3002 }
3003 
3004 static void clear_standby(struct ceph_connection *con)
3005 {
3006 	/* come back from STANDBY? */
3007 	if (con->state == CON_STATE_STANDBY) {
3008 		dout("clear_standby %p and ++connect_seq\n", con);
3009 		con->state = CON_STATE_PREOPEN;
3010 		con->connect_seq++;
3011 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3012 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3013 	}
3014 }
3015 
3016 /*
3017  * Queue up an outgoing message on the given connection.
3018  */
3019 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3020 {
3021 	/* set src+dst */
3022 	msg->hdr.src = con->msgr->inst.name;
3023 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3024 	msg->needs_out_seq = true;
3025 
3026 	mutex_lock(&con->mutex);
3027 
3028 	if (con->state == CON_STATE_CLOSED) {
3029 		dout("con_send %p closed, dropping %p\n", con, msg);
3030 		ceph_msg_put(msg);
3031 		mutex_unlock(&con->mutex);
3032 		return;
3033 	}
3034 
3035 	msg_con_set(msg, con);
3036 
3037 	BUG_ON(!list_empty(&msg->list_head));
3038 	list_add_tail(&msg->list_head, &con->out_queue);
3039 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3040 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3041 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3042 	     le32_to_cpu(msg->hdr.front_len),
3043 	     le32_to_cpu(msg->hdr.middle_len),
3044 	     le32_to_cpu(msg->hdr.data_len));
3045 
3046 	clear_standby(con);
3047 	mutex_unlock(&con->mutex);
3048 
3049 	/* if there wasn't anything waiting to send before, queue
3050 	 * new work */
3051 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3052 		queue_con(con);
3053 }
3054 EXPORT_SYMBOL(ceph_con_send);
3055 
3056 /*
3057  * Revoke a message that was previously queued for send
3058  */
3059 void ceph_msg_revoke(struct ceph_msg *msg)
3060 {
3061 	struct ceph_connection *con = msg->con;
3062 
3063 	if (!con) {
3064 		dout("%s msg %p null con\n", __func__, msg);
3065 		return;		/* Message not in our possession */
3066 	}
3067 
3068 	mutex_lock(&con->mutex);
3069 	if (!list_empty(&msg->list_head)) {
3070 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3071 		list_del_init(&msg->list_head);
3072 		msg->hdr.seq = 0;
3073 
3074 		ceph_msg_put(msg);
3075 	}
3076 	if (con->out_msg == msg) {
3077 		BUG_ON(con->out_skip);
3078 		/* footer */
3079 		if (con->out_msg_done) {
3080 			con->out_skip += con_out_kvec_skip(con);
3081 		} else {
3082 			BUG_ON(!msg->data_length);
3083 			con->out_skip += sizeof_footer(con);
3084 		}
3085 		/* data, middle, front */
3086 		if (msg->data_length)
3087 			con->out_skip += msg->cursor.total_resid;
3088 		if (msg->middle)
3089 			con->out_skip += con_out_kvec_skip(con);
3090 		con->out_skip += con_out_kvec_skip(con);
3091 
3092 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3093 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3094 		msg->hdr.seq = 0;
3095 		con->out_msg = NULL;
3096 		ceph_msg_put(msg);
3097 	}
3098 
3099 	mutex_unlock(&con->mutex);
3100 }
3101 
3102 /*
3103  * Revoke a message that we may be reading data into
3104  */
3105 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3106 {
3107 	struct ceph_connection *con = msg->con;
3108 
3109 	if (!con) {
3110 		dout("%s msg %p null con\n", __func__, msg);
3111 		return;		/* Message not in our possession */
3112 	}
3113 
3114 	mutex_lock(&con->mutex);
3115 	if (con->in_msg == msg) {
3116 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3117 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3118 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3119 
3120 		/* skip rest of message */
3121 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3122 		con->in_base_pos = con->in_base_pos -
3123 				sizeof(struct ceph_msg_header) -
3124 				front_len -
3125 				middle_len -
3126 				data_len -
3127 				sizeof(struct ceph_msg_footer);
3128 		ceph_msg_put(con->in_msg);
3129 		con->in_msg = NULL;
3130 		con->in_tag = CEPH_MSGR_TAG_READY;
3131 		con->in_seq++;
3132 	} else {
3133 		dout("%s %p in_msg %p msg %p no-op\n",
3134 		     __func__, con, con->in_msg, msg);
3135 	}
3136 	mutex_unlock(&con->mutex);
3137 }
3138 
3139 /*
3140  * Queue a keepalive byte to ensure the tcp connection is alive.
3141  */
3142 void ceph_con_keepalive(struct ceph_connection *con)
3143 {
3144 	dout("con_keepalive %p\n", con);
3145 	mutex_lock(&con->mutex);
3146 	clear_standby(con);
3147 	mutex_unlock(&con->mutex);
3148 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3149 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3150 		queue_con(con);
3151 }
3152 EXPORT_SYMBOL(ceph_con_keepalive);
3153 
3154 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3155 			       unsigned long interval)
3156 {
3157 	if (interval > 0 &&
3158 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3159 		struct timespec now = CURRENT_TIME;
3160 		struct timespec ts;
3161 		jiffies_to_timespec(interval, &ts);
3162 		ts = timespec_add(con->last_keepalive_ack, ts);
3163 		return timespec_compare(&now, &ts) >= 0;
3164 	}
3165 	return false;
3166 }
3167 
3168 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3169 {
3170 	struct ceph_msg_data *data;
3171 
3172 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3173 		return NULL;
3174 
3175 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3176 	if (data)
3177 		data->type = type;
3178 	INIT_LIST_HEAD(&data->links);
3179 
3180 	return data;
3181 }
3182 
3183 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3184 {
3185 	if (!data)
3186 		return;
3187 
3188 	WARN_ON(!list_empty(&data->links));
3189 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3190 		ceph_pagelist_release(data->pagelist);
3191 	kmem_cache_free(ceph_msg_data_cache, data);
3192 }
3193 
3194 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3195 		size_t length, size_t alignment)
3196 {
3197 	struct ceph_msg_data *data;
3198 
3199 	BUG_ON(!pages);
3200 	BUG_ON(!length);
3201 
3202 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3203 	BUG_ON(!data);
3204 	data->pages = pages;
3205 	data->length = length;
3206 	data->alignment = alignment & ~PAGE_MASK;
3207 
3208 	list_add_tail(&data->links, &msg->data);
3209 	msg->data_length += length;
3210 }
3211 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3212 
3213 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3214 				struct ceph_pagelist *pagelist)
3215 {
3216 	struct ceph_msg_data *data;
3217 
3218 	BUG_ON(!pagelist);
3219 	BUG_ON(!pagelist->length);
3220 
3221 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3222 	BUG_ON(!data);
3223 	data->pagelist = pagelist;
3224 
3225 	list_add_tail(&data->links, &msg->data);
3226 	msg->data_length += pagelist->length;
3227 }
3228 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3229 
3230 #ifdef	CONFIG_BLOCK
3231 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3232 		size_t length)
3233 {
3234 	struct ceph_msg_data *data;
3235 
3236 	BUG_ON(!bio);
3237 
3238 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3239 	BUG_ON(!data);
3240 	data->bio = bio;
3241 	data->bio_length = length;
3242 
3243 	list_add_tail(&data->links, &msg->data);
3244 	msg->data_length += length;
3245 }
3246 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3247 #endif	/* CONFIG_BLOCK */
3248 
3249 /*
3250  * construct a new message with given type, size
3251  * the new msg has a ref count of 1.
3252  */
3253 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3254 			      bool can_fail)
3255 {
3256 	struct ceph_msg *m;
3257 
3258 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3259 	if (m == NULL)
3260 		goto out;
3261 
3262 	m->hdr.type = cpu_to_le16(type);
3263 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3264 	m->hdr.front_len = cpu_to_le32(front_len);
3265 
3266 	INIT_LIST_HEAD(&m->list_head);
3267 	kref_init(&m->kref);
3268 	INIT_LIST_HEAD(&m->data);
3269 
3270 	/* front */
3271 	if (front_len) {
3272 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3273 		if (m->front.iov_base == NULL) {
3274 			dout("ceph_msg_new can't allocate %d bytes\n",
3275 			     front_len);
3276 			goto out2;
3277 		}
3278 	} else {
3279 		m->front.iov_base = NULL;
3280 	}
3281 	m->front_alloc_len = m->front.iov_len = front_len;
3282 
3283 	dout("ceph_msg_new %p front %d\n", m, front_len);
3284 	return m;
3285 
3286 out2:
3287 	ceph_msg_put(m);
3288 out:
3289 	if (!can_fail) {
3290 		pr_err("msg_new can't create type %d front %d\n", type,
3291 		       front_len);
3292 		WARN_ON(1);
3293 	} else {
3294 		dout("msg_new can't create type %d front %d\n", type,
3295 		     front_len);
3296 	}
3297 	return NULL;
3298 }
3299 EXPORT_SYMBOL(ceph_msg_new);
3300 
3301 /*
3302  * Allocate "middle" portion of a message, if it is needed and wasn't
3303  * allocated by alloc_msg.  This allows us to read a small fixed-size
3304  * per-type header in the front and then gracefully fail (i.e.,
3305  * propagate the error to the caller based on info in the front) when
3306  * the middle is too large.
3307  */
3308 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3309 {
3310 	int type = le16_to_cpu(msg->hdr.type);
3311 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3312 
3313 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3314 	     ceph_msg_type_name(type), middle_len);
3315 	BUG_ON(!middle_len);
3316 	BUG_ON(msg->middle);
3317 
3318 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3319 	if (!msg->middle)
3320 		return -ENOMEM;
3321 	return 0;
3322 }
3323 
3324 /*
3325  * Allocate a message for receiving an incoming message on a
3326  * connection, and save the result in con->in_msg.  Uses the
3327  * connection's private alloc_msg op if available.
3328  *
3329  * Returns 0 on success, or a negative error code.
3330  *
3331  * On success, if we set *skip = 1:
3332  *  - the next message should be skipped and ignored.
3333  *  - con->in_msg == NULL
3334  * or if we set *skip = 0:
3335  *  - con->in_msg is non-null.
3336  * On error (ENOMEM, EAGAIN, ...),
3337  *  - con->in_msg == NULL
3338  */
3339 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3340 {
3341 	struct ceph_msg_header *hdr = &con->in_hdr;
3342 	int middle_len = le32_to_cpu(hdr->middle_len);
3343 	struct ceph_msg *msg;
3344 	int ret = 0;
3345 
3346 	BUG_ON(con->in_msg != NULL);
3347 	BUG_ON(!con->ops->alloc_msg);
3348 
3349 	mutex_unlock(&con->mutex);
3350 	msg = con->ops->alloc_msg(con, hdr, skip);
3351 	mutex_lock(&con->mutex);
3352 	if (con->state != CON_STATE_OPEN) {
3353 		if (msg)
3354 			ceph_msg_put(msg);
3355 		return -EAGAIN;
3356 	}
3357 	if (msg) {
3358 		BUG_ON(*skip);
3359 		msg_con_set(msg, con);
3360 		con->in_msg = msg;
3361 	} else {
3362 		/*
3363 		 * Null message pointer means either we should skip
3364 		 * this message or we couldn't allocate memory.  The
3365 		 * former is not an error.
3366 		 */
3367 		if (*skip)
3368 			return 0;
3369 
3370 		con->error_msg = "error allocating memory for incoming message";
3371 		return -ENOMEM;
3372 	}
3373 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3374 
3375 	if (middle_len && !con->in_msg->middle) {
3376 		ret = ceph_alloc_middle(con, con->in_msg);
3377 		if (ret < 0) {
3378 			ceph_msg_put(con->in_msg);
3379 			con->in_msg = NULL;
3380 		}
3381 	}
3382 
3383 	return ret;
3384 }
3385 
3386 
3387 /*
3388  * Free a generically kmalloc'd message.
3389  */
3390 static void ceph_msg_free(struct ceph_msg *m)
3391 {
3392 	dout("%s %p\n", __func__, m);
3393 	kvfree(m->front.iov_base);
3394 	kmem_cache_free(ceph_msg_cache, m);
3395 }
3396 
3397 static void ceph_msg_release(struct kref *kref)
3398 {
3399 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3400 	struct ceph_msg_data *data, *next;
3401 
3402 	dout("%s %p\n", __func__, m);
3403 	WARN_ON(!list_empty(&m->list_head));
3404 
3405 	msg_con_set(m, NULL);
3406 
3407 	/* drop middle, data, if any */
3408 	if (m->middle) {
3409 		ceph_buffer_put(m->middle);
3410 		m->middle = NULL;
3411 	}
3412 
3413 	list_for_each_entry_safe(data, next, &m->data, links) {
3414 		list_del_init(&data->links);
3415 		ceph_msg_data_destroy(data);
3416 	}
3417 	m->data_length = 0;
3418 
3419 	if (m->pool)
3420 		ceph_msgpool_put(m->pool, m);
3421 	else
3422 		ceph_msg_free(m);
3423 }
3424 
3425 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3426 {
3427 	dout("%s %p (was %d)\n", __func__, msg,
3428 	     atomic_read(&msg->kref.refcount));
3429 	kref_get(&msg->kref);
3430 	return msg;
3431 }
3432 EXPORT_SYMBOL(ceph_msg_get);
3433 
3434 void ceph_msg_put(struct ceph_msg *msg)
3435 {
3436 	dout("%s %p (was %d)\n", __func__, msg,
3437 	     atomic_read(&msg->kref.refcount));
3438 	kref_put(&msg->kref, ceph_msg_release);
3439 }
3440 EXPORT_SYMBOL(ceph_msg_put);
3441 
3442 void ceph_msg_dump(struct ceph_msg *msg)
3443 {
3444 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3445 		 msg->front_alloc_len, msg->data_length);
3446 	print_hex_dump(KERN_DEBUG, "header: ",
3447 		       DUMP_PREFIX_OFFSET, 16, 1,
3448 		       &msg->hdr, sizeof(msg->hdr), true);
3449 	print_hex_dump(KERN_DEBUG, " front: ",
3450 		       DUMP_PREFIX_OFFSET, 16, 1,
3451 		       msg->front.iov_base, msg->front.iov_len, true);
3452 	if (msg->middle)
3453 		print_hex_dump(KERN_DEBUG, "middle: ",
3454 			       DUMP_PREFIX_OFFSET, 16, 1,
3455 			       msg->middle->vec.iov_base,
3456 			       msg->middle->vec.iov_len, true);
3457 	print_hex_dump(KERN_DEBUG, "footer: ",
3458 		       DUMP_PREFIX_OFFSET, 16, 1,
3459 		       &msg->footer, sizeof(msg->footer), true);
3460 }
3461 EXPORT_SYMBOL(ceph_msg_dump);
3462