1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/nsproxy.h> 10 #include <linux/slab.h> 11 #include <linux/socket.h> 12 #include <linux/string.h> 13 #ifdef CONFIG_BLOCK 14 #include <linux/bio.h> 15 #endif /* CONFIG_BLOCK */ 16 #include <linux/dns_resolver.h> 17 #include <net/tcp.h> 18 19 #include <linux/ceph/ceph_features.h> 20 #include <linux/ceph/libceph.h> 21 #include <linux/ceph/messenger.h> 22 #include <linux/ceph/decode.h> 23 #include <linux/ceph/pagelist.h> 24 #include <linux/export.h> 25 26 #define list_entry_next(pos, member) \ 27 list_entry(pos->member.next, typeof(*pos), member) 28 29 /* 30 * Ceph uses the messenger to exchange ceph_msg messages with other 31 * hosts in the system. The messenger provides ordered and reliable 32 * delivery. We tolerate TCP disconnects by reconnecting (with 33 * exponential backoff) in the case of a fault (disconnection, bad 34 * crc, protocol error). Acks allow sent messages to be discarded by 35 * the sender. 36 */ 37 38 /* 39 * We track the state of the socket on a given connection using 40 * values defined below. The transition to a new socket state is 41 * handled by a function which verifies we aren't coming from an 42 * unexpected state. 43 * 44 * -------- 45 * | NEW* | transient initial state 46 * -------- 47 * | con_sock_state_init() 48 * v 49 * ---------- 50 * | CLOSED | initialized, but no socket (and no 51 * ---------- TCP connection) 52 * ^ \ 53 * | \ con_sock_state_connecting() 54 * | ---------------------- 55 * | \ 56 * + con_sock_state_closed() \ 57 * |+--------------------------- \ 58 * | \ \ \ 59 * | ----------- \ \ 60 * | | CLOSING | socket event; \ \ 61 * | ----------- await close \ \ 62 * | ^ \ | 63 * | | \ | 64 * | + con_sock_state_closing() \ | 65 * | / \ | | 66 * | / --------------- | | 67 * | / \ v v 68 * | / -------------- 69 * | / -----------------| CONNECTING | socket created, TCP 70 * | | / -------------- connect initiated 71 * | | | con_sock_state_connected() 72 * | | v 73 * ------------- 74 * | CONNECTED | TCP connection established 75 * ------------- 76 * 77 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 78 */ 79 80 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 81 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 82 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 83 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 84 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 85 86 /* 87 * connection states 88 */ 89 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 90 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 91 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 92 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 93 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 94 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 95 96 /* 97 * ceph_connection flag bits 98 */ 99 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 100 * messages on errors */ 101 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 102 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 103 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 104 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 105 106 static bool con_flag_valid(unsigned long con_flag) 107 { 108 switch (con_flag) { 109 case CON_FLAG_LOSSYTX: 110 case CON_FLAG_KEEPALIVE_PENDING: 111 case CON_FLAG_WRITE_PENDING: 112 case CON_FLAG_SOCK_CLOSED: 113 case CON_FLAG_BACKOFF: 114 return true; 115 default: 116 return false; 117 } 118 } 119 120 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 121 { 122 BUG_ON(!con_flag_valid(con_flag)); 123 124 clear_bit(con_flag, &con->flags); 125 } 126 127 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 128 { 129 BUG_ON(!con_flag_valid(con_flag)); 130 131 set_bit(con_flag, &con->flags); 132 } 133 134 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 135 { 136 BUG_ON(!con_flag_valid(con_flag)); 137 138 return test_bit(con_flag, &con->flags); 139 } 140 141 static bool con_flag_test_and_clear(struct ceph_connection *con, 142 unsigned long con_flag) 143 { 144 BUG_ON(!con_flag_valid(con_flag)); 145 146 return test_and_clear_bit(con_flag, &con->flags); 147 } 148 149 static bool con_flag_test_and_set(struct ceph_connection *con, 150 unsigned long con_flag) 151 { 152 BUG_ON(!con_flag_valid(con_flag)); 153 154 return test_and_set_bit(con_flag, &con->flags); 155 } 156 157 /* Slab caches for frequently-allocated structures */ 158 159 static struct kmem_cache *ceph_msg_cache; 160 static struct kmem_cache *ceph_msg_data_cache; 161 162 /* static tag bytes (protocol control messages) */ 163 static char tag_msg = CEPH_MSGR_TAG_MSG; 164 static char tag_ack = CEPH_MSGR_TAG_ACK; 165 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 166 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2; 167 168 #ifdef CONFIG_LOCKDEP 169 static struct lock_class_key socket_class; 170 #endif 171 172 /* 173 * When skipping (ignoring) a block of input we read it into a "skip 174 * buffer," which is this many bytes in size. 175 */ 176 #define SKIP_BUF_SIZE 1024 177 178 static void queue_con(struct ceph_connection *con); 179 static void cancel_con(struct ceph_connection *con); 180 static void ceph_con_workfn(struct work_struct *); 181 static void con_fault(struct ceph_connection *con); 182 183 /* 184 * Nicely render a sockaddr as a string. An array of formatted 185 * strings is used, to approximate reentrancy. 186 */ 187 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 188 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 189 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 190 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 191 192 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 193 static atomic_t addr_str_seq = ATOMIC_INIT(0); 194 195 static struct page *zero_page; /* used in certain error cases */ 196 197 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 198 { 199 int i; 200 char *s; 201 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 202 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 203 204 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 205 s = addr_str[i]; 206 207 switch (ss->ss_family) { 208 case AF_INET: 209 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 210 ntohs(in4->sin_port)); 211 break; 212 213 case AF_INET6: 214 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 215 ntohs(in6->sin6_port)); 216 break; 217 218 default: 219 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 220 ss->ss_family); 221 } 222 223 return s; 224 } 225 EXPORT_SYMBOL(ceph_pr_addr); 226 227 static void encode_my_addr(struct ceph_messenger *msgr) 228 { 229 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 230 ceph_encode_addr(&msgr->my_enc_addr); 231 } 232 233 /* 234 * work queue for all reading and writing to/from the socket. 235 */ 236 static struct workqueue_struct *ceph_msgr_wq; 237 238 static int ceph_msgr_slab_init(void) 239 { 240 BUG_ON(ceph_msg_cache); 241 ceph_msg_cache = kmem_cache_create("ceph_msg", 242 sizeof (struct ceph_msg), 243 __alignof__(struct ceph_msg), 0, NULL); 244 245 if (!ceph_msg_cache) 246 return -ENOMEM; 247 248 BUG_ON(ceph_msg_data_cache); 249 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data", 250 sizeof (struct ceph_msg_data), 251 __alignof__(struct ceph_msg_data), 252 0, NULL); 253 if (ceph_msg_data_cache) 254 return 0; 255 256 kmem_cache_destroy(ceph_msg_cache); 257 ceph_msg_cache = NULL; 258 259 return -ENOMEM; 260 } 261 262 static void ceph_msgr_slab_exit(void) 263 { 264 BUG_ON(!ceph_msg_data_cache); 265 kmem_cache_destroy(ceph_msg_data_cache); 266 ceph_msg_data_cache = NULL; 267 268 BUG_ON(!ceph_msg_cache); 269 kmem_cache_destroy(ceph_msg_cache); 270 ceph_msg_cache = NULL; 271 } 272 273 static void _ceph_msgr_exit(void) 274 { 275 if (ceph_msgr_wq) { 276 destroy_workqueue(ceph_msgr_wq); 277 ceph_msgr_wq = NULL; 278 } 279 280 BUG_ON(zero_page == NULL); 281 page_cache_release(zero_page); 282 zero_page = NULL; 283 284 ceph_msgr_slab_exit(); 285 } 286 287 int ceph_msgr_init(void) 288 { 289 if (ceph_msgr_slab_init()) 290 return -ENOMEM; 291 292 BUG_ON(zero_page != NULL); 293 zero_page = ZERO_PAGE(0); 294 page_cache_get(zero_page); 295 296 /* 297 * The number of active work items is limited by the number of 298 * connections, so leave @max_active at default. 299 */ 300 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 301 if (ceph_msgr_wq) 302 return 0; 303 304 pr_err("msgr_init failed to create workqueue\n"); 305 _ceph_msgr_exit(); 306 307 return -ENOMEM; 308 } 309 EXPORT_SYMBOL(ceph_msgr_init); 310 311 void ceph_msgr_exit(void) 312 { 313 BUG_ON(ceph_msgr_wq == NULL); 314 315 _ceph_msgr_exit(); 316 } 317 EXPORT_SYMBOL(ceph_msgr_exit); 318 319 void ceph_msgr_flush(void) 320 { 321 flush_workqueue(ceph_msgr_wq); 322 } 323 EXPORT_SYMBOL(ceph_msgr_flush); 324 325 /* Connection socket state transition functions */ 326 327 static void con_sock_state_init(struct ceph_connection *con) 328 { 329 int old_state; 330 331 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 332 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 333 printk("%s: unexpected old state %d\n", __func__, old_state); 334 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 335 CON_SOCK_STATE_CLOSED); 336 } 337 338 static void con_sock_state_connecting(struct ceph_connection *con) 339 { 340 int old_state; 341 342 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 343 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 344 printk("%s: unexpected old state %d\n", __func__, old_state); 345 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 346 CON_SOCK_STATE_CONNECTING); 347 } 348 349 static void con_sock_state_connected(struct ceph_connection *con) 350 { 351 int old_state; 352 353 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 354 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 355 printk("%s: unexpected old state %d\n", __func__, old_state); 356 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 357 CON_SOCK_STATE_CONNECTED); 358 } 359 360 static void con_sock_state_closing(struct ceph_connection *con) 361 { 362 int old_state; 363 364 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 365 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 366 old_state != CON_SOCK_STATE_CONNECTED && 367 old_state != CON_SOCK_STATE_CLOSING)) 368 printk("%s: unexpected old state %d\n", __func__, old_state); 369 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 370 CON_SOCK_STATE_CLOSING); 371 } 372 373 static void con_sock_state_closed(struct ceph_connection *con) 374 { 375 int old_state; 376 377 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 378 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 379 old_state != CON_SOCK_STATE_CLOSING && 380 old_state != CON_SOCK_STATE_CONNECTING && 381 old_state != CON_SOCK_STATE_CLOSED)) 382 printk("%s: unexpected old state %d\n", __func__, old_state); 383 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 384 CON_SOCK_STATE_CLOSED); 385 } 386 387 /* 388 * socket callback functions 389 */ 390 391 /* data available on socket, or listen socket received a connect */ 392 static void ceph_sock_data_ready(struct sock *sk) 393 { 394 struct ceph_connection *con = sk->sk_user_data; 395 if (atomic_read(&con->msgr->stopping)) { 396 return; 397 } 398 399 if (sk->sk_state != TCP_CLOSE_WAIT) { 400 dout("%s on %p state = %lu, queueing work\n", __func__, 401 con, con->state); 402 queue_con(con); 403 } 404 } 405 406 /* socket has buffer space for writing */ 407 static void ceph_sock_write_space(struct sock *sk) 408 { 409 struct ceph_connection *con = sk->sk_user_data; 410 411 /* only queue to workqueue if there is data we want to write, 412 * and there is sufficient space in the socket buffer to accept 413 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 414 * doesn't get called again until try_write() fills the socket 415 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 416 * and net/core/stream.c:sk_stream_write_space(). 417 */ 418 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 419 if (sk_stream_is_writeable(sk)) { 420 dout("%s %p queueing write work\n", __func__, con); 421 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 422 queue_con(con); 423 } 424 } else { 425 dout("%s %p nothing to write\n", __func__, con); 426 } 427 } 428 429 /* socket's state has changed */ 430 static void ceph_sock_state_change(struct sock *sk) 431 { 432 struct ceph_connection *con = sk->sk_user_data; 433 434 dout("%s %p state = %lu sk_state = %u\n", __func__, 435 con, con->state, sk->sk_state); 436 437 switch (sk->sk_state) { 438 case TCP_CLOSE: 439 dout("%s TCP_CLOSE\n", __func__); 440 case TCP_CLOSE_WAIT: 441 dout("%s TCP_CLOSE_WAIT\n", __func__); 442 con_sock_state_closing(con); 443 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 444 queue_con(con); 445 break; 446 case TCP_ESTABLISHED: 447 dout("%s TCP_ESTABLISHED\n", __func__); 448 con_sock_state_connected(con); 449 queue_con(con); 450 break; 451 default: /* Everything else is uninteresting */ 452 break; 453 } 454 } 455 456 /* 457 * set up socket callbacks 458 */ 459 static void set_sock_callbacks(struct socket *sock, 460 struct ceph_connection *con) 461 { 462 struct sock *sk = sock->sk; 463 sk->sk_user_data = con; 464 sk->sk_data_ready = ceph_sock_data_ready; 465 sk->sk_write_space = ceph_sock_write_space; 466 sk->sk_state_change = ceph_sock_state_change; 467 } 468 469 470 /* 471 * socket helpers 472 */ 473 474 /* 475 * initiate connection to a remote socket. 476 */ 477 static int ceph_tcp_connect(struct ceph_connection *con) 478 { 479 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 480 struct socket *sock; 481 int ret; 482 483 BUG_ON(con->sock); 484 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family, 485 SOCK_STREAM, IPPROTO_TCP, &sock); 486 if (ret) 487 return ret; 488 sock->sk->sk_allocation = GFP_NOFS; 489 490 #ifdef CONFIG_LOCKDEP 491 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 492 #endif 493 494 set_sock_callbacks(sock, con); 495 496 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 497 498 con_sock_state_connecting(con); 499 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 500 O_NONBLOCK); 501 if (ret == -EINPROGRESS) { 502 dout("connect %s EINPROGRESS sk_state = %u\n", 503 ceph_pr_addr(&con->peer_addr.in_addr), 504 sock->sk->sk_state); 505 } else if (ret < 0) { 506 pr_err("connect %s error %d\n", 507 ceph_pr_addr(&con->peer_addr.in_addr), ret); 508 sock_release(sock); 509 return ret; 510 } 511 512 if (con->msgr->tcp_nodelay) { 513 int optval = 1; 514 515 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 516 (char *)&optval, sizeof(optval)); 517 if (ret) 518 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 519 ret); 520 } 521 522 con->sock = sock; 523 return 0; 524 } 525 526 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 527 { 528 struct kvec iov = {buf, len}; 529 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 530 int r; 531 532 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 533 if (r == -EAGAIN) 534 r = 0; 535 return r; 536 } 537 538 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 539 int page_offset, size_t length) 540 { 541 void *kaddr; 542 int ret; 543 544 BUG_ON(page_offset + length > PAGE_SIZE); 545 546 kaddr = kmap(page); 547 BUG_ON(!kaddr); 548 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length); 549 kunmap(page); 550 551 return ret; 552 } 553 554 /* 555 * write something. @more is true if caller will be sending more data 556 * shortly. 557 */ 558 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 559 size_t kvlen, size_t len, int more) 560 { 561 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 562 int r; 563 564 if (more) 565 msg.msg_flags |= MSG_MORE; 566 else 567 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 568 569 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 570 if (r == -EAGAIN) 571 r = 0; 572 return r; 573 } 574 575 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 576 int offset, size_t size, bool more) 577 { 578 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 579 int ret; 580 581 ret = kernel_sendpage(sock, page, offset, size, flags); 582 if (ret == -EAGAIN) 583 ret = 0; 584 585 return ret; 586 } 587 588 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 589 int offset, size_t size, bool more) 590 { 591 int ret; 592 struct kvec iov; 593 594 /* sendpage cannot properly handle pages with page_count == 0, 595 * we need to fallback to sendmsg if that's the case */ 596 if (page_count(page) >= 1) 597 return __ceph_tcp_sendpage(sock, page, offset, size, more); 598 599 iov.iov_base = kmap(page) + offset; 600 iov.iov_len = size; 601 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more); 602 kunmap(page); 603 604 return ret; 605 } 606 607 /* 608 * Shutdown/close the socket for the given connection. 609 */ 610 static int con_close_socket(struct ceph_connection *con) 611 { 612 int rc = 0; 613 614 dout("con_close_socket on %p sock %p\n", con, con->sock); 615 if (con->sock) { 616 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 617 sock_release(con->sock); 618 con->sock = NULL; 619 } 620 621 /* 622 * Forcibly clear the SOCK_CLOSED flag. It gets set 623 * independent of the connection mutex, and we could have 624 * received a socket close event before we had the chance to 625 * shut the socket down. 626 */ 627 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 628 629 con_sock_state_closed(con); 630 return rc; 631 } 632 633 /* 634 * Reset a connection. Discard all incoming and outgoing messages 635 * and clear *_seq state. 636 */ 637 static void ceph_msg_remove(struct ceph_msg *msg) 638 { 639 list_del_init(&msg->list_head); 640 BUG_ON(msg->con == NULL); 641 msg->con->ops->put(msg->con); 642 msg->con = NULL; 643 644 ceph_msg_put(msg); 645 } 646 static void ceph_msg_remove_list(struct list_head *head) 647 { 648 while (!list_empty(head)) { 649 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 650 list_head); 651 ceph_msg_remove(msg); 652 } 653 } 654 655 static void reset_connection(struct ceph_connection *con) 656 { 657 /* reset connection, out_queue, msg_ and connect_seq */ 658 /* discard existing out_queue and msg_seq */ 659 dout("reset_connection %p\n", con); 660 ceph_msg_remove_list(&con->out_queue); 661 ceph_msg_remove_list(&con->out_sent); 662 663 if (con->in_msg) { 664 BUG_ON(con->in_msg->con != con); 665 con->in_msg->con = NULL; 666 ceph_msg_put(con->in_msg); 667 con->in_msg = NULL; 668 con->ops->put(con); 669 } 670 671 con->connect_seq = 0; 672 con->out_seq = 0; 673 if (con->out_msg) { 674 ceph_msg_put(con->out_msg); 675 con->out_msg = NULL; 676 } 677 con->in_seq = 0; 678 con->in_seq_acked = 0; 679 } 680 681 /* 682 * mark a peer down. drop any open connections. 683 */ 684 void ceph_con_close(struct ceph_connection *con) 685 { 686 mutex_lock(&con->mutex); 687 dout("con_close %p peer %s\n", con, 688 ceph_pr_addr(&con->peer_addr.in_addr)); 689 con->state = CON_STATE_CLOSED; 690 691 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 692 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 693 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 694 con_flag_clear(con, CON_FLAG_BACKOFF); 695 696 reset_connection(con); 697 con->peer_global_seq = 0; 698 cancel_con(con); 699 con_close_socket(con); 700 mutex_unlock(&con->mutex); 701 } 702 EXPORT_SYMBOL(ceph_con_close); 703 704 /* 705 * Reopen a closed connection, with a new peer address. 706 */ 707 void ceph_con_open(struct ceph_connection *con, 708 __u8 entity_type, __u64 entity_num, 709 struct ceph_entity_addr *addr) 710 { 711 mutex_lock(&con->mutex); 712 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 713 714 WARN_ON(con->state != CON_STATE_CLOSED); 715 con->state = CON_STATE_PREOPEN; 716 717 con->peer_name.type = (__u8) entity_type; 718 con->peer_name.num = cpu_to_le64(entity_num); 719 720 memcpy(&con->peer_addr, addr, sizeof(*addr)); 721 con->delay = 0; /* reset backoff memory */ 722 mutex_unlock(&con->mutex); 723 queue_con(con); 724 } 725 EXPORT_SYMBOL(ceph_con_open); 726 727 /* 728 * return true if this connection ever successfully opened 729 */ 730 bool ceph_con_opened(struct ceph_connection *con) 731 { 732 return con->connect_seq > 0; 733 } 734 735 /* 736 * initialize a new connection. 737 */ 738 void ceph_con_init(struct ceph_connection *con, void *private, 739 const struct ceph_connection_operations *ops, 740 struct ceph_messenger *msgr) 741 { 742 dout("con_init %p\n", con); 743 memset(con, 0, sizeof(*con)); 744 con->private = private; 745 con->ops = ops; 746 con->msgr = msgr; 747 748 con_sock_state_init(con); 749 750 mutex_init(&con->mutex); 751 INIT_LIST_HEAD(&con->out_queue); 752 INIT_LIST_HEAD(&con->out_sent); 753 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 754 755 con->state = CON_STATE_CLOSED; 756 } 757 EXPORT_SYMBOL(ceph_con_init); 758 759 760 /* 761 * We maintain a global counter to order connection attempts. Get 762 * a unique seq greater than @gt. 763 */ 764 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 765 { 766 u32 ret; 767 768 spin_lock(&msgr->global_seq_lock); 769 if (msgr->global_seq < gt) 770 msgr->global_seq = gt; 771 ret = ++msgr->global_seq; 772 spin_unlock(&msgr->global_seq_lock); 773 return ret; 774 } 775 776 static void con_out_kvec_reset(struct ceph_connection *con) 777 { 778 con->out_kvec_left = 0; 779 con->out_kvec_bytes = 0; 780 con->out_kvec_cur = &con->out_kvec[0]; 781 } 782 783 static void con_out_kvec_add(struct ceph_connection *con, 784 size_t size, void *data) 785 { 786 int index; 787 788 index = con->out_kvec_left; 789 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 790 791 con->out_kvec[index].iov_len = size; 792 con->out_kvec[index].iov_base = data; 793 con->out_kvec_left++; 794 con->out_kvec_bytes += size; 795 } 796 797 #ifdef CONFIG_BLOCK 798 799 /* 800 * For a bio data item, a piece is whatever remains of the next 801 * entry in the current bio iovec, or the first entry in the next 802 * bio in the list. 803 */ 804 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 805 size_t length) 806 { 807 struct ceph_msg_data *data = cursor->data; 808 struct bio *bio; 809 810 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 811 812 bio = data->bio; 813 BUG_ON(!bio); 814 815 cursor->resid = min(length, data->bio_length); 816 cursor->bio = bio; 817 cursor->bvec_iter = bio->bi_iter; 818 cursor->last_piece = 819 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); 820 } 821 822 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 823 size_t *page_offset, 824 size_t *length) 825 { 826 struct ceph_msg_data *data = cursor->data; 827 struct bio *bio; 828 struct bio_vec bio_vec; 829 830 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 831 832 bio = cursor->bio; 833 BUG_ON(!bio); 834 835 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 836 837 *page_offset = (size_t) bio_vec.bv_offset; 838 BUG_ON(*page_offset >= PAGE_SIZE); 839 if (cursor->last_piece) /* pagelist offset is always 0 */ 840 *length = cursor->resid; 841 else 842 *length = (size_t) bio_vec.bv_len; 843 BUG_ON(*length > cursor->resid); 844 BUG_ON(*page_offset + *length > PAGE_SIZE); 845 846 return bio_vec.bv_page; 847 } 848 849 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 850 size_t bytes) 851 { 852 struct bio *bio; 853 struct bio_vec bio_vec; 854 855 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 856 857 bio = cursor->bio; 858 BUG_ON(!bio); 859 860 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 861 862 /* Advance the cursor offset */ 863 864 BUG_ON(cursor->resid < bytes); 865 cursor->resid -= bytes; 866 867 bio_advance_iter(bio, &cursor->bvec_iter, bytes); 868 869 if (bytes < bio_vec.bv_len) 870 return false; /* more bytes to process in this segment */ 871 872 /* Move on to the next segment, and possibly the next bio */ 873 874 if (!cursor->bvec_iter.bi_size) { 875 bio = bio->bi_next; 876 cursor->bio = bio; 877 if (bio) 878 cursor->bvec_iter = bio->bi_iter; 879 else 880 memset(&cursor->bvec_iter, 0, 881 sizeof(cursor->bvec_iter)); 882 } 883 884 if (!cursor->last_piece) { 885 BUG_ON(!cursor->resid); 886 BUG_ON(!bio); 887 /* A short read is OK, so use <= rather than == */ 888 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) 889 cursor->last_piece = true; 890 } 891 892 return true; 893 } 894 #endif /* CONFIG_BLOCK */ 895 896 /* 897 * For a page array, a piece comes from the first page in the array 898 * that has not already been fully consumed. 899 */ 900 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 901 size_t length) 902 { 903 struct ceph_msg_data *data = cursor->data; 904 int page_count; 905 906 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 907 908 BUG_ON(!data->pages); 909 BUG_ON(!data->length); 910 911 cursor->resid = min(length, data->length); 912 page_count = calc_pages_for(data->alignment, (u64)data->length); 913 cursor->page_offset = data->alignment & ~PAGE_MASK; 914 cursor->page_index = 0; 915 BUG_ON(page_count > (int)USHRT_MAX); 916 cursor->page_count = (unsigned short)page_count; 917 BUG_ON(length > SIZE_MAX - cursor->page_offset); 918 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 919 } 920 921 static struct page * 922 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 923 size_t *page_offset, size_t *length) 924 { 925 struct ceph_msg_data *data = cursor->data; 926 927 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 928 929 BUG_ON(cursor->page_index >= cursor->page_count); 930 BUG_ON(cursor->page_offset >= PAGE_SIZE); 931 932 *page_offset = cursor->page_offset; 933 if (cursor->last_piece) 934 *length = cursor->resid; 935 else 936 *length = PAGE_SIZE - *page_offset; 937 938 return data->pages[cursor->page_index]; 939 } 940 941 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 942 size_t bytes) 943 { 944 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 945 946 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 947 948 /* Advance the cursor page offset */ 949 950 cursor->resid -= bytes; 951 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 952 if (!bytes || cursor->page_offset) 953 return false; /* more bytes to process in the current page */ 954 955 if (!cursor->resid) 956 return false; /* no more data */ 957 958 /* Move on to the next page; offset is already at 0 */ 959 960 BUG_ON(cursor->page_index >= cursor->page_count); 961 cursor->page_index++; 962 cursor->last_piece = cursor->resid <= PAGE_SIZE; 963 964 return true; 965 } 966 967 /* 968 * For a pagelist, a piece is whatever remains to be consumed in the 969 * first page in the list, or the front of the next page. 970 */ 971 static void 972 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 973 size_t length) 974 { 975 struct ceph_msg_data *data = cursor->data; 976 struct ceph_pagelist *pagelist; 977 struct page *page; 978 979 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 980 981 pagelist = data->pagelist; 982 BUG_ON(!pagelist); 983 984 if (!length) 985 return; /* pagelist can be assigned but empty */ 986 987 BUG_ON(list_empty(&pagelist->head)); 988 page = list_first_entry(&pagelist->head, struct page, lru); 989 990 cursor->resid = min(length, pagelist->length); 991 cursor->page = page; 992 cursor->offset = 0; 993 cursor->last_piece = cursor->resid <= PAGE_SIZE; 994 } 995 996 static struct page * 997 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 998 size_t *page_offset, size_t *length) 999 { 1000 struct ceph_msg_data *data = cursor->data; 1001 struct ceph_pagelist *pagelist; 1002 1003 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1004 1005 pagelist = data->pagelist; 1006 BUG_ON(!pagelist); 1007 1008 BUG_ON(!cursor->page); 1009 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1010 1011 /* offset of first page in pagelist is always 0 */ 1012 *page_offset = cursor->offset & ~PAGE_MASK; 1013 if (cursor->last_piece) 1014 *length = cursor->resid; 1015 else 1016 *length = PAGE_SIZE - *page_offset; 1017 1018 return cursor->page; 1019 } 1020 1021 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1022 size_t bytes) 1023 { 1024 struct ceph_msg_data *data = cursor->data; 1025 struct ceph_pagelist *pagelist; 1026 1027 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1028 1029 pagelist = data->pagelist; 1030 BUG_ON(!pagelist); 1031 1032 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1033 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1034 1035 /* Advance the cursor offset */ 1036 1037 cursor->resid -= bytes; 1038 cursor->offset += bytes; 1039 /* offset of first page in pagelist is always 0 */ 1040 if (!bytes || cursor->offset & ~PAGE_MASK) 1041 return false; /* more bytes to process in the current page */ 1042 1043 if (!cursor->resid) 1044 return false; /* no more data */ 1045 1046 /* Move on to the next page */ 1047 1048 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1049 cursor->page = list_entry_next(cursor->page, lru); 1050 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1051 1052 return true; 1053 } 1054 1055 /* 1056 * Message data is handled (sent or received) in pieces, where each 1057 * piece resides on a single page. The network layer might not 1058 * consume an entire piece at once. A data item's cursor keeps 1059 * track of which piece is next to process and how much remains to 1060 * be processed in that piece. It also tracks whether the current 1061 * piece is the last one in the data item. 1062 */ 1063 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1064 { 1065 size_t length = cursor->total_resid; 1066 1067 switch (cursor->data->type) { 1068 case CEPH_MSG_DATA_PAGELIST: 1069 ceph_msg_data_pagelist_cursor_init(cursor, length); 1070 break; 1071 case CEPH_MSG_DATA_PAGES: 1072 ceph_msg_data_pages_cursor_init(cursor, length); 1073 break; 1074 #ifdef CONFIG_BLOCK 1075 case CEPH_MSG_DATA_BIO: 1076 ceph_msg_data_bio_cursor_init(cursor, length); 1077 break; 1078 #endif /* CONFIG_BLOCK */ 1079 case CEPH_MSG_DATA_NONE: 1080 default: 1081 /* BUG(); */ 1082 break; 1083 } 1084 cursor->need_crc = true; 1085 } 1086 1087 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1088 { 1089 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1090 struct ceph_msg_data *data; 1091 1092 BUG_ON(!length); 1093 BUG_ON(length > msg->data_length); 1094 BUG_ON(list_empty(&msg->data)); 1095 1096 cursor->data_head = &msg->data; 1097 cursor->total_resid = length; 1098 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1099 cursor->data = data; 1100 1101 __ceph_msg_data_cursor_init(cursor); 1102 } 1103 1104 /* 1105 * Return the page containing the next piece to process for a given 1106 * data item, and supply the page offset and length of that piece. 1107 * Indicate whether this is the last piece in this data item. 1108 */ 1109 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1110 size_t *page_offset, size_t *length, 1111 bool *last_piece) 1112 { 1113 struct page *page; 1114 1115 switch (cursor->data->type) { 1116 case CEPH_MSG_DATA_PAGELIST: 1117 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1118 break; 1119 case CEPH_MSG_DATA_PAGES: 1120 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1121 break; 1122 #ifdef CONFIG_BLOCK 1123 case CEPH_MSG_DATA_BIO: 1124 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1125 break; 1126 #endif /* CONFIG_BLOCK */ 1127 case CEPH_MSG_DATA_NONE: 1128 default: 1129 page = NULL; 1130 break; 1131 } 1132 BUG_ON(!page); 1133 BUG_ON(*page_offset + *length > PAGE_SIZE); 1134 BUG_ON(!*length); 1135 if (last_piece) 1136 *last_piece = cursor->last_piece; 1137 1138 return page; 1139 } 1140 1141 /* 1142 * Returns true if the result moves the cursor on to the next piece 1143 * of the data item. 1144 */ 1145 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1146 size_t bytes) 1147 { 1148 bool new_piece; 1149 1150 BUG_ON(bytes > cursor->resid); 1151 switch (cursor->data->type) { 1152 case CEPH_MSG_DATA_PAGELIST: 1153 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1154 break; 1155 case CEPH_MSG_DATA_PAGES: 1156 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1157 break; 1158 #ifdef CONFIG_BLOCK 1159 case CEPH_MSG_DATA_BIO: 1160 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1161 break; 1162 #endif /* CONFIG_BLOCK */ 1163 case CEPH_MSG_DATA_NONE: 1164 default: 1165 BUG(); 1166 break; 1167 } 1168 cursor->total_resid -= bytes; 1169 1170 if (!cursor->resid && cursor->total_resid) { 1171 WARN_ON(!cursor->last_piece); 1172 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1173 cursor->data = list_entry_next(cursor->data, links); 1174 __ceph_msg_data_cursor_init(cursor); 1175 new_piece = true; 1176 } 1177 cursor->need_crc = new_piece; 1178 1179 return new_piece; 1180 } 1181 1182 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1183 { 1184 BUG_ON(!msg); 1185 BUG_ON(!data_len); 1186 1187 /* Initialize data cursor */ 1188 1189 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1190 } 1191 1192 /* 1193 * Prepare footer for currently outgoing message, and finish things 1194 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1195 */ 1196 static void prepare_write_message_footer(struct ceph_connection *con) 1197 { 1198 struct ceph_msg *m = con->out_msg; 1199 int v = con->out_kvec_left; 1200 1201 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1202 1203 dout("prepare_write_message_footer %p\n", con); 1204 con->out_kvec_is_msg = true; 1205 con->out_kvec[v].iov_base = &m->footer; 1206 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1207 if (con->ops->sign_message) 1208 con->ops->sign_message(con, m); 1209 else 1210 m->footer.sig = 0; 1211 con->out_kvec[v].iov_len = sizeof(m->footer); 1212 con->out_kvec_bytes += sizeof(m->footer); 1213 } else { 1214 m->old_footer.flags = m->footer.flags; 1215 con->out_kvec[v].iov_len = sizeof(m->old_footer); 1216 con->out_kvec_bytes += sizeof(m->old_footer); 1217 } 1218 con->out_kvec_left++; 1219 con->out_more = m->more_to_follow; 1220 con->out_msg_done = true; 1221 } 1222 1223 /* 1224 * Prepare headers for the next outgoing message. 1225 */ 1226 static void prepare_write_message(struct ceph_connection *con) 1227 { 1228 struct ceph_msg *m; 1229 u32 crc; 1230 1231 con_out_kvec_reset(con); 1232 con->out_kvec_is_msg = true; 1233 con->out_msg_done = false; 1234 1235 /* Sneak an ack in there first? If we can get it into the same 1236 * TCP packet that's a good thing. */ 1237 if (con->in_seq > con->in_seq_acked) { 1238 con->in_seq_acked = con->in_seq; 1239 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1240 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1241 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1242 &con->out_temp_ack); 1243 } 1244 1245 BUG_ON(list_empty(&con->out_queue)); 1246 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1247 con->out_msg = m; 1248 BUG_ON(m->con != con); 1249 1250 /* put message on sent list */ 1251 ceph_msg_get(m); 1252 list_move_tail(&m->list_head, &con->out_sent); 1253 1254 /* 1255 * only assign outgoing seq # if we haven't sent this message 1256 * yet. if it is requeued, resend with it's original seq. 1257 */ 1258 if (m->needs_out_seq) { 1259 m->hdr.seq = cpu_to_le64(++con->out_seq); 1260 m->needs_out_seq = false; 1261 } 1262 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1263 1264 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1265 m, con->out_seq, le16_to_cpu(m->hdr.type), 1266 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1267 m->data_length); 1268 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 1269 1270 /* tag + hdr + front + middle */ 1271 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1272 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); 1273 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1274 1275 if (m->middle) 1276 con_out_kvec_add(con, m->middle->vec.iov_len, 1277 m->middle->vec.iov_base); 1278 1279 /* fill in crc (except data pages), footer */ 1280 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1281 con->out_msg->hdr.crc = cpu_to_le32(crc); 1282 con->out_msg->footer.flags = 0; 1283 1284 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1285 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1286 if (m->middle) { 1287 crc = crc32c(0, m->middle->vec.iov_base, 1288 m->middle->vec.iov_len); 1289 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1290 } else 1291 con->out_msg->footer.middle_crc = 0; 1292 dout("%s front_crc %u middle_crc %u\n", __func__, 1293 le32_to_cpu(con->out_msg->footer.front_crc), 1294 le32_to_cpu(con->out_msg->footer.middle_crc)); 1295 1296 /* is there a data payload? */ 1297 con->out_msg->footer.data_crc = 0; 1298 if (m->data_length) { 1299 prepare_message_data(con->out_msg, m->data_length); 1300 con->out_more = 1; /* data + footer will follow */ 1301 } else { 1302 /* no, queue up footer too and be done */ 1303 prepare_write_message_footer(con); 1304 } 1305 1306 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1307 } 1308 1309 /* 1310 * Prepare an ack. 1311 */ 1312 static void prepare_write_ack(struct ceph_connection *con) 1313 { 1314 dout("prepare_write_ack %p %llu -> %llu\n", con, 1315 con->in_seq_acked, con->in_seq); 1316 con->in_seq_acked = con->in_seq; 1317 1318 con_out_kvec_reset(con); 1319 1320 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1321 1322 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1323 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1324 &con->out_temp_ack); 1325 1326 con->out_more = 1; /* more will follow.. eventually.. */ 1327 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1328 } 1329 1330 /* 1331 * Prepare to share the seq during handshake 1332 */ 1333 static void prepare_write_seq(struct ceph_connection *con) 1334 { 1335 dout("prepare_write_seq %p %llu -> %llu\n", con, 1336 con->in_seq_acked, con->in_seq); 1337 con->in_seq_acked = con->in_seq; 1338 1339 con_out_kvec_reset(con); 1340 1341 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1342 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1343 &con->out_temp_ack); 1344 1345 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1346 } 1347 1348 /* 1349 * Prepare to write keepalive byte. 1350 */ 1351 static void prepare_write_keepalive(struct ceph_connection *con) 1352 { 1353 dout("prepare_write_keepalive %p\n", con); 1354 con_out_kvec_reset(con); 1355 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) { 1356 struct timespec ts = CURRENT_TIME; 1357 struct ceph_timespec ceph_ts; 1358 ceph_encode_timespec(&ceph_ts, &ts); 1359 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2); 1360 con_out_kvec_add(con, sizeof(ceph_ts), &ceph_ts); 1361 } else { 1362 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive); 1363 } 1364 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1365 } 1366 1367 /* 1368 * Connection negotiation. 1369 */ 1370 1371 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1372 int *auth_proto) 1373 { 1374 struct ceph_auth_handshake *auth; 1375 1376 if (!con->ops->get_authorizer) { 1377 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1378 con->out_connect.authorizer_len = 0; 1379 return NULL; 1380 } 1381 1382 /* Can't hold the mutex while getting authorizer */ 1383 mutex_unlock(&con->mutex); 1384 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1385 mutex_lock(&con->mutex); 1386 1387 if (IS_ERR(auth)) 1388 return auth; 1389 if (con->state != CON_STATE_NEGOTIATING) 1390 return ERR_PTR(-EAGAIN); 1391 1392 con->auth_reply_buf = auth->authorizer_reply_buf; 1393 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1394 return auth; 1395 } 1396 1397 /* 1398 * We connected to a peer and are saying hello. 1399 */ 1400 static void prepare_write_banner(struct ceph_connection *con) 1401 { 1402 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1403 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1404 &con->msgr->my_enc_addr); 1405 1406 con->out_more = 0; 1407 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1408 } 1409 1410 static int prepare_write_connect(struct ceph_connection *con) 1411 { 1412 unsigned int global_seq = get_global_seq(con->msgr, 0); 1413 int proto; 1414 int auth_proto; 1415 struct ceph_auth_handshake *auth; 1416 1417 switch (con->peer_name.type) { 1418 case CEPH_ENTITY_TYPE_MON: 1419 proto = CEPH_MONC_PROTOCOL; 1420 break; 1421 case CEPH_ENTITY_TYPE_OSD: 1422 proto = CEPH_OSDC_PROTOCOL; 1423 break; 1424 case CEPH_ENTITY_TYPE_MDS: 1425 proto = CEPH_MDSC_PROTOCOL; 1426 break; 1427 default: 1428 BUG(); 1429 } 1430 1431 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1432 con->connect_seq, global_seq, proto); 1433 1434 con->out_connect.features = cpu_to_le64(con->msgr->supported_features); 1435 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1436 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1437 con->out_connect.global_seq = cpu_to_le32(global_seq); 1438 con->out_connect.protocol_version = cpu_to_le32(proto); 1439 con->out_connect.flags = 0; 1440 1441 auth_proto = CEPH_AUTH_UNKNOWN; 1442 auth = get_connect_authorizer(con, &auth_proto); 1443 if (IS_ERR(auth)) 1444 return PTR_ERR(auth); 1445 1446 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1447 con->out_connect.authorizer_len = auth ? 1448 cpu_to_le32(auth->authorizer_buf_len) : 0; 1449 1450 con_out_kvec_add(con, sizeof (con->out_connect), 1451 &con->out_connect); 1452 if (auth && auth->authorizer_buf_len) 1453 con_out_kvec_add(con, auth->authorizer_buf_len, 1454 auth->authorizer_buf); 1455 1456 con->out_more = 0; 1457 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1458 1459 return 0; 1460 } 1461 1462 /* 1463 * write as much of pending kvecs to the socket as we can. 1464 * 1 -> done 1465 * 0 -> socket full, but more to do 1466 * <0 -> error 1467 */ 1468 static int write_partial_kvec(struct ceph_connection *con) 1469 { 1470 int ret; 1471 1472 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1473 while (con->out_kvec_bytes > 0) { 1474 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1475 con->out_kvec_left, con->out_kvec_bytes, 1476 con->out_more); 1477 if (ret <= 0) 1478 goto out; 1479 con->out_kvec_bytes -= ret; 1480 if (con->out_kvec_bytes == 0) 1481 break; /* done */ 1482 1483 /* account for full iov entries consumed */ 1484 while (ret >= con->out_kvec_cur->iov_len) { 1485 BUG_ON(!con->out_kvec_left); 1486 ret -= con->out_kvec_cur->iov_len; 1487 con->out_kvec_cur++; 1488 con->out_kvec_left--; 1489 } 1490 /* and for a partially-consumed entry */ 1491 if (ret) { 1492 con->out_kvec_cur->iov_len -= ret; 1493 con->out_kvec_cur->iov_base += ret; 1494 } 1495 } 1496 con->out_kvec_left = 0; 1497 con->out_kvec_is_msg = false; 1498 ret = 1; 1499 out: 1500 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1501 con->out_kvec_bytes, con->out_kvec_left, ret); 1502 return ret; /* done! */ 1503 } 1504 1505 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1506 unsigned int page_offset, 1507 unsigned int length) 1508 { 1509 char *kaddr; 1510 1511 kaddr = kmap(page); 1512 BUG_ON(kaddr == NULL); 1513 crc = crc32c(crc, kaddr + page_offset, length); 1514 kunmap(page); 1515 1516 return crc; 1517 } 1518 /* 1519 * Write as much message data payload as we can. If we finish, queue 1520 * up the footer. 1521 * 1 -> done, footer is now queued in out_kvec[]. 1522 * 0 -> socket full, but more to do 1523 * <0 -> error 1524 */ 1525 static int write_partial_message_data(struct ceph_connection *con) 1526 { 1527 struct ceph_msg *msg = con->out_msg; 1528 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1529 bool do_datacrc = !con->msgr->nocrc; 1530 u32 crc; 1531 1532 dout("%s %p msg %p\n", __func__, con, msg); 1533 1534 if (list_empty(&msg->data)) 1535 return -EINVAL; 1536 1537 /* 1538 * Iterate through each page that contains data to be 1539 * written, and send as much as possible for each. 1540 * 1541 * If we are calculating the data crc (the default), we will 1542 * need to map the page. If we have no pages, they have 1543 * been revoked, so use the zero page. 1544 */ 1545 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1546 while (cursor->resid) { 1547 struct page *page; 1548 size_t page_offset; 1549 size_t length; 1550 bool last_piece; 1551 bool need_crc; 1552 int ret; 1553 1554 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 1555 &last_piece); 1556 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1557 length, !last_piece); 1558 if (ret <= 0) { 1559 if (do_datacrc) 1560 msg->footer.data_crc = cpu_to_le32(crc); 1561 1562 return ret; 1563 } 1564 if (do_datacrc && cursor->need_crc) 1565 crc = ceph_crc32c_page(crc, page, page_offset, length); 1566 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret); 1567 } 1568 1569 dout("%s %p msg %p done\n", __func__, con, msg); 1570 1571 /* prepare and queue up footer, too */ 1572 if (do_datacrc) 1573 msg->footer.data_crc = cpu_to_le32(crc); 1574 else 1575 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1576 con_out_kvec_reset(con); 1577 prepare_write_message_footer(con); 1578 1579 return 1; /* must return > 0 to indicate success */ 1580 } 1581 1582 /* 1583 * write some zeros 1584 */ 1585 static int write_partial_skip(struct ceph_connection *con) 1586 { 1587 int ret; 1588 1589 while (con->out_skip > 0) { 1590 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1591 1592 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1593 if (ret <= 0) 1594 goto out; 1595 con->out_skip -= ret; 1596 } 1597 ret = 1; 1598 out: 1599 return ret; 1600 } 1601 1602 /* 1603 * Prepare to read connection handshake, or an ack. 1604 */ 1605 static void prepare_read_banner(struct ceph_connection *con) 1606 { 1607 dout("prepare_read_banner %p\n", con); 1608 con->in_base_pos = 0; 1609 } 1610 1611 static void prepare_read_connect(struct ceph_connection *con) 1612 { 1613 dout("prepare_read_connect %p\n", con); 1614 con->in_base_pos = 0; 1615 } 1616 1617 static void prepare_read_ack(struct ceph_connection *con) 1618 { 1619 dout("prepare_read_ack %p\n", con); 1620 con->in_base_pos = 0; 1621 } 1622 1623 static void prepare_read_seq(struct ceph_connection *con) 1624 { 1625 dout("prepare_read_seq %p\n", con); 1626 con->in_base_pos = 0; 1627 con->in_tag = CEPH_MSGR_TAG_SEQ; 1628 } 1629 1630 static void prepare_read_tag(struct ceph_connection *con) 1631 { 1632 dout("prepare_read_tag %p\n", con); 1633 con->in_base_pos = 0; 1634 con->in_tag = CEPH_MSGR_TAG_READY; 1635 } 1636 1637 static void prepare_read_keepalive_ack(struct ceph_connection *con) 1638 { 1639 dout("prepare_read_keepalive_ack %p\n", con); 1640 con->in_base_pos = 0; 1641 } 1642 1643 /* 1644 * Prepare to read a message. 1645 */ 1646 static int prepare_read_message(struct ceph_connection *con) 1647 { 1648 dout("prepare_read_message %p\n", con); 1649 BUG_ON(con->in_msg != NULL); 1650 con->in_base_pos = 0; 1651 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1652 return 0; 1653 } 1654 1655 1656 static int read_partial(struct ceph_connection *con, 1657 int end, int size, void *object) 1658 { 1659 while (con->in_base_pos < end) { 1660 int left = end - con->in_base_pos; 1661 int have = size - left; 1662 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1663 if (ret <= 0) 1664 return ret; 1665 con->in_base_pos += ret; 1666 } 1667 return 1; 1668 } 1669 1670 1671 /* 1672 * Read all or part of the connect-side handshake on a new connection 1673 */ 1674 static int read_partial_banner(struct ceph_connection *con) 1675 { 1676 int size; 1677 int end; 1678 int ret; 1679 1680 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1681 1682 /* peer's banner */ 1683 size = strlen(CEPH_BANNER); 1684 end = size; 1685 ret = read_partial(con, end, size, con->in_banner); 1686 if (ret <= 0) 1687 goto out; 1688 1689 size = sizeof (con->actual_peer_addr); 1690 end += size; 1691 ret = read_partial(con, end, size, &con->actual_peer_addr); 1692 if (ret <= 0) 1693 goto out; 1694 1695 size = sizeof (con->peer_addr_for_me); 1696 end += size; 1697 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1698 if (ret <= 0) 1699 goto out; 1700 1701 out: 1702 return ret; 1703 } 1704 1705 static int read_partial_connect(struct ceph_connection *con) 1706 { 1707 int size; 1708 int end; 1709 int ret; 1710 1711 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1712 1713 size = sizeof (con->in_reply); 1714 end = size; 1715 ret = read_partial(con, end, size, &con->in_reply); 1716 if (ret <= 0) 1717 goto out; 1718 1719 size = le32_to_cpu(con->in_reply.authorizer_len); 1720 end += size; 1721 ret = read_partial(con, end, size, con->auth_reply_buf); 1722 if (ret <= 0) 1723 goto out; 1724 1725 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1726 con, (int)con->in_reply.tag, 1727 le32_to_cpu(con->in_reply.connect_seq), 1728 le32_to_cpu(con->in_reply.global_seq)); 1729 out: 1730 return ret; 1731 1732 } 1733 1734 /* 1735 * Verify the hello banner looks okay. 1736 */ 1737 static int verify_hello(struct ceph_connection *con) 1738 { 1739 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1740 pr_err("connect to %s got bad banner\n", 1741 ceph_pr_addr(&con->peer_addr.in_addr)); 1742 con->error_msg = "protocol error, bad banner"; 1743 return -1; 1744 } 1745 return 0; 1746 } 1747 1748 static bool addr_is_blank(struct sockaddr_storage *ss) 1749 { 1750 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr; 1751 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr; 1752 1753 switch (ss->ss_family) { 1754 case AF_INET: 1755 return addr->s_addr == htonl(INADDR_ANY); 1756 case AF_INET6: 1757 return ipv6_addr_any(addr6); 1758 default: 1759 return true; 1760 } 1761 } 1762 1763 static int addr_port(struct sockaddr_storage *ss) 1764 { 1765 switch (ss->ss_family) { 1766 case AF_INET: 1767 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1768 case AF_INET6: 1769 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1770 } 1771 return 0; 1772 } 1773 1774 static void addr_set_port(struct sockaddr_storage *ss, int p) 1775 { 1776 switch (ss->ss_family) { 1777 case AF_INET: 1778 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1779 break; 1780 case AF_INET6: 1781 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1782 break; 1783 } 1784 } 1785 1786 /* 1787 * Unlike other *_pton function semantics, zero indicates success. 1788 */ 1789 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1790 char delim, const char **ipend) 1791 { 1792 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1793 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1794 1795 memset(ss, 0, sizeof(*ss)); 1796 1797 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1798 ss->ss_family = AF_INET; 1799 return 0; 1800 } 1801 1802 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1803 ss->ss_family = AF_INET6; 1804 return 0; 1805 } 1806 1807 return -EINVAL; 1808 } 1809 1810 /* 1811 * Extract hostname string and resolve using kernel DNS facility. 1812 */ 1813 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1814 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1815 struct sockaddr_storage *ss, char delim, const char **ipend) 1816 { 1817 const char *end, *delim_p; 1818 char *colon_p, *ip_addr = NULL; 1819 int ip_len, ret; 1820 1821 /* 1822 * The end of the hostname occurs immediately preceding the delimiter or 1823 * the port marker (':') where the delimiter takes precedence. 1824 */ 1825 delim_p = memchr(name, delim, namelen); 1826 colon_p = memchr(name, ':', namelen); 1827 1828 if (delim_p && colon_p) 1829 end = delim_p < colon_p ? delim_p : colon_p; 1830 else if (!delim_p && colon_p) 1831 end = colon_p; 1832 else { 1833 end = delim_p; 1834 if (!end) /* case: hostname:/ */ 1835 end = name + namelen; 1836 } 1837 1838 if (end <= name) 1839 return -EINVAL; 1840 1841 /* do dns_resolve upcall */ 1842 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1843 if (ip_len > 0) 1844 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1845 else 1846 ret = -ESRCH; 1847 1848 kfree(ip_addr); 1849 1850 *ipend = end; 1851 1852 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1853 ret, ret ? "failed" : ceph_pr_addr(ss)); 1854 1855 return ret; 1856 } 1857 #else 1858 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1859 struct sockaddr_storage *ss, char delim, const char **ipend) 1860 { 1861 return -EINVAL; 1862 } 1863 #endif 1864 1865 /* 1866 * Parse a server name (IP or hostname). If a valid IP address is not found 1867 * then try to extract a hostname to resolve using userspace DNS upcall. 1868 */ 1869 static int ceph_parse_server_name(const char *name, size_t namelen, 1870 struct sockaddr_storage *ss, char delim, const char **ipend) 1871 { 1872 int ret; 1873 1874 ret = ceph_pton(name, namelen, ss, delim, ipend); 1875 if (ret) 1876 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1877 1878 return ret; 1879 } 1880 1881 /* 1882 * Parse an ip[:port] list into an addr array. Use the default 1883 * monitor port if a port isn't specified. 1884 */ 1885 int ceph_parse_ips(const char *c, const char *end, 1886 struct ceph_entity_addr *addr, 1887 int max_count, int *count) 1888 { 1889 int i, ret = -EINVAL; 1890 const char *p = c; 1891 1892 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1893 for (i = 0; i < max_count; i++) { 1894 const char *ipend; 1895 struct sockaddr_storage *ss = &addr[i].in_addr; 1896 int port; 1897 char delim = ','; 1898 1899 if (*p == '[') { 1900 delim = ']'; 1901 p++; 1902 } 1903 1904 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1905 if (ret) 1906 goto bad; 1907 ret = -EINVAL; 1908 1909 p = ipend; 1910 1911 if (delim == ']') { 1912 if (*p != ']') { 1913 dout("missing matching ']'\n"); 1914 goto bad; 1915 } 1916 p++; 1917 } 1918 1919 /* port? */ 1920 if (p < end && *p == ':') { 1921 port = 0; 1922 p++; 1923 while (p < end && *p >= '0' && *p <= '9') { 1924 port = (port * 10) + (*p - '0'); 1925 p++; 1926 } 1927 if (port == 0) 1928 port = CEPH_MON_PORT; 1929 else if (port > 65535) 1930 goto bad; 1931 } else { 1932 port = CEPH_MON_PORT; 1933 } 1934 1935 addr_set_port(ss, port); 1936 1937 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1938 1939 if (p == end) 1940 break; 1941 if (*p != ',') 1942 goto bad; 1943 p++; 1944 } 1945 1946 if (p != end) 1947 goto bad; 1948 1949 if (count) 1950 *count = i + 1; 1951 return 0; 1952 1953 bad: 1954 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1955 return ret; 1956 } 1957 EXPORT_SYMBOL(ceph_parse_ips); 1958 1959 static int process_banner(struct ceph_connection *con) 1960 { 1961 dout("process_banner on %p\n", con); 1962 1963 if (verify_hello(con) < 0) 1964 return -1; 1965 1966 ceph_decode_addr(&con->actual_peer_addr); 1967 ceph_decode_addr(&con->peer_addr_for_me); 1968 1969 /* 1970 * Make sure the other end is who we wanted. note that the other 1971 * end may not yet know their ip address, so if it's 0.0.0.0, give 1972 * them the benefit of the doubt. 1973 */ 1974 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1975 sizeof(con->peer_addr)) != 0 && 1976 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1977 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1978 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 1979 ceph_pr_addr(&con->peer_addr.in_addr), 1980 (int)le32_to_cpu(con->peer_addr.nonce), 1981 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1982 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1983 con->error_msg = "wrong peer at address"; 1984 return -1; 1985 } 1986 1987 /* 1988 * did we learn our address? 1989 */ 1990 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1991 int port = addr_port(&con->msgr->inst.addr.in_addr); 1992 1993 memcpy(&con->msgr->inst.addr.in_addr, 1994 &con->peer_addr_for_me.in_addr, 1995 sizeof(con->peer_addr_for_me.in_addr)); 1996 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1997 encode_my_addr(con->msgr); 1998 dout("process_banner learned my addr is %s\n", 1999 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 2000 } 2001 2002 return 0; 2003 } 2004 2005 static int process_connect(struct ceph_connection *con) 2006 { 2007 u64 sup_feat = con->msgr->supported_features; 2008 u64 req_feat = con->msgr->required_features; 2009 u64 server_feat = ceph_sanitize_features( 2010 le64_to_cpu(con->in_reply.features)); 2011 int ret; 2012 2013 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 2014 2015 switch (con->in_reply.tag) { 2016 case CEPH_MSGR_TAG_FEATURES: 2017 pr_err("%s%lld %s feature set mismatch," 2018 " my %llx < server's %llx, missing %llx\n", 2019 ENTITY_NAME(con->peer_name), 2020 ceph_pr_addr(&con->peer_addr.in_addr), 2021 sup_feat, server_feat, server_feat & ~sup_feat); 2022 con->error_msg = "missing required protocol features"; 2023 reset_connection(con); 2024 return -1; 2025 2026 case CEPH_MSGR_TAG_BADPROTOVER: 2027 pr_err("%s%lld %s protocol version mismatch," 2028 " my %d != server's %d\n", 2029 ENTITY_NAME(con->peer_name), 2030 ceph_pr_addr(&con->peer_addr.in_addr), 2031 le32_to_cpu(con->out_connect.protocol_version), 2032 le32_to_cpu(con->in_reply.protocol_version)); 2033 con->error_msg = "protocol version mismatch"; 2034 reset_connection(con); 2035 return -1; 2036 2037 case CEPH_MSGR_TAG_BADAUTHORIZER: 2038 con->auth_retry++; 2039 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2040 con->auth_retry); 2041 if (con->auth_retry == 2) { 2042 con->error_msg = "connect authorization failure"; 2043 return -1; 2044 } 2045 con_out_kvec_reset(con); 2046 ret = prepare_write_connect(con); 2047 if (ret < 0) 2048 return ret; 2049 prepare_read_connect(con); 2050 break; 2051 2052 case CEPH_MSGR_TAG_RESETSESSION: 2053 /* 2054 * If we connected with a large connect_seq but the peer 2055 * has no record of a session with us (no connection, or 2056 * connect_seq == 0), they will send RESETSESION to indicate 2057 * that they must have reset their session, and may have 2058 * dropped messages. 2059 */ 2060 dout("process_connect got RESET peer seq %u\n", 2061 le32_to_cpu(con->in_reply.connect_seq)); 2062 pr_err("%s%lld %s connection reset\n", 2063 ENTITY_NAME(con->peer_name), 2064 ceph_pr_addr(&con->peer_addr.in_addr)); 2065 reset_connection(con); 2066 con_out_kvec_reset(con); 2067 ret = prepare_write_connect(con); 2068 if (ret < 0) 2069 return ret; 2070 prepare_read_connect(con); 2071 2072 /* Tell ceph about it. */ 2073 mutex_unlock(&con->mutex); 2074 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2075 if (con->ops->peer_reset) 2076 con->ops->peer_reset(con); 2077 mutex_lock(&con->mutex); 2078 if (con->state != CON_STATE_NEGOTIATING) 2079 return -EAGAIN; 2080 break; 2081 2082 case CEPH_MSGR_TAG_RETRY_SESSION: 2083 /* 2084 * If we sent a smaller connect_seq than the peer has, try 2085 * again with a larger value. 2086 */ 2087 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2088 le32_to_cpu(con->out_connect.connect_seq), 2089 le32_to_cpu(con->in_reply.connect_seq)); 2090 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2091 con_out_kvec_reset(con); 2092 ret = prepare_write_connect(con); 2093 if (ret < 0) 2094 return ret; 2095 prepare_read_connect(con); 2096 break; 2097 2098 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2099 /* 2100 * If we sent a smaller global_seq than the peer has, try 2101 * again with a larger value. 2102 */ 2103 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2104 con->peer_global_seq, 2105 le32_to_cpu(con->in_reply.global_seq)); 2106 get_global_seq(con->msgr, 2107 le32_to_cpu(con->in_reply.global_seq)); 2108 con_out_kvec_reset(con); 2109 ret = prepare_write_connect(con); 2110 if (ret < 0) 2111 return ret; 2112 prepare_read_connect(con); 2113 break; 2114 2115 case CEPH_MSGR_TAG_SEQ: 2116 case CEPH_MSGR_TAG_READY: 2117 if (req_feat & ~server_feat) { 2118 pr_err("%s%lld %s protocol feature mismatch," 2119 " my required %llx > server's %llx, need %llx\n", 2120 ENTITY_NAME(con->peer_name), 2121 ceph_pr_addr(&con->peer_addr.in_addr), 2122 req_feat, server_feat, req_feat & ~server_feat); 2123 con->error_msg = "missing required protocol features"; 2124 reset_connection(con); 2125 return -1; 2126 } 2127 2128 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2129 con->state = CON_STATE_OPEN; 2130 con->auth_retry = 0; /* we authenticated; clear flag */ 2131 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2132 con->connect_seq++; 2133 con->peer_features = server_feat; 2134 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2135 con->peer_global_seq, 2136 le32_to_cpu(con->in_reply.connect_seq), 2137 con->connect_seq); 2138 WARN_ON(con->connect_seq != 2139 le32_to_cpu(con->in_reply.connect_seq)); 2140 2141 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2142 con_flag_set(con, CON_FLAG_LOSSYTX); 2143 2144 con->delay = 0; /* reset backoff memory */ 2145 2146 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2147 prepare_write_seq(con); 2148 prepare_read_seq(con); 2149 } else { 2150 prepare_read_tag(con); 2151 } 2152 break; 2153 2154 case CEPH_MSGR_TAG_WAIT: 2155 /* 2156 * If there is a connection race (we are opening 2157 * connections to each other), one of us may just have 2158 * to WAIT. This shouldn't happen if we are the 2159 * client. 2160 */ 2161 con->error_msg = "protocol error, got WAIT as client"; 2162 return -1; 2163 2164 default: 2165 con->error_msg = "protocol error, garbage tag during connect"; 2166 return -1; 2167 } 2168 return 0; 2169 } 2170 2171 2172 /* 2173 * read (part of) an ack 2174 */ 2175 static int read_partial_ack(struct ceph_connection *con) 2176 { 2177 int size = sizeof (con->in_temp_ack); 2178 int end = size; 2179 2180 return read_partial(con, end, size, &con->in_temp_ack); 2181 } 2182 2183 /* 2184 * We can finally discard anything that's been acked. 2185 */ 2186 static void process_ack(struct ceph_connection *con) 2187 { 2188 struct ceph_msg *m; 2189 u64 ack = le64_to_cpu(con->in_temp_ack); 2190 u64 seq; 2191 2192 while (!list_empty(&con->out_sent)) { 2193 m = list_first_entry(&con->out_sent, struct ceph_msg, 2194 list_head); 2195 seq = le64_to_cpu(m->hdr.seq); 2196 if (seq > ack) 2197 break; 2198 dout("got ack for seq %llu type %d at %p\n", seq, 2199 le16_to_cpu(m->hdr.type), m); 2200 m->ack_stamp = jiffies; 2201 ceph_msg_remove(m); 2202 } 2203 prepare_read_tag(con); 2204 } 2205 2206 2207 static int read_partial_message_section(struct ceph_connection *con, 2208 struct kvec *section, 2209 unsigned int sec_len, u32 *crc) 2210 { 2211 int ret, left; 2212 2213 BUG_ON(!section); 2214 2215 while (section->iov_len < sec_len) { 2216 BUG_ON(section->iov_base == NULL); 2217 left = sec_len - section->iov_len; 2218 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2219 section->iov_len, left); 2220 if (ret <= 0) 2221 return ret; 2222 section->iov_len += ret; 2223 } 2224 if (section->iov_len == sec_len) 2225 *crc = crc32c(0, section->iov_base, section->iov_len); 2226 2227 return 1; 2228 } 2229 2230 static int read_partial_msg_data(struct ceph_connection *con) 2231 { 2232 struct ceph_msg *msg = con->in_msg; 2233 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2234 const bool do_datacrc = !con->msgr->nocrc; 2235 struct page *page; 2236 size_t page_offset; 2237 size_t length; 2238 u32 crc = 0; 2239 int ret; 2240 2241 BUG_ON(!msg); 2242 if (list_empty(&msg->data)) 2243 return -EIO; 2244 2245 if (do_datacrc) 2246 crc = con->in_data_crc; 2247 while (cursor->resid) { 2248 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 2249 NULL); 2250 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2251 if (ret <= 0) { 2252 if (do_datacrc) 2253 con->in_data_crc = crc; 2254 2255 return ret; 2256 } 2257 2258 if (do_datacrc) 2259 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2260 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret); 2261 } 2262 if (do_datacrc) 2263 con->in_data_crc = crc; 2264 2265 return 1; /* must return > 0 to indicate success */ 2266 } 2267 2268 /* 2269 * read (part of) a message. 2270 */ 2271 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2272 2273 static int read_partial_message(struct ceph_connection *con) 2274 { 2275 struct ceph_msg *m = con->in_msg; 2276 int size; 2277 int end; 2278 int ret; 2279 unsigned int front_len, middle_len, data_len; 2280 bool do_datacrc = !con->msgr->nocrc; 2281 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2282 u64 seq; 2283 u32 crc; 2284 2285 dout("read_partial_message con %p msg %p\n", con, m); 2286 2287 /* header */ 2288 size = sizeof (con->in_hdr); 2289 end = size; 2290 ret = read_partial(con, end, size, &con->in_hdr); 2291 if (ret <= 0) 2292 return ret; 2293 2294 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2295 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2296 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2297 crc, con->in_hdr.crc); 2298 return -EBADMSG; 2299 } 2300 2301 front_len = le32_to_cpu(con->in_hdr.front_len); 2302 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2303 return -EIO; 2304 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2305 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2306 return -EIO; 2307 data_len = le32_to_cpu(con->in_hdr.data_len); 2308 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2309 return -EIO; 2310 2311 /* verify seq# */ 2312 seq = le64_to_cpu(con->in_hdr.seq); 2313 if ((s64)seq - (s64)con->in_seq < 1) { 2314 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2315 ENTITY_NAME(con->peer_name), 2316 ceph_pr_addr(&con->peer_addr.in_addr), 2317 seq, con->in_seq + 1); 2318 con->in_base_pos = -front_len - middle_len - data_len - 2319 sizeof(m->footer); 2320 con->in_tag = CEPH_MSGR_TAG_READY; 2321 return 0; 2322 } else if ((s64)seq - (s64)con->in_seq > 1) { 2323 pr_err("read_partial_message bad seq %lld expected %lld\n", 2324 seq, con->in_seq + 1); 2325 con->error_msg = "bad message sequence # for incoming message"; 2326 return -EBADE; 2327 } 2328 2329 /* allocate message? */ 2330 if (!con->in_msg) { 2331 int skip = 0; 2332 2333 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2334 front_len, data_len); 2335 ret = ceph_con_in_msg_alloc(con, &skip); 2336 if (ret < 0) 2337 return ret; 2338 2339 BUG_ON(!con->in_msg ^ skip); 2340 if (skip) { 2341 /* skip this message */ 2342 dout("alloc_msg said skip message\n"); 2343 con->in_base_pos = -front_len - middle_len - data_len - 2344 sizeof(m->footer); 2345 con->in_tag = CEPH_MSGR_TAG_READY; 2346 con->in_seq++; 2347 return 0; 2348 } 2349 2350 BUG_ON(!con->in_msg); 2351 BUG_ON(con->in_msg->con != con); 2352 m = con->in_msg; 2353 m->front.iov_len = 0; /* haven't read it yet */ 2354 if (m->middle) 2355 m->middle->vec.iov_len = 0; 2356 2357 /* prepare for data payload, if any */ 2358 2359 if (data_len) 2360 prepare_message_data(con->in_msg, data_len); 2361 } 2362 2363 /* front */ 2364 ret = read_partial_message_section(con, &m->front, front_len, 2365 &con->in_front_crc); 2366 if (ret <= 0) 2367 return ret; 2368 2369 /* middle */ 2370 if (m->middle) { 2371 ret = read_partial_message_section(con, &m->middle->vec, 2372 middle_len, 2373 &con->in_middle_crc); 2374 if (ret <= 0) 2375 return ret; 2376 } 2377 2378 /* (page) data */ 2379 if (data_len) { 2380 ret = read_partial_msg_data(con); 2381 if (ret <= 0) 2382 return ret; 2383 } 2384 2385 /* footer */ 2386 if (need_sign) 2387 size = sizeof(m->footer); 2388 else 2389 size = sizeof(m->old_footer); 2390 2391 end += size; 2392 ret = read_partial(con, end, size, &m->footer); 2393 if (ret <= 0) 2394 return ret; 2395 2396 if (!need_sign) { 2397 m->footer.flags = m->old_footer.flags; 2398 m->footer.sig = 0; 2399 } 2400 2401 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2402 m, front_len, m->footer.front_crc, middle_len, 2403 m->footer.middle_crc, data_len, m->footer.data_crc); 2404 2405 /* crc ok? */ 2406 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2407 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2408 m, con->in_front_crc, m->footer.front_crc); 2409 return -EBADMSG; 2410 } 2411 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2412 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2413 m, con->in_middle_crc, m->footer.middle_crc); 2414 return -EBADMSG; 2415 } 2416 if (do_datacrc && 2417 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2418 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2419 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2420 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2421 return -EBADMSG; 2422 } 2423 2424 if (need_sign && con->ops->check_message_signature && 2425 con->ops->check_message_signature(con, m)) { 2426 pr_err("read_partial_message %p signature check failed\n", m); 2427 return -EBADMSG; 2428 } 2429 2430 return 1; /* done! */ 2431 } 2432 2433 /* 2434 * Process message. This happens in the worker thread. The callback should 2435 * be careful not to do anything that waits on other incoming messages or it 2436 * may deadlock. 2437 */ 2438 static void process_message(struct ceph_connection *con) 2439 { 2440 struct ceph_msg *msg; 2441 2442 BUG_ON(con->in_msg->con != con); 2443 con->in_msg->con = NULL; 2444 msg = con->in_msg; 2445 con->in_msg = NULL; 2446 con->ops->put(con); 2447 2448 /* if first message, set peer_name */ 2449 if (con->peer_name.type == 0) 2450 con->peer_name = msg->hdr.src; 2451 2452 con->in_seq++; 2453 mutex_unlock(&con->mutex); 2454 2455 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2456 msg, le64_to_cpu(msg->hdr.seq), 2457 ENTITY_NAME(msg->hdr.src), 2458 le16_to_cpu(msg->hdr.type), 2459 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2460 le32_to_cpu(msg->hdr.front_len), 2461 le32_to_cpu(msg->hdr.data_len), 2462 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2463 con->ops->dispatch(con, msg); 2464 2465 mutex_lock(&con->mutex); 2466 } 2467 2468 static int read_keepalive_ack(struct ceph_connection *con) 2469 { 2470 struct ceph_timespec ceph_ts; 2471 size_t size = sizeof(ceph_ts); 2472 int ret = read_partial(con, size, size, &ceph_ts); 2473 if (ret <= 0) 2474 return ret; 2475 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts); 2476 prepare_read_tag(con); 2477 return 1; 2478 } 2479 2480 /* 2481 * Write something to the socket. Called in a worker thread when the 2482 * socket appears to be writeable and we have something ready to send. 2483 */ 2484 static int try_write(struct ceph_connection *con) 2485 { 2486 int ret = 1; 2487 2488 dout("try_write start %p state %lu\n", con, con->state); 2489 2490 more: 2491 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2492 2493 /* open the socket first? */ 2494 if (con->state == CON_STATE_PREOPEN) { 2495 BUG_ON(con->sock); 2496 con->state = CON_STATE_CONNECTING; 2497 2498 con_out_kvec_reset(con); 2499 prepare_write_banner(con); 2500 prepare_read_banner(con); 2501 2502 BUG_ON(con->in_msg); 2503 con->in_tag = CEPH_MSGR_TAG_READY; 2504 dout("try_write initiating connect on %p new state %lu\n", 2505 con, con->state); 2506 ret = ceph_tcp_connect(con); 2507 if (ret < 0) { 2508 con->error_msg = "connect error"; 2509 goto out; 2510 } 2511 } 2512 2513 more_kvec: 2514 /* kvec data queued? */ 2515 if (con->out_skip) { 2516 ret = write_partial_skip(con); 2517 if (ret <= 0) 2518 goto out; 2519 } 2520 if (con->out_kvec_left) { 2521 ret = write_partial_kvec(con); 2522 if (ret <= 0) 2523 goto out; 2524 } 2525 2526 /* msg pages? */ 2527 if (con->out_msg) { 2528 if (con->out_msg_done) { 2529 ceph_msg_put(con->out_msg); 2530 con->out_msg = NULL; /* we're done with this one */ 2531 goto do_next; 2532 } 2533 2534 ret = write_partial_message_data(con); 2535 if (ret == 1) 2536 goto more_kvec; /* we need to send the footer, too! */ 2537 if (ret == 0) 2538 goto out; 2539 if (ret < 0) { 2540 dout("try_write write_partial_message_data err %d\n", 2541 ret); 2542 goto out; 2543 } 2544 } 2545 2546 do_next: 2547 if (con->state == CON_STATE_OPEN) { 2548 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2549 prepare_write_keepalive(con); 2550 goto more; 2551 } 2552 /* is anything else pending? */ 2553 if (!list_empty(&con->out_queue)) { 2554 prepare_write_message(con); 2555 goto more; 2556 } 2557 if (con->in_seq > con->in_seq_acked) { 2558 prepare_write_ack(con); 2559 goto more; 2560 } 2561 } 2562 2563 /* Nothing to do! */ 2564 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2565 dout("try_write nothing else to write.\n"); 2566 ret = 0; 2567 out: 2568 dout("try_write done on %p ret %d\n", con, ret); 2569 return ret; 2570 } 2571 2572 2573 2574 /* 2575 * Read what we can from the socket. 2576 */ 2577 static int try_read(struct ceph_connection *con) 2578 { 2579 int ret = -1; 2580 2581 more: 2582 dout("try_read start on %p state %lu\n", con, con->state); 2583 if (con->state != CON_STATE_CONNECTING && 2584 con->state != CON_STATE_NEGOTIATING && 2585 con->state != CON_STATE_OPEN) 2586 return 0; 2587 2588 BUG_ON(!con->sock); 2589 2590 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2591 con->in_base_pos); 2592 2593 if (con->state == CON_STATE_CONNECTING) { 2594 dout("try_read connecting\n"); 2595 ret = read_partial_banner(con); 2596 if (ret <= 0) 2597 goto out; 2598 ret = process_banner(con); 2599 if (ret < 0) 2600 goto out; 2601 2602 con->state = CON_STATE_NEGOTIATING; 2603 2604 /* 2605 * Received banner is good, exchange connection info. 2606 * Do not reset out_kvec, as sending our banner raced 2607 * with receiving peer banner after connect completed. 2608 */ 2609 ret = prepare_write_connect(con); 2610 if (ret < 0) 2611 goto out; 2612 prepare_read_connect(con); 2613 2614 /* Send connection info before awaiting response */ 2615 goto out; 2616 } 2617 2618 if (con->state == CON_STATE_NEGOTIATING) { 2619 dout("try_read negotiating\n"); 2620 ret = read_partial_connect(con); 2621 if (ret <= 0) 2622 goto out; 2623 ret = process_connect(con); 2624 if (ret < 0) 2625 goto out; 2626 goto more; 2627 } 2628 2629 WARN_ON(con->state != CON_STATE_OPEN); 2630 2631 if (con->in_base_pos < 0) { 2632 /* 2633 * skipping + discarding content. 2634 * 2635 * FIXME: there must be a better way to do this! 2636 */ 2637 static char buf[SKIP_BUF_SIZE]; 2638 int skip = min((int) sizeof (buf), -con->in_base_pos); 2639 2640 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2641 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2642 if (ret <= 0) 2643 goto out; 2644 con->in_base_pos += ret; 2645 if (con->in_base_pos) 2646 goto more; 2647 } 2648 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2649 /* 2650 * what's next? 2651 */ 2652 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2653 if (ret <= 0) 2654 goto out; 2655 dout("try_read got tag %d\n", (int)con->in_tag); 2656 switch (con->in_tag) { 2657 case CEPH_MSGR_TAG_MSG: 2658 prepare_read_message(con); 2659 break; 2660 case CEPH_MSGR_TAG_ACK: 2661 prepare_read_ack(con); 2662 break; 2663 case CEPH_MSGR_TAG_KEEPALIVE2_ACK: 2664 prepare_read_keepalive_ack(con); 2665 break; 2666 case CEPH_MSGR_TAG_CLOSE: 2667 con_close_socket(con); 2668 con->state = CON_STATE_CLOSED; 2669 goto out; 2670 default: 2671 goto bad_tag; 2672 } 2673 } 2674 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2675 ret = read_partial_message(con); 2676 if (ret <= 0) { 2677 switch (ret) { 2678 case -EBADMSG: 2679 con->error_msg = "bad crc"; 2680 /* fall through */ 2681 case -EBADE: 2682 ret = -EIO; 2683 break; 2684 case -EIO: 2685 con->error_msg = "io error"; 2686 break; 2687 } 2688 goto out; 2689 } 2690 if (con->in_tag == CEPH_MSGR_TAG_READY) 2691 goto more; 2692 process_message(con); 2693 if (con->state == CON_STATE_OPEN) 2694 prepare_read_tag(con); 2695 goto more; 2696 } 2697 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2698 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2699 /* 2700 * the final handshake seq exchange is semantically 2701 * equivalent to an ACK 2702 */ 2703 ret = read_partial_ack(con); 2704 if (ret <= 0) 2705 goto out; 2706 process_ack(con); 2707 goto more; 2708 } 2709 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) { 2710 ret = read_keepalive_ack(con); 2711 if (ret <= 0) 2712 goto out; 2713 goto more; 2714 } 2715 2716 out: 2717 dout("try_read done on %p ret %d\n", con, ret); 2718 return ret; 2719 2720 bad_tag: 2721 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2722 con->error_msg = "protocol error, garbage tag"; 2723 ret = -1; 2724 goto out; 2725 } 2726 2727 2728 /* 2729 * Atomically queue work on a connection after the specified delay. 2730 * Bump @con reference to avoid races with connection teardown. 2731 * Returns 0 if work was queued, or an error code otherwise. 2732 */ 2733 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2734 { 2735 if (!con->ops->get(con)) { 2736 dout("%s %p ref count 0\n", __func__, con); 2737 return -ENOENT; 2738 } 2739 2740 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2741 dout("%s %p - already queued\n", __func__, con); 2742 con->ops->put(con); 2743 return -EBUSY; 2744 } 2745 2746 dout("%s %p %lu\n", __func__, con, delay); 2747 return 0; 2748 } 2749 2750 static void queue_con(struct ceph_connection *con) 2751 { 2752 (void) queue_con_delay(con, 0); 2753 } 2754 2755 static void cancel_con(struct ceph_connection *con) 2756 { 2757 if (cancel_delayed_work(&con->work)) { 2758 dout("%s %p\n", __func__, con); 2759 con->ops->put(con); 2760 } 2761 } 2762 2763 static bool con_sock_closed(struct ceph_connection *con) 2764 { 2765 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2766 return false; 2767 2768 #define CASE(x) \ 2769 case CON_STATE_ ## x: \ 2770 con->error_msg = "socket closed (con state " #x ")"; \ 2771 break; 2772 2773 switch (con->state) { 2774 CASE(CLOSED); 2775 CASE(PREOPEN); 2776 CASE(CONNECTING); 2777 CASE(NEGOTIATING); 2778 CASE(OPEN); 2779 CASE(STANDBY); 2780 default: 2781 pr_warn("%s con %p unrecognized state %lu\n", 2782 __func__, con, con->state); 2783 con->error_msg = "unrecognized con state"; 2784 BUG(); 2785 break; 2786 } 2787 #undef CASE 2788 2789 return true; 2790 } 2791 2792 static bool con_backoff(struct ceph_connection *con) 2793 { 2794 int ret; 2795 2796 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2797 return false; 2798 2799 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2800 if (ret) { 2801 dout("%s: con %p FAILED to back off %lu\n", __func__, 2802 con, con->delay); 2803 BUG_ON(ret == -ENOENT); 2804 con_flag_set(con, CON_FLAG_BACKOFF); 2805 } 2806 2807 return true; 2808 } 2809 2810 /* Finish fault handling; con->mutex must *not* be held here */ 2811 2812 static void con_fault_finish(struct ceph_connection *con) 2813 { 2814 /* 2815 * in case we faulted due to authentication, invalidate our 2816 * current tickets so that we can get new ones. 2817 */ 2818 if (con->auth_retry && con->ops->invalidate_authorizer) { 2819 dout("calling invalidate_authorizer()\n"); 2820 con->ops->invalidate_authorizer(con); 2821 } 2822 2823 if (con->ops->fault) 2824 con->ops->fault(con); 2825 } 2826 2827 /* 2828 * Do some work on a connection. Drop a connection ref when we're done. 2829 */ 2830 static void ceph_con_workfn(struct work_struct *work) 2831 { 2832 struct ceph_connection *con = container_of(work, struct ceph_connection, 2833 work.work); 2834 bool fault; 2835 2836 mutex_lock(&con->mutex); 2837 while (true) { 2838 int ret; 2839 2840 if ((fault = con_sock_closed(con))) { 2841 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2842 break; 2843 } 2844 if (con_backoff(con)) { 2845 dout("%s: con %p BACKOFF\n", __func__, con); 2846 break; 2847 } 2848 if (con->state == CON_STATE_STANDBY) { 2849 dout("%s: con %p STANDBY\n", __func__, con); 2850 break; 2851 } 2852 if (con->state == CON_STATE_CLOSED) { 2853 dout("%s: con %p CLOSED\n", __func__, con); 2854 BUG_ON(con->sock); 2855 break; 2856 } 2857 if (con->state == CON_STATE_PREOPEN) { 2858 dout("%s: con %p PREOPEN\n", __func__, con); 2859 BUG_ON(con->sock); 2860 } 2861 2862 ret = try_read(con); 2863 if (ret < 0) { 2864 if (ret == -EAGAIN) 2865 continue; 2866 if (!con->error_msg) 2867 con->error_msg = "socket error on read"; 2868 fault = true; 2869 break; 2870 } 2871 2872 ret = try_write(con); 2873 if (ret < 0) { 2874 if (ret == -EAGAIN) 2875 continue; 2876 if (!con->error_msg) 2877 con->error_msg = "socket error on write"; 2878 fault = true; 2879 } 2880 2881 break; /* If we make it to here, we're done */ 2882 } 2883 if (fault) 2884 con_fault(con); 2885 mutex_unlock(&con->mutex); 2886 2887 if (fault) 2888 con_fault_finish(con); 2889 2890 con->ops->put(con); 2891 } 2892 2893 /* 2894 * Generic error/fault handler. A retry mechanism is used with 2895 * exponential backoff 2896 */ 2897 static void con_fault(struct ceph_connection *con) 2898 { 2899 dout("fault %p state %lu to peer %s\n", 2900 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2901 2902 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2903 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2904 con->error_msg = NULL; 2905 2906 WARN_ON(con->state != CON_STATE_CONNECTING && 2907 con->state != CON_STATE_NEGOTIATING && 2908 con->state != CON_STATE_OPEN); 2909 2910 con_close_socket(con); 2911 2912 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2913 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2914 con->state = CON_STATE_CLOSED; 2915 return; 2916 } 2917 2918 if (con->in_msg) { 2919 BUG_ON(con->in_msg->con != con); 2920 con->in_msg->con = NULL; 2921 ceph_msg_put(con->in_msg); 2922 con->in_msg = NULL; 2923 con->ops->put(con); 2924 } 2925 2926 /* Requeue anything that hasn't been acked */ 2927 list_splice_init(&con->out_sent, &con->out_queue); 2928 2929 /* If there are no messages queued or keepalive pending, place 2930 * the connection in a STANDBY state */ 2931 if (list_empty(&con->out_queue) && 2932 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2933 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2934 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2935 con->state = CON_STATE_STANDBY; 2936 } else { 2937 /* retry after a delay. */ 2938 con->state = CON_STATE_PREOPEN; 2939 if (con->delay == 0) 2940 con->delay = BASE_DELAY_INTERVAL; 2941 else if (con->delay < MAX_DELAY_INTERVAL) 2942 con->delay *= 2; 2943 con_flag_set(con, CON_FLAG_BACKOFF); 2944 queue_con(con); 2945 } 2946 } 2947 2948 2949 2950 /* 2951 * initialize a new messenger instance 2952 */ 2953 void ceph_messenger_init(struct ceph_messenger *msgr, 2954 struct ceph_entity_addr *myaddr, 2955 u64 supported_features, 2956 u64 required_features, 2957 bool nocrc, 2958 bool tcp_nodelay) 2959 { 2960 msgr->supported_features = supported_features; 2961 msgr->required_features = required_features; 2962 2963 spin_lock_init(&msgr->global_seq_lock); 2964 2965 if (myaddr) 2966 msgr->inst.addr = *myaddr; 2967 2968 /* select a random nonce */ 2969 msgr->inst.addr.type = 0; 2970 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2971 encode_my_addr(msgr); 2972 msgr->nocrc = nocrc; 2973 msgr->tcp_nodelay = tcp_nodelay; 2974 2975 atomic_set(&msgr->stopping, 0); 2976 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 2977 2978 dout("%s %p\n", __func__, msgr); 2979 } 2980 EXPORT_SYMBOL(ceph_messenger_init); 2981 2982 void ceph_messenger_fini(struct ceph_messenger *msgr) 2983 { 2984 put_net(read_pnet(&msgr->net)); 2985 } 2986 EXPORT_SYMBOL(ceph_messenger_fini); 2987 2988 static void clear_standby(struct ceph_connection *con) 2989 { 2990 /* come back from STANDBY? */ 2991 if (con->state == CON_STATE_STANDBY) { 2992 dout("clear_standby %p and ++connect_seq\n", con); 2993 con->state = CON_STATE_PREOPEN; 2994 con->connect_seq++; 2995 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 2996 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 2997 } 2998 } 2999 3000 /* 3001 * Queue up an outgoing message on the given connection. 3002 */ 3003 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 3004 { 3005 /* set src+dst */ 3006 msg->hdr.src = con->msgr->inst.name; 3007 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 3008 msg->needs_out_seq = true; 3009 3010 mutex_lock(&con->mutex); 3011 3012 if (con->state == CON_STATE_CLOSED) { 3013 dout("con_send %p closed, dropping %p\n", con, msg); 3014 ceph_msg_put(msg); 3015 mutex_unlock(&con->mutex); 3016 return; 3017 } 3018 3019 BUG_ON(msg->con != NULL); 3020 msg->con = con->ops->get(con); 3021 BUG_ON(msg->con == NULL); 3022 3023 BUG_ON(!list_empty(&msg->list_head)); 3024 list_add_tail(&msg->list_head, &con->out_queue); 3025 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 3026 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 3027 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 3028 le32_to_cpu(msg->hdr.front_len), 3029 le32_to_cpu(msg->hdr.middle_len), 3030 le32_to_cpu(msg->hdr.data_len)); 3031 3032 clear_standby(con); 3033 mutex_unlock(&con->mutex); 3034 3035 /* if there wasn't anything waiting to send before, queue 3036 * new work */ 3037 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3038 queue_con(con); 3039 } 3040 EXPORT_SYMBOL(ceph_con_send); 3041 3042 /* 3043 * Revoke a message that was previously queued for send 3044 */ 3045 void ceph_msg_revoke(struct ceph_msg *msg) 3046 { 3047 struct ceph_connection *con = msg->con; 3048 3049 if (!con) 3050 return; /* Message not in our possession */ 3051 3052 mutex_lock(&con->mutex); 3053 if (!list_empty(&msg->list_head)) { 3054 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3055 list_del_init(&msg->list_head); 3056 BUG_ON(msg->con == NULL); 3057 msg->con->ops->put(msg->con); 3058 msg->con = NULL; 3059 msg->hdr.seq = 0; 3060 3061 ceph_msg_put(msg); 3062 } 3063 if (con->out_msg == msg) { 3064 dout("%s %p msg %p - was sending\n", __func__, con, msg); 3065 con->out_msg = NULL; 3066 if (con->out_kvec_is_msg) { 3067 con->out_skip = con->out_kvec_bytes; 3068 con->out_kvec_is_msg = false; 3069 } 3070 msg->hdr.seq = 0; 3071 3072 ceph_msg_put(msg); 3073 } 3074 mutex_unlock(&con->mutex); 3075 } 3076 3077 /* 3078 * Revoke a message that we may be reading data into 3079 */ 3080 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3081 { 3082 struct ceph_connection *con; 3083 3084 BUG_ON(msg == NULL); 3085 if (!msg->con) { 3086 dout("%s msg %p null con\n", __func__, msg); 3087 3088 return; /* Message not in our possession */ 3089 } 3090 3091 con = msg->con; 3092 mutex_lock(&con->mutex); 3093 if (con->in_msg == msg) { 3094 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3095 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3096 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3097 3098 /* skip rest of message */ 3099 dout("%s %p msg %p revoked\n", __func__, con, msg); 3100 con->in_base_pos = con->in_base_pos - 3101 sizeof(struct ceph_msg_header) - 3102 front_len - 3103 middle_len - 3104 data_len - 3105 sizeof(struct ceph_msg_footer); 3106 ceph_msg_put(con->in_msg); 3107 con->in_msg = NULL; 3108 con->in_tag = CEPH_MSGR_TAG_READY; 3109 con->in_seq++; 3110 } else { 3111 dout("%s %p in_msg %p msg %p no-op\n", 3112 __func__, con, con->in_msg, msg); 3113 } 3114 mutex_unlock(&con->mutex); 3115 } 3116 3117 /* 3118 * Queue a keepalive byte to ensure the tcp connection is alive. 3119 */ 3120 void ceph_con_keepalive(struct ceph_connection *con) 3121 { 3122 dout("con_keepalive %p\n", con); 3123 mutex_lock(&con->mutex); 3124 clear_standby(con); 3125 mutex_unlock(&con->mutex); 3126 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3127 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3128 queue_con(con); 3129 } 3130 EXPORT_SYMBOL(ceph_con_keepalive); 3131 3132 bool ceph_con_keepalive_expired(struct ceph_connection *con, 3133 unsigned long interval) 3134 { 3135 if (interval > 0 && 3136 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 3137 struct timespec now = CURRENT_TIME; 3138 struct timespec ts; 3139 jiffies_to_timespec(interval, &ts); 3140 ts = timespec_add(con->last_keepalive_ack, ts); 3141 return timespec_compare(&now, &ts) >= 0; 3142 } 3143 return false; 3144 } 3145 3146 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3147 { 3148 struct ceph_msg_data *data; 3149 3150 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3151 return NULL; 3152 3153 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3154 if (data) 3155 data->type = type; 3156 INIT_LIST_HEAD(&data->links); 3157 3158 return data; 3159 } 3160 3161 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3162 { 3163 if (!data) 3164 return; 3165 3166 WARN_ON(!list_empty(&data->links)); 3167 if (data->type == CEPH_MSG_DATA_PAGELIST) 3168 ceph_pagelist_release(data->pagelist); 3169 kmem_cache_free(ceph_msg_data_cache, data); 3170 } 3171 3172 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3173 size_t length, size_t alignment) 3174 { 3175 struct ceph_msg_data *data; 3176 3177 BUG_ON(!pages); 3178 BUG_ON(!length); 3179 3180 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3181 BUG_ON(!data); 3182 data->pages = pages; 3183 data->length = length; 3184 data->alignment = alignment & ~PAGE_MASK; 3185 3186 list_add_tail(&data->links, &msg->data); 3187 msg->data_length += length; 3188 } 3189 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3190 3191 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3192 struct ceph_pagelist *pagelist) 3193 { 3194 struct ceph_msg_data *data; 3195 3196 BUG_ON(!pagelist); 3197 BUG_ON(!pagelist->length); 3198 3199 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3200 BUG_ON(!data); 3201 data->pagelist = pagelist; 3202 3203 list_add_tail(&data->links, &msg->data); 3204 msg->data_length += pagelist->length; 3205 } 3206 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3207 3208 #ifdef CONFIG_BLOCK 3209 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3210 size_t length) 3211 { 3212 struct ceph_msg_data *data; 3213 3214 BUG_ON(!bio); 3215 3216 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3217 BUG_ON(!data); 3218 data->bio = bio; 3219 data->bio_length = length; 3220 3221 list_add_tail(&data->links, &msg->data); 3222 msg->data_length += length; 3223 } 3224 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3225 #endif /* CONFIG_BLOCK */ 3226 3227 /* 3228 * construct a new message with given type, size 3229 * the new msg has a ref count of 1. 3230 */ 3231 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3232 bool can_fail) 3233 { 3234 struct ceph_msg *m; 3235 3236 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3237 if (m == NULL) 3238 goto out; 3239 3240 m->hdr.type = cpu_to_le16(type); 3241 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3242 m->hdr.front_len = cpu_to_le32(front_len); 3243 3244 INIT_LIST_HEAD(&m->list_head); 3245 kref_init(&m->kref); 3246 INIT_LIST_HEAD(&m->data); 3247 3248 /* front */ 3249 if (front_len) { 3250 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3251 if (m->front.iov_base == NULL) { 3252 dout("ceph_msg_new can't allocate %d bytes\n", 3253 front_len); 3254 goto out2; 3255 } 3256 } else { 3257 m->front.iov_base = NULL; 3258 } 3259 m->front_alloc_len = m->front.iov_len = front_len; 3260 3261 dout("ceph_msg_new %p front %d\n", m, front_len); 3262 return m; 3263 3264 out2: 3265 ceph_msg_put(m); 3266 out: 3267 if (!can_fail) { 3268 pr_err("msg_new can't create type %d front %d\n", type, 3269 front_len); 3270 WARN_ON(1); 3271 } else { 3272 dout("msg_new can't create type %d front %d\n", type, 3273 front_len); 3274 } 3275 return NULL; 3276 } 3277 EXPORT_SYMBOL(ceph_msg_new); 3278 3279 /* 3280 * Allocate "middle" portion of a message, if it is needed and wasn't 3281 * allocated by alloc_msg. This allows us to read a small fixed-size 3282 * per-type header in the front and then gracefully fail (i.e., 3283 * propagate the error to the caller based on info in the front) when 3284 * the middle is too large. 3285 */ 3286 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3287 { 3288 int type = le16_to_cpu(msg->hdr.type); 3289 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3290 3291 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3292 ceph_msg_type_name(type), middle_len); 3293 BUG_ON(!middle_len); 3294 BUG_ON(msg->middle); 3295 3296 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3297 if (!msg->middle) 3298 return -ENOMEM; 3299 return 0; 3300 } 3301 3302 /* 3303 * Allocate a message for receiving an incoming message on a 3304 * connection, and save the result in con->in_msg. Uses the 3305 * connection's private alloc_msg op if available. 3306 * 3307 * Returns 0 on success, or a negative error code. 3308 * 3309 * On success, if we set *skip = 1: 3310 * - the next message should be skipped and ignored. 3311 * - con->in_msg == NULL 3312 * or if we set *skip = 0: 3313 * - con->in_msg is non-null. 3314 * On error (ENOMEM, EAGAIN, ...), 3315 * - con->in_msg == NULL 3316 */ 3317 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3318 { 3319 struct ceph_msg_header *hdr = &con->in_hdr; 3320 int middle_len = le32_to_cpu(hdr->middle_len); 3321 struct ceph_msg *msg; 3322 int ret = 0; 3323 3324 BUG_ON(con->in_msg != NULL); 3325 BUG_ON(!con->ops->alloc_msg); 3326 3327 mutex_unlock(&con->mutex); 3328 msg = con->ops->alloc_msg(con, hdr, skip); 3329 mutex_lock(&con->mutex); 3330 if (con->state != CON_STATE_OPEN) { 3331 if (msg) 3332 ceph_msg_put(msg); 3333 return -EAGAIN; 3334 } 3335 if (msg) { 3336 BUG_ON(*skip); 3337 con->in_msg = msg; 3338 con->in_msg->con = con->ops->get(con); 3339 BUG_ON(con->in_msg->con == NULL); 3340 } else { 3341 /* 3342 * Null message pointer means either we should skip 3343 * this message or we couldn't allocate memory. The 3344 * former is not an error. 3345 */ 3346 if (*skip) 3347 return 0; 3348 3349 con->error_msg = "error allocating memory for incoming message"; 3350 return -ENOMEM; 3351 } 3352 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3353 3354 if (middle_len && !con->in_msg->middle) { 3355 ret = ceph_alloc_middle(con, con->in_msg); 3356 if (ret < 0) { 3357 ceph_msg_put(con->in_msg); 3358 con->in_msg = NULL; 3359 } 3360 } 3361 3362 return ret; 3363 } 3364 3365 3366 /* 3367 * Free a generically kmalloc'd message. 3368 */ 3369 static void ceph_msg_free(struct ceph_msg *m) 3370 { 3371 dout("%s %p\n", __func__, m); 3372 kvfree(m->front.iov_base); 3373 kmem_cache_free(ceph_msg_cache, m); 3374 } 3375 3376 static void ceph_msg_release(struct kref *kref) 3377 { 3378 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3379 LIST_HEAD(data); 3380 struct list_head *links; 3381 struct list_head *next; 3382 3383 dout("%s %p\n", __func__, m); 3384 WARN_ON(!list_empty(&m->list_head)); 3385 3386 /* drop middle, data, if any */ 3387 if (m->middle) { 3388 ceph_buffer_put(m->middle); 3389 m->middle = NULL; 3390 } 3391 3392 list_splice_init(&m->data, &data); 3393 list_for_each_safe(links, next, &data) { 3394 struct ceph_msg_data *data; 3395 3396 data = list_entry(links, struct ceph_msg_data, links); 3397 list_del_init(links); 3398 ceph_msg_data_destroy(data); 3399 } 3400 m->data_length = 0; 3401 3402 if (m->pool) 3403 ceph_msgpool_put(m->pool, m); 3404 else 3405 ceph_msg_free(m); 3406 } 3407 3408 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3409 { 3410 dout("%s %p (was %d)\n", __func__, msg, 3411 atomic_read(&msg->kref.refcount)); 3412 kref_get(&msg->kref); 3413 return msg; 3414 } 3415 EXPORT_SYMBOL(ceph_msg_get); 3416 3417 void ceph_msg_put(struct ceph_msg *msg) 3418 { 3419 dout("%s %p (was %d)\n", __func__, msg, 3420 atomic_read(&msg->kref.refcount)); 3421 kref_put(&msg->kref, ceph_msg_release); 3422 } 3423 EXPORT_SYMBOL(ceph_msg_put); 3424 3425 void ceph_msg_dump(struct ceph_msg *msg) 3426 { 3427 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3428 msg->front_alloc_len, msg->data_length); 3429 print_hex_dump(KERN_DEBUG, "header: ", 3430 DUMP_PREFIX_OFFSET, 16, 1, 3431 &msg->hdr, sizeof(msg->hdr), true); 3432 print_hex_dump(KERN_DEBUG, " front: ", 3433 DUMP_PREFIX_OFFSET, 16, 1, 3434 msg->front.iov_base, msg->front.iov_len, true); 3435 if (msg->middle) 3436 print_hex_dump(KERN_DEBUG, "middle: ", 3437 DUMP_PREFIX_OFFSET, 16, 1, 3438 msg->middle->vec.iov_base, 3439 msg->middle->vec.iov_len, true); 3440 print_hex_dump(KERN_DEBUG, "footer: ", 3441 DUMP_PREFIX_OFFSET, 16, 1, 3442 &msg->footer, sizeof(msg->footer), true); 3443 } 3444 EXPORT_SYMBOL(ceph_msg_dump); 3445