1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/crc32c.h> 5 #include <linux/ctype.h> 6 #include <linux/highmem.h> 7 #include <linux/inet.h> 8 #include <linux/kthread.h> 9 #include <linux/net.h> 10 #include <linux/nsproxy.h> 11 #include <linux/sched/mm.h> 12 #include <linux/slab.h> 13 #include <linux/socket.h> 14 #include <linux/string.h> 15 #ifdef CONFIG_BLOCK 16 #include <linux/bio.h> 17 #endif /* CONFIG_BLOCK */ 18 #include <linux/dns_resolver.h> 19 #include <net/tcp.h> 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/libceph.h> 23 #include <linux/ceph/messenger.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/pagelist.h> 26 #include <linux/export.h> 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 static bool con_flag_valid(unsigned long con_flag) 86 { 87 switch (con_flag) { 88 case CEPH_CON_F_LOSSYTX: 89 case CEPH_CON_F_KEEPALIVE_PENDING: 90 case CEPH_CON_F_WRITE_PENDING: 91 case CEPH_CON_F_SOCK_CLOSED: 92 case CEPH_CON_F_BACKOFF: 93 return true; 94 default: 95 return false; 96 } 97 } 98 99 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 100 { 101 BUG_ON(!con_flag_valid(con_flag)); 102 103 clear_bit(con_flag, &con->flags); 104 } 105 106 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag) 107 { 108 BUG_ON(!con_flag_valid(con_flag)); 109 110 set_bit(con_flag, &con->flags); 111 } 112 113 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag) 114 { 115 BUG_ON(!con_flag_valid(con_flag)); 116 117 return test_bit(con_flag, &con->flags); 118 } 119 120 bool ceph_con_flag_test_and_clear(struct ceph_connection *con, 121 unsigned long con_flag) 122 { 123 BUG_ON(!con_flag_valid(con_flag)); 124 125 return test_and_clear_bit(con_flag, &con->flags); 126 } 127 128 bool ceph_con_flag_test_and_set(struct ceph_connection *con, 129 unsigned long con_flag) 130 { 131 BUG_ON(!con_flag_valid(con_flag)); 132 133 return test_and_set_bit(con_flag, &con->flags); 134 } 135 136 /* Slab caches for frequently-allocated structures */ 137 138 static struct kmem_cache *ceph_msg_cache; 139 140 #ifdef CONFIG_LOCKDEP 141 static struct lock_class_key socket_class; 142 #endif 143 144 static void queue_con(struct ceph_connection *con); 145 static void cancel_con(struct ceph_connection *con); 146 static void ceph_con_workfn(struct work_struct *); 147 static void con_fault(struct ceph_connection *con); 148 149 /* 150 * Nicely render a sockaddr as a string. An array of formatted 151 * strings is used, to approximate reentrancy. 152 */ 153 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 154 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 155 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 156 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 157 158 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 159 static atomic_t addr_str_seq = ATOMIC_INIT(0); 160 161 struct page *ceph_zero_page; /* used in certain error cases */ 162 163 const char *ceph_pr_addr(const struct ceph_entity_addr *addr) 164 { 165 int i; 166 char *s; 167 struct sockaddr_storage ss = addr->in_addr; /* align */ 168 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss; 169 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss; 170 171 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 172 s = addr_str[i]; 173 174 switch (ss.ss_family) { 175 case AF_INET: 176 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu", 177 le32_to_cpu(addr->type), &in4->sin_addr, 178 ntohs(in4->sin_port)); 179 break; 180 181 case AF_INET6: 182 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu", 183 le32_to_cpu(addr->type), &in6->sin6_addr, 184 ntohs(in6->sin6_port)); 185 break; 186 187 default: 188 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 189 ss.ss_family); 190 } 191 192 return s; 193 } 194 EXPORT_SYMBOL(ceph_pr_addr); 195 196 void ceph_encode_my_addr(struct ceph_messenger *msgr) 197 { 198 if (!ceph_msgr2(from_msgr(msgr))) { 199 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, 200 sizeof(msgr->my_enc_addr)); 201 ceph_encode_banner_addr(&msgr->my_enc_addr); 202 } 203 } 204 205 /* 206 * work queue for all reading and writing to/from the socket. 207 */ 208 static struct workqueue_struct *ceph_msgr_wq; 209 210 static int ceph_msgr_slab_init(void) 211 { 212 BUG_ON(ceph_msg_cache); 213 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 214 if (!ceph_msg_cache) 215 return -ENOMEM; 216 217 return 0; 218 } 219 220 static void ceph_msgr_slab_exit(void) 221 { 222 BUG_ON(!ceph_msg_cache); 223 kmem_cache_destroy(ceph_msg_cache); 224 ceph_msg_cache = NULL; 225 } 226 227 static void _ceph_msgr_exit(void) 228 { 229 if (ceph_msgr_wq) { 230 destroy_workqueue(ceph_msgr_wq); 231 ceph_msgr_wq = NULL; 232 } 233 234 BUG_ON(!ceph_zero_page); 235 put_page(ceph_zero_page); 236 ceph_zero_page = NULL; 237 238 ceph_msgr_slab_exit(); 239 } 240 241 int __init ceph_msgr_init(void) 242 { 243 if (ceph_msgr_slab_init()) 244 return -ENOMEM; 245 246 BUG_ON(ceph_zero_page); 247 ceph_zero_page = ZERO_PAGE(0); 248 get_page(ceph_zero_page); 249 250 /* 251 * The number of active work items is limited by the number of 252 * connections, so leave @max_active at default. 253 */ 254 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 255 if (ceph_msgr_wq) 256 return 0; 257 258 pr_err("msgr_init failed to create workqueue\n"); 259 _ceph_msgr_exit(); 260 261 return -ENOMEM; 262 } 263 264 void ceph_msgr_exit(void) 265 { 266 BUG_ON(ceph_msgr_wq == NULL); 267 268 _ceph_msgr_exit(); 269 } 270 271 void ceph_msgr_flush(void) 272 { 273 flush_workqueue(ceph_msgr_wq); 274 } 275 EXPORT_SYMBOL(ceph_msgr_flush); 276 277 /* Connection socket state transition functions */ 278 279 static void con_sock_state_init(struct ceph_connection *con) 280 { 281 int old_state; 282 283 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 284 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 285 printk("%s: unexpected old state %d\n", __func__, old_state); 286 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 287 CON_SOCK_STATE_CLOSED); 288 } 289 290 static void con_sock_state_connecting(struct ceph_connection *con) 291 { 292 int old_state; 293 294 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 295 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 296 printk("%s: unexpected old state %d\n", __func__, old_state); 297 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 298 CON_SOCK_STATE_CONNECTING); 299 } 300 301 static void con_sock_state_connected(struct ceph_connection *con) 302 { 303 int old_state; 304 305 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 306 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 307 printk("%s: unexpected old state %d\n", __func__, old_state); 308 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 309 CON_SOCK_STATE_CONNECTED); 310 } 311 312 static void con_sock_state_closing(struct ceph_connection *con) 313 { 314 int old_state; 315 316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 317 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 318 old_state != CON_SOCK_STATE_CONNECTED && 319 old_state != CON_SOCK_STATE_CLOSING)) 320 printk("%s: unexpected old state %d\n", __func__, old_state); 321 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 322 CON_SOCK_STATE_CLOSING); 323 } 324 325 static void con_sock_state_closed(struct ceph_connection *con) 326 { 327 int old_state; 328 329 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 330 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 331 old_state != CON_SOCK_STATE_CLOSING && 332 old_state != CON_SOCK_STATE_CONNECTING && 333 old_state != CON_SOCK_STATE_CLOSED)) 334 printk("%s: unexpected old state %d\n", __func__, old_state); 335 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 336 CON_SOCK_STATE_CLOSED); 337 } 338 339 /* 340 * socket callback functions 341 */ 342 343 /* data available on socket, or listen socket received a connect */ 344 static void ceph_sock_data_ready(struct sock *sk) 345 { 346 struct ceph_connection *con = sk->sk_user_data; 347 if (atomic_read(&con->msgr->stopping)) { 348 return; 349 } 350 351 if (sk->sk_state != TCP_CLOSE_WAIT) { 352 dout("%s %p state = %d, queueing work\n", __func__, 353 con, con->state); 354 queue_con(con); 355 } 356 } 357 358 /* socket has buffer space for writing */ 359 static void ceph_sock_write_space(struct sock *sk) 360 { 361 struct ceph_connection *con = sk->sk_user_data; 362 363 /* only queue to workqueue if there is data we want to write, 364 * and there is sufficient space in the socket buffer to accept 365 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 366 * doesn't get called again until try_write() fills the socket 367 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 368 * and net/core/stream.c:sk_stream_write_space(). 369 */ 370 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) { 371 if (sk_stream_is_writeable(sk)) { 372 dout("%s %p queueing write work\n", __func__, con); 373 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 374 queue_con(con); 375 } 376 } else { 377 dout("%s %p nothing to write\n", __func__, con); 378 } 379 } 380 381 /* socket's state has changed */ 382 static void ceph_sock_state_change(struct sock *sk) 383 { 384 struct ceph_connection *con = sk->sk_user_data; 385 386 dout("%s %p state = %d sk_state = %u\n", __func__, 387 con, con->state, sk->sk_state); 388 389 switch (sk->sk_state) { 390 case TCP_CLOSE: 391 dout("%s TCP_CLOSE\n", __func__); 392 fallthrough; 393 case TCP_CLOSE_WAIT: 394 dout("%s TCP_CLOSE_WAIT\n", __func__); 395 con_sock_state_closing(con); 396 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED); 397 queue_con(con); 398 break; 399 case TCP_ESTABLISHED: 400 dout("%s TCP_ESTABLISHED\n", __func__); 401 con_sock_state_connected(con); 402 queue_con(con); 403 break; 404 default: /* Everything else is uninteresting */ 405 break; 406 } 407 } 408 409 /* 410 * set up socket callbacks 411 */ 412 static void set_sock_callbacks(struct socket *sock, 413 struct ceph_connection *con) 414 { 415 struct sock *sk = sock->sk; 416 sk->sk_user_data = con; 417 sk->sk_data_ready = ceph_sock_data_ready; 418 sk->sk_write_space = ceph_sock_write_space; 419 sk->sk_state_change = ceph_sock_state_change; 420 } 421 422 423 /* 424 * socket helpers 425 */ 426 427 /* 428 * initiate connection to a remote socket. 429 */ 430 int ceph_tcp_connect(struct ceph_connection *con) 431 { 432 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */ 433 struct socket *sock; 434 unsigned int noio_flag; 435 int ret; 436 437 dout("%s con %p peer_addr %s\n", __func__, con, 438 ceph_pr_addr(&con->peer_addr)); 439 BUG_ON(con->sock); 440 441 /* sock_create_kern() allocates with GFP_KERNEL */ 442 noio_flag = memalloc_noio_save(); 443 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family, 444 SOCK_STREAM, IPPROTO_TCP, &sock); 445 memalloc_noio_restore(noio_flag); 446 if (ret) 447 return ret; 448 sock->sk->sk_allocation = GFP_NOFS; 449 sock->sk->sk_use_task_frag = false; 450 451 #ifdef CONFIG_LOCKDEP 452 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 453 #endif 454 455 set_sock_callbacks(sock, con); 456 457 con_sock_state_connecting(con); 458 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss), 459 O_NONBLOCK); 460 if (ret == -EINPROGRESS) { 461 dout("connect %s EINPROGRESS sk_state = %u\n", 462 ceph_pr_addr(&con->peer_addr), 463 sock->sk->sk_state); 464 } else if (ret < 0) { 465 pr_err("connect %s error %d\n", 466 ceph_pr_addr(&con->peer_addr), ret); 467 sock_release(sock); 468 return ret; 469 } 470 471 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) 472 tcp_sock_set_nodelay(sock->sk); 473 474 con->sock = sock; 475 return 0; 476 } 477 478 /* 479 * Shutdown/close the socket for the given connection. 480 */ 481 int ceph_con_close_socket(struct ceph_connection *con) 482 { 483 int rc = 0; 484 485 dout("%s con %p sock %p\n", __func__, con, con->sock); 486 if (con->sock) { 487 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 488 sock_release(con->sock); 489 con->sock = NULL; 490 } 491 492 /* 493 * Forcibly clear the SOCK_CLOSED flag. It gets set 494 * independent of the connection mutex, and we could have 495 * received a socket close event before we had the chance to 496 * shut the socket down. 497 */ 498 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED); 499 500 con_sock_state_closed(con); 501 return rc; 502 } 503 504 static void ceph_con_reset_protocol(struct ceph_connection *con) 505 { 506 dout("%s con %p\n", __func__, con); 507 508 ceph_con_close_socket(con); 509 if (con->in_msg) { 510 WARN_ON(con->in_msg->con != con); 511 ceph_msg_put(con->in_msg); 512 con->in_msg = NULL; 513 } 514 if (con->out_msg) { 515 WARN_ON(con->out_msg->con != con); 516 ceph_msg_put(con->out_msg); 517 con->out_msg = NULL; 518 } 519 if (con->bounce_page) { 520 __free_page(con->bounce_page); 521 con->bounce_page = NULL; 522 } 523 524 if (ceph_msgr2(from_msgr(con->msgr))) 525 ceph_con_v2_reset_protocol(con); 526 else 527 ceph_con_v1_reset_protocol(con); 528 } 529 530 /* 531 * Reset a connection. Discard all incoming and outgoing messages 532 * and clear *_seq state. 533 */ 534 static void ceph_msg_remove(struct ceph_msg *msg) 535 { 536 list_del_init(&msg->list_head); 537 538 ceph_msg_put(msg); 539 } 540 541 static void ceph_msg_remove_list(struct list_head *head) 542 { 543 while (!list_empty(head)) { 544 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 545 list_head); 546 ceph_msg_remove(msg); 547 } 548 } 549 550 void ceph_con_reset_session(struct ceph_connection *con) 551 { 552 dout("%s con %p\n", __func__, con); 553 554 WARN_ON(con->in_msg); 555 WARN_ON(con->out_msg); 556 ceph_msg_remove_list(&con->out_queue); 557 ceph_msg_remove_list(&con->out_sent); 558 con->out_seq = 0; 559 con->in_seq = 0; 560 con->in_seq_acked = 0; 561 562 if (ceph_msgr2(from_msgr(con->msgr))) 563 ceph_con_v2_reset_session(con); 564 else 565 ceph_con_v1_reset_session(con); 566 } 567 568 /* 569 * mark a peer down. drop any open connections. 570 */ 571 void ceph_con_close(struct ceph_connection *con) 572 { 573 mutex_lock(&con->mutex); 574 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr)); 575 con->state = CEPH_CON_S_CLOSED; 576 577 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next 578 connect */ 579 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING); 580 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); 581 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF); 582 583 ceph_con_reset_protocol(con); 584 ceph_con_reset_session(con); 585 cancel_con(con); 586 mutex_unlock(&con->mutex); 587 } 588 EXPORT_SYMBOL(ceph_con_close); 589 590 /* 591 * Reopen a closed connection, with a new peer address. 592 */ 593 void ceph_con_open(struct ceph_connection *con, 594 __u8 entity_type, __u64 entity_num, 595 struct ceph_entity_addr *addr) 596 { 597 mutex_lock(&con->mutex); 598 dout("con_open %p %s\n", con, ceph_pr_addr(addr)); 599 600 WARN_ON(con->state != CEPH_CON_S_CLOSED); 601 con->state = CEPH_CON_S_PREOPEN; 602 603 con->peer_name.type = (__u8) entity_type; 604 con->peer_name.num = cpu_to_le64(entity_num); 605 606 memcpy(&con->peer_addr, addr, sizeof(*addr)); 607 con->delay = 0; /* reset backoff memory */ 608 mutex_unlock(&con->mutex); 609 queue_con(con); 610 } 611 EXPORT_SYMBOL(ceph_con_open); 612 613 /* 614 * return true if this connection ever successfully opened 615 */ 616 bool ceph_con_opened(struct ceph_connection *con) 617 { 618 if (ceph_msgr2(from_msgr(con->msgr))) 619 return ceph_con_v2_opened(con); 620 621 return ceph_con_v1_opened(con); 622 } 623 624 /* 625 * initialize a new connection. 626 */ 627 void ceph_con_init(struct ceph_connection *con, void *private, 628 const struct ceph_connection_operations *ops, 629 struct ceph_messenger *msgr) 630 { 631 dout("con_init %p\n", con); 632 memset(con, 0, sizeof(*con)); 633 con->private = private; 634 con->ops = ops; 635 con->msgr = msgr; 636 637 con_sock_state_init(con); 638 639 mutex_init(&con->mutex); 640 INIT_LIST_HEAD(&con->out_queue); 641 INIT_LIST_HEAD(&con->out_sent); 642 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 643 644 con->state = CEPH_CON_S_CLOSED; 645 } 646 EXPORT_SYMBOL(ceph_con_init); 647 648 /* 649 * We maintain a global counter to order connection attempts. Get 650 * a unique seq greater than @gt. 651 */ 652 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt) 653 { 654 u32 ret; 655 656 spin_lock(&msgr->global_seq_lock); 657 if (msgr->global_seq < gt) 658 msgr->global_seq = gt; 659 ret = ++msgr->global_seq; 660 spin_unlock(&msgr->global_seq_lock); 661 return ret; 662 } 663 664 /* 665 * Discard messages that have been acked by the server. 666 */ 667 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq) 668 { 669 struct ceph_msg *msg; 670 u64 seq; 671 672 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq); 673 while (!list_empty(&con->out_sent)) { 674 msg = list_first_entry(&con->out_sent, struct ceph_msg, 675 list_head); 676 WARN_ON(msg->needs_out_seq); 677 seq = le64_to_cpu(msg->hdr.seq); 678 if (seq > ack_seq) 679 break; 680 681 dout("%s con %p discarding msg %p seq %llu\n", __func__, con, 682 msg, seq); 683 ceph_msg_remove(msg); 684 } 685 } 686 687 /* 688 * Discard messages that have been requeued in con_fault(), up to 689 * reconnect_seq. This avoids gratuitously resending messages that 690 * the server had received and handled prior to reconnect. 691 */ 692 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq) 693 { 694 struct ceph_msg *msg; 695 u64 seq; 696 697 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq); 698 while (!list_empty(&con->out_queue)) { 699 msg = list_first_entry(&con->out_queue, struct ceph_msg, 700 list_head); 701 if (msg->needs_out_seq) 702 break; 703 seq = le64_to_cpu(msg->hdr.seq); 704 if (seq > reconnect_seq) 705 break; 706 707 dout("%s con %p discarding msg %p seq %llu\n", __func__, con, 708 msg, seq); 709 ceph_msg_remove(msg); 710 } 711 } 712 713 #ifdef CONFIG_BLOCK 714 715 /* 716 * For a bio data item, a piece is whatever remains of the next 717 * entry in the current bio iovec, or the first entry in the next 718 * bio in the list. 719 */ 720 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 721 size_t length) 722 { 723 struct ceph_msg_data *data = cursor->data; 724 struct ceph_bio_iter *it = &cursor->bio_iter; 725 726 cursor->resid = min_t(size_t, length, data->bio_length); 727 *it = data->bio_pos; 728 if (cursor->resid < it->iter.bi_size) 729 it->iter.bi_size = cursor->resid; 730 731 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 732 } 733 734 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 735 size_t *page_offset, 736 size_t *length) 737 { 738 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, 739 cursor->bio_iter.iter); 740 741 *page_offset = bv.bv_offset; 742 *length = bv.bv_len; 743 return bv.bv_page; 744 } 745 746 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 747 size_t bytes) 748 { 749 struct ceph_bio_iter *it = &cursor->bio_iter; 750 struct page *page = bio_iter_page(it->bio, it->iter); 751 752 BUG_ON(bytes > cursor->resid); 753 BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); 754 cursor->resid -= bytes; 755 bio_advance_iter(it->bio, &it->iter, bytes); 756 757 if (!cursor->resid) 758 return false; /* no more data */ 759 760 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done && 761 page == bio_iter_page(it->bio, it->iter))) 762 return false; /* more bytes to process in this segment */ 763 764 if (!it->iter.bi_size) { 765 it->bio = it->bio->bi_next; 766 it->iter = it->bio->bi_iter; 767 if (cursor->resid < it->iter.bi_size) 768 it->iter.bi_size = cursor->resid; 769 } 770 771 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 772 return true; 773 } 774 #endif /* CONFIG_BLOCK */ 775 776 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, 777 size_t length) 778 { 779 struct ceph_msg_data *data = cursor->data; 780 struct bio_vec *bvecs = data->bvec_pos.bvecs; 781 782 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); 783 cursor->bvec_iter = data->bvec_pos.iter; 784 cursor->bvec_iter.bi_size = cursor->resid; 785 786 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 787 } 788 789 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, 790 size_t *page_offset, 791 size_t *length) 792 { 793 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, 794 cursor->bvec_iter); 795 796 *page_offset = bv.bv_offset; 797 *length = bv.bv_len; 798 return bv.bv_page; 799 } 800 801 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, 802 size_t bytes) 803 { 804 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; 805 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter); 806 807 BUG_ON(bytes > cursor->resid); 808 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); 809 cursor->resid -= bytes; 810 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); 811 812 if (!cursor->resid) 813 return false; /* no more data */ 814 815 if (!bytes || (cursor->bvec_iter.bi_bvec_done && 816 page == bvec_iter_page(bvecs, cursor->bvec_iter))) 817 return false; /* more bytes to process in this segment */ 818 819 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 820 return true; 821 } 822 823 /* 824 * For a page array, a piece comes from the first page in the array 825 * that has not already been fully consumed. 826 */ 827 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 828 size_t length) 829 { 830 struct ceph_msg_data *data = cursor->data; 831 int page_count; 832 833 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 834 835 BUG_ON(!data->pages); 836 BUG_ON(!data->length); 837 838 cursor->resid = min(length, data->length); 839 page_count = calc_pages_for(data->alignment, (u64)data->length); 840 cursor->page_offset = data->alignment & ~PAGE_MASK; 841 cursor->page_index = 0; 842 BUG_ON(page_count > (int)USHRT_MAX); 843 cursor->page_count = (unsigned short)page_count; 844 BUG_ON(length > SIZE_MAX - cursor->page_offset); 845 } 846 847 static struct page * 848 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 849 size_t *page_offset, size_t *length) 850 { 851 struct ceph_msg_data *data = cursor->data; 852 853 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 854 855 BUG_ON(cursor->page_index >= cursor->page_count); 856 BUG_ON(cursor->page_offset >= PAGE_SIZE); 857 858 *page_offset = cursor->page_offset; 859 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset); 860 return data->pages[cursor->page_index]; 861 } 862 863 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 864 size_t bytes) 865 { 866 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 867 868 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 869 870 /* Advance the cursor page offset */ 871 872 cursor->resid -= bytes; 873 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 874 if (!bytes || cursor->page_offset) 875 return false; /* more bytes to process in the current page */ 876 877 if (!cursor->resid) 878 return false; /* no more data */ 879 880 /* Move on to the next page; offset is already at 0 */ 881 882 BUG_ON(cursor->page_index >= cursor->page_count); 883 cursor->page_index++; 884 return true; 885 } 886 887 /* 888 * For a pagelist, a piece is whatever remains to be consumed in the 889 * first page in the list, or the front of the next page. 890 */ 891 static void 892 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 893 size_t length) 894 { 895 struct ceph_msg_data *data = cursor->data; 896 struct ceph_pagelist *pagelist; 897 struct page *page; 898 899 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 900 901 pagelist = data->pagelist; 902 BUG_ON(!pagelist); 903 904 if (!length) 905 return; /* pagelist can be assigned but empty */ 906 907 BUG_ON(list_empty(&pagelist->head)); 908 page = list_first_entry(&pagelist->head, struct page, lru); 909 910 cursor->resid = min(length, pagelist->length); 911 cursor->page = page; 912 cursor->offset = 0; 913 } 914 915 static struct page * 916 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 917 size_t *page_offset, size_t *length) 918 { 919 struct ceph_msg_data *data = cursor->data; 920 struct ceph_pagelist *pagelist; 921 922 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 923 924 pagelist = data->pagelist; 925 BUG_ON(!pagelist); 926 927 BUG_ON(!cursor->page); 928 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 929 930 /* offset of first page in pagelist is always 0 */ 931 *page_offset = cursor->offset & ~PAGE_MASK; 932 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset); 933 return cursor->page; 934 } 935 936 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 937 size_t bytes) 938 { 939 struct ceph_msg_data *data = cursor->data; 940 struct ceph_pagelist *pagelist; 941 942 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 943 944 pagelist = data->pagelist; 945 BUG_ON(!pagelist); 946 947 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 948 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 949 950 /* Advance the cursor offset */ 951 952 cursor->resid -= bytes; 953 cursor->offset += bytes; 954 /* offset of first page in pagelist is always 0 */ 955 if (!bytes || cursor->offset & ~PAGE_MASK) 956 return false; /* more bytes to process in the current page */ 957 958 if (!cursor->resid) 959 return false; /* no more data */ 960 961 /* Move on to the next page */ 962 963 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 964 cursor->page = list_next_entry(cursor->page, lru); 965 return true; 966 } 967 968 /* 969 * Message data is handled (sent or received) in pieces, where each 970 * piece resides on a single page. The network layer might not 971 * consume an entire piece at once. A data item's cursor keeps 972 * track of which piece is next to process and how much remains to 973 * be processed in that piece. It also tracks whether the current 974 * piece is the last one in the data item. 975 */ 976 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 977 { 978 size_t length = cursor->total_resid; 979 980 switch (cursor->data->type) { 981 case CEPH_MSG_DATA_PAGELIST: 982 ceph_msg_data_pagelist_cursor_init(cursor, length); 983 break; 984 case CEPH_MSG_DATA_PAGES: 985 ceph_msg_data_pages_cursor_init(cursor, length); 986 break; 987 #ifdef CONFIG_BLOCK 988 case CEPH_MSG_DATA_BIO: 989 ceph_msg_data_bio_cursor_init(cursor, length); 990 break; 991 #endif /* CONFIG_BLOCK */ 992 case CEPH_MSG_DATA_BVECS: 993 ceph_msg_data_bvecs_cursor_init(cursor, length); 994 break; 995 case CEPH_MSG_DATA_NONE: 996 default: 997 /* BUG(); */ 998 break; 999 } 1000 cursor->need_crc = true; 1001 } 1002 1003 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor, 1004 struct ceph_msg *msg, size_t length) 1005 { 1006 BUG_ON(!length); 1007 BUG_ON(length > msg->data_length); 1008 BUG_ON(!msg->num_data_items); 1009 1010 cursor->total_resid = length; 1011 cursor->data = msg->data; 1012 1013 __ceph_msg_data_cursor_init(cursor); 1014 } 1015 1016 /* 1017 * Return the page containing the next piece to process for a given 1018 * data item, and supply the page offset and length of that piece. 1019 * Indicate whether this is the last piece in this data item. 1020 */ 1021 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1022 size_t *page_offset, size_t *length) 1023 { 1024 struct page *page; 1025 1026 switch (cursor->data->type) { 1027 case CEPH_MSG_DATA_PAGELIST: 1028 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1029 break; 1030 case CEPH_MSG_DATA_PAGES: 1031 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1032 break; 1033 #ifdef CONFIG_BLOCK 1034 case CEPH_MSG_DATA_BIO: 1035 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1036 break; 1037 #endif /* CONFIG_BLOCK */ 1038 case CEPH_MSG_DATA_BVECS: 1039 page = ceph_msg_data_bvecs_next(cursor, page_offset, length); 1040 break; 1041 case CEPH_MSG_DATA_NONE: 1042 default: 1043 page = NULL; 1044 break; 1045 } 1046 1047 BUG_ON(!page); 1048 BUG_ON(*page_offset + *length > PAGE_SIZE); 1049 BUG_ON(!*length); 1050 BUG_ON(*length > cursor->resid); 1051 1052 return page; 1053 } 1054 1055 /* 1056 * Returns true if the result moves the cursor on to the next piece 1057 * of the data item. 1058 */ 1059 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes) 1060 { 1061 bool new_piece; 1062 1063 BUG_ON(bytes > cursor->resid); 1064 switch (cursor->data->type) { 1065 case CEPH_MSG_DATA_PAGELIST: 1066 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1067 break; 1068 case CEPH_MSG_DATA_PAGES: 1069 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1070 break; 1071 #ifdef CONFIG_BLOCK 1072 case CEPH_MSG_DATA_BIO: 1073 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1074 break; 1075 #endif /* CONFIG_BLOCK */ 1076 case CEPH_MSG_DATA_BVECS: 1077 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); 1078 break; 1079 case CEPH_MSG_DATA_NONE: 1080 default: 1081 BUG(); 1082 break; 1083 } 1084 cursor->total_resid -= bytes; 1085 1086 if (!cursor->resid && cursor->total_resid) { 1087 cursor->data++; 1088 __ceph_msg_data_cursor_init(cursor); 1089 new_piece = true; 1090 } 1091 cursor->need_crc = new_piece; 1092 } 1093 1094 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset, 1095 unsigned int length) 1096 { 1097 char *kaddr; 1098 1099 kaddr = kmap(page); 1100 BUG_ON(kaddr == NULL); 1101 crc = crc32c(crc, kaddr + page_offset, length); 1102 kunmap(page); 1103 1104 return crc; 1105 } 1106 1107 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr) 1108 { 1109 struct sockaddr_storage ss = addr->in_addr; /* align */ 1110 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr; 1111 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr; 1112 1113 switch (ss.ss_family) { 1114 case AF_INET: 1115 return addr4->s_addr == htonl(INADDR_ANY); 1116 case AF_INET6: 1117 return ipv6_addr_any(addr6); 1118 default: 1119 return true; 1120 } 1121 } 1122 1123 int ceph_addr_port(const struct ceph_entity_addr *addr) 1124 { 1125 switch (get_unaligned(&addr->in_addr.ss_family)) { 1126 case AF_INET: 1127 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port)); 1128 case AF_INET6: 1129 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port)); 1130 } 1131 return 0; 1132 } 1133 1134 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p) 1135 { 1136 switch (get_unaligned(&addr->in_addr.ss_family)) { 1137 case AF_INET: 1138 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port); 1139 break; 1140 case AF_INET6: 1141 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port); 1142 break; 1143 } 1144 } 1145 1146 /* 1147 * Unlike other *_pton function semantics, zero indicates success. 1148 */ 1149 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr, 1150 char delim, const char **ipend) 1151 { 1152 memset(&addr->in_addr, 0, sizeof(addr->in_addr)); 1153 1154 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) { 1155 put_unaligned(AF_INET, &addr->in_addr.ss_family); 1156 return 0; 1157 } 1158 1159 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) { 1160 put_unaligned(AF_INET6, &addr->in_addr.ss_family); 1161 return 0; 1162 } 1163 1164 return -EINVAL; 1165 } 1166 1167 /* 1168 * Extract hostname string and resolve using kernel DNS facility. 1169 */ 1170 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1171 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1172 struct ceph_entity_addr *addr, char delim, const char **ipend) 1173 { 1174 const char *end, *delim_p; 1175 char *colon_p, *ip_addr = NULL; 1176 int ip_len, ret; 1177 1178 /* 1179 * The end of the hostname occurs immediately preceding the delimiter or 1180 * the port marker (':') where the delimiter takes precedence. 1181 */ 1182 delim_p = memchr(name, delim, namelen); 1183 colon_p = memchr(name, ':', namelen); 1184 1185 if (delim_p && colon_p) 1186 end = delim_p < colon_p ? delim_p : colon_p; 1187 else if (!delim_p && colon_p) 1188 end = colon_p; 1189 else { 1190 end = delim_p; 1191 if (!end) /* case: hostname:/ */ 1192 end = name + namelen; 1193 } 1194 1195 if (end <= name) 1196 return -EINVAL; 1197 1198 /* do dns_resolve upcall */ 1199 ip_len = dns_query(current->nsproxy->net_ns, 1200 NULL, name, end - name, NULL, &ip_addr, NULL, false); 1201 if (ip_len > 0) 1202 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL); 1203 else 1204 ret = -ESRCH; 1205 1206 kfree(ip_addr); 1207 1208 *ipend = end; 1209 1210 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1211 ret, ret ? "failed" : ceph_pr_addr(addr)); 1212 1213 return ret; 1214 } 1215 #else 1216 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1217 struct ceph_entity_addr *addr, char delim, const char **ipend) 1218 { 1219 return -EINVAL; 1220 } 1221 #endif 1222 1223 /* 1224 * Parse a server name (IP or hostname). If a valid IP address is not found 1225 * then try to extract a hostname to resolve using userspace DNS upcall. 1226 */ 1227 static int ceph_parse_server_name(const char *name, size_t namelen, 1228 struct ceph_entity_addr *addr, char delim, const char **ipend) 1229 { 1230 int ret; 1231 1232 ret = ceph_pton(name, namelen, addr, delim, ipend); 1233 if (ret) 1234 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend); 1235 1236 return ret; 1237 } 1238 1239 /* 1240 * Parse an ip[:port] list into an addr array. Use the default 1241 * monitor port if a port isn't specified. 1242 */ 1243 int ceph_parse_ips(const char *c, const char *end, 1244 struct ceph_entity_addr *addr, 1245 int max_count, int *count, char delim) 1246 { 1247 int i, ret = -EINVAL; 1248 const char *p = c; 1249 1250 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1251 for (i = 0; i < max_count; i++) { 1252 char cur_delim = delim; 1253 const char *ipend; 1254 int port; 1255 1256 if (*p == '[') { 1257 cur_delim = ']'; 1258 p++; 1259 } 1260 1261 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim, 1262 &ipend); 1263 if (ret) 1264 goto bad; 1265 ret = -EINVAL; 1266 1267 p = ipend; 1268 1269 if (cur_delim == ']') { 1270 if (*p != ']') { 1271 dout("missing matching ']'\n"); 1272 goto bad; 1273 } 1274 p++; 1275 } 1276 1277 /* port? */ 1278 if (p < end && *p == ':') { 1279 port = 0; 1280 p++; 1281 while (p < end && *p >= '0' && *p <= '9') { 1282 port = (port * 10) + (*p - '0'); 1283 p++; 1284 } 1285 if (port == 0) 1286 port = CEPH_MON_PORT; 1287 else if (port > 65535) 1288 goto bad; 1289 } else { 1290 port = CEPH_MON_PORT; 1291 } 1292 1293 ceph_addr_set_port(&addr[i], port); 1294 /* 1295 * We want the type to be set according to ms_mode 1296 * option, but options are normally parsed after mon 1297 * addresses. Rather than complicating parsing, set 1298 * to LEGACY and override in build_initial_monmap() 1299 * for mon addresses and ceph_messenger_init() for 1300 * ip option. 1301 */ 1302 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY; 1303 addr[i].nonce = 0; 1304 1305 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i])); 1306 1307 if (p == end) 1308 break; 1309 if (*p != delim) 1310 goto bad; 1311 p++; 1312 } 1313 1314 if (p != end) 1315 goto bad; 1316 1317 if (count) 1318 *count = i + 1; 1319 return 0; 1320 1321 bad: 1322 return ret; 1323 } 1324 1325 /* 1326 * Process message. This happens in the worker thread. The callback should 1327 * be careful not to do anything that waits on other incoming messages or it 1328 * may deadlock. 1329 */ 1330 void ceph_con_process_message(struct ceph_connection *con) 1331 { 1332 struct ceph_msg *msg = con->in_msg; 1333 1334 BUG_ON(con->in_msg->con != con); 1335 con->in_msg = NULL; 1336 1337 /* if first message, set peer_name */ 1338 if (con->peer_name.type == 0) 1339 con->peer_name = msg->hdr.src; 1340 1341 con->in_seq++; 1342 mutex_unlock(&con->mutex); 1343 1344 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n", 1345 msg, le64_to_cpu(msg->hdr.seq), 1346 ENTITY_NAME(msg->hdr.src), 1347 le16_to_cpu(msg->hdr.type), 1348 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 1349 le32_to_cpu(msg->hdr.front_len), 1350 le32_to_cpu(msg->hdr.middle_len), 1351 le32_to_cpu(msg->hdr.data_len), 1352 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 1353 con->ops->dispatch(con, msg); 1354 1355 mutex_lock(&con->mutex); 1356 } 1357 1358 /* 1359 * Atomically queue work on a connection after the specified delay. 1360 * Bump @con reference to avoid races with connection teardown. 1361 * Returns 0 if work was queued, or an error code otherwise. 1362 */ 1363 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 1364 { 1365 if (!con->ops->get(con)) { 1366 dout("%s %p ref count 0\n", __func__, con); 1367 return -ENOENT; 1368 } 1369 1370 if (delay >= HZ) 1371 delay = round_jiffies_relative(delay); 1372 1373 dout("%s %p %lu\n", __func__, con, delay); 1374 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 1375 dout("%s %p - already queued\n", __func__, con); 1376 con->ops->put(con); 1377 return -EBUSY; 1378 } 1379 1380 return 0; 1381 } 1382 1383 static void queue_con(struct ceph_connection *con) 1384 { 1385 (void) queue_con_delay(con, 0); 1386 } 1387 1388 static void cancel_con(struct ceph_connection *con) 1389 { 1390 if (cancel_delayed_work(&con->work)) { 1391 dout("%s %p\n", __func__, con); 1392 con->ops->put(con); 1393 } 1394 } 1395 1396 static bool con_sock_closed(struct ceph_connection *con) 1397 { 1398 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED)) 1399 return false; 1400 1401 #define CASE(x) \ 1402 case CEPH_CON_S_ ## x: \ 1403 con->error_msg = "socket closed (con state " #x ")"; \ 1404 break; 1405 1406 switch (con->state) { 1407 CASE(CLOSED); 1408 CASE(PREOPEN); 1409 CASE(V1_BANNER); 1410 CASE(V1_CONNECT_MSG); 1411 CASE(V2_BANNER_PREFIX); 1412 CASE(V2_BANNER_PAYLOAD); 1413 CASE(V2_HELLO); 1414 CASE(V2_AUTH); 1415 CASE(V2_AUTH_SIGNATURE); 1416 CASE(V2_SESSION_CONNECT); 1417 CASE(V2_SESSION_RECONNECT); 1418 CASE(OPEN); 1419 CASE(STANDBY); 1420 default: 1421 BUG(); 1422 } 1423 #undef CASE 1424 1425 return true; 1426 } 1427 1428 static bool con_backoff(struct ceph_connection *con) 1429 { 1430 int ret; 1431 1432 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF)) 1433 return false; 1434 1435 ret = queue_con_delay(con, con->delay); 1436 if (ret) { 1437 dout("%s: con %p FAILED to back off %lu\n", __func__, 1438 con, con->delay); 1439 BUG_ON(ret == -ENOENT); 1440 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF); 1441 } 1442 1443 return true; 1444 } 1445 1446 /* Finish fault handling; con->mutex must *not* be held here */ 1447 1448 static void con_fault_finish(struct ceph_connection *con) 1449 { 1450 dout("%s %p\n", __func__, con); 1451 1452 /* 1453 * in case we faulted due to authentication, invalidate our 1454 * current tickets so that we can get new ones. 1455 */ 1456 if (con->v1.auth_retry) { 1457 dout("auth_retry %d, invalidating\n", con->v1.auth_retry); 1458 if (con->ops->invalidate_authorizer) 1459 con->ops->invalidate_authorizer(con); 1460 con->v1.auth_retry = 0; 1461 } 1462 1463 if (con->ops->fault) 1464 con->ops->fault(con); 1465 } 1466 1467 /* 1468 * Do some work on a connection. Drop a connection ref when we're done. 1469 */ 1470 static void ceph_con_workfn(struct work_struct *work) 1471 { 1472 struct ceph_connection *con = container_of(work, struct ceph_connection, 1473 work.work); 1474 bool fault; 1475 1476 mutex_lock(&con->mutex); 1477 while (true) { 1478 int ret; 1479 1480 if ((fault = con_sock_closed(con))) { 1481 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 1482 break; 1483 } 1484 if (con_backoff(con)) { 1485 dout("%s: con %p BACKOFF\n", __func__, con); 1486 break; 1487 } 1488 if (con->state == CEPH_CON_S_STANDBY) { 1489 dout("%s: con %p STANDBY\n", __func__, con); 1490 break; 1491 } 1492 if (con->state == CEPH_CON_S_CLOSED) { 1493 dout("%s: con %p CLOSED\n", __func__, con); 1494 BUG_ON(con->sock); 1495 break; 1496 } 1497 if (con->state == CEPH_CON_S_PREOPEN) { 1498 dout("%s: con %p PREOPEN\n", __func__, con); 1499 BUG_ON(con->sock); 1500 } 1501 1502 if (ceph_msgr2(from_msgr(con->msgr))) 1503 ret = ceph_con_v2_try_read(con); 1504 else 1505 ret = ceph_con_v1_try_read(con); 1506 if (ret < 0) { 1507 if (ret == -EAGAIN) 1508 continue; 1509 if (!con->error_msg) 1510 con->error_msg = "socket error on read"; 1511 fault = true; 1512 break; 1513 } 1514 1515 if (ceph_msgr2(from_msgr(con->msgr))) 1516 ret = ceph_con_v2_try_write(con); 1517 else 1518 ret = ceph_con_v1_try_write(con); 1519 if (ret < 0) { 1520 if (ret == -EAGAIN) 1521 continue; 1522 if (!con->error_msg) 1523 con->error_msg = "socket error on write"; 1524 fault = true; 1525 } 1526 1527 break; /* If we make it to here, we're done */ 1528 } 1529 if (fault) 1530 con_fault(con); 1531 mutex_unlock(&con->mutex); 1532 1533 if (fault) 1534 con_fault_finish(con); 1535 1536 con->ops->put(con); 1537 } 1538 1539 /* 1540 * Generic error/fault handler. A retry mechanism is used with 1541 * exponential backoff 1542 */ 1543 static void con_fault(struct ceph_connection *con) 1544 { 1545 dout("fault %p state %d to peer %s\n", 1546 con, con->state, ceph_pr_addr(&con->peer_addr)); 1547 1548 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 1549 ceph_pr_addr(&con->peer_addr), con->error_msg); 1550 con->error_msg = NULL; 1551 1552 WARN_ON(con->state == CEPH_CON_S_STANDBY || 1553 con->state == CEPH_CON_S_CLOSED); 1554 1555 ceph_con_reset_protocol(con); 1556 1557 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) { 1558 dout("fault on LOSSYTX channel, marking CLOSED\n"); 1559 con->state = CEPH_CON_S_CLOSED; 1560 return; 1561 } 1562 1563 /* Requeue anything that hasn't been acked */ 1564 list_splice_init(&con->out_sent, &con->out_queue); 1565 1566 /* If there are no messages queued or keepalive pending, place 1567 * the connection in a STANDBY state */ 1568 if (list_empty(&con->out_queue) && 1569 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) { 1570 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 1571 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); 1572 con->state = CEPH_CON_S_STANDBY; 1573 } else { 1574 /* retry after a delay. */ 1575 con->state = CEPH_CON_S_PREOPEN; 1576 if (!con->delay) { 1577 con->delay = BASE_DELAY_INTERVAL; 1578 } else if (con->delay < MAX_DELAY_INTERVAL) { 1579 con->delay *= 2; 1580 if (con->delay > MAX_DELAY_INTERVAL) 1581 con->delay = MAX_DELAY_INTERVAL; 1582 } 1583 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF); 1584 queue_con(con); 1585 } 1586 } 1587 1588 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr) 1589 { 1590 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000; 1591 msgr->inst.addr.nonce = cpu_to_le32(nonce); 1592 ceph_encode_my_addr(msgr); 1593 } 1594 1595 /* 1596 * initialize a new messenger instance 1597 */ 1598 void ceph_messenger_init(struct ceph_messenger *msgr, 1599 struct ceph_entity_addr *myaddr) 1600 { 1601 spin_lock_init(&msgr->global_seq_lock); 1602 1603 if (myaddr) { 1604 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr, 1605 sizeof(msgr->inst.addr.in_addr)); 1606 ceph_addr_set_port(&msgr->inst.addr, 0); 1607 } 1608 1609 /* 1610 * Since nautilus, clients are identified using type ANY. 1611 * For msgr1, ceph_encode_banner_addr() munges it to NONE. 1612 */ 1613 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY; 1614 1615 /* generate a random non-zero nonce */ 1616 do { 1617 get_random_bytes(&msgr->inst.addr.nonce, 1618 sizeof(msgr->inst.addr.nonce)); 1619 } while (!msgr->inst.addr.nonce); 1620 ceph_encode_my_addr(msgr); 1621 1622 atomic_set(&msgr->stopping, 0); 1623 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 1624 1625 dout("%s %p\n", __func__, msgr); 1626 } 1627 1628 void ceph_messenger_fini(struct ceph_messenger *msgr) 1629 { 1630 put_net(read_pnet(&msgr->net)); 1631 } 1632 1633 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 1634 { 1635 if (msg->con) 1636 msg->con->ops->put(msg->con); 1637 1638 msg->con = con ? con->ops->get(con) : NULL; 1639 BUG_ON(msg->con != con); 1640 } 1641 1642 static void clear_standby(struct ceph_connection *con) 1643 { 1644 /* come back from STANDBY? */ 1645 if (con->state == CEPH_CON_S_STANDBY) { 1646 dout("clear_standby %p and ++connect_seq\n", con); 1647 con->state = CEPH_CON_S_PREOPEN; 1648 con->v1.connect_seq++; 1649 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)); 1650 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)); 1651 } 1652 } 1653 1654 /* 1655 * Queue up an outgoing message on the given connection. 1656 * 1657 * Consumes a ref on @msg. 1658 */ 1659 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 1660 { 1661 /* set src+dst */ 1662 msg->hdr.src = con->msgr->inst.name; 1663 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 1664 msg->needs_out_seq = true; 1665 1666 mutex_lock(&con->mutex); 1667 1668 if (con->state == CEPH_CON_S_CLOSED) { 1669 dout("con_send %p closed, dropping %p\n", con, msg); 1670 ceph_msg_put(msg); 1671 mutex_unlock(&con->mutex); 1672 return; 1673 } 1674 1675 msg_con_set(msg, con); 1676 1677 BUG_ON(!list_empty(&msg->list_head)); 1678 list_add_tail(&msg->list_head, &con->out_queue); 1679 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 1680 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 1681 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 1682 le32_to_cpu(msg->hdr.front_len), 1683 le32_to_cpu(msg->hdr.middle_len), 1684 le32_to_cpu(msg->hdr.data_len)); 1685 1686 clear_standby(con); 1687 mutex_unlock(&con->mutex); 1688 1689 /* if there wasn't anything waiting to send before, queue 1690 * new work */ 1691 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING)) 1692 queue_con(con); 1693 } 1694 EXPORT_SYMBOL(ceph_con_send); 1695 1696 /* 1697 * Revoke a message that was previously queued for send 1698 */ 1699 void ceph_msg_revoke(struct ceph_msg *msg) 1700 { 1701 struct ceph_connection *con = msg->con; 1702 1703 if (!con) { 1704 dout("%s msg %p null con\n", __func__, msg); 1705 return; /* Message not in our possession */ 1706 } 1707 1708 mutex_lock(&con->mutex); 1709 if (list_empty(&msg->list_head)) { 1710 WARN_ON(con->out_msg == msg); 1711 dout("%s con %p msg %p not linked\n", __func__, con, msg); 1712 mutex_unlock(&con->mutex); 1713 return; 1714 } 1715 1716 dout("%s con %p msg %p was linked\n", __func__, con, msg); 1717 msg->hdr.seq = 0; 1718 ceph_msg_remove(msg); 1719 1720 if (con->out_msg == msg) { 1721 WARN_ON(con->state != CEPH_CON_S_OPEN); 1722 dout("%s con %p msg %p was sending\n", __func__, con, msg); 1723 if (ceph_msgr2(from_msgr(con->msgr))) 1724 ceph_con_v2_revoke(con); 1725 else 1726 ceph_con_v1_revoke(con); 1727 ceph_msg_put(con->out_msg); 1728 con->out_msg = NULL; 1729 } else { 1730 dout("%s con %p msg %p not current, out_msg %p\n", __func__, 1731 con, msg, con->out_msg); 1732 } 1733 mutex_unlock(&con->mutex); 1734 } 1735 1736 /* 1737 * Revoke a message that we may be reading data into 1738 */ 1739 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 1740 { 1741 struct ceph_connection *con = msg->con; 1742 1743 if (!con) { 1744 dout("%s msg %p null con\n", __func__, msg); 1745 return; /* Message not in our possession */ 1746 } 1747 1748 mutex_lock(&con->mutex); 1749 if (con->in_msg == msg) { 1750 WARN_ON(con->state != CEPH_CON_S_OPEN); 1751 dout("%s con %p msg %p was recving\n", __func__, con, msg); 1752 if (ceph_msgr2(from_msgr(con->msgr))) 1753 ceph_con_v2_revoke_incoming(con); 1754 else 1755 ceph_con_v1_revoke_incoming(con); 1756 ceph_msg_put(con->in_msg); 1757 con->in_msg = NULL; 1758 } else { 1759 dout("%s con %p msg %p not current, in_msg %p\n", __func__, 1760 con, msg, con->in_msg); 1761 } 1762 mutex_unlock(&con->mutex); 1763 } 1764 1765 /* 1766 * Queue a keepalive byte to ensure the tcp connection is alive. 1767 */ 1768 void ceph_con_keepalive(struct ceph_connection *con) 1769 { 1770 dout("con_keepalive %p\n", con); 1771 mutex_lock(&con->mutex); 1772 clear_standby(con); 1773 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING); 1774 mutex_unlock(&con->mutex); 1775 1776 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING)) 1777 queue_con(con); 1778 } 1779 EXPORT_SYMBOL(ceph_con_keepalive); 1780 1781 bool ceph_con_keepalive_expired(struct ceph_connection *con, 1782 unsigned long interval) 1783 { 1784 if (interval > 0 && 1785 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 1786 struct timespec64 now; 1787 struct timespec64 ts; 1788 ktime_get_real_ts64(&now); 1789 jiffies_to_timespec64(interval, &ts); 1790 ts = timespec64_add(con->last_keepalive_ack, ts); 1791 return timespec64_compare(&now, &ts) >= 0; 1792 } 1793 return false; 1794 } 1795 1796 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg) 1797 { 1798 BUG_ON(msg->num_data_items >= msg->max_data_items); 1799 return &msg->data[msg->num_data_items++]; 1800 } 1801 1802 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 1803 { 1804 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) { 1805 int num_pages = calc_pages_for(data->alignment, data->length); 1806 ceph_release_page_vector(data->pages, num_pages); 1807 } else if (data->type == CEPH_MSG_DATA_PAGELIST) { 1808 ceph_pagelist_release(data->pagelist); 1809 } 1810 } 1811 1812 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 1813 size_t length, size_t alignment, bool own_pages) 1814 { 1815 struct ceph_msg_data *data; 1816 1817 BUG_ON(!pages); 1818 BUG_ON(!length); 1819 1820 data = ceph_msg_data_add(msg); 1821 data->type = CEPH_MSG_DATA_PAGES; 1822 data->pages = pages; 1823 data->length = length; 1824 data->alignment = alignment & ~PAGE_MASK; 1825 data->own_pages = own_pages; 1826 1827 msg->data_length += length; 1828 } 1829 EXPORT_SYMBOL(ceph_msg_data_add_pages); 1830 1831 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 1832 struct ceph_pagelist *pagelist) 1833 { 1834 struct ceph_msg_data *data; 1835 1836 BUG_ON(!pagelist); 1837 BUG_ON(!pagelist->length); 1838 1839 data = ceph_msg_data_add(msg); 1840 data->type = CEPH_MSG_DATA_PAGELIST; 1841 refcount_inc(&pagelist->refcnt); 1842 data->pagelist = pagelist; 1843 1844 msg->data_length += pagelist->length; 1845 } 1846 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 1847 1848 #ifdef CONFIG_BLOCK 1849 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, 1850 u32 length) 1851 { 1852 struct ceph_msg_data *data; 1853 1854 data = ceph_msg_data_add(msg); 1855 data->type = CEPH_MSG_DATA_BIO; 1856 data->bio_pos = *bio_pos; 1857 data->bio_length = length; 1858 1859 msg->data_length += length; 1860 } 1861 EXPORT_SYMBOL(ceph_msg_data_add_bio); 1862 #endif /* CONFIG_BLOCK */ 1863 1864 void ceph_msg_data_add_bvecs(struct ceph_msg *msg, 1865 struct ceph_bvec_iter *bvec_pos) 1866 { 1867 struct ceph_msg_data *data; 1868 1869 data = ceph_msg_data_add(msg); 1870 data->type = CEPH_MSG_DATA_BVECS; 1871 data->bvec_pos = *bvec_pos; 1872 1873 msg->data_length += bvec_pos->iter.bi_size; 1874 } 1875 EXPORT_SYMBOL(ceph_msg_data_add_bvecs); 1876 1877 /* 1878 * construct a new message with given type, size 1879 * the new msg has a ref count of 1. 1880 */ 1881 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items, 1882 gfp_t flags, bool can_fail) 1883 { 1884 struct ceph_msg *m; 1885 1886 m = kmem_cache_zalloc(ceph_msg_cache, flags); 1887 if (m == NULL) 1888 goto out; 1889 1890 m->hdr.type = cpu_to_le16(type); 1891 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 1892 m->hdr.front_len = cpu_to_le32(front_len); 1893 1894 INIT_LIST_HEAD(&m->list_head); 1895 kref_init(&m->kref); 1896 1897 /* front */ 1898 if (front_len) { 1899 m->front.iov_base = kvmalloc(front_len, flags); 1900 if (m->front.iov_base == NULL) { 1901 dout("ceph_msg_new can't allocate %d bytes\n", 1902 front_len); 1903 goto out2; 1904 } 1905 } else { 1906 m->front.iov_base = NULL; 1907 } 1908 m->front_alloc_len = m->front.iov_len = front_len; 1909 1910 if (max_data_items) { 1911 m->data = kmalloc_array(max_data_items, sizeof(*m->data), 1912 flags); 1913 if (!m->data) 1914 goto out2; 1915 1916 m->max_data_items = max_data_items; 1917 } 1918 1919 dout("ceph_msg_new %p front %d\n", m, front_len); 1920 return m; 1921 1922 out2: 1923 ceph_msg_put(m); 1924 out: 1925 if (!can_fail) { 1926 pr_err("msg_new can't create type %d front %d\n", type, 1927 front_len); 1928 WARN_ON(1); 1929 } else { 1930 dout("msg_new can't create type %d front %d\n", type, 1931 front_len); 1932 } 1933 return NULL; 1934 } 1935 EXPORT_SYMBOL(ceph_msg_new2); 1936 1937 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 1938 bool can_fail) 1939 { 1940 return ceph_msg_new2(type, front_len, 0, flags, can_fail); 1941 } 1942 EXPORT_SYMBOL(ceph_msg_new); 1943 1944 /* 1945 * Allocate "middle" portion of a message, if it is needed and wasn't 1946 * allocated by alloc_msg. This allows us to read a small fixed-size 1947 * per-type header in the front and then gracefully fail (i.e., 1948 * propagate the error to the caller based on info in the front) when 1949 * the middle is too large. 1950 */ 1951 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 1952 { 1953 int type = le16_to_cpu(msg->hdr.type); 1954 int middle_len = le32_to_cpu(msg->hdr.middle_len); 1955 1956 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 1957 ceph_msg_type_name(type), middle_len); 1958 BUG_ON(!middle_len); 1959 BUG_ON(msg->middle); 1960 1961 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 1962 if (!msg->middle) 1963 return -ENOMEM; 1964 return 0; 1965 } 1966 1967 /* 1968 * Allocate a message for receiving an incoming message on a 1969 * connection, and save the result in con->in_msg. Uses the 1970 * connection's private alloc_msg op if available. 1971 * 1972 * Returns 0 on success, or a negative error code. 1973 * 1974 * On success, if we set *skip = 1: 1975 * - the next message should be skipped and ignored. 1976 * - con->in_msg == NULL 1977 * or if we set *skip = 0: 1978 * - con->in_msg is non-null. 1979 * On error (ENOMEM, EAGAIN, ...), 1980 * - con->in_msg == NULL 1981 */ 1982 int ceph_con_in_msg_alloc(struct ceph_connection *con, 1983 struct ceph_msg_header *hdr, int *skip) 1984 { 1985 int middle_len = le32_to_cpu(hdr->middle_len); 1986 struct ceph_msg *msg; 1987 int ret = 0; 1988 1989 BUG_ON(con->in_msg != NULL); 1990 BUG_ON(!con->ops->alloc_msg); 1991 1992 mutex_unlock(&con->mutex); 1993 msg = con->ops->alloc_msg(con, hdr, skip); 1994 mutex_lock(&con->mutex); 1995 if (con->state != CEPH_CON_S_OPEN) { 1996 if (msg) 1997 ceph_msg_put(msg); 1998 return -EAGAIN; 1999 } 2000 if (msg) { 2001 BUG_ON(*skip); 2002 msg_con_set(msg, con); 2003 con->in_msg = msg; 2004 } else { 2005 /* 2006 * Null message pointer means either we should skip 2007 * this message or we couldn't allocate memory. The 2008 * former is not an error. 2009 */ 2010 if (*skip) 2011 return 0; 2012 2013 con->error_msg = "error allocating memory for incoming message"; 2014 return -ENOMEM; 2015 } 2016 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr)); 2017 2018 if (middle_len && !con->in_msg->middle) { 2019 ret = ceph_alloc_middle(con, con->in_msg); 2020 if (ret < 0) { 2021 ceph_msg_put(con->in_msg); 2022 con->in_msg = NULL; 2023 } 2024 } 2025 2026 return ret; 2027 } 2028 2029 void ceph_con_get_out_msg(struct ceph_connection *con) 2030 { 2031 struct ceph_msg *msg; 2032 2033 BUG_ON(list_empty(&con->out_queue)); 2034 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 2035 WARN_ON(msg->con != con); 2036 2037 /* 2038 * Put the message on "sent" list using a ref from ceph_con_send(). 2039 * It is put when the message is acked or revoked. 2040 */ 2041 list_move_tail(&msg->list_head, &con->out_sent); 2042 2043 /* 2044 * Only assign outgoing seq # if we haven't sent this message 2045 * yet. If it is requeued, resend with it's original seq. 2046 */ 2047 if (msg->needs_out_seq) { 2048 msg->hdr.seq = cpu_to_le64(++con->out_seq); 2049 msg->needs_out_seq = false; 2050 2051 if (con->ops->reencode_message) 2052 con->ops->reencode_message(msg); 2053 } 2054 2055 /* 2056 * Get a ref for out_msg. It is put when we are done sending the 2057 * message or in case of a fault. 2058 */ 2059 WARN_ON(con->out_msg); 2060 con->out_msg = ceph_msg_get(msg); 2061 } 2062 2063 /* 2064 * Free a generically kmalloc'd message. 2065 */ 2066 static void ceph_msg_free(struct ceph_msg *m) 2067 { 2068 dout("%s %p\n", __func__, m); 2069 kvfree(m->front.iov_base); 2070 kfree(m->data); 2071 kmem_cache_free(ceph_msg_cache, m); 2072 } 2073 2074 static void ceph_msg_release(struct kref *kref) 2075 { 2076 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 2077 int i; 2078 2079 dout("%s %p\n", __func__, m); 2080 WARN_ON(!list_empty(&m->list_head)); 2081 2082 msg_con_set(m, NULL); 2083 2084 /* drop middle, data, if any */ 2085 if (m->middle) { 2086 ceph_buffer_put(m->middle); 2087 m->middle = NULL; 2088 } 2089 2090 for (i = 0; i < m->num_data_items; i++) 2091 ceph_msg_data_destroy(&m->data[i]); 2092 2093 if (m->pool) 2094 ceph_msgpool_put(m->pool, m); 2095 else 2096 ceph_msg_free(m); 2097 } 2098 2099 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 2100 { 2101 dout("%s %p (was %d)\n", __func__, msg, 2102 kref_read(&msg->kref)); 2103 kref_get(&msg->kref); 2104 return msg; 2105 } 2106 EXPORT_SYMBOL(ceph_msg_get); 2107 2108 void ceph_msg_put(struct ceph_msg *msg) 2109 { 2110 dout("%s %p (was %d)\n", __func__, msg, 2111 kref_read(&msg->kref)); 2112 kref_put(&msg->kref, ceph_msg_release); 2113 } 2114 EXPORT_SYMBOL(ceph_msg_put); 2115 2116 void ceph_msg_dump(struct ceph_msg *msg) 2117 { 2118 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 2119 msg->front_alloc_len, msg->data_length); 2120 print_hex_dump(KERN_DEBUG, "header: ", 2121 DUMP_PREFIX_OFFSET, 16, 1, 2122 &msg->hdr, sizeof(msg->hdr), true); 2123 print_hex_dump(KERN_DEBUG, " front: ", 2124 DUMP_PREFIX_OFFSET, 16, 1, 2125 msg->front.iov_base, msg->front.iov_len, true); 2126 if (msg->middle) 2127 print_hex_dump(KERN_DEBUG, "middle: ", 2128 DUMP_PREFIX_OFFSET, 16, 1, 2129 msg->middle->vec.iov_base, 2130 msg->middle->vec.iov_len, true); 2131 print_hex_dump(KERN_DEBUG, "footer: ", 2132 DUMP_PREFIX_OFFSET, 16, 1, 2133 &msg->footer, sizeof(msg->footer), true); 2134 } 2135 EXPORT_SYMBOL(ceph_msg_dump); 2136