xref: /linux/net/ceph/messenger.c (revision 3aed61d1eb06b8b19b7bb09d49b222ebc3f83347)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef	CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif	/* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18 
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25 
26 #define list_entry_next(pos, member)					\
27 	list_entry(pos->member.next, typeof(*pos), member)
28 
29 /*
30  * Ceph uses the messenger to exchange ceph_msg messages with other
31  * hosts in the system.  The messenger provides ordered and reliable
32  * delivery.  We tolerate TCP disconnects by reconnecting (with
33  * exponential backoff) in the case of a fault (disconnection, bad
34  * crc, protocol error).  Acks allow sent messages to be discarded by
35  * the sender.
36  */
37 
38 /*
39  * We track the state of the socket on a given connection using
40  * values defined below.  The transition to a new socket state is
41  * handled by a function which verifies we aren't coming from an
42  * unexpected state.
43  *
44  *      --------
45  *      | NEW* |  transient initial state
46  *      --------
47  *          | con_sock_state_init()
48  *          v
49  *      ----------
50  *      | CLOSED |  initialized, but no socket (and no
51  *      ----------  TCP connection)
52  *       ^      \
53  *       |       \ con_sock_state_connecting()
54  *       |        ----------------------
55  *       |                              \
56  *       + con_sock_state_closed()       \
57  *       |+---------------------------    \
58  *       | \                          \    \
59  *       |  -----------                \    \
60  *       |  | CLOSING |  socket event;  \    \
61  *       |  -----------  await close     \    \
62  *       |       ^                        \   |
63  *       |       |                         \  |
64  *       |       + con_sock_state_closing() \ |
65  *       |      / \                         | |
66  *       |     /   ---------------          | |
67  *       |    /                   \         v v
68  *       |   /                    --------------
69  *       |  /    -----------------| CONNECTING |  socket created, TCP
70  *       |  |   /                 --------------  connect initiated
71  *       |  |   | con_sock_state_connected()
72  *       |  |   v
73  *      -------------
74  *      | CONNECTED |  TCP connection established
75  *      -------------
76  *
77  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78  */
79 
80 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
81 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
82 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
83 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
84 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
85 
86 /*
87  * connection states
88  */
89 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
90 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
91 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
92 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
93 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
94 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
95 
96 /*
97  * ceph_connection flag bits
98  */
99 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
100 				       * messages on errors */
101 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
102 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
103 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
104 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
105 
106 static bool con_flag_valid(unsigned long con_flag)
107 {
108 	switch (con_flag) {
109 	case CON_FLAG_LOSSYTX:
110 	case CON_FLAG_KEEPALIVE_PENDING:
111 	case CON_FLAG_WRITE_PENDING:
112 	case CON_FLAG_SOCK_CLOSED:
113 	case CON_FLAG_BACKOFF:
114 		return true;
115 	default:
116 		return false;
117 	}
118 }
119 
120 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
121 {
122 	BUG_ON(!con_flag_valid(con_flag));
123 
124 	clear_bit(con_flag, &con->flags);
125 }
126 
127 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
128 {
129 	BUG_ON(!con_flag_valid(con_flag));
130 
131 	set_bit(con_flag, &con->flags);
132 }
133 
134 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
135 {
136 	BUG_ON(!con_flag_valid(con_flag));
137 
138 	return test_bit(con_flag, &con->flags);
139 }
140 
141 static bool con_flag_test_and_clear(struct ceph_connection *con,
142 					unsigned long con_flag)
143 {
144 	BUG_ON(!con_flag_valid(con_flag));
145 
146 	return test_and_clear_bit(con_flag, &con->flags);
147 }
148 
149 static bool con_flag_test_and_set(struct ceph_connection *con,
150 					unsigned long con_flag)
151 {
152 	BUG_ON(!con_flag_valid(con_flag));
153 
154 	return test_and_set_bit(con_flag, &con->flags);
155 }
156 
157 /* Slab caches for frequently-allocated structures */
158 
159 static struct kmem_cache	*ceph_msg_cache;
160 static struct kmem_cache	*ceph_msg_data_cache;
161 
162 /* static tag bytes (protocol control messages) */
163 static char tag_msg = CEPH_MSGR_TAG_MSG;
164 static char tag_ack = CEPH_MSGR_TAG_ACK;
165 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
166 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
167 
168 #ifdef CONFIG_LOCKDEP
169 static struct lock_class_key socket_class;
170 #endif
171 
172 /*
173  * When skipping (ignoring) a block of input we read it into a "skip
174  * buffer," which is this many bytes in size.
175  */
176 #define SKIP_BUF_SIZE	1024
177 
178 static void queue_con(struct ceph_connection *con);
179 static void cancel_con(struct ceph_connection *con);
180 static void ceph_con_workfn(struct work_struct *);
181 static void con_fault(struct ceph_connection *con);
182 
183 /*
184  * Nicely render a sockaddr as a string.  An array of formatted
185  * strings is used, to approximate reentrancy.
186  */
187 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
188 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
189 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
190 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
191 
192 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
193 static atomic_t addr_str_seq = ATOMIC_INIT(0);
194 
195 static struct page *zero_page;		/* used in certain error cases */
196 
197 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
198 {
199 	int i;
200 	char *s;
201 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
202 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
203 
204 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
205 	s = addr_str[i];
206 
207 	switch (ss->ss_family) {
208 	case AF_INET:
209 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
210 			 ntohs(in4->sin_port));
211 		break;
212 
213 	case AF_INET6:
214 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
215 			 ntohs(in6->sin6_port));
216 		break;
217 
218 	default:
219 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
220 			 ss->ss_family);
221 	}
222 
223 	return s;
224 }
225 EXPORT_SYMBOL(ceph_pr_addr);
226 
227 static void encode_my_addr(struct ceph_messenger *msgr)
228 {
229 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
230 	ceph_encode_addr(&msgr->my_enc_addr);
231 }
232 
233 /*
234  * work queue for all reading and writing to/from the socket.
235  */
236 static struct workqueue_struct *ceph_msgr_wq;
237 
238 static int ceph_msgr_slab_init(void)
239 {
240 	BUG_ON(ceph_msg_cache);
241 	ceph_msg_cache = kmem_cache_create("ceph_msg",
242 					sizeof (struct ceph_msg),
243 					__alignof__(struct ceph_msg), 0, NULL);
244 
245 	if (!ceph_msg_cache)
246 		return -ENOMEM;
247 
248 	BUG_ON(ceph_msg_data_cache);
249 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
250 					sizeof (struct ceph_msg_data),
251 					__alignof__(struct ceph_msg_data),
252 					0, NULL);
253 	if (ceph_msg_data_cache)
254 		return 0;
255 
256 	kmem_cache_destroy(ceph_msg_cache);
257 	ceph_msg_cache = NULL;
258 
259 	return -ENOMEM;
260 }
261 
262 static void ceph_msgr_slab_exit(void)
263 {
264 	BUG_ON(!ceph_msg_data_cache);
265 	kmem_cache_destroy(ceph_msg_data_cache);
266 	ceph_msg_data_cache = NULL;
267 
268 	BUG_ON(!ceph_msg_cache);
269 	kmem_cache_destroy(ceph_msg_cache);
270 	ceph_msg_cache = NULL;
271 }
272 
273 static void _ceph_msgr_exit(void)
274 {
275 	if (ceph_msgr_wq) {
276 		destroy_workqueue(ceph_msgr_wq);
277 		ceph_msgr_wq = NULL;
278 	}
279 
280 	BUG_ON(zero_page == NULL);
281 	page_cache_release(zero_page);
282 	zero_page = NULL;
283 
284 	ceph_msgr_slab_exit();
285 }
286 
287 int ceph_msgr_init(void)
288 {
289 	if (ceph_msgr_slab_init())
290 		return -ENOMEM;
291 
292 	BUG_ON(zero_page != NULL);
293 	zero_page = ZERO_PAGE(0);
294 	page_cache_get(zero_page);
295 
296 	/*
297 	 * The number of active work items is limited by the number of
298 	 * connections, so leave @max_active at default.
299 	 */
300 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
301 	if (ceph_msgr_wq)
302 		return 0;
303 
304 	pr_err("msgr_init failed to create workqueue\n");
305 	_ceph_msgr_exit();
306 
307 	return -ENOMEM;
308 }
309 EXPORT_SYMBOL(ceph_msgr_init);
310 
311 void ceph_msgr_exit(void)
312 {
313 	BUG_ON(ceph_msgr_wq == NULL);
314 
315 	_ceph_msgr_exit();
316 }
317 EXPORT_SYMBOL(ceph_msgr_exit);
318 
319 void ceph_msgr_flush(void)
320 {
321 	flush_workqueue(ceph_msgr_wq);
322 }
323 EXPORT_SYMBOL(ceph_msgr_flush);
324 
325 /* Connection socket state transition functions */
326 
327 static void con_sock_state_init(struct ceph_connection *con)
328 {
329 	int old_state;
330 
331 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
332 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
333 		printk("%s: unexpected old state %d\n", __func__, old_state);
334 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
335 	     CON_SOCK_STATE_CLOSED);
336 }
337 
338 static void con_sock_state_connecting(struct ceph_connection *con)
339 {
340 	int old_state;
341 
342 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
343 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
344 		printk("%s: unexpected old state %d\n", __func__, old_state);
345 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
346 	     CON_SOCK_STATE_CONNECTING);
347 }
348 
349 static void con_sock_state_connected(struct ceph_connection *con)
350 {
351 	int old_state;
352 
353 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
354 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
355 		printk("%s: unexpected old state %d\n", __func__, old_state);
356 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
357 	     CON_SOCK_STATE_CONNECTED);
358 }
359 
360 static void con_sock_state_closing(struct ceph_connection *con)
361 {
362 	int old_state;
363 
364 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
365 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
366 			old_state != CON_SOCK_STATE_CONNECTED &&
367 			old_state != CON_SOCK_STATE_CLOSING))
368 		printk("%s: unexpected old state %d\n", __func__, old_state);
369 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
370 	     CON_SOCK_STATE_CLOSING);
371 }
372 
373 static void con_sock_state_closed(struct ceph_connection *con)
374 {
375 	int old_state;
376 
377 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
378 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
379 		    old_state != CON_SOCK_STATE_CLOSING &&
380 		    old_state != CON_SOCK_STATE_CONNECTING &&
381 		    old_state != CON_SOCK_STATE_CLOSED))
382 		printk("%s: unexpected old state %d\n", __func__, old_state);
383 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
384 	     CON_SOCK_STATE_CLOSED);
385 }
386 
387 /*
388  * socket callback functions
389  */
390 
391 /* data available on socket, or listen socket received a connect */
392 static void ceph_sock_data_ready(struct sock *sk)
393 {
394 	struct ceph_connection *con = sk->sk_user_data;
395 	if (atomic_read(&con->msgr->stopping)) {
396 		return;
397 	}
398 
399 	if (sk->sk_state != TCP_CLOSE_WAIT) {
400 		dout("%s on %p state = %lu, queueing work\n", __func__,
401 		     con, con->state);
402 		queue_con(con);
403 	}
404 }
405 
406 /* socket has buffer space for writing */
407 static void ceph_sock_write_space(struct sock *sk)
408 {
409 	struct ceph_connection *con = sk->sk_user_data;
410 
411 	/* only queue to workqueue if there is data we want to write,
412 	 * and there is sufficient space in the socket buffer to accept
413 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
414 	 * doesn't get called again until try_write() fills the socket
415 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
416 	 * and net/core/stream.c:sk_stream_write_space().
417 	 */
418 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
419 		if (sk_stream_is_writeable(sk)) {
420 			dout("%s %p queueing write work\n", __func__, con);
421 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
422 			queue_con(con);
423 		}
424 	} else {
425 		dout("%s %p nothing to write\n", __func__, con);
426 	}
427 }
428 
429 /* socket's state has changed */
430 static void ceph_sock_state_change(struct sock *sk)
431 {
432 	struct ceph_connection *con = sk->sk_user_data;
433 
434 	dout("%s %p state = %lu sk_state = %u\n", __func__,
435 	     con, con->state, sk->sk_state);
436 
437 	switch (sk->sk_state) {
438 	case TCP_CLOSE:
439 		dout("%s TCP_CLOSE\n", __func__);
440 	case TCP_CLOSE_WAIT:
441 		dout("%s TCP_CLOSE_WAIT\n", __func__);
442 		con_sock_state_closing(con);
443 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
444 		queue_con(con);
445 		break;
446 	case TCP_ESTABLISHED:
447 		dout("%s TCP_ESTABLISHED\n", __func__);
448 		con_sock_state_connected(con);
449 		queue_con(con);
450 		break;
451 	default:	/* Everything else is uninteresting */
452 		break;
453 	}
454 }
455 
456 /*
457  * set up socket callbacks
458  */
459 static void set_sock_callbacks(struct socket *sock,
460 			       struct ceph_connection *con)
461 {
462 	struct sock *sk = sock->sk;
463 	sk->sk_user_data = con;
464 	sk->sk_data_ready = ceph_sock_data_ready;
465 	sk->sk_write_space = ceph_sock_write_space;
466 	sk->sk_state_change = ceph_sock_state_change;
467 }
468 
469 
470 /*
471  * socket helpers
472  */
473 
474 /*
475  * initiate connection to a remote socket.
476  */
477 static int ceph_tcp_connect(struct ceph_connection *con)
478 {
479 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
480 	struct socket *sock;
481 	int ret;
482 
483 	BUG_ON(con->sock);
484 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
485 			       SOCK_STREAM, IPPROTO_TCP, &sock);
486 	if (ret)
487 		return ret;
488 	sock->sk->sk_allocation = GFP_NOFS;
489 
490 #ifdef CONFIG_LOCKDEP
491 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
492 #endif
493 
494 	set_sock_callbacks(sock, con);
495 
496 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
497 
498 	con_sock_state_connecting(con);
499 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
500 				 O_NONBLOCK);
501 	if (ret == -EINPROGRESS) {
502 		dout("connect %s EINPROGRESS sk_state = %u\n",
503 		     ceph_pr_addr(&con->peer_addr.in_addr),
504 		     sock->sk->sk_state);
505 	} else if (ret < 0) {
506 		pr_err("connect %s error %d\n",
507 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
508 		sock_release(sock);
509 		return ret;
510 	}
511 
512 	if (con->msgr->tcp_nodelay) {
513 		int optval = 1;
514 
515 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
516 					(char *)&optval, sizeof(optval));
517 		if (ret)
518 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
519 			       ret);
520 	}
521 
522 	con->sock = sock;
523 	return 0;
524 }
525 
526 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
527 {
528 	struct kvec iov = {buf, len};
529 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
530 	int r;
531 
532 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
533 	if (r == -EAGAIN)
534 		r = 0;
535 	return r;
536 }
537 
538 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
539 		     int page_offset, size_t length)
540 {
541 	void *kaddr;
542 	int ret;
543 
544 	BUG_ON(page_offset + length > PAGE_SIZE);
545 
546 	kaddr = kmap(page);
547 	BUG_ON(!kaddr);
548 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
549 	kunmap(page);
550 
551 	return ret;
552 }
553 
554 /*
555  * write something.  @more is true if caller will be sending more data
556  * shortly.
557  */
558 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
559 		     size_t kvlen, size_t len, int more)
560 {
561 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
562 	int r;
563 
564 	if (more)
565 		msg.msg_flags |= MSG_MORE;
566 	else
567 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
568 
569 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
570 	if (r == -EAGAIN)
571 		r = 0;
572 	return r;
573 }
574 
575 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
576 		     int offset, size_t size, bool more)
577 {
578 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
579 	int ret;
580 
581 	ret = kernel_sendpage(sock, page, offset, size, flags);
582 	if (ret == -EAGAIN)
583 		ret = 0;
584 
585 	return ret;
586 }
587 
588 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
589 		     int offset, size_t size, bool more)
590 {
591 	int ret;
592 	struct kvec iov;
593 
594 	/* sendpage cannot properly handle pages with page_count == 0,
595 	 * we need to fallback to sendmsg if that's the case */
596 	if (page_count(page) >= 1)
597 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
598 
599 	iov.iov_base = kmap(page) + offset;
600 	iov.iov_len = size;
601 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
602 	kunmap(page);
603 
604 	return ret;
605 }
606 
607 /*
608  * Shutdown/close the socket for the given connection.
609  */
610 static int con_close_socket(struct ceph_connection *con)
611 {
612 	int rc = 0;
613 
614 	dout("con_close_socket on %p sock %p\n", con, con->sock);
615 	if (con->sock) {
616 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
617 		sock_release(con->sock);
618 		con->sock = NULL;
619 	}
620 
621 	/*
622 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
623 	 * independent of the connection mutex, and we could have
624 	 * received a socket close event before we had the chance to
625 	 * shut the socket down.
626 	 */
627 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
628 
629 	con_sock_state_closed(con);
630 	return rc;
631 }
632 
633 /*
634  * Reset a connection.  Discard all incoming and outgoing messages
635  * and clear *_seq state.
636  */
637 static void ceph_msg_remove(struct ceph_msg *msg)
638 {
639 	list_del_init(&msg->list_head);
640 	BUG_ON(msg->con == NULL);
641 	msg->con->ops->put(msg->con);
642 	msg->con = NULL;
643 
644 	ceph_msg_put(msg);
645 }
646 static void ceph_msg_remove_list(struct list_head *head)
647 {
648 	while (!list_empty(head)) {
649 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
650 							list_head);
651 		ceph_msg_remove(msg);
652 	}
653 }
654 
655 static void reset_connection(struct ceph_connection *con)
656 {
657 	/* reset connection, out_queue, msg_ and connect_seq */
658 	/* discard existing out_queue and msg_seq */
659 	dout("reset_connection %p\n", con);
660 	ceph_msg_remove_list(&con->out_queue);
661 	ceph_msg_remove_list(&con->out_sent);
662 
663 	if (con->in_msg) {
664 		BUG_ON(con->in_msg->con != con);
665 		con->in_msg->con = NULL;
666 		ceph_msg_put(con->in_msg);
667 		con->in_msg = NULL;
668 		con->ops->put(con);
669 	}
670 
671 	con->connect_seq = 0;
672 	con->out_seq = 0;
673 	if (con->out_msg) {
674 		ceph_msg_put(con->out_msg);
675 		con->out_msg = NULL;
676 	}
677 	con->in_seq = 0;
678 	con->in_seq_acked = 0;
679 }
680 
681 /*
682  * mark a peer down.  drop any open connections.
683  */
684 void ceph_con_close(struct ceph_connection *con)
685 {
686 	mutex_lock(&con->mutex);
687 	dout("con_close %p peer %s\n", con,
688 	     ceph_pr_addr(&con->peer_addr.in_addr));
689 	con->state = CON_STATE_CLOSED;
690 
691 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
692 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
693 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
694 	con_flag_clear(con, CON_FLAG_BACKOFF);
695 
696 	reset_connection(con);
697 	con->peer_global_seq = 0;
698 	cancel_con(con);
699 	con_close_socket(con);
700 	mutex_unlock(&con->mutex);
701 }
702 EXPORT_SYMBOL(ceph_con_close);
703 
704 /*
705  * Reopen a closed connection, with a new peer address.
706  */
707 void ceph_con_open(struct ceph_connection *con,
708 		   __u8 entity_type, __u64 entity_num,
709 		   struct ceph_entity_addr *addr)
710 {
711 	mutex_lock(&con->mutex);
712 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
713 
714 	WARN_ON(con->state != CON_STATE_CLOSED);
715 	con->state = CON_STATE_PREOPEN;
716 
717 	con->peer_name.type = (__u8) entity_type;
718 	con->peer_name.num = cpu_to_le64(entity_num);
719 
720 	memcpy(&con->peer_addr, addr, sizeof(*addr));
721 	con->delay = 0;      /* reset backoff memory */
722 	mutex_unlock(&con->mutex);
723 	queue_con(con);
724 }
725 EXPORT_SYMBOL(ceph_con_open);
726 
727 /*
728  * return true if this connection ever successfully opened
729  */
730 bool ceph_con_opened(struct ceph_connection *con)
731 {
732 	return con->connect_seq > 0;
733 }
734 
735 /*
736  * initialize a new connection.
737  */
738 void ceph_con_init(struct ceph_connection *con, void *private,
739 	const struct ceph_connection_operations *ops,
740 	struct ceph_messenger *msgr)
741 {
742 	dout("con_init %p\n", con);
743 	memset(con, 0, sizeof(*con));
744 	con->private = private;
745 	con->ops = ops;
746 	con->msgr = msgr;
747 
748 	con_sock_state_init(con);
749 
750 	mutex_init(&con->mutex);
751 	INIT_LIST_HEAD(&con->out_queue);
752 	INIT_LIST_HEAD(&con->out_sent);
753 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
754 
755 	con->state = CON_STATE_CLOSED;
756 }
757 EXPORT_SYMBOL(ceph_con_init);
758 
759 
760 /*
761  * We maintain a global counter to order connection attempts.  Get
762  * a unique seq greater than @gt.
763  */
764 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
765 {
766 	u32 ret;
767 
768 	spin_lock(&msgr->global_seq_lock);
769 	if (msgr->global_seq < gt)
770 		msgr->global_seq = gt;
771 	ret = ++msgr->global_seq;
772 	spin_unlock(&msgr->global_seq_lock);
773 	return ret;
774 }
775 
776 static void con_out_kvec_reset(struct ceph_connection *con)
777 {
778 	con->out_kvec_left = 0;
779 	con->out_kvec_bytes = 0;
780 	con->out_kvec_cur = &con->out_kvec[0];
781 }
782 
783 static void con_out_kvec_add(struct ceph_connection *con,
784 				size_t size, void *data)
785 {
786 	int index;
787 
788 	index = con->out_kvec_left;
789 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
790 
791 	con->out_kvec[index].iov_len = size;
792 	con->out_kvec[index].iov_base = data;
793 	con->out_kvec_left++;
794 	con->out_kvec_bytes += size;
795 }
796 
797 #ifdef CONFIG_BLOCK
798 
799 /*
800  * For a bio data item, a piece is whatever remains of the next
801  * entry in the current bio iovec, or the first entry in the next
802  * bio in the list.
803  */
804 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
805 					size_t length)
806 {
807 	struct ceph_msg_data *data = cursor->data;
808 	struct bio *bio;
809 
810 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
811 
812 	bio = data->bio;
813 	BUG_ON(!bio);
814 
815 	cursor->resid = min(length, data->bio_length);
816 	cursor->bio = bio;
817 	cursor->bvec_iter = bio->bi_iter;
818 	cursor->last_piece =
819 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
820 }
821 
822 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
823 						size_t *page_offset,
824 						size_t *length)
825 {
826 	struct ceph_msg_data *data = cursor->data;
827 	struct bio *bio;
828 	struct bio_vec bio_vec;
829 
830 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
831 
832 	bio = cursor->bio;
833 	BUG_ON(!bio);
834 
835 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
836 
837 	*page_offset = (size_t) bio_vec.bv_offset;
838 	BUG_ON(*page_offset >= PAGE_SIZE);
839 	if (cursor->last_piece) /* pagelist offset is always 0 */
840 		*length = cursor->resid;
841 	else
842 		*length = (size_t) bio_vec.bv_len;
843 	BUG_ON(*length > cursor->resid);
844 	BUG_ON(*page_offset + *length > PAGE_SIZE);
845 
846 	return bio_vec.bv_page;
847 }
848 
849 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
850 					size_t bytes)
851 {
852 	struct bio *bio;
853 	struct bio_vec bio_vec;
854 
855 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
856 
857 	bio = cursor->bio;
858 	BUG_ON(!bio);
859 
860 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
861 
862 	/* Advance the cursor offset */
863 
864 	BUG_ON(cursor->resid < bytes);
865 	cursor->resid -= bytes;
866 
867 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
868 
869 	if (bytes < bio_vec.bv_len)
870 		return false;	/* more bytes to process in this segment */
871 
872 	/* Move on to the next segment, and possibly the next bio */
873 
874 	if (!cursor->bvec_iter.bi_size) {
875 		bio = bio->bi_next;
876 		cursor->bio = bio;
877 		if (bio)
878 			cursor->bvec_iter = bio->bi_iter;
879 		else
880 			memset(&cursor->bvec_iter, 0,
881 			       sizeof(cursor->bvec_iter));
882 	}
883 
884 	if (!cursor->last_piece) {
885 		BUG_ON(!cursor->resid);
886 		BUG_ON(!bio);
887 		/* A short read is OK, so use <= rather than == */
888 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
889 			cursor->last_piece = true;
890 	}
891 
892 	return true;
893 }
894 #endif /* CONFIG_BLOCK */
895 
896 /*
897  * For a page array, a piece comes from the first page in the array
898  * that has not already been fully consumed.
899  */
900 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
901 					size_t length)
902 {
903 	struct ceph_msg_data *data = cursor->data;
904 	int page_count;
905 
906 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
907 
908 	BUG_ON(!data->pages);
909 	BUG_ON(!data->length);
910 
911 	cursor->resid = min(length, data->length);
912 	page_count = calc_pages_for(data->alignment, (u64)data->length);
913 	cursor->page_offset = data->alignment & ~PAGE_MASK;
914 	cursor->page_index = 0;
915 	BUG_ON(page_count > (int)USHRT_MAX);
916 	cursor->page_count = (unsigned short)page_count;
917 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
918 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
919 }
920 
921 static struct page *
922 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
923 					size_t *page_offset, size_t *length)
924 {
925 	struct ceph_msg_data *data = cursor->data;
926 
927 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
928 
929 	BUG_ON(cursor->page_index >= cursor->page_count);
930 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
931 
932 	*page_offset = cursor->page_offset;
933 	if (cursor->last_piece)
934 		*length = cursor->resid;
935 	else
936 		*length = PAGE_SIZE - *page_offset;
937 
938 	return data->pages[cursor->page_index];
939 }
940 
941 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
942 						size_t bytes)
943 {
944 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
945 
946 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
947 
948 	/* Advance the cursor page offset */
949 
950 	cursor->resid -= bytes;
951 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
952 	if (!bytes || cursor->page_offset)
953 		return false;	/* more bytes to process in the current page */
954 
955 	if (!cursor->resid)
956 		return false;   /* no more data */
957 
958 	/* Move on to the next page; offset is already at 0 */
959 
960 	BUG_ON(cursor->page_index >= cursor->page_count);
961 	cursor->page_index++;
962 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
963 
964 	return true;
965 }
966 
967 /*
968  * For a pagelist, a piece is whatever remains to be consumed in the
969  * first page in the list, or the front of the next page.
970  */
971 static void
972 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
973 					size_t length)
974 {
975 	struct ceph_msg_data *data = cursor->data;
976 	struct ceph_pagelist *pagelist;
977 	struct page *page;
978 
979 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
980 
981 	pagelist = data->pagelist;
982 	BUG_ON(!pagelist);
983 
984 	if (!length)
985 		return;		/* pagelist can be assigned but empty */
986 
987 	BUG_ON(list_empty(&pagelist->head));
988 	page = list_first_entry(&pagelist->head, struct page, lru);
989 
990 	cursor->resid = min(length, pagelist->length);
991 	cursor->page = page;
992 	cursor->offset = 0;
993 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
994 }
995 
996 static struct page *
997 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
998 				size_t *page_offset, size_t *length)
999 {
1000 	struct ceph_msg_data *data = cursor->data;
1001 	struct ceph_pagelist *pagelist;
1002 
1003 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1004 
1005 	pagelist = data->pagelist;
1006 	BUG_ON(!pagelist);
1007 
1008 	BUG_ON(!cursor->page);
1009 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1010 
1011 	/* offset of first page in pagelist is always 0 */
1012 	*page_offset = cursor->offset & ~PAGE_MASK;
1013 	if (cursor->last_piece)
1014 		*length = cursor->resid;
1015 	else
1016 		*length = PAGE_SIZE - *page_offset;
1017 
1018 	return cursor->page;
1019 }
1020 
1021 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1022 						size_t bytes)
1023 {
1024 	struct ceph_msg_data *data = cursor->data;
1025 	struct ceph_pagelist *pagelist;
1026 
1027 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1028 
1029 	pagelist = data->pagelist;
1030 	BUG_ON(!pagelist);
1031 
1032 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1033 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1034 
1035 	/* Advance the cursor offset */
1036 
1037 	cursor->resid -= bytes;
1038 	cursor->offset += bytes;
1039 	/* offset of first page in pagelist is always 0 */
1040 	if (!bytes || cursor->offset & ~PAGE_MASK)
1041 		return false;	/* more bytes to process in the current page */
1042 
1043 	if (!cursor->resid)
1044 		return false;   /* no more data */
1045 
1046 	/* Move on to the next page */
1047 
1048 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1049 	cursor->page = list_entry_next(cursor->page, lru);
1050 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1051 
1052 	return true;
1053 }
1054 
1055 /*
1056  * Message data is handled (sent or received) in pieces, where each
1057  * piece resides on a single page.  The network layer might not
1058  * consume an entire piece at once.  A data item's cursor keeps
1059  * track of which piece is next to process and how much remains to
1060  * be processed in that piece.  It also tracks whether the current
1061  * piece is the last one in the data item.
1062  */
1063 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1064 {
1065 	size_t length = cursor->total_resid;
1066 
1067 	switch (cursor->data->type) {
1068 	case CEPH_MSG_DATA_PAGELIST:
1069 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1070 		break;
1071 	case CEPH_MSG_DATA_PAGES:
1072 		ceph_msg_data_pages_cursor_init(cursor, length);
1073 		break;
1074 #ifdef CONFIG_BLOCK
1075 	case CEPH_MSG_DATA_BIO:
1076 		ceph_msg_data_bio_cursor_init(cursor, length);
1077 		break;
1078 #endif /* CONFIG_BLOCK */
1079 	case CEPH_MSG_DATA_NONE:
1080 	default:
1081 		/* BUG(); */
1082 		break;
1083 	}
1084 	cursor->need_crc = true;
1085 }
1086 
1087 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1088 {
1089 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1090 	struct ceph_msg_data *data;
1091 
1092 	BUG_ON(!length);
1093 	BUG_ON(length > msg->data_length);
1094 	BUG_ON(list_empty(&msg->data));
1095 
1096 	cursor->data_head = &msg->data;
1097 	cursor->total_resid = length;
1098 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1099 	cursor->data = data;
1100 
1101 	__ceph_msg_data_cursor_init(cursor);
1102 }
1103 
1104 /*
1105  * Return the page containing the next piece to process for a given
1106  * data item, and supply the page offset and length of that piece.
1107  * Indicate whether this is the last piece in this data item.
1108  */
1109 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1110 					size_t *page_offset, size_t *length,
1111 					bool *last_piece)
1112 {
1113 	struct page *page;
1114 
1115 	switch (cursor->data->type) {
1116 	case CEPH_MSG_DATA_PAGELIST:
1117 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1118 		break;
1119 	case CEPH_MSG_DATA_PAGES:
1120 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1121 		break;
1122 #ifdef CONFIG_BLOCK
1123 	case CEPH_MSG_DATA_BIO:
1124 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1125 		break;
1126 #endif /* CONFIG_BLOCK */
1127 	case CEPH_MSG_DATA_NONE:
1128 	default:
1129 		page = NULL;
1130 		break;
1131 	}
1132 	BUG_ON(!page);
1133 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1134 	BUG_ON(!*length);
1135 	if (last_piece)
1136 		*last_piece = cursor->last_piece;
1137 
1138 	return page;
1139 }
1140 
1141 /*
1142  * Returns true if the result moves the cursor on to the next piece
1143  * of the data item.
1144  */
1145 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1146 				size_t bytes)
1147 {
1148 	bool new_piece;
1149 
1150 	BUG_ON(bytes > cursor->resid);
1151 	switch (cursor->data->type) {
1152 	case CEPH_MSG_DATA_PAGELIST:
1153 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1154 		break;
1155 	case CEPH_MSG_DATA_PAGES:
1156 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1157 		break;
1158 #ifdef CONFIG_BLOCK
1159 	case CEPH_MSG_DATA_BIO:
1160 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1161 		break;
1162 #endif /* CONFIG_BLOCK */
1163 	case CEPH_MSG_DATA_NONE:
1164 	default:
1165 		BUG();
1166 		break;
1167 	}
1168 	cursor->total_resid -= bytes;
1169 
1170 	if (!cursor->resid && cursor->total_resid) {
1171 		WARN_ON(!cursor->last_piece);
1172 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1173 		cursor->data = list_entry_next(cursor->data, links);
1174 		__ceph_msg_data_cursor_init(cursor);
1175 		new_piece = true;
1176 	}
1177 	cursor->need_crc = new_piece;
1178 
1179 	return new_piece;
1180 }
1181 
1182 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1183 {
1184 	BUG_ON(!msg);
1185 	BUG_ON(!data_len);
1186 
1187 	/* Initialize data cursor */
1188 
1189 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1190 }
1191 
1192 /*
1193  * Prepare footer for currently outgoing message, and finish things
1194  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1195  */
1196 static void prepare_write_message_footer(struct ceph_connection *con)
1197 {
1198 	struct ceph_msg *m = con->out_msg;
1199 	int v = con->out_kvec_left;
1200 
1201 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1202 
1203 	dout("prepare_write_message_footer %p\n", con);
1204 	con->out_kvec_is_msg = true;
1205 	con->out_kvec[v].iov_base = &m->footer;
1206 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1207 		if (con->ops->sign_message)
1208 			con->ops->sign_message(con, m);
1209 		else
1210 			m->footer.sig = 0;
1211 		con->out_kvec[v].iov_len = sizeof(m->footer);
1212 		con->out_kvec_bytes += sizeof(m->footer);
1213 	} else {
1214 		m->old_footer.flags = m->footer.flags;
1215 		con->out_kvec[v].iov_len = sizeof(m->old_footer);
1216 		con->out_kvec_bytes += sizeof(m->old_footer);
1217 	}
1218 	con->out_kvec_left++;
1219 	con->out_more = m->more_to_follow;
1220 	con->out_msg_done = true;
1221 }
1222 
1223 /*
1224  * Prepare headers for the next outgoing message.
1225  */
1226 static void prepare_write_message(struct ceph_connection *con)
1227 {
1228 	struct ceph_msg *m;
1229 	u32 crc;
1230 
1231 	con_out_kvec_reset(con);
1232 	con->out_kvec_is_msg = true;
1233 	con->out_msg_done = false;
1234 
1235 	/* Sneak an ack in there first?  If we can get it into the same
1236 	 * TCP packet that's a good thing. */
1237 	if (con->in_seq > con->in_seq_acked) {
1238 		con->in_seq_acked = con->in_seq;
1239 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1240 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1241 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1242 			&con->out_temp_ack);
1243 	}
1244 
1245 	BUG_ON(list_empty(&con->out_queue));
1246 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1247 	con->out_msg = m;
1248 	BUG_ON(m->con != con);
1249 
1250 	/* put message on sent list */
1251 	ceph_msg_get(m);
1252 	list_move_tail(&m->list_head, &con->out_sent);
1253 
1254 	/*
1255 	 * only assign outgoing seq # if we haven't sent this message
1256 	 * yet.  if it is requeued, resend with it's original seq.
1257 	 */
1258 	if (m->needs_out_seq) {
1259 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1260 		m->needs_out_seq = false;
1261 	}
1262 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1263 
1264 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1265 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1266 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1267 	     m->data_length);
1268 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1269 
1270 	/* tag + hdr + front + middle */
1271 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1272 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1273 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1274 
1275 	if (m->middle)
1276 		con_out_kvec_add(con, m->middle->vec.iov_len,
1277 			m->middle->vec.iov_base);
1278 
1279 	/* fill in crc (except data pages), footer */
1280 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1281 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1282 	con->out_msg->footer.flags = 0;
1283 
1284 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1285 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1286 	if (m->middle) {
1287 		crc = crc32c(0, m->middle->vec.iov_base,
1288 				m->middle->vec.iov_len);
1289 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1290 	} else
1291 		con->out_msg->footer.middle_crc = 0;
1292 	dout("%s front_crc %u middle_crc %u\n", __func__,
1293 	     le32_to_cpu(con->out_msg->footer.front_crc),
1294 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1295 
1296 	/* is there a data payload? */
1297 	con->out_msg->footer.data_crc = 0;
1298 	if (m->data_length) {
1299 		prepare_message_data(con->out_msg, m->data_length);
1300 		con->out_more = 1;  /* data + footer will follow */
1301 	} else {
1302 		/* no, queue up footer too and be done */
1303 		prepare_write_message_footer(con);
1304 	}
1305 
1306 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1307 }
1308 
1309 /*
1310  * Prepare an ack.
1311  */
1312 static void prepare_write_ack(struct ceph_connection *con)
1313 {
1314 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1315 	     con->in_seq_acked, con->in_seq);
1316 	con->in_seq_acked = con->in_seq;
1317 
1318 	con_out_kvec_reset(con);
1319 
1320 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1321 
1322 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1323 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1324 				&con->out_temp_ack);
1325 
1326 	con->out_more = 1;  /* more will follow.. eventually.. */
1327 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1328 }
1329 
1330 /*
1331  * Prepare to share the seq during handshake
1332  */
1333 static void prepare_write_seq(struct ceph_connection *con)
1334 {
1335 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1336 	     con->in_seq_acked, con->in_seq);
1337 	con->in_seq_acked = con->in_seq;
1338 
1339 	con_out_kvec_reset(con);
1340 
1341 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1342 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1343 			 &con->out_temp_ack);
1344 
1345 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1346 }
1347 
1348 /*
1349  * Prepare to write keepalive byte.
1350  */
1351 static void prepare_write_keepalive(struct ceph_connection *con)
1352 {
1353 	dout("prepare_write_keepalive %p\n", con);
1354 	con_out_kvec_reset(con);
1355 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1356 		struct timespec ts = CURRENT_TIME;
1357 		struct ceph_timespec ceph_ts;
1358 		ceph_encode_timespec(&ceph_ts, &ts);
1359 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1360 		con_out_kvec_add(con, sizeof(ceph_ts), &ceph_ts);
1361 	} else {
1362 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1363 	}
1364 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1365 }
1366 
1367 /*
1368  * Connection negotiation.
1369  */
1370 
1371 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1372 						int *auth_proto)
1373 {
1374 	struct ceph_auth_handshake *auth;
1375 
1376 	if (!con->ops->get_authorizer) {
1377 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1378 		con->out_connect.authorizer_len = 0;
1379 		return NULL;
1380 	}
1381 
1382 	/* Can't hold the mutex while getting authorizer */
1383 	mutex_unlock(&con->mutex);
1384 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1385 	mutex_lock(&con->mutex);
1386 
1387 	if (IS_ERR(auth))
1388 		return auth;
1389 	if (con->state != CON_STATE_NEGOTIATING)
1390 		return ERR_PTR(-EAGAIN);
1391 
1392 	con->auth_reply_buf = auth->authorizer_reply_buf;
1393 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1394 	return auth;
1395 }
1396 
1397 /*
1398  * We connected to a peer and are saying hello.
1399  */
1400 static void prepare_write_banner(struct ceph_connection *con)
1401 {
1402 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1403 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1404 					&con->msgr->my_enc_addr);
1405 
1406 	con->out_more = 0;
1407 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1408 }
1409 
1410 static int prepare_write_connect(struct ceph_connection *con)
1411 {
1412 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1413 	int proto;
1414 	int auth_proto;
1415 	struct ceph_auth_handshake *auth;
1416 
1417 	switch (con->peer_name.type) {
1418 	case CEPH_ENTITY_TYPE_MON:
1419 		proto = CEPH_MONC_PROTOCOL;
1420 		break;
1421 	case CEPH_ENTITY_TYPE_OSD:
1422 		proto = CEPH_OSDC_PROTOCOL;
1423 		break;
1424 	case CEPH_ENTITY_TYPE_MDS:
1425 		proto = CEPH_MDSC_PROTOCOL;
1426 		break;
1427 	default:
1428 		BUG();
1429 	}
1430 
1431 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1432 	     con->connect_seq, global_seq, proto);
1433 
1434 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1435 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1436 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1437 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1438 	con->out_connect.protocol_version = cpu_to_le32(proto);
1439 	con->out_connect.flags = 0;
1440 
1441 	auth_proto = CEPH_AUTH_UNKNOWN;
1442 	auth = get_connect_authorizer(con, &auth_proto);
1443 	if (IS_ERR(auth))
1444 		return PTR_ERR(auth);
1445 
1446 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1447 	con->out_connect.authorizer_len = auth ?
1448 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1449 
1450 	con_out_kvec_add(con, sizeof (con->out_connect),
1451 					&con->out_connect);
1452 	if (auth && auth->authorizer_buf_len)
1453 		con_out_kvec_add(con, auth->authorizer_buf_len,
1454 					auth->authorizer_buf);
1455 
1456 	con->out_more = 0;
1457 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1458 
1459 	return 0;
1460 }
1461 
1462 /*
1463  * write as much of pending kvecs to the socket as we can.
1464  *  1 -> done
1465  *  0 -> socket full, but more to do
1466  * <0 -> error
1467  */
1468 static int write_partial_kvec(struct ceph_connection *con)
1469 {
1470 	int ret;
1471 
1472 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1473 	while (con->out_kvec_bytes > 0) {
1474 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1475 				       con->out_kvec_left, con->out_kvec_bytes,
1476 				       con->out_more);
1477 		if (ret <= 0)
1478 			goto out;
1479 		con->out_kvec_bytes -= ret;
1480 		if (con->out_kvec_bytes == 0)
1481 			break;            /* done */
1482 
1483 		/* account for full iov entries consumed */
1484 		while (ret >= con->out_kvec_cur->iov_len) {
1485 			BUG_ON(!con->out_kvec_left);
1486 			ret -= con->out_kvec_cur->iov_len;
1487 			con->out_kvec_cur++;
1488 			con->out_kvec_left--;
1489 		}
1490 		/* and for a partially-consumed entry */
1491 		if (ret) {
1492 			con->out_kvec_cur->iov_len -= ret;
1493 			con->out_kvec_cur->iov_base += ret;
1494 		}
1495 	}
1496 	con->out_kvec_left = 0;
1497 	con->out_kvec_is_msg = false;
1498 	ret = 1;
1499 out:
1500 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1501 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1502 	return ret;  /* done! */
1503 }
1504 
1505 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1506 				unsigned int page_offset,
1507 				unsigned int length)
1508 {
1509 	char *kaddr;
1510 
1511 	kaddr = kmap(page);
1512 	BUG_ON(kaddr == NULL);
1513 	crc = crc32c(crc, kaddr + page_offset, length);
1514 	kunmap(page);
1515 
1516 	return crc;
1517 }
1518 /*
1519  * Write as much message data payload as we can.  If we finish, queue
1520  * up the footer.
1521  *  1 -> done, footer is now queued in out_kvec[].
1522  *  0 -> socket full, but more to do
1523  * <0 -> error
1524  */
1525 static int write_partial_message_data(struct ceph_connection *con)
1526 {
1527 	struct ceph_msg *msg = con->out_msg;
1528 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1529 	bool do_datacrc = !con->msgr->nocrc;
1530 	u32 crc;
1531 
1532 	dout("%s %p msg %p\n", __func__, con, msg);
1533 
1534 	if (list_empty(&msg->data))
1535 		return -EINVAL;
1536 
1537 	/*
1538 	 * Iterate through each page that contains data to be
1539 	 * written, and send as much as possible for each.
1540 	 *
1541 	 * If we are calculating the data crc (the default), we will
1542 	 * need to map the page.  If we have no pages, they have
1543 	 * been revoked, so use the zero page.
1544 	 */
1545 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1546 	while (cursor->resid) {
1547 		struct page *page;
1548 		size_t page_offset;
1549 		size_t length;
1550 		bool last_piece;
1551 		bool need_crc;
1552 		int ret;
1553 
1554 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1555 							&last_piece);
1556 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1557 					length, !last_piece);
1558 		if (ret <= 0) {
1559 			if (do_datacrc)
1560 				msg->footer.data_crc = cpu_to_le32(crc);
1561 
1562 			return ret;
1563 		}
1564 		if (do_datacrc && cursor->need_crc)
1565 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1566 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1567 	}
1568 
1569 	dout("%s %p msg %p done\n", __func__, con, msg);
1570 
1571 	/* prepare and queue up footer, too */
1572 	if (do_datacrc)
1573 		msg->footer.data_crc = cpu_to_le32(crc);
1574 	else
1575 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1576 	con_out_kvec_reset(con);
1577 	prepare_write_message_footer(con);
1578 
1579 	return 1;	/* must return > 0 to indicate success */
1580 }
1581 
1582 /*
1583  * write some zeros
1584  */
1585 static int write_partial_skip(struct ceph_connection *con)
1586 {
1587 	int ret;
1588 
1589 	while (con->out_skip > 0) {
1590 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1591 
1592 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1593 		if (ret <= 0)
1594 			goto out;
1595 		con->out_skip -= ret;
1596 	}
1597 	ret = 1;
1598 out:
1599 	return ret;
1600 }
1601 
1602 /*
1603  * Prepare to read connection handshake, or an ack.
1604  */
1605 static void prepare_read_banner(struct ceph_connection *con)
1606 {
1607 	dout("prepare_read_banner %p\n", con);
1608 	con->in_base_pos = 0;
1609 }
1610 
1611 static void prepare_read_connect(struct ceph_connection *con)
1612 {
1613 	dout("prepare_read_connect %p\n", con);
1614 	con->in_base_pos = 0;
1615 }
1616 
1617 static void prepare_read_ack(struct ceph_connection *con)
1618 {
1619 	dout("prepare_read_ack %p\n", con);
1620 	con->in_base_pos = 0;
1621 }
1622 
1623 static void prepare_read_seq(struct ceph_connection *con)
1624 {
1625 	dout("prepare_read_seq %p\n", con);
1626 	con->in_base_pos = 0;
1627 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1628 }
1629 
1630 static void prepare_read_tag(struct ceph_connection *con)
1631 {
1632 	dout("prepare_read_tag %p\n", con);
1633 	con->in_base_pos = 0;
1634 	con->in_tag = CEPH_MSGR_TAG_READY;
1635 }
1636 
1637 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1638 {
1639 	dout("prepare_read_keepalive_ack %p\n", con);
1640 	con->in_base_pos = 0;
1641 }
1642 
1643 /*
1644  * Prepare to read a message.
1645  */
1646 static int prepare_read_message(struct ceph_connection *con)
1647 {
1648 	dout("prepare_read_message %p\n", con);
1649 	BUG_ON(con->in_msg != NULL);
1650 	con->in_base_pos = 0;
1651 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1652 	return 0;
1653 }
1654 
1655 
1656 static int read_partial(struct ceph_connection *con,
1657 			int end, int size, void *object)
1658 {
1659 	while (con->in_base_pos < end) {
1660 		int left = end - con->in_base_pos;
1661 		int have = size - left;
1662 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1663 		if (ret <= 0)
1664 			return ret;
1665 		con->in_base_pos += ret;
1666 	}
1667 	return 1;
1668 }
1669 
1670 
1671 /*
1672  * Read all or part of the connect-side handshake on a new connection
1673  */
1674 static int read_partial_banner(struct ceph_connection *con)
1675 {
1676 	int size;
1677 	int end;
1678 	int ret;
1679 
1680 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1681 
1682 	/* peer's banner */
1683 	size = strlen(CEPH_BANNER);
1684 	end = size;
1685 	ret = read_partial(con, end, size, con->in_banner);
1686 	if (ret <= 0)
1687 		goto out;
1688 
1689 	size = sizeof (con->actual_peer_addr);
1690 	end += size;
1691 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1692 	if (ret <= 0)
1693 		goto out;
1694 
1695 	size = sizeof (con->peer_addr_for_me);
1696 	end += size;
1697 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1698 	if (ret <= 0)
1699 		goto out;
1700 
1701 out:
1702 	return ret;
1703 }
1704 
1705 static int read_partial_connect(struct ceph_connection *con)
1706 {
1707 	int size;
1708 	int end;
1709 	int ret;
1710 
1711 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1712 
1713 	size = sizeof (con->in_reply);
1714 	end = size;
1715 	ret = read_partial(con, end, size, &con->in_reply);
1716 	if (ret <= 0)
1717 		goto out;
1718 
1719 	size = le32_to_cpu(con->in_reply.authorizer_len);
1720 	end += size;
1721 	ret = read_partial(con, end, size, con->auth_reply_buf);
1722 	if (ret <= 0)
1723 		goto out;
1724 
1725 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1726 	     con, (int)con->in_reply.tag,
1727 	     le32_to_cpu(con->in_reply.connect_seq),
1728 	     le32_to_cpu(con->in_reply.global_seq));
1729 out:
1730 	return ret;
1731 
1732 }
1733 
1734 /*
1735  * Verify the hello banner looks okay.
1736  */
1737 static int verify_hello(struct ceph_connection *con)
1738 {
1739 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1740 		pr_err("connect to %s got bad banner\n",
1741 		       ceph_pr_addr(&con->peer_addr.in_addr));
1742 		con->error_msg = "protocol error, bad banner";
1743 		return -1;
1744 	}
1745 	return 0;
1746 }
1747 
1748 static bool addr_is_blank(struct sockaddr_storage *ss)
1749 {
1750 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1751 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1752 
1753 	switch (ss->ss_family) {
1754 	case AF_INET:
1755 		return addr->s_addr == htonl(INADDR_ANY);
1756 	case AF_INET6:
1757 		return ipv6_addr_any(addr6);
1758 	default:
1759 		return true;
1760 	}
1761 }
1762 
1763 static int addr_port(struct sockaddr_storage *ss)
1764 {
1765 	switch (ss->ss_family) {
1766 	case AF_INET:
1767 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1768 	case AF_INET6:
1769 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1770 	}
1771 	return 0;
1772 }
1773 
1774 static void addr_set_port(struct sockaddr_storage *ss, int p)
1775 {
1776 	switch (ss->ss_family) {
1777 	case AF_INET:
1778 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1779 		break;
1780 	case AF_INET6:
1781 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1782 		break;
1783 	}
1784 }
1785 
1786 /*
1787  * Unlike other *_pton function semantics, zero indicates success.
1788  */
1789 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1790 		char delim, const char **ipend)
1791 {
1792 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1793 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1794 
1795 	memset(ss, 0, sizeof(*ss));
1796 
1797 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1798 		ss->ss_family = AF_INET;
1799 		return 0;
1800 	}
1801 
1802 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1803 		ss->ss_family = AF_INET6;
1804 		return 0;
1805 	}
1806 
1807 	return -EINVAL;
1808 }
1809 
1810 /*
1811  * Extract hostname string and resolve using kernel DNS facility.
1812  */
1813 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1814 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1815 		struct sockaddr_storage *ss, char delim, const char **ipend)
1816 {
1817 	const char *end, *delim_p;
1818 	char *colon_p, *ip_addr = NULL;
1819 	int ip_len, ret;
1820 
1821 	/*
1822 	 * The end of the hostname occurs immediately preceding the delimiter or
1823 	 * the port marker (':') where the delimiter takes precedence.
1824 	 */
1825 	delim_p = memchr(name, delim, namelen);
1826 	colon_p = memchr(name, ':', namelen);
1827 
1828 	if (delim_p && colon_p)
1829 		end = delim_p < colon_p ? delim_p : colon_p;
1830 	else if (!delim_p && colon_p)
1831 		end = colon_p;
1832 	else {
1833 		end = delim_p;
1834 		if (!end) /* case: hostname:/ */
1835 			end = name + namelen;
1836 	}
1837 
1838 	if (end <= name)
1839 		return -EINVAL;
1840 
1841 	/* do dns_resolve upcall */
1842 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1843 	if (ip_len > 0)
1844 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1845 	else
1846 		ret = -ESRCH;
1847 
1848 	kfree(ip_addr);
1849 
1850 	*ipend = end;
1851 
1852 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1853 			ret, ret ? "failed" : ceph_pr_addr(ss));
1854 
1855 	return ret;
1856 }
1857 #else
1858 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1859 		struct sockaddr_storage *ss, char delim, const char **ipend)
1860 {
1861 	return -EINVAL;
1862 }
1863 #endif
1864 
1865 /*
1866  * Parse a server name (IP or hostname). If a valid IP address is not found
1867  * then try to extract a hostname to resolve using userspace DNS upcall.
1868  */
1869 static int ceph_parse_server_name(const char *name, size_t namelen,
1870 			struct sockaddr_storage *ss, char delim, const char **ipend)
1871 {
1872 	int ret;
1873 
1874 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1875 	if (ret)
1876 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1877 
1878 	return ret;
1879 }
1880 
1881 /*
1882  * Parse an ip[:port] list into an addr array.  Use the default
1883  * monitor port if a port isn't specified.
1884  */
1885 int ceph_parse_ips(const char *c, const char *end,
1886 		   struct ceph_entity_addr *addr,
1887 		   int max_count, int *count)
1888 {
1889 	int i, ret = -EINVAL;
1890 	const char *p = c;
1891 
1892 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1893 	for (i = 0; i < max_count; i++) {
1894 		const char *ipend;
1895 		struct sockaddr_storage *ss = &addr[i].in_addr;
1896 		int port;
1897 		char delim = ',';
1898 
1899 		if (*p == '[') {
1900 			delim = ']';
1901 			p++;
1902 		}
1903 
1904 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1905 		if (ret)
1906 			goto bad;
1907 		ret = -EINVAL;
1908 
1909 		p = ipend;
1910 
1911 		if (delim == ']') {
1912 			if (*p != ']') {
1913 				dout("missing matching ']'\n");
1914 				goto bad;
1915 			}
1916 			p++;
1917 		}
1918 
1919 		/* port? */
1920 		if (p < end && *p == ':') {
1921 			port = 0;
1922 			p++;
1923 			while (p < end && *p >= '0' && *p <= '9') {
1924 				port = (port * 10) + (*p - '0');
1925 				p++;
1926 			}
1927 			if (port == 0)
1928 				port = CEPH_MON_PORT;
1929 			else if (port > 65535)
1930 				goto bad;
1931 		} else {
1932 			port = CEPH_MON_PORT;
1933 		}
1934 
1935 		addr_set_port(ss, port);
1936 
1937 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1938 
1939 		if (p == end)
1940 			break;
1941 		if (*p != ',')
1942 			goto bad;
1943 		p++;
1944 	}
1945 
1946 	if (p != end)
1947 		goto bad;
1948 
1949 	if (count)
1950 		*count = i + 1;
1951 	return 0;
1952 
1953 bad:
1954 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1955 	return ret;
1956 }
1957 EXPORT_SYMBOL(ceph_parse_ips);
1958 
1959 static int process_banner(struct ceph_connection *con)
1960 {
1961 	dout("process_banner on %p\n", con);
1962 
1963 	if (verify_hello(con) < 0)
1964 		return -1;
1965 
1966 	ceph_decode_addr(&con->actual_peer_addr);
1967 	ceph_decode_addr(&con->peer_addr_for_me);
1968 
1969 	/*
1970 	 * Make sure the other end is who we wanted.  note that the other
1971 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1972 	 * them the benefit of the doubt.
1973 	 */
1974 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1975 		   sizeof(con->peer_addr)) != 0 &&
1976 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1977 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1978 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1979 			ceph_pr_addr(&con->peer_addr.in_addr),
1980 			(int)le32_to_cpu(con->peer_addr.nonce),
1981 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1982 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1983 		con->error_msg = "wrong peer at address";
1984 		return -1;
1985 	}
1986 
1987 	/*
1988 	 * did we learn our address?
1989 	 */
1990 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1991 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1992 
1993 		memcpy(&con->msgr->inst.addr.in_addr,
1994 		       &con->peer_addr_for_me.in_addr,
1995 		       sizeof(con->peer_addr_for_me.in_addr));
1996 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1997 		encode_my_addr(con->msgr);
1998 		dout("process_banner learned my addr is %s\n",
1999 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2000 	}
2001 
2002 	return 0;
2003 }
2004 
2005 static int process_connect(struct ceph_connection *con)
2006 {
2007 	u64 sup_feat = con->msgr->supported_features;
2008 	u64 req_feat = con->msgr->required_features;
2009 	u64 server_feat = ceph_sanitize_features(
2010 				le64_to_cpu(con->in_reply.features));
2011 	int ret;
2012 
2013 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2014 
2015 	switch (con->in_reply.tag) {
2016 	case CEPH_MSGR_TAG_FEATURES:
2017 		pr_err("%s%lld %s feature set mismatch,"
2018 		       " my %llx < server's %llx, missing %llx\n",
2019 		       ENTITY_NAME(con->peer_name),
2020 		       ceph_pr_addr(&con->peer_addr.in_addr),
2021 		       sup_feat, server_feat, server_feat & ~sup_feat);
2022 		con->error_msg = "missing required protocol features";
2023 		reset_connection(con);
2024 		return -1;
2025 
2026 	case CEPH_MSGR_TAG_BADPROTOVER:
2027 		pr_err("%s%lld %s protocol version mismatch,"
2028 		       " my %d != server's %d\n",
2029 		       ENTITY_NAME(con->peer_name),
2030 		       ceph_pr_addr(&con->peer_addr.in_addr),
2031 		       le32_to_cpu(con->out_connect.protocol_version),
2032 		       le32_to_cpu(con->in_reply.protocol_version));
2033 		con->error_msg = "protocol version mismatch";
2034 		reset_connection(con);
2035 		return -1;
2036 
2037 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2038 		con->auth_retry++;
2039 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2040 		     con->auth_retry);
2041 		if (con->auth_retry == 2) {
2042 			con->error_msg = "connect authorization failure";
2043 			return -1;
2044 		}
2045 		con_out_kvec_reset(con);
2046 		ret = prepare_write_connect(con);
2047 		if (ret < 0)
2048 			return ret;
2049 		prepare_read_connect(con);
2050 		break;
2051 
2052 	case CEPH_MSGR_TAG_RESETSESSION:
2053 		/*
2054 		 * If we connected with a large connect_seq but the peer
2055 		 * has no record of a session with us (no connection, or
2056 		 * connect_seq == 0), they will send RESETSESION to indicate
2057 		 * that they must have reset their session, and may have
2058 		 * dropped messages.
2059 		 */
2060 		dout("process_connect got RESET peer seq %u\n",
2061 		     le32_to_cpu(con->in_reply.connect_seq));
2062 		pr_err("%s%lld %s connection reset\n",
2063 		       ENTITY_NAME(con->peer_name),
2064 		       ceph_pr_addr(&con->peer_addr.in_addr));
2065 		reset_connection(con);
2066 		con_out_kvec_reset(con);
2067 		ret = prepare_write_connect(con);
2068 		if (ret < 0)
2069 			return ret;
2070 		prepare_read_connect(con);
2071 
2072 		/* Tell ceph about it. */
2073 		mutex_unlock(&con->mutex);
2074 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2075 		if (con->ops->peer_reset)
2076 			con->ops->peer_reset(con);
2077 		mutex_lock(&con->mutex);
2078 		if (con->state != CON_STATE_NEGOTIATING)
2079 			return -EAGAIN;
2080 		break;
2081 
2082 	case CEPH_MSGR_TAG_RETRY_SESSION:
2083 		/*
2084 		 * If we sent a smaller connect_seq than the peer has, try
2085 		 * again with a larger value.
2086 		 */
2087 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2088 		     le32_to_cpu(con->out_connect.connect_seq),
2089 		     le32_to_cpu(con->in_reply.connect_seq));
2090 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2091 		con_out_kvec_reset(con);
2092 		ret = prepare_write_connect(con);
2093 		if (ret < 0)
2094 			return ret;
2095 		prepare_read_connect(con);
2096 		break;
2097 
2098 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2099 		/*
2100 		 * If we sent a smaller global_seq than the peer has, try
2101 		 * again with a larger value.
2102 		 */
2103 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2104 		     con->peer_global_seq,
2105 		     le32_to_cpu(con->in_reply.global_seq));
2106 		get_global_seq(con->msgr,
2107 			       le32_to_cpu(con->in_reply.global_seq));
2108 		con_out_kvec_reset(con);
2109 		ret = prepare_write_connect(con);
2110 		if (ret < 0)
2111 			return ret;
2112 		prepare_read_connect(con);
2113 		break;
2114 
2115 	case CEPH_MSGR_TAG_SEQ:
2116 	case CEPH_MSGR_TAG_READY:
2117 		if (req_feat & ~server_feat) {
2118 			pr_err("%s%lld %s protocol feature mismatch,"
2119 			       " my required %llx > server's %llx, need %llx\n",
2120 			       ENTITY_NAME(con->peer_name),
2121 			       ceph_pr_addr(&con->peer_addr.in_addr),
2122 			       req_feat, server_feat, req_feat & ~server_feat);
2123 			con->error_msg = "missing required protocol features";
2124 			reset_connection(con);
2125 			return -1;
2126 		}
2127 
2128 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2129 		con->state = CON_STATE_OPEN;
2130 		con->auth_retry = 0;    /* we authenticated; clear flag */
2131 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2132 		con->connect_seq++;
2133 		con->peer_features = server_feat;
2134 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2135 		     con->peer_global_seq,
2136 		     le32_to_cpu(con->in_reply.connect_seq),
2137 		     con->connect_seq);
2138 		WARN_ON(con->connect_seq !=
2139 			le32_to_cpu(con->in_reply.connect_seq));
2140 
2141 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2142 			con_flag_set(con, CON_FLAG_LOSSYTX);
2143 
2144 		con->delay = 0;      /* reset backoff memory */
2145 
2146 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2147 			prepare_write_seq(con);
2148 			prepare_read_seq(con);
2149 		} else {
2150 			prepare_read_tag(con);
2151 		}
2152 		break;
2153 
2154 	case CEPH_MSGR_TAG_WAIT:
2155 		/*
2156 		 * If there is a connection race (we are opening
2157 		 * connections to each other), one of us may just have
2158 		 * to WAIT.  This shouldn't happen if we are the
2159 		 * client.
2160 		 */
2161 		con->error_msg = "protocol error, got WAIT as client";
2162 		return -1;
2163 
2164 	default:
2165 		con->error_msg = "protocol error, garbage tag during connect";
2166 		return -1;
2167 	}
2168 	return 0;
2169 }
2170 
2171 
2172 /*
2173  * read (part of) an ack
2174  */
2175 static int read_partial_ack(struct ceph_connection *con)
2176 {
2177 	int size = sizeof (con->in_temp_ack);
2178 	int end = size;
2179 
2180 	return read_partial(con, end, size, &con->in_temp_ack);
2181 }
2182 
2183 /*
2184  * We can finally discard anything that's been acked.
2185  */
2186 static void process_ack(struct ceph_connection *con)
2187 {
2188 	struct ceph_msg *m;
2189 	u64 ack = le64_to_cpu(con->in_temp_ack);
2190 	u64 seq;
2191 
2192 	while (!list_empty(&con->out_sent)) {
2193 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2194 				     list_head);
2195 		seq = le64_to_cpu(m->hdr.seq);
2196 		if (seq > ack)
2197 			break;
2198 		dout("got ack for seq %llu type %d at %p\n", seq,
2199 		     le16_to_cpu(m->hdr.type), m);
2200 		m->ack_stamp = jiffies;
2201 		ceph_msg_remove(m);
2202 	}
2203 	prepare_read_tag(con);
2204 }
2205 
2206 
2207 static int read_partial_message_section(struct ceph_connection *con,
2208 					struct kvec *section,
2209 					unsigned int sec_len, u32 *crc)
2210 {
2211 	int ret, left;
2212 
2213 	BUG_ON(!section);
2214 
2215 	while (section->iov_len < sec_len) {
2216 		BUG_ON(section->iov_base == NULL);
2217 		left = sec_len - section->iov_len;
2218 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2219 				       section->iov_len, left);
2220 		if (ret <= 0)
2221 			return ret;
2222 		section->iov_len += ret;
2223 	}
2224 	if (section->iov_len == sec_len)
2225 		*crc = crc32c(0, section->iov_base, section->iov_len);
2226 
2227 	return 1;
2228 }
2229 
2230 static int read_partial_msg_data(struct ceph_connection *con)
2231 {
2232 	struct ceph_msg *msg = con->in_msg;
2233 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2234 	const bool do_datacrc = !con->msgr->nocrc;
2235 	struct page *page;
2236 	size_t page_offset;
2237 	size_t length;
2238 	u32 crc = 0;
2239 	int ret;
2240 
2241 	BUG_ON(!msg);
2242 	if (list_empty(&msg->data))
2243 		return -EIO;
2244 
2245 	if (do_datacrc)
2246 		crc = con->in_data_crc;
2247 	while (cursor->resid) {
2248 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2249 							NULL);
2250 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2251 		if (ret <= 0) {
2252 			if (do_datacrc)
2253 				con->in_data_crc = crc;
2254 
2255 			return ret;
2256 		}
2257 
2258 		if (do_datacrc)
2259 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2260 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2261 	}
2262 	if (do_datacrc)
2263 		con->in_data_crc = crc;
2264 
2265 	return 1;	/* must return > 0 to indicate success */
2266 }
2267 
2268 /*
2269  * read (part of) a message.
2270  */
2271 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2272 
2273 static int read_partial_message(struct ceph_connection *con)
2274 {
2275 	struct ceph_msg *m = con->in_msg;
2276 	int size;
2277 	int end;
2278 	int ret;
2279 	unsigned int front_len, middle_len, data_len;
2280 	bool do_datacrc = !con->msgr->nocrc;
2281 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2282 	u64 seq;
2283 	u32 crc;
2284 
2285 	dout("read_partial_message con %p msg %p\n", con, m);
2286 
2287 	/* header */
2288 	size = sizeof (con->in_hdr);
2289 	end = size;
2290 	ret = read_partial(con, end, size, &con->in_hdr);
2291 	if (ret <= 0)
2292 		return ret;
2293 
2294 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2295 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2296 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2297 		       crc, con->in_hdr.crc);
2298 		return -EBADMSG;
2299 	}
2300 
2301 	front_len = le32_to_cpu(con->in_hdr.front_len);
2302 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2303 		return -EIO;
2304 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2305 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2306 		return -EIO;
2307 	data_len = le32_to_cpu(con->in_hdr.data_len);
2308 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2309 		return -EIO;
2310 
2311 	/* verify seq# */
2312 	seq = le64_to_cpu(con->in_hdr.seq);
2313 	if ((s64)seq - (s64)con->in_seq < 1) {
2314 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2315 			ENTITY_NAME(con->peer_name),
2316 			ceph_pr_addr(&con->peer_addr.in_addr),
2317 			seq, con->in_seq + 1);
2318 		con->in_base_pos = -front_len - middle_len - data_len -
2319 			sizeof(m->footer);
2320 		con->in_tag = CEPH_MSGR_TAG_READY;
2321 		return 0;
2322 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2323 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2324 		       seq, con->in_seq + 1);
2325 		con->error_msg = "bad message sequence # for incoming message";
2326 		return -EBADE;
2327 	}
2328 
2329 	/* allocate message? */
2330 	if (!con->in_msg) {
2331 		int skip = 0;
2332 
2333 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2334 		     front_len, data_len);
2335 		ret = ceph_con_in_msg_alloc(con, &skip);
2336 		if (ret < 0)
2337 			return ret;
2338 
2339 		BUG_ON(!con->in_msg ^ skip);
2340 		if (skip) {
2341 			/* skip this message */
2342 			dout("alloc_msg said skip message\n");
2343 			con->in_base_pos = -front_len - middle_len - data_len -
2344 				sizeof(m->footer);
2345 			con->in_tag = CEPH_MSGR_TAG_READY;
2346 			con->in_seq++;
2347 			return 0;
2348 		}
2349 
2350 		BUG_ON(!con->in_msg);
2351 		BUG_ON(con->in_msg->con != con);
2352 		m = con->in_msg;
2353 		m->front.iov_len = 0;    /* haven't read it yet */
2354 		if (m->middle)
2355 			m->middle->vec.iov_len = 0;
2356 
2357 		/* prepare for data payload, if any */
2358 
2359 		if (data_len)
2360 			prepare_message_data(con->in_msg, data_len);
2361 	}
2362 
2363 	/* front */
2364 	ret = read_partial_message_section(con, &m->front, front_len,
2365 					   &con->in_front_crc);
2366 	if (ret <= 0)
2367 		return ret;
2368 
2369 	/* middle */
2370 	if (m->middle) {
2371 		ret = read_partial_message_section(con, &m->middle->vec,
2372 						   middle_len,
2373 						   &con->in_middle_crc);
2374 		if (ret <= 0)
2375 			return ret;
2376 	}
2377 
2378 	/* (page) data */
2379 	if (data_len) {
2380 		ret = read_partial_msg_data(con);
2381 		if (ret <= 0)
2382 			return ret;
2383 	}
2384 
2385 	/* footer */
2386 	if (need_sign)
2387 		size = sizeof(m->footer);
2388 	else
2389 		size = sizeof(m->old_footer);
2390 
2391 	end += size;
2392 	ret = read_partial(con, end, size, &m->footer);
2393 	if (ret <= 0)
2394 		return ret;
2395 
2396 	if (!need_sign) {
2397 		m->footer.flags = m->old_footer.flags;
2398 		m->footer.sig = 0;
2399 	}
2400 
2401 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2402 	     m, front_len, m->footer.front_crc, middle_len,
2403 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2404 
2405 	/* crc ok? */
2406 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2407 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2408 		       m, con->in_front_crc, m->footer.front_crc);
2409 		return -EBADMSG;
2410 	}
2411 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2412 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2413 		       m, con->in_middle_crc, m->footer.middle_crc);
2414 		return -EBADMSG;
2415 	}
2416 	if (do_datacrc &&
2417 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2418 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2419 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2420 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2421 		return -EBADMSG;
2422 	}
2423 
2424 	if (need_sign && con->ops->check_message_signature &&
2425 	    con->ops->check_message_signature(con, m)) {
2426 		pr_err("read_partial_message %p signature check failed\n", m);
2427 		return -EBADMSG;
2428 	}
2429 
2430 	return 1; /* done! */
2431 }
2432 
2433 /*
2434  * Process message.  This happens in the worker thread.  The callback should
2435  * be careful not to do anything that waits on other incoming messages or it
2436  * may deadlock.
2437  */
2438 static void process_message(struct ceph_connection *con)
2439 {
2440 	struct ceph_msg *msg;
2441 
2442 	BUG_ON(con->in_msg->con != con);
2443 	con->in_msg->con = NULL;
2444 	msg = con->in_msg;
2445 	con->in_msg = NULL;
2446 	con->ops->put(con);
2447 
2448 	/* if first message, set peer_name */
2449 	if (con->peer_name.type == 0)
2450 		con->peer_name = msg->hdr.src;
2451 
2452 	con->in_seq++;
2453 	mutex_unlock(&con->mutex);
2454 
2455 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2456 	     msg, le64_to_cpu(msg->hdr.seq),
2457 	     ENTITY_NAME(msg->hdr.src),
2458 	     le16_to_cpu(msg->hdr.type),
2459 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2460 	     le32_to_cpu(msg->hdr.front_len),
2461 	     le32_to_cpu(msg->hdr.data_len),
2462 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2463 	con->ops->dispatch(con, msg);
2464 
2465 	mutex_lock(&con->mutex);
2466 }
2467 
2468 static int read_keepalive_ack(struct ceph_connection *con)
2469 {
2470 	struct ceph_timespec ceph_ts;
2471 	size_t size = sizeof(ceph_ts);
2472 	int ret = read_partial(con, size, size, &ceph_ts);
2473 	if (ret <= 0)
2474 		return ret;
2475 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2476 	prepare_read_tag(con);
2477 	return 1;
2478 }
2479 
2480 /*
2481  * Write something to the socket.  Called in a worker thread when the
2482  * socket appears to be writeable and we have something ready to send.
2483  */
2484 static int try_write(struct ceph_connection *con)
2485 {
2486 	int ret = 1;
2487 
2488 	dout("try_write start %p state %lu\n", con, con->state);
2489 
2490 more:
2491 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2492 
2493 	/* open the socket first? */
2494 	if (con->state == CON_STATE_PREOPEN) {
2495 		BUG_ON(con->sock);
2496 		con->state = CON_STATE_CONNECTING;
2497 
2498 		con_out_kvec_reset(con);
2499 		prepare_write_banner(con);
2500 		prepare_read_banner(con);
2501 
2502 		BUG_ON(con->in_msg);
2503 		con->in_tag = CEPH_MSGR_TAG_READY;
2504 		dout("try_write initiating connect on %p new state %lu\n",
2505 		     con, con->state);
2506 		ret = ceph_tcp_connect(con);
2507 		if (ret < 0) {
2508 			con->error_msg = "connect error";
2509 			goto out;
2510 		}
2511 	}
2512 
2513 more_kvec:
2514 	/* kvec data queued? */
2515 	if (con->out_skip) {
2516 		ret = write_partial_skip(con);
2517 		if (ret <= 0)
2518 			goto out;
2519 	}
2520 	if (con->out_kvec_left) {
2521 		ret = write_partial_kvec(con);
2522 		if (ret <= 0)
2523 			goto out;
2524 	}
2525 
2526 	/* msg pages? */
2527 	if (con->out_msg) {
2528 		if (con->out_msg_done) {
2529 			ceph_msg_put(con->out_msg);
2530 			con->out_msg = NULL;   /* we're done with this one */
2531 			goto do_next;
2532 		}
2533 
2534 		ret = write_partial_message_data(con);
2535 		if (ret == 1)
2536 			goto more_kvec;  /* we need to send the footer, too! */
2537 		if (ret == 0)
2538 			goto out;
2539 		if (ret < 0) {
2540 			dout("try_write write_partial_message_data err %d\n",
2541 			     ret);
2542 			goto out;
2543 		}
2544 	}
2545 
2546 do_next:
2547 	if (con->state == CON_STATE_OPEN) {
2548 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2549 			prepare_write_keepalive(con);
2550 			goto more;
2551 		}
2552 		/* is anything else pending? */
2553 		if (!list_empty(&con->out_queue)) {
2554 			prepare_write_message(con);
2555 			goto more;
2556 		}
2557 		if (con->in_seq > con->in_seq_acked) {
2558 			prepare_write_ack(con);
2559 			goto more;
2560 		}
2561 	}
2562 
2563 	/* Nothing to do! */
2564 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2565 	dout("try_write nothing else to write.\n");
2566 	ret = 0;
2567 out:
2568 	dout("try_write done on %p ret %d\n", con, ret);
2569 	return ret;
2570 }
2571 
2572 
2573 
2574 /*
2575  * Read what we can from the socket.
2576  */
2577 static int try_read(struct ceph_connection *con)
2578 {
2579 	int ret = -1;
2580 
2581 more:
2582 	dout("try_read start on %p state %lu\n", con, con->state);
2583 	if (con->state != CON_STATE_CONNECTING &&
2584 	    con->state != CON_STATE_NEGOTIATING &&
2585 	    con->state != CON_STATE_OPEN)
2586 		return 0;
2587 
2588 	BUG_ON(!con->sock);
2589 
2590 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2591 	     con->in_base_pos);
2592 
2593 	if (con->state == CON_STATE_CONNECTING) {
2594 		dout("try_read connecting\n");
2595 		ret = read_partial_banner(con);
2596 		if (ret <= 0)
2597 			goto out;
2598 		ret = process_banner(con);
2599 		if (ret < 0)
2600 			goto out;
2601 
2602 		con->state = CON_STATE_NEGOTIATING;
2603 
2604 		/*
2605 		 * Received banner is good, exchange connection info.
2606 		 * Do not reset out_kvec, as sending our banner raced
2607 		 * with receiving peer banner after connect completed.
2608 		 */
2609 		ret = prepare_write_connect(con);
2610 		if (ret < 0)
2611 			goto out;
2612 		prepare_read_connect(con);
2613 
2614 		/* Send connection info before awaiting response */
2615 		goto out;
2616 	}
2617 
2618 	if (con->state == CON_STATE_NEGOTIATING) {
2619 		dout("try_read negotiating\n");
2620 		ret = read_partial_connect(con);
2621 		if (ret <= 0)
2622 			goto out;
2623 		ret = process_connect(con);
2624 		if (ret < 0)
2625 			goto out;
2626 		goto more;
2627 	}
2628 
2629 	WARN_ON(con->state != CON_STATE_OPEN);
2630 
2631 	if (con->in_base_pos < 0) {
2632 		/*
2633 		 * skipping + discarding content.
2634 		 *
2635 		 * FIXME: there must be a better way to do this!
2636 		 */
2637 		static char buf[SKIP_BUF_SIZE];
2638 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2639 
2640 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2641 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2642 		if (ret <= 0)
2643 			goto out;
2644 		con->in_base_pos += ret;
2645 		if (con->in_base_pos)
2646 			goto more;
2647 	}
2648 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2649 		/*
2650 		 * what's next?
2651 		 */
2652 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2653 		if (ret <= 0)
2654 			goto out;
2655 		dout("try_read got tag %d\n", (int)con->in_tag);
2656 		switch (con->in_tag) {
2657 		case CEPH_MSGR_TAG_MSG:
2658 			prepare_read_message(con);
2659 			break;
2660 		case CEPH_MSGR_TAG_ACK:
2661 			prepare_read_ack(con);
2662 			break;
2663 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2664 			prepare_read_keepalive_ack(con);
2665 			break;
2666 		case CEPH_MSGR_TAG_CLOSE:
2667 			con_close_socket(con);
2668 			con->state = CON_STATE_CLOSED;
2669 			goto out;
2670 		default:
2671 			goto bad_tag;
2672 		}
2673 	}
2674 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2675 		ret = read_partial_message(con);
2676 		if (ret <= 0) {
2677 			switch (ret) {
2678 			case -EBADMSG:
2679 				con->error_msg = "bad crc";
2680 				/* fall through */
2681 			case -EBADE:
2682 				ret = -EIO;
2683 				break;
2684 			case -EIO:
2685 				con->error_msg = "io error";
2686 				break;
2687 			}
2688 			goto out;
2689 		}
2690 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2691 			goto more;
2692 		process_message(con);
2693 		if (con->state == CON_STATE_OPEN)
2694 			prepare_read_tag(con);
2695 		goto more;
2696 	}
2697 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2698 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2699 		/*
2700 		 * the final handshake seq exchange is semantically
2701 		 * equivalent to an ACK
2702 		 */
2703 		ret = read_partial_ack(con);
2704 		if (ret <= 0)
2705 			goto out;
2706 		process_ack(con);
2707 		goto more;
2708 	}
2709 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2710 		ret = read_keepalive_ack(con);
2711 		if (ret <= 0)
2712 			goto out;
2713 		goto more;
2714 	}
2715 
2716 out:
2717 	dout("try_read done on %p ret %d\n", con, ret);
2718 	return ret;
2719 
2720 bad_tag:
2721 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2722 	con->error_msg = "protocol error, garbage tag";
2723 	ret = -1;
2724 	goto out;
2725 }
2726 
2727 
2728 /*
2729  * Atomically queue work on a connection after the specified delay.
2730  * Bump @con reference to avoid races with connection teardown.
2731  * Returns 0 if work was queued, or an error code otherwise.
2732  */
2733 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2734 {
2735 	if (!con->ops->get(con)) {
2736 		dout("%s %p ref count 0\n", __func__, con);
2737 		return -ENOENT;
2738 	}
2739 
2740 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2741 		dout("%s %p - already queued\n", __func__, con);
2742 		con->ops->put(con);
2743 		return -EBUSY;
2744 	}
2745 
2746 	dout("%s %p %lu\n", __func__, con, delay);
2747 	return 0;
2748 }
2749 
2750 static void queue_con(struct ceph_connection *con)
2751 {
2752 	(void) queue_con_delay(con, 0);
2753 }
2754 
2755 static void cancel_con(struct ceph_connection *con)
2756 {
2757 	if (cancel_delayed_work(&con->work)) {
2758 		dout("%s %p\n", __func__, con);
2759 		con->ops->put(con);
2760 	}
2761 }
2762 
2763 static bool con_sock_closed(struct ceph_connection *con)
2764 {
2765 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2766 		return false;
2767 
2768 #define CASE(x)								\
2769 	case CON_STATE_ ## x:						\
2770 		con->error_msg = "socket closed (con state " #x ")";	\
2771 		break;
2772 
2773 	switch (con->state) {
2774 	CASE(CLOSED);
2775 	CASE(PREOPEN);
2776 	CASE(CONNECTING);
2777 	CASE(NEGOTIATING);
2778 	CASE(OPEN);
2779 	CASE(STANDBY);
2780 	default:
2781 		pr_warn("%s con %p unrecognized state %lu\n",
2782 			__func__, con, con->state);
2783 		con->error_msg = "unrecognized con state";
2784 		BUG();
2785 		break;
2786 	}
2787 #undef CASE
2788 
2789 	return true;
2790 }
2791 
2792 static bool con_backoff(struct ceph_connection *con)
2793 {
2794 	int ret;
2795 
2796 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2797 		return false;
2798 
2799 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2800 	if (ret) {
2801 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2802 			con, con->delay);
2803 		BUG_ON(ret == -ENOENT);
2804 		con_flag_set(con, CON_FLAG_BACKOFF);
2805 	}
2806 
2807 	return true;
2808 }
2809 
2810 /* Finish fault handling; con->mutex must *not* be held here */
2811 
2812 static void con_fault_finish(struct ceph_connection *con)
2813 {
2814 	/*
2815 	 * in case we faulted due to authentication, invalidate our
2816 	 * current tickets so that we can get new ones.
2817 	 */
2818 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2819 		dout("calling invalidate_authorizer()\n");
2820 		con->ops->invalidate_authorizer(con);
2821 	}
2822 
2823 	if (con->ops->fault)
2824 		con->ops->fault(con);
2825 }
2826 
2827 /*
2828  * Do some work on a connection.  Drop a connection ref when we're done.
2829  */
2830 static void ceph_con_workfn(struct work_struct *work)
2831 {
2832 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2833 						   work.work);
2834 	bool fault;
2835 
2836 	mutex_lock(&con->mutex);
2837 	while (true) {
2838 		int ret;
2839 
2840 		if ((fault = con_sock_closed(con))) {
2841 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2842 			break;
2843 		}
2844 		if (con_backoff(con)) {
2845 			dout("%s: con %p BACKOFF\n", __func__, con);
2846 			break;
2847 		}
2848 		if (con->state == CON_STATE_STANDBY) {
2849 			dout("%s: con %p STANDBY\n", __func__, con);
2850 			break;
2851 		}
2852 		if (con->state == CON_STATE_CLOSED) {
2853 			dout("%s: con %p CLOSED\n", __func__, con);
2854 			BUG_ON(con->sock);
2855 			break;
2856 		}
2857 		if (con->state == CON_STATE_PREOPEN) {
2858 			dout("%s: con %p PREOPEN\n", __func__, con);
2859 			BUG_ON(con->sock);
2860 		}
2861 
2862 		ret = try_read(con);
2863 		if (ret < 0) {
2864 			if (ret == -EAGAIN)
2865 				continue;
2866 			if (!con->error_msg)
2867 				con->error_msg = "socket error on read";
2868 			fault = true;
2869 			break;
2870 		}
2871 
2872 		ret = try_write(con);
2873 		if (ret < 0) {
2874 			if (ret == -EAGAIN)
2875 				continue;
2876 			if (!con->error_msg)
2877 				con->error_msg = "socket error on write";
2878 			fault = true;
2879 		}
2880 
2881 		break;	/* If we make it to here, we're done */
2882 	}
2883 	if (fault)
2884 		con_fault(con);
2885 	mutex_unlock(&con->mutex);
2886 
2887 	if (fault)
2888 		con_fault_finish(con);
2889 
2890 	con->ops->put(con);
2891 }
2892 
2893 /*
2894  * Generic error/fault handler.  A retry mechanism is used with
2895  * exponential backoff
2896  */
2897 static void con_fault(struct ceph_connection *con)
2898 {
2899 	dout("fault %p state %lu to peer %s\n",
2900 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2901 
2902 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2903 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2904 	con->error_msg = NULL;
2905 
2906 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2907 	       con->state != CON_STATE_NEGOTIATING &&
2908 	       con->state != CON_STATE_OPEN);
2909 
2910 	con_close_socket(con);
2911 
2912 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2913 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2914 		con->state = CON_STATE_CLOSED;
2915 		return;
2916 	}
2917 
2918 	if (con->in_msg) {
2919 		BUG_ON(con->in_msg->con != con);
2920 		con->in_msg->con = NULL;
2921 		ceph_msg_put(con->in_msg);
2922 		con->in_msg = NULL;
2923 		con->ops->put(con);
2924 	}
2925 
2926 	/* Requeue anything that hasn't been acked */
2927 	list_splice_init(&con->out_sent, &con->out_queue);
2928 
2929 	/* If there are no messages queued or keepalive pending, place
2930 	 * the connection in a STANDBY state */
2931 	if (list_empty(&con->out_queue) &&
2932 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2933 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2934 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2935 		con->state = CON_STATE_STANDBY;
2936 	} else {
2937 		/* retry after a delay. */
2938 		con->state = CON_STATE_PREOPEN;
2939 		if (con->delay == 0)
2940 			con->delay = BASE_DELAY_INTERVAL;
2941 		else if (con->delay < MAX_DELAY_INTERVAL)
2942 			con->delay *= 2;
2943 		con_flag_set(con, CON_FLAG_BACKOFF);
2944 		queue_con(con);
2945 	}
2946 }
2947 
2948 
2949 
2950 /*
2951  * initialize a new messenger instance
2952  */
2953 void ceph_messenger_init(struct ceph_messenger *msgr,
2954 			struct ceph_entity_addr *myaddr,
2955 			u64 supported_features,
2956 			u64 required_features,
2957 			bool nocrc,
2958 			bool tcp_nodelay)
2959 {
2960 	msgr->supported_features = supported_features;
2961 	msgr->required_features = required_features;
2962 
2963 	spin_lock_init(&msgr->global_seq_lock);
2964 
2965 	if (myaddr)
2966 		msgr->inst.addr = *myaddr;
2967 
2968 	/* select a random nonce */
2969 	msgr->inst.addr.type = 0;
2970 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2971 	encode_my_addr(msgr);
2972 	msgr->nocrc = nocrc;
2973 	msgr->tcp_nodelay = tcp_nodelay;
2974 
2975 	atomic_set(&msgr->stopping, 0);
2976 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2977 
2978 	dout("%s %p\n", __func__, msgr);
2979 }
2980 EXPORT_SYMBOL(ceph_messenger_init);
2981 
2982 void ceph_messenger_fini(struct ceph_messenger *msgr)
2983 {
2984 	put_net(read_pnet(&msgr->net));
2985 }
2986 EXPORT_SYMBOL(ceph_messenger_fini);
2987 
2988 static void clear_standby(struct ceph_connection *con)
2989 {
2990 	/* come back from STANDBY? */
2991 	if (con->state == CON_STATE_STANDBY) {
2992 		dout("clear_standby %p and ++connect_seq\n", con);
2993 		con->state = CON_STATE_PREOPEN;
2994 		con->connect_seq++;
2995 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2996 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2997 	}
2998 }
2999 
3000 /*
3001  * Queue up an outgoing message on the given connection.
3002  */
3003 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3004 {
3005 	/* set src+dst */
3006 	msg->hdr.src = con->msgr->inst.name;
3007 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3008 	msg->needs_out_seq = true;
3009 
3010 	mutex_lock(&con->mutex);
3011 
3012 	if (con->state == CON_STATE_CLOSED) {
3013 		dout("con_send %p closed, dropping %p\n", con, msg);
3014 		ceph_msg_put(msg);
3015 		mutex_unlock(&con->mutex);
3016 		return;
3017 	}
3018 
3019 	BUG_ON(msg->con != NULL);
3020 	msg->con = con->ops->get(con);
3021 	BUG_ON(msg->con == NULL);
3022 
3023 	BUG_ON(!list_empty(&msg->list_head));
3024 	list_add_tail(&msg->list_head, &con->out_queue);
3025 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3026 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3027 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3028 	     le32_to_cpu(msg->hdr.front_len),
3029 	     le32_to_cpu(msg->hdr.middle_len),
3030 	     le32_to_cpu(msg->hdr.data_len));
3031 
3032 	clear_standby(con);
3033 	mutex_unlock(&con->mutex);
3034 
3035 	/* if there wasn't anything waiting to send before, queue
3036 	 * new work */
3037 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3038 		queue_con(con);
3039 }
3040 EXPORT_SYMBOL(ceph_con_send);
3041 
3042 /*
3043  * Revoke a message that was previously queued for send
3044  */
3045 void ceph_msg_revoke(struct ceph_msg *msg)
3046 {
3047 	struct ceph_connection *con = msg->con;
3048 
3049 	if (!con)
3050 		return;		/* Message not in our possession */
3051 
3052 	mutex_lock(&con->mutex);
3053 	if (!list_empty(&msg->list_head)) {
3054 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3055 		list_del_init(&msg->list_head);
3056 		BUG_ON(msg->con == NULL);
3057 		msg->con->ops->put(msg->con);
3058 		msg->con = NULL;
3059 		msg->hdr.seq = 0;
3060 
3061 		ceph_msg_put(msg);
3062 	}
3063 	if (con->out_msg == msg) {
3064 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
3065 		con->out_msg = NULL;
3066 		if (con->out_kvec_is_msg) {
3067 			con->out_skip = con->out_kvec_bytes;
3068 			con->out_kvec_is_msg = false;
3069 		}
3070 		msg->hdr.seq = 0;
3071 
3072 		ceph_msg_put(msg);
3073 	}
3074 	mutex_unlock(&con->mutex);
3075 }
3076 
3077 /*
3078  * Revoke a message that we may be reading data into
3079  */
3080 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3081 {
3082 	struct ceph_connection *con;
3083 
3084 	BUG_ON(msg == NULL);
3085 	if (!msg->con) {
3086 		dout("%s msg %p null con\n", __func__, msg);
3087 
3088 		return;		/* Message not in our possession */
3089 	}
3090 
3091 	con = msg->con;
3092 	mutex_lock(&con->mutex);
3093 	if (con->in_msg == msg) {
3094 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3095 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3096 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3097 
3098 		/* skip rest of message */
3099 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3100 		con->in_base_pos = con->in_base_pos -
3101 				sizeof(struct ceph_msg_header) -
3102 				front_len -
3103 				middle_len -
3104 				data_len -
3105 				sizeof(struct ceph_msg_footer);
3106 		ceph_msg_put(con->in_msg);
3107 		con->in_msg = NULL;
3108 		con->in_tag = CEPH_MSGR_TAG_READY;
3109 		con->in_seq++;
3110 	} else {
3111 		dout("%s %p in_msg %p msg %p no-op\n",
3112 		     __func__, con, con->in_msg, msg);
3113 	}
3114 	mutex_unlock(&con->mutex);
3115 }
3116 
3117 /*
3118  * Queue a keepalive byte to ensure the tcp connection is alive.
3119  */
3120 void ceph_con_keepalive(struct ceph_connection *con)
3121 {
3122 	dout("con_keepalive %p\n", con);
3123 	mutex_lock(&con->mutex);
3124 	clear_standby(con);
3125 	mutex_unlock(&con->mutex);
3126 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3127 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3128 		queue_con(con);
3129 }
3130 EXPORT_SYMBOL(ceph_con_keepalive);
3131 
3132 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3133 			       unsigned long interval)
3134 {
3135 	if (interval > 0 &&
3136 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3137 		struct timespec now = CURRENT_TIME;
3138 		struct timespec ts;
3139 		jiffies_to_timespec(interval, &ts);
3140 		ts = timespec_add(con->last_keepalive_ack, ts);
3141 		return timespec_compare(&now, &ts) >= 0;
3142 	}
3143 	return false;
3144 }
3145 
3146 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3147 {
3148 	struct ceph_msg_data *data;
3149 
3150 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3151 		return NULL;
3152 
3153 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3154 	if (data)
3155 		data->type = type;
3156 	INIT_LIST_HEAD(&data->links);
3157 
3158 	return data;
3159 }
3160 
3161 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3162 {
3163 	if (!data)
3164 		return;
3165 
3166 	WARN_ON(!list_empty(&data->links));
3167 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3168 		ceph_pagelist_release(data->pagelist);
3169 	kmem_cache_free(ceph_msg_data_cache, data);
3170 }
3171 
3172 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3173 		size_t length, size_t alignment)
3174 {
3175 	struct ceph_msg_data *data;
3176 
3177 	BUG_ON(!pages);
3178 	BUG_ON(!length);
3179 
3180 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3181 	BUG_ON(!data);
3182 	data->pages = pages;
3183 	data->length = length;
3184 	data->alignment = alignment & ~PAGE_MASK;
3185 
3186 	list_add_tail(&data->links, &msg->data);
3187 	msg->data_length += length;
3188 }
3189 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3190 
3191 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3192 				struct ceph_pagelist *pagelist)
3193 {
3194 	struct ceph_msg_data *data;
3195 
3196 	BUG_ON(!pagelist);
3197 	BUG_ON(!pagelist->length);
3198 
3199 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3200 	BUG_ON(!data);
3201 	data->pagelist = pagelist;
3202 
3203 	list_add_tail(&data->links, &msg->data);
3204 	msg->data_length += pagelist->length;
3205 }
3206 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3207 
3208 #ifdef	CONFIG_BLOCK
3209 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3210 		size_t length)
3211 {
3212 	struct ceph_msg_data *data;
3213 
3214 	BUG_ON(!bio);
3215 
3216 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3217 	BUG_ON(!data);
3218 	data->bio = bio;
3219 	data->bio_length = length;
3220 
3221 	list_add_tail(&data->links, &msg->data);
3222 	msg->data_length += length;
3223 }
3224 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3225 #endif	/* CONFIG_BLOCK */
3226 
3227 /*
3228  * construct a new message with given type, size
3229  * the new msg has a ref count of 1.
3230  */
3231 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3232 			      bool can_fail)
3233 {
3234 	struct ceph_msg *m;
3235 
3236 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3237 	if (m == NULL)
3238 		goto out;
3239 
3240 	m->hdr.type = cpu_to_le16(type);
3241 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3242 	m->hdr.front_len = cpu_to_le32(front_len);
3243 
3244 	INIT_LIST_HEAD(&m->list_head);
3245 	kref_init(&m->kref);
3246 	INIT_LIST_HEAD(&m->data);
3247 
3248 	/* front */
3249 	if (front_len) {
3250 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3251 		if (m->front.iov_base == NULL) {
3252 			dout("ceph_msg_new can't allocate %d bytes\n",
3253 			     front_len);
3254 			goto out2;
3255 		}
3256 	} else {
3257 		m->front.iov_base = NULL;
3258 	}
3259 	m->front_alloc_len = m->front.iov_len = front_len;
3260 
3261 	dout("ceph_msg_new %p front %d\n", m, front_len);
3262 	return m;
3263 
3264 out2:
3265 	ceph_msg_put(m);
3266 out:
3267 	if (!can_fail) {
3268 		pr_err("msg_new can't create type %d front %d\n", type,
3269 		       front_len);
3270 		WARN_ON(1);
3271 	} else {
3272 		dout("msg_new can't create type %d front %d\n", type,
3273 		     front_len);
3274 	}
3275 	return NULL;
3276 }
3277 EXPORT_SYMBOL(ceph_msg_new);
3278 
3279 /*
3280  * Allocate "middle" portion of a message, if it is needed and wasn't
3281  * allocated by alloc_msg.  This allows us to read a small fixed-size
3282  * per-type header in the front and then gracefully fail (i.e.,
3283  * propagate the error to the caller based on info in the front) when
3284  * the middle is too large.
3285  */
3286 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3287 {
3288 	int type = le16_to_cpu(msg->hdr.type);
3289 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3290 
3291 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3292 	     ceph_msg_type_name(type), middle_len);
3293 	BUG_ON(!middle_len);
3294 	BUG_ON(msg->middle);
3295 
3296 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3297 	if (!msg->middle)
3298 		return -ENOMEM;
3299 	return 0;
3300 }
3301 
3302 /*
3303  * Allocate a message for receiving an incoming message on a
3304  * connection, and save the result in con->in_msg.  Uses the
3305  * connection's private alloc_msg op if available.
3306  *
3307  * Returns 0 on success, or a negative error code.
3308  *
3309  * On success, if we set *skip = 1:
3310  *  - the next message should be skipped and ignored.
3311  *  - con->in_msg == NULL
3312  * or if we set *skip = 0:
3313  *  - con->in_msg is non-null.
3314  * On error (ENOMEM, EAGAIN, ...),
3315  *  - con->in_msg == NULL
3316  */
3317 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3318 {
3319 	struct ceph_msg_header *hdr = &con->in_hdr;
3320 	int middle_len = le32_to_cpu(hdr->middle_len);
3321 	struct ceph_msg *msg;
3322 	int ret = 0;
3323 
3324 	BUG_ON(con->in_msg != NULL);
3325 	BUG_ON(!con->ops->alloc_msg);
3326 
3327 	mutex_unlock(&con->mutex);
3328 	msg = con->ops->alloc_msg(con, hdr, skip);
3329 	mutex_lock(&con->mutex);
3330 	if (con->state != CON_STATE_OPEN) {
3331 		if (msg)
3332 			ceph_msg_put(msg);
3333 		return -EAGAIN;
3334 	}
3335 	if (msg) {
3336 		BUG_ON(*skip);
3337 		con->in_msg = msg;
3338 		con->in_msg->con = con->ops->get(con);
3339 		BUG_ON(con->in_msg->con == NULL);
3340 	} else {
3341 		/*
3342 		 * Null message pointer means either we should skip
3343 		 * this message or we couldn't allocate memory.  The
3344 		 * former is not an error.
3345 		 */
3346 		if (*skip)
3347 			return 0;
3348 
3349 		con->error_msg = "error allocating memory for incoming message";
3350 		return -ENOMEM;
3351 	}
3352 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3353 
3354 	if (middle_len && !con->in_msg->middle) {
3355 		ret = ceph_alloc_middle(con, con->in_msg);
3356 		if (ret < 0) {
3357 			ceph_msg_put(con->in_msg);
3358 			con->in_msg = NULL;
3359 		}
3360 	}
3361 
3362 	return ret;
3363 }
3364 
3365 
3366 /*
3367  * Free a generically kmalloc'd message.
3368  */
3369 static void ceph_msg_free(struct ceph_msg *m)
3370 {
3371 	dout("%s %p\n", __func__, m);
3372 	kvfree(m->front.iov_base);
3373 	kmem_cache_free(ceph_msg_cache, m);
3374 }
3375 
3376 static void ceph_msg_release(struct kref *kref)
3377 {
3378 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3379 	LIST_HEAD(data);
3380 	struct list_head *links;
3381 	struct list_head *next;
3382 
3383 	dout("%s %p\n", __func__, m);
3384 	WARN_ON(!list_empty(&m->list_head));
3385 
3386 	/* drop middle, data, if any */
3387 	if (m->middle) {
3388 		ceph_buffer_put(m->middle);
3389 		m->middle = NULL;
3390 	}
3391 
3392 	list_splice_init(&m->data, &data);
3393 	list_for_each_safe(links, next, &data) {
3394 		struct ceph_msg_data *data;
3395 
3396 		data = list_entry(links, struct ceph_msg_data, links);
3397 		list_del_init(links);
3398 		ceph_msg_data_destroy(data);
3399 	}
3400 	m->data_length = 0;
3401 
3402 	if (m->pool)
3403 		ceph_msgpool_put(m->pool, m);
3404 	else
3405 		ceph_msg_free(m);
3406 }
3407 
3408 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3409 {
3410 	dout("%s %p (was %d)\n", __func__, msg,
3411 	     atomic_read(&msg->kref.refcount));
3412 	kref_get(&msg->kref);
3413 	return msg;
3414 }
3415 EXPORT_SYMBOL(ceph_msg_get);
3416 
3417 void ceph_msg_put(struct ceph_msg *msg)
3418 {
3419 	dout("%s %p (was %d)\n", __func__, msg,
3420 	     atomic_read(&msg->kref.refcount));
3421 	kref_put(&msg->kref, ceph_msg_release);
3422 }
3423 EXPORT_SYMBOL(ceph_msg_put);
3424 
3425 void ceph_msg_dump(struct ceph_msg *msg)
3426 {
3427 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3428 		 msg->front_alloc_len, msg->data_length);
3429 	print_hex_dump(KERN_DEBUG, "header: ",
3430 		       DUMP_PREFIX_OFFSET, 16, 1,
3431 		       &msg->hdr, sizeof(msg->hdr), true);
3432 	print_hex_dump(KERN_DEBUG, " front: ",
3433 		       DUMP_PREFIX_OFFSET, 16, 1,
3434 		       msg->front.iov_base, msg->front.iov_len, true);
3435 	if (msg->middle)
3436 		print_hex_dump(KERN_DEBUG, "middle: ",
3437 			       DUMP_PREFIX_OFFSET, 16, 1,
3438 			       msg->middle->vec.iov_base,
3439 			       msg->middle->vec.iov_len, true);
3440 	print_hex_dump(KERN_DEBUG, "footer: ",
3441 		       DUMP_PREFIX_OFFSET, 16, 1,
3442 		       &msg->footer, sizeof(msg->footer), true);
3443 }
3444 EXPORT_SYMBOL(ceph_msg_dump);
3445