1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #include <linux/bio.h> 13 #include <linux/blkdev.h> 14 #include <net/tcp.h> 15 16 #include <linux/ceph/libceph.h> 17 #include <linux/ceph/messenger.h> 18 #include <linux/ceph/decode.h> 19 #include <linux/ceph/pagelist.h> 20 21 /* 22 * Ceph uses the messenger to exchange ceph_msg messages with other 23 * hosts in the system. The messenger provides ordered and reliable 24 * delivery. We tolerate TCP disconnects by reconnecting (with 25 * exponential backoff) in the case of a fault (disconnection, bad 26 * crc, protocol error). Acks allow sent messages to be discarded by 27 * the sender. 28 */ 29 30 /* static tag bytes (protocol control messages) */ 31 static char tag_msg = CEPH_MSGR_TAG_MSG; 32 static char tag_ack = CEPH_MSGR_TAG_ACK; 33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 34 35 #ifdef CONFIG_LOCKDEP 36 static struct lock_class_key socket_class; 37 #endif 38 39 40 static void queue_con(struct ceph_connection *con); 41 static void con_work(struct work_struct *); 42 static void ceph_fault(struct ceph_connection *con); 43 44 /* 45 * nicely render a sockaddr as a string. 46 */ 47 #define MAX_ADDR_STR 20 48 #define MAX_ADDR_STR_LEN 60 49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN]; 50 static DEFINE_SPINLOCK(addr_str_lock); 51 static int last_addr_str; 52 53 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 54 { 55 int i; 56 char *s; 57 struct sockaddr_in *in4 = (void *)ss; 58 struct sockaddr_in6 *in6 = (void *)ss; 59 60 spin_lock(&addr_str_lock); 61 i = last_addr_str++; 62 if (last_addr_str == MAX_ADDR_STR) 63 last_addr_str = 0; 64 spin_unlock(&addr_str_lock); 65 s = addr_str[i]; 66 67 switch (ss->ss_family) { 68 case AF_INET: 69 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr, 70 (unsigned int)ntohs(in4->sin_port)); 71 break; 72 73 case AF_INET6: 74 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr, 75 (unsigned int)ntohs(in6->sin6_port)); 76 break; 77 78 default: 79 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family); 80 } 81 82 return s; 83 } 84 EXPORT_SYMBOL(ceph_pr_addr); 85 86 static void encode_my_addr(struct ceph_messenger *msgr) 87 { 88 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 89 ceph_encode_addr(&msgr->my_enc_addr); 90 } 91 92 /* 93 * work queue for all reading and writing to/from the socket. 94 */ 95 struct workqueue_struct *ceph_msgr_wq; 96 97 int ceph_msgr_init(void) 98 { 99 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0); 100 if (!ceph_msgr_wq) { 101 pr_err("msgr_init failed to create workqueue\n"); 102 return -ENOMEM; 103 } 104 return 0; 105 } 106 EXPORT_SYMBOL(ceph_msgr_init); 107 108 void ceph_msgr_exit(void) 109 { 110 destroy_workqueue(ceph_msgr_wq); 111 } 112 EXPORT_SYMBOL(ceph_msgr_exit); 113 114 void ceph_msgr_flush(void) 115 { 116 flush_workqueue(ceph_msgr_wq); 117 } 118 EXPORT_SYMBOL(ceph_msgr_flush); 119 120 121 /* 122 * socket callback functions 123 */ 124 125 /* data available on socket, or listen socket received a connect */ 126 static void ceph_data_ready(struct sock *sk, int count_unused) 127 { 128 struct ceph_connection *con = 129 (struct ceph_connection *)sk->sk_user_data; 130 if (sk->sk_state != TCP_CLOSE_WAIT) { 131 dout("ceph_data_ready on %p state = %lu, queueing work\n", 132 con, con->state); 133 queue_con(con); 134 } 135 } 136 137 /* socket has buffer space for writing */ 138 static void ceph_write_space(struct sock *sk) 139 { 140 struct ceph_connection *con = 141 (struct ceph_connection *)sk->sk_user_data; 142 143 /* only queue to workqueue if there is data we want to write. */ 144 if (test_bit(WRITE_PENDING, &con->state)) { 145 dout("ceph_write_space %p queueing write work\n", con); 146 queue_con(con); 147 } else { 148 dout("ceph_write_space %p nothing to write\n", con); 149 } 150 151 /* since we have our own write_space, clear the SOCK_NOSPACE flag */ 152 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 153 } 154 155 /* socket's state has changed */ 156 static void ceph_state_change(struct sock *sk) 157 { 158 struct ceph_connection *con = 159 (struct ceph_connection *)sk->sk_user_data; 160 161 dout("ceph_state_change %p state = %lu sk_state = %u\n", 162 con, con->state, sk->sk_state); 163 164 if (test_bit(CLOSED, &con->state)) 165 return; 166 167 switch (sk->sk_state) { 168 case TCP_CLOSE: 169 dout("ceph_state_change TCP_CLOSE\n"); 170 case TCP_CLOSE_WAIT: 171 dout("ceph_state_change TCP_CLOSE_WAIT\n"); 172 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) { 173 if (test_bit(CONNECTING, &con->state)) 174 con->error_msg = "connection failed"; 175 else 176 con->error_msg = "socket closed"; 177 queue_con(con); 178 } 179 break; 180 case TCP_ESTABLISHED: 181 dout("ceph_state_change TCP_ESTABLISHED\n"); 182 queue_con(con); 183 break; 184 } 185 } 186 187 /* 188 * set up socket callbacks 189 */ 190 static void set_sock_callbacks(struct socket *sock, 191 struct ceph_connection *con) 192 { 193 struct sock *sk = sock->sk; 194 sk->sk_user_data = (void *)con; 195 sk->sk_data_ready = ceph_data_ready; 196 sk->sk_write_space = ceph_write_space; 197 sk->sk_state_change = ceph_state_change; 198 } 199 200 201 /* 202 * socket helpers 203 */ 204 205 /* 206 * initiate connection to a remote socket. 207 */ 208 static struct socket *ceph_tcp_connect(struct ceph_connection *con) 209 { 210 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 211 struct socket *sock; 212 int ret; 213 214 BUG_ON(con->sock); 215 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 216 IPPROTO_TCP, &sock); 217 if (ret) 218 return ERR_PTR(ret); 219 con->sock = sock; 220 sock->sk->sk_allocation = GFP_NOFS; 221 222 #ifdef CONFIG_LOCKDEP 223 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 224 #endif 225 226 set_sock_callbacks(sock, con); 227 228 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 229 230 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 231 O_NONBLOCK); 232 if (ret == -EINPROGRESS) { 233 dout("connect %s EINPROGRESS sk_state = %u\n", 234 ceph_pr_addr(&con->peer_addr.in_addr), 235 sock->sk->sk_state); 236 ret = 0; 237 } 238 if (ret < 0) { 239 pr_err("connect %s error %d\n", 240 ceph_pr_addr(&con->peer_addr.in_addr), ret); 241 sock_release(sock); 242 con->sock = NULL; 243 con->error_msg = "connect error"; 244 } 245 246 if (ret < 0) 247 return ERR_PTR(ret); 248 return sock; 249 } 250 251 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 252 { 253 struct kvec iov = {buf, len}; 254 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 255 256 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 257 } 258 259 /* 260 * write something. @more is true if caller will be sending more data 261 * shortly. 262 */ 263 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 264 size_t kvlen, size_t len, int more) 265 { 266 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 267 268 if (more) 269 msg.msg_flags |= MSG_MORE; 270 else 271 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 272 273 return kernel_sendmsg(sock, &msg, iov, kvlen, len); 274 } 275 276 277 /* 278 * Shutdown/close the socket for the given connection. 279 */ 280 static int con_close_socket(struct ceph_connection *con) 281 { 282 int rc; 283 284 dout("con_close_socket on %p sock %p\n", con, con->sock); 285 if (!con->sock) 286 return 0; 287 set_bit(SOCK_CLOSED, &con->state); 288 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 289 sock_release(con->sock); 290 con->sock = NULL; 291 clear_bit(SOCK_CLOSED, &con->state); 292 return rc; 293 } 294 295 /* 296 * Reset a connection. Discard all incoming and outgoing messages 297 * and clear *_seq state. 298 */ 299 static void ceph_msg_remove(struct ceph_msg *msg) 300 { 301 list_del_init(&msg->list_head); 302 ceph_msg_put(msg); 303 } 304 static void ceph_msg_remove_list(struct list_head *head) 305 { 306 while (!list_empty(head)) { 307 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 308 list_head); 309 ceph_msg_remove(msg); 310 } 311 } 312 313 static void reset_connection(struct ceph_connection *con) 314 { 315 /* reset connection, out_queue, msg_ and connect_seq */ 316 /* discard existing out_queue and msg_seq */ 317 ceph_msg_remove_list(&con->out_queue); 318 ceph_msg_remove_list(&con->out_sent); 319 320 if (con->in_msg) { 321 ceph_msg_put(con->in_msg); 322 con->in_msg = NULL; 323 } 324 325 con->connect_seq = 0; 326 con->out_seq = 0; 327 if (con->out_msg) { 328 ceph_msg_put(con->out_msg); 329 con->out_msg = NULL; 330 } 331 con->out_keepalive_pending = false; 332 con->in_seq = 0; 333 con->in_seq_acked = 0; 334 } 335 336 /* 337 * mark a peer down. drop any open connections. 338 */ 339 void ceph_con_close(struct ceph_connection *con) 340 { 341 dout("con_close %p peer %s\n", con, 342 ceph_pr_addr(&con->peer_addr.in_addr)); 343 set_bit(CLOSED, &con->state); /* in case there's queued work */ 344 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */ 345 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */ 346 clear_bit(KEEPALIVE_PENDING, &con->state); 347 clear_bit(WRITE_PENDING, &con->state); 348 mutex_lock(&con->mutex); 349 reset_connection(con); 350 con->peer_global_seq = 0; 351 cancel_delayed_work(&con->work); 352 mutex_unlock(&con->mutex); 353 queue_con(con); 354 } 355 EXPORT_SYMBOL(ceph_con_close); 356 357 /* 358 * Reopen a closed connection, with a new peer address. 359 */ 360 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr) 361 { 362 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 363 set_bit(OPENING, &con->state); 364 clear_bit(CLOSED, &con->state); 365 memcpy(&con->peer_addr, addr, sizeof(*addr)); 366 con->delay = 0; /* reset backoff memory */ 367 queue_con(con); 368 } 369 EXPORT_SYMBOL(ceph_con_open); 370 371 /* 372 * return true if this connection ever successfully opened 373 */ 374 bool ceph_con_opened(struct ceph_connection *con) 375 { 376 return con->connect_seq > 0; 377 } 378 379 /* 380 * generic get/put 381 */ 382 struct ceph_connection *ceph_con_get(struct ceph_connection *con) 383 { 384 dout("con_get %p nref = %d -> %d\n", con, 385 atomic_read(&con->nref), atomic_read(&con->nref) + 1); 386 if (atomic_inc_not_zero(&con->nref)) 387 return con; 388 return NULL; 389 } 390 391 void ceph_con_put(struct ceph_connection *con) 392 { 393 dout("con_put %p nref = %d -> %d\n", con, 394 atomic_read(&con->nref), atomic_read(&con->nref) - 1); 395 BUG_ON(atomic_read(&con->nref) == 0); 396 if (atomic_dec_and_test(&con->nref)) { 397 BUG_ON(con->sock); 398 kfree(con); 399 } 400 } 401 402 /* 403 * initialize a new connection. 404 */ 405 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con) 406 { 407 dout("con_init %p\n", con); 408 memset(con, 0, sizeof(*con)); 409 atomic_set(&con->nref, 1); 410 con->msgr = msgr; 411 mutex_init(&con->mutex); 412 INIT_LIST_HEAD(&con->out_queue); 413 INIT_LIST_HEAD(&con->out_sent); 414 INIT_DELAYED_WORK(&con->work, con_work); 415 } 416 EXPORT_SYMBOL(ceph_con_init); 417 418 419 /* 420 * We maintain a global counter to order connection attempts. Get 421 * a unique seq greater than @gt. 422 */ 423 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 424 { 425 u32 ret; 426 427 spin_lock(&msgr->global_seq_lock); 428 if (msgr->global_seq < gt) 429 msgr->global_seq = gt; 430 ret = ++msgr->global_seq; 431 spin_unlock(&msgr->global_seq_lock); 432 return ret; 433 } 434 435 436 /* 437 * Prepare footer for currently outgoing message, and finish things 438 * off. Assumes out_kvec* are already valid.. we just add on to the end. 439 */ 440 static void prepare_write_message_footer(struct ceph_connection *con, int v) 441 { 442 struct ceph_msg *m = con->out_msg; 443 444 dout("prepare_write_message_footer %p\n", con); 445 con->out_kvec_is_msg = true; 446 con->out_kvec[v].iov_base = &m->footer; 447 con->out_kvec[v].iov_len = sizeof(m->footer); 448 con->out_kvec_bytes += sizeof(m->footer); 449 con->out_kvec_left++; 450 con->out_more = m->more_to_follow; 451 con->out_msg_done = true; 452 } 453 454 /* 455 * Prepare headers for the next outgoing message. 456 */ 457 static void prepare_write_message(struct ceph_connection *con) 458 { 459 struct ceph_msg *m; 460 int v = 0; 461 462 con->out_kvec_bytes = 0; 463 con->out_kvec_is_msg = true; 464 con->out_msg_done = false; 465 466 /* Sneak an ack in there first? If we can get it into the same 467 * TCP packet that's a good thing. */ 468 if (con->in_seq > con->in_seq_acked) { 469 con->in_seq_acked = con->in_seq; 470 con->out_kvec[v].iov_base = &tag_ack; 471 con->out_kvec[v++].iov_len = 1; 472 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 473 con->out_kvec[v].iov_base = &con->out_temp_ack; 474 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack); 475 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack); 476 } 477 478 m = list_first_entry(&con->out_queue, 479 struct ceph_msg, list_head); 480 con->out_msg = m; 481 if (test_bit(LOSSYTX, &con->state)) { 482 list_del_init(&m->list_head); 483 } else { 484 /* put message on sent list */ 485 ceph_msg_get(m); 486 list_move_tail(&m->list_head, &con->out_sent); 487 } 488 489 /* 490 * only assign outgoing seq # if we haven't sent this message 491 * yet. if it is requeued, resend with it's original seq. 492 */ 493 if (m->needs_out_seq) { 494 m->hdr.seq = cpu_to_le64(++con->out_seq); 495 m->needs_out_seq = false; 496 } 497 498 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n", 499 m, con->out_seq, le16_to_cpu(m->hdr.type), 500 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 501 le32_to_cpu(m->hdr.data_len), 502 m->nr_pages); 503 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 504 505 /* tag + hdr + front + middle */ 506 con->out_kvec[v].iov_base = &tag_msg; 507 con->out_kvec[v++].iov_len = 1; 508 con->out_kvec[v].iov_base = &m->hdr; 509 con->out_kvec[v++].iov_len = sizeof(m->hdr); 510 con->out_kvec[v++] = m->front; 511 if (m->middle) 512 con->out_kvec[v++] = m->middle->vec; 513 con->out_kvec_left = v; 514 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len + 515 (m->middle ? m->middle->vec.iov_len : 0); 516 con->out_kvec_cur = con->out_kvec; 517 518 /* fill in crc (except data pages), footer */ 519 con->out_msg->hdr.crc = 520 cpu_to_le32(crc32c(0, (void *)&m->hdr, 521 sizeof(m->hdr) - sizeof(m->hdr.crc))); 522 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE; 523 con->out_msg->footer.front_crc = 524 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len)); 525 if (m->middle) 526 con->out_msg->footer.middle_crc = 527 cpu_to_le32(crc32c(0, m->middle->vec.iov_base, 528 m->middle->vec.iov_len)); 529 else 530 con->out_msg->footer.middle_crc = 0; 531 con->out_msg->footer.data_crc = 0; 532 dout("prepare_write_message front_crc %u data_crc %u\n", 533 le32_to_cpu(con->out_msg->footer.front_crc), 534 le32_to_cpu(con->out_msg->footer.middle_crc)); 535 536 /* is there a data payload? */ 537 if (le32_to_cpu(m->hdr.data_len) > 0) { 538 /* initialize page iterator */ 539 con->out_msg_pos.page = 0; 540 if (m->pages) 541 con->out_msg_pos.page_pos = m->page_alignment; 542 else 543 con->out_msg_pos.page_pos = 0; 544 con->out_msg_pos.data_pos = 0; 545 con->out_msg_pos.did_page_crc = 0; 546 con->out_more = 1; /* data + footer will follow */ 547 } else { 548 /* no, queue up footer too and be done */ 549 prepare_write_message_footer(con, v); 550 } 551 552 set_bit(WRITE_PENDING, &con->state); 553 } 554 555 /* 556 * Prepare an ack. 557 */ 558 static void prepare_write_ack(struct ceph_connection *con) 559 { 560 dout("prepare_write_ack %p %llu -> %llu\n", con, 561 con->in_seq_acked, con->in_seq); 562 con->in_seq_acked = con->in_seq; 563 564 con->out_kvec[0].iov_base = &tag_ack; 565 con->out_kvec[0].iov_len = 1; 566 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 567 con->out_kvec[1].iov_base = &con->out_temp_ack; 568 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack); 569 con->out_kvec_left = 2; 570 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack); 571 con->out_kvec_cur = con->out_kvec; 572 con->out_more = 1; /* more will follow.. eventually.. */ 573 set_bit(WRITE_PENDING, &con->state); 574 } 575 576 /* 577 * Prepare to write keepalive byte. 578 */ 579 static void prepare_write_keepalive(struct ceph_connection *con) 580 { 581 dout("prepare_write_keepalive %p\n", con); 582 con->out_kvec[0].iov_base = &tag_keepalive; 583 con->out_kvec[0].iov_len = 1; 584 con->out_kvec_left = 1; 585 con->out_kvec_bytes = 1; 586 con->out_kvec_cur = con->out_kvec; 587 set_bit(WRITE_PENDING, &con->state); 588 } 589 590 /* 591 * Connection negotiation. 592 */ 593 594 static void prepare_connect_authorizer(struct ceph_connection *con) 595 { 596 void *auth_buf; 597 int auth_len = 0; 598 int auth_protocol = 0; 599 600 mutex_unlock(&con->mutex); 601 if (con->ops->get_authorizer) 602 con->ops->get_authorizer(con, &auth_buf, &auth_len, 603 &auth_protocol, &con->auth_reply_buf, 604 &con->auth_reply_buf_len, 605 con->auth_retry); 606 mutex_lock(&con->mutex); 607 608 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol); 609 con->out_connect.authorizer_len = cpu_to_le32(auth_len); 610 611 con->out_kvec[con->out_kvec_left].iov_base = auth_buf; 612 con->out_kvec[con->out_kvec_left].iov_len = auth_len; 613 con->out_kvec_left++; 614 con->out_kvec_bytes += auth_len; 615 } 616 617 /* 618 * We connected to a peer and are saying hello. 619 */ 620 static void prepare_write_banner(struct ceph_messenger *msgr, 621 struct ceph_connection *con) 622 { 623 int len = strlen(CEPH_BANNER); 624 625 con->out_kvec[0].iov_base = CEPH_BANNER; 626 con->out_kvec[0].iov_len = len; 627 con->out_kvec[1].iov_base = &msgr->my_enc_addr; 628 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr); 629 con->out_kvec_left = 2; 630 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr); 631 con->out_kvec_cur = con->out_kvec; 632 con->out_more = 0; 633 set_bit(WRITE_PENDING, &con->state); 634 } 635 636 static void prepare_write_connect(struct ceph_messenger *msgr, 637 struct ceph_connection *con, 638 int after_banner) 639 { 640 unsigned global_seq = get_global_seq(con->msgr, 0); 641 int proto; 642 643 switch (con->peer_name.type) { 644 case CEPH_ENTITY_TYPE_MON: 645 proto = CEPH_MONC_PROTOCOL; 646 break; 647 case CEPH_ENTITY_TYPE_OSD: 648 proto = CEPH_OSDC_PROTOCOL; 649 break; 650 case CEPH_ENTITY_TYPE_MDS: 651 proto = CEPH_MDSC_PROTOCOL; 652 break; 653 default: 654 BUG(); 655 } 656 657 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 658 con->connect_seq, global_seq, proto); 659 660 con->out_connect.features = cpu_to_le64(msgr->supported_features); 661 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 662 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 663 con->out_connect.global_seq = cpu_to_le32(global_seq); 664 con->out_connect.protocol_version = cpu_to_le32(proto); 665 con->out_connect.flags = 0; 666 667 if (!after_banner) { 668 con->out_kvec_left = 0; 669 con->out_kvec_bytes = 0; 670 } 671 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect; 672 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect); 673 con->out_kvec_left++; 674 con->out_kvec_bytes += sizeof(con->out_connect); 675 con->out_kvec_cur = con->out_kvec; 676 con->out_more = 0; 677 set_bit(WRITE_PENDING, &con->state); 678 679 prepare_connect_authorizer(con); 680 } 681 682 683 /* 684 * write as much of pending kvecs to the socket as we can. 685 * 1 -> done 686 * 0 -> socket full, but more to do 687 * <0 -> error 688 */ 689 static int write_partial_kvec(struct ceph_connection *con) 690 { 691 int ret; 692 693 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 694 while (con->out_kvec_bytes > 0) { 695 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 696 con->out_kvec_left, con->out_kvec_bytes, 697 con->out_more); 698 if (ret <= 0) 699 goto out; 700 con->out_kvec_bytes -= ret; 701 if (con->out_kvec_bytes == 0) 702 break; /* done */ 703 while (ret > 0) { 704 if (ret >= con->out_kvec_cur->iov_len) { 705 ret -= con->out_kvec_cur->iov_len; 706 con->out_kvec_cur++; 707 con->out_kvec_left--; 708 } else { 709 con->out_kvec_cur->iov_len -= ret; 710 con->out_kvec_cur->iov_base += ret; 711 ret = 0; 712 break; 713 } 714 } 715 } 716 con->out_kvec_left = 0; 717 con->out_kvec_is_msg = false; 718 ret = 1; 719 out: 720 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 721 con->out_kvec_bytes, con->out_kvec_left, ret); 722 return ret; /* done! */ 723 } 724 725 #ifdef CONFIG_BLOCK 726 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg) 727 { 728 if (!bio) { 729 *iter = NULL; 730 *seg = 0; 731 return; 732 } 733 *iter = bio; 734 *seg = bio->bi_idx; 735 } 736 737 static void iter_bio_next(struct bio **bio_iter, int *seg) 738 { 739 if (*bio_iter == NULL) 740 return; 741 742 BUG_ON(*seg >= (*bio_iter)->bi_vcnt); 743 744 (*seg)++; 745 if (*seg == (*bio_iter)->bi_vcnt) 746 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg); 747 } 748 #endif 749 750 /* 751 * Write as much message data payload as we can. If we finish, queue 752 * up the footer. 753 * 1 -> done, footer is now queued in out_kvec[]. 754 * 0 -> socket full, but more to do 755 * <0 -> error 756 */ 757 static int write_partial_msg_pages(struct ceph_connection *con) 758 { 759 struct ceph_msg *msg = con->out_msg; 760 unsigned data_len = le32_to_cpu(msg->hdr.data_len); 761 size_t len; 762 int crc = con->msgr->nocrc; 763 int ret; 764 int total_max_write; 765 int in_trail = 0; 766 size_t trail_len = (msg->trail ? msg->trail->length : 0); 767 768 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n", 769 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages, 770 con->out_msg_pos.page_pos); 771 772 #ifdef CONFIG_BLOCK 773 if (msg->bio && !msg->bio_iter) 774 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg); 775 #endif 776 777 while (data_len > con->out_msg_pos.data_pos) { 778 struct page *page = NULL; 779 void *kaddr = NULL; 780 int max_write = PAGE_SIZE; 781 int page_shift = 0; 782 783 total_max_write = data_len - trail_len - 784 con->out_msg_pos.data_pos; 785 786 /* 787 * if we are calculating the data crc (the default), we need 788 * to map the page. if our pages[] has been revoked, use the 789 * zero page. 790 */ 791 792 /* have we reached the trail part of the data? */ 793 if (con->out_msg_pos.data_pos >= data_len - trail_len) { 794 in_trail = 1; 795 796 total_max_write = data_len - con->out_msg_pos.data_pos; 797 798 page = list_first_entry(&msg->trail->head, 799 struct page, lru); 800 if (crc) 801 kaddr = kmap(page); 802 max_write = PAGE_SIZE; 803 } else if (msg->pages) { 804 page = msg->pages[con->out_msg_pos.page]; 805 if (crc) 806 kaddr = kmap(page); 807 } else if (msg->pagelist) { 808 page = list_first_entry(&msg->pagelist->head, 809 struct page, lru); 810 if (crc) 811 kaddr = kmap(page); 812 #ifdef CONFIG_BLOCK 813 } else if (msg->bio) { 814 struct bio_vec *bv; 815 816 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg); 817 page = bv->bv_page; 818 page_shift = bv->bv_offset; 819 if (crc) 820 kaddr = kmap(page) + page_shift; 821 max_write = bv->bv_len; 822 #endif 823 } else { 824 page = con->msgr->zero_page; 825 if (crc) 826 kaddr = page_address(con->msgr->zero_page); 827 } 828 len = min_t(int, max_write - con->out_msg_pos.page_pos, 829 total_max_write); 830 831 if (crc && !con->out_msg_pos.did_page_crc) { 832 void *base = kaddr + con->out_msg_pos.page_pos; 833 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc); 834 835 BUG_ON(kaddr == NULL); 836 con->out_msg->footer.data_crc = 837 cpu_to_le32(crc32c(tmpcrc, base, len)); 838 con->out_msg_pos.did_page_crc = 1; 839 } 840 ret = kernel_sendpage(con->sock, page, 841 con->out_msg_pos.page_pos + page_shift, 842 len, 843 MSG_DONTWAIT | MSG_NOSIGNAL | 844 MSG_MORE); 845 846 if (crc && 847 (msg->pages || msg->pagelist || msg->bio || in_trail)) 848 kunmap(page); 849 850 if (ret <= 0) 851 goto out; 852 853 con->out_msg_pos.data_pos += ret; 854 con->out_msg_pos.page_pos += ret; 855 if (ret == len) { 856 con->out_msg_pos.page_pos = 0; 857 con->out_msg_pos.page++; 858 con->out_msg_pos.did_page_crc = 0; 859 if (in_trail) 860 list_move_tail(&page->lru, 861 &msg->trail->head); 862 else if (msg->pagelist) 863 list_move_tail(&page->lru, 864 &msg->pagelist->head); 865 #ifdef CONFIG_BLOCK 866 else if (msg->bio) 867 iter_bio_next(&msg->bio_iter, &msg->bio_seg); 868 #endif 869 } 870 } 871 872 dout("write_partial_msg_pages %p msg %p done\n", con, msg); 873 874 /* prepare and queue up footer, too */ 875 if (!crc) 876 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 877 con->out_kvec_bytes = 0; 878 con->out_kvec_left = 0; 879 con->out_kvec_cur = con->out_kvec; 880 prepare_write_message_footer(con, 0); 881 ret = 1; 882 out: 883 return ret; 884 } 885 886 /* 887 * write some zeros 888 */ 889 static int write_partial_skip(struct ceph_connection *con) 890 { 891 int ret; 892 893 while (con->out_skip > 0) { 894 struct kvec iov = { 895 .iov_base = page_address(con->msgr->zero_page), 896 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE) 897 }; 898 899 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1); 900 if (ret <= 0) 901 goto out; 902 con->out_skip -= ret; 903 } 904 ret = 1; 905 out: 906 return ret; 907 } 908 909 /* 910 * Prepare to read connection handshake, or an ack. 911 */ 912 static void prepare_read_banner(struct ceph_connection *con) 913 { 914 dout("prepare_read_banner %p\n", con); 915 con->in_base_pos = 0; 916 } 917 918 static void prepare_read_connect(struct ceph_connection *con) 919 { 920 dout("prepare_read_connect %p\n", con); 921 con->in_base_pos = 0; 922 } 923 924 static void prepare_read_ack(struct ceph_connection *con) 925 { 926 dout("prepare_read_ack %p\n", con); 927 con->in_base_pos = 0; 928 } 929 930 static void prepare_read_tag(struct ceph_connection *con) 931 { 932 dout("prepare_read_tag %p\n", con); 933 con->in_base_pos = 0; 934 con->in_tag = CEPH_MSGR_TAG_READY; 935 } 936 937 /* 938 * Prepare to read a message. 939 */ 940 static int prepare_read_message(struct ceph_connection *con) 941 { 942 dout("prepare_read_message %p\n", con); 943 BUG_ON(con->in_msg != NULL); 944 con->in_base_pos = 0; 945 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 946 return 0; 947 } 948 949 950 static int read_partial(struct ceph_connection *con, 951 int *to, int size, void *object) 952 { 953 *to += size; 954 while (con->in_base_pos < *to) { 955 int left = *to - con->in_base_pos; 956 int have = size - left; 957 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 958 if (ret <= 0) 959 return ret; 960 con->in_base_pos += ret; 961 } 962 return 1; 963 } 964 965 966 /* 967 * Read all or part of the connect-side handshake on a new connection 968 */ 969 static int read_partial_banner(struct ceph_connection *con) 970 { 971 int ret, to = 0; 972 973 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 974 975 /* peer's banner */ 976 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner); 977 if (ret <= 0) 978 goto out; 979 ret = read_partial(con, &to, sizeof(con->actual_peer_addr), 980 &con->actual_peer_addr); 981 if (ret <= 0) 982 goto out; 983 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me), 984 &con->peer_addr_for_me); 985 if (ret <= 0) 986 goto out; 987 out: 988 return ret; 989 } 990 991 static int read_partial_connect(struct ceph_connection *con) 992 { 993 int ret, to = 0; 994 995 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 996 997 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply); 998 if (ret <= 0) 999 goto out; 1000 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len), 1001 con->auth_reply_buf); 1002 if (ret <= 0) 1003 goto out; 1004 1005 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1006 con, (int)con->in_reply.tag, 1007 le32_to_cpu(con->in_reply.connect_seq), 1008 le32_to_cpu(con->in_reply.global_seq)); 1009 out: 1010 return ret; 1011 1012 } 1013 1014 /* 1015 * Verify the hello banner looks okay. 1016 */ 1017 static int verify_hello(struct ceph_connection *con) 1018 { 1019 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1020 pr_err("connect to %s got bad banner\n", 1021 ceph_pr_addr(&con->peer_addr.in_addr)); 1022 con->error_msg = "protocol error, bad banner"; 1023 return -1; 1024 } 1025 return 0; 1026 } 1027 1028 static bool addr_is_blank(struct sockaddr_storage *ss) 1029 { 1030 switch (ss->ss_family) { 1031 case AF_INET: 1032 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1033 case AF_INET6: 1034 return 1035 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1036 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1037 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1038 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1039 } 1040 return false; 1041 } 1042 1043 static int addr_port(struct sockaddr_storage *ss) 1044 { 1045 switch (ss->ss_family) { 1046 case AF_INET: 1047 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1048 case AF_INET6: 1049 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1050 } 1051 return 0; 1052 } 1053 1054 static void addr_set_port(struct sockaddr_storage *ss, int p) 1055 { 1056 switch (ss->ss_family) { 1057 case AF_INET: 1058 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1059 case AF_INET6: 1060 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1061 } 1062 } 1063 1064 /* 1065 * Parse an ip[:port] list into an addr array. Use the default 1066 * monitor port if a port isn't specified. 1067 */ 1068 int ceph_parse_ips(const char *c, const char *end, 1069 struct ceph_entity_addr *addr, 1070 int max_count, int *count) 1071 { 1072 int i; 1073 const char *p = c; 1074 1075 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1076 for (i = 0; i < max_count; i++) { 1077 const char *ipend; 1078 struct sockaddr_storage *ss = &addr[i].in_addr; 1079 struct sockaddr_in *in4 = (void *)ss; 1080 struct sockaddr_in6 *in6 = (void *)ss; 1081 int port; 1082 char delim = ','; 1083 1084 if (*p == '[') { 1085 delim = ']'; 1086 p++; 1087 } 1088 1089 memset(ss, 0, sizeof(*ss)); 1090 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr, 1091 delim, &ipend)) 1092 ss->ss_family = AF_INET; 1093 else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr, 1094 delim, &ipend)) 1095 ss->ss_family = AF_INET6; 1096 else 1097 goto bad; 1098 p = ipend; 1099 1100 if (delim == ']') { 1101 if (*p != ']') { 1102 dout("missing matching ']'\n"); 1103 goto bad; 1104 } 1105 p++; 1106 } 1107 1108 /* port? */ 1109 if (p < end && *p == ':') { 1110 port = 0; 1111 p++; 1112 while (p < end && *p >= '0' && *p <= '9') { 1113 port = (port * 10) + (*p - '0'); 1114 p++; 1115 } 1116 if (port > 65535 || port == 0) 1117 goto bad; 1118 } else { 1119 port = CEPH_MON_PORT; 1120 } 1121 1122 addr_set_port(ss, port); 1123 1124 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1125 1126 if (p == end) 1127 break; 1128 if (*p != ',') 1129 goto bad; 1130 p++; 1131 } 1132 1133 if (p != end) 1134 goto bad; 1135 1136 if (count) 1137 *count = i + 1; 1138 return 0; 1139 1140 bad: 1141 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1142 return -EINVAL; 1143 } 1144 EXPORT_SYMBOL(ceph_parse_ips); 1145 1146 static int process_banner(struct ceph_connection *con) 1147 { 1148 dout("process_banner on %p\n", con); 1149 1150 if (verify_hello(con) < 0) 1151 return -1; 1152 1153 ceph_decode_addr(&con->actual_peer_addr); 1154 ceph_decode_addr(&con->peer_addr_for_me); 1155 1156 /* 1157 * Make sure the other end is who we wanted. note that the other 1158 * end may not yet know their ip address, so if it's 0.0.0.0, give 1159 * them the benefit of the doubt. 1160 */ 1161 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1162 sizeof(con->peer_addr)) != 0 && 1163 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1164 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1165 pr_warning("wrong peer, want %s/%d, got %s/%d\n", 1166 ceph_pr_addr(&con->peer_addr.in_addr), 1167 (int)le32_to_cpu(con->peer_addr.nonce), 1168 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1169 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1170 con->error_msg = "wrong peer at address"; 1171 return -1; 1172 } 1173 1174 /* 1175 * did we learn our address? 1176 */ 1177 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1178 int port = addr_port(&con->msgr->inst.addr.in_addr); 1179 1180 memcpy(&con->msgr->inst.addr.in_addr, 1181 &con->peer_addr_for_me.in_addr, 1182 sizeof(con->peer_addr_for_me.in_addr)); 1183 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1184 encode_my_addr(con->msgr); 1185 dout("process_banner learned my addr is %s\n", 1186 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1187 } 1188 1189 set_bit(NEGOTIATING, &con->state); 1190 prepare_read_connect(con); 1191 return 0; 1192 } 1193 1194 static void fail_protocol(struct ceph_connection *con) 1195 { 1196 reset_connection(con); 1197 set_bit(CLOSED, &con->state); /* in case there's queued work */ 1198 1199 mutex_unlock(&con->mutex); 1200 if (con->ops->bad_proto) 1201 con->ops->bad_proto(con); 1202 mutex_lock(&con->mutex); 1203 } 1204 1205 static int process_connect(struct ceph_connection *con) 1206 { 1207 u64 sup_feat = con->msgr->supported_features; 1208 u64 req_feat = con->msgr->required_features; 1209 u64 server_feat = le64_to_cpu(con->in_reply.features); 1210 1211 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1212 1213 switch (con->in_reply.tag) { 1214 case CEPH_MSGR_TAG_FEATURES: 1215 pr_err("%s%lld %s feature set mismatch," 1216 " my %llx < server's %llx, missing %llx\n", 1217 ENTITY_NAME(con->peer_name), 1218 ceph_pr_addr(&con->peer_addr.in_addr), 1219 sup_feat, server_feat, server_feat & ~sup_feat); 1220 con->error_msg = "missing required protocol features"; 1221 fail_protocol(con); 1222 return -1; 1223 1224 case CEPH_MSGR_TAG_BADPROTOVER: 1225 pr_err("%s%lld %s protocol version mismatch," 1226 " my %d != server's %d\n", 1227 ENTITY_NAME(con->peer_name), 1228 ceph_pr_addr(&con->peer_addr.in_addr), 1229 le32_to_cpu(con->out_connect.protocol_version), 1230 le32_to_cpu(con->in_reply.protocol_version)); 1231 con->error_msg = "protocol version mismatch"; 1232 fail_protocol(con); 1233 return -1; 1234 1235 case CEPH_MSGR_TAG_BADAUTHORIZER: 1236 con->auth_retry++; 1237 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 1238 con->auth_retry); 1239 if (con->auth_retry == 2) { 1240 con->error_msg = "connect authorization failure"; 1241 reset_connection(con); 1242 set_bit(CLOSED, &con->state); 1243 return -1; 1244 } 1245 con->auth_retry = 1; 1246 prepare_write_connect(con->msgr, con, 0); 1247 prepare_read_connect(con); 1248 break; 1249 1250 case CEPH_MSGR_TAG_RESETSESSION: 1251 /* 1252 * If we connected with a large connect_seq but the peer 1253 * has no record of a session with us (no connection, or 1254 * connect_seq == 0), they will send RESETSESION to indicate 1255 * that they must have reset their session, and may have 1256 * dropped messages. 1257 */ 1258 dout("process_connect got RESET peer seq %u\n", 1259 le32_to_cpu(con->in_connect.connect_seq)); 1260 pr_err("%s%lld %s connection reset\n", 1261 ENTITY_NAME(con->peer_name), 1262 ceph_pr_addr(&con->peer_addr.in_addr)); 1263 reset_connection(con); 1264 prepare_write_connect(con->msgr, con, 0); 1265 prepare_read_connect(con); 1266 1267 /* Tell ceph about it. */ 1268 mutex_unlock(&con->mutex); 1269 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 1270 if (con->ops->peer_reset) 1271 con->ops->peer_reset(con); 1272 mutex_lock(&con->mutex); 1273 break; 1274 1275 case CEPH_MSGR_TAG_RETRY_SESSION: 1276 /* 1277 * If we sent a smaller connect_seq than the peer has, try 1278 * again with a larger value. 1279 */ 1280 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n", 1281 le32_to_cpu(con->out_connect.connect_seq), 1282 le32_to_cpu(con->in_connect.connect_seq)); 1283 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq); 1284 prepare_write_connect(con->msgr, con, 0); 1285 prepare_read_connect(con); 1286 break; 1287 1288 case CEPH_MSGR_TAG_RETRY_GLOBAL: 1289 /* 1290 * If we sent a smaller global_seq than the peer has, try 1291 * again with a larger value. 1292 */ 1293 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 1294 con->peer_global_seq, 1295 le32_to_cpu(con->in_connect.global_seq)); 1296 get_global_seq(con->msgr, 1297 le32_to_cpu(con->in_connect.global_seq)); 1298 prepare_write_connect(con->msgr, con, 0); 1299 prepare_read_connect(con); 1300 break; 1301 1302 case CEPH_MSGR_TAG_READY: 1303 if (req_feat & ~server_feat) { 1304 pr_err("%s%lld %s protocol feature mismatch," 1305 " my required %llx > server's %llx, need %llx\n", 1306 ENTITY_NAME(con->peer_name), 1307 ceph_pr_addr(&con->peer_addr.in_addr), 1308 req_feat, server_feat, req_feat & ~server_feat); 1309 con->error_msg = "missing required protocol features"; 1310 fail_protocol(con); 1311 return -1; 1312 } 1313 clear_bit(CONNECTING, &con->state); 1314 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 1315 con->connect_seq++; 1316 con->peer_features = server_feat; 1317 dout("process_connect got READY gseq %d cseq %d (%d)\n", 1318 con->peer_global_seq, 1319 le32_to_cpu(con->in_reply.connect_seq), 1320 con->connect_seq); 1321 WARN_ON(con->connect_seq != 1322 le32_to_cpu(con->in_reply.connect_seq)); 1323 1324 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 1325 set_bit(LOSSYTX, &con->state); 1326 1327 prepare_read_tag(con); 1328 break; 1329 1330 case CEPH_MSGR_TAG_WAIT: 1331 /* 1332 * If there is a connection race (we are opening 1333 * connections to each other), one of us may just have 1334 * to WAIT. This shouldn't happen if we are the 1335 * client. 1336 */ 1337 pr_err("process_connect peer connecting WAIT\n"); 1338 1339 default: 1340 pr_err("connect protocol error, will retry\n"); 1341 con->error_msg = "protocol error, garbage tag during connect"; 1342 return -1; 1343 } 1344 return 0; 1345 } 1346 1347 1348 /* 1349 * read (part of) an ack 1350 */ 1351 static int read_partial_ack(struct ceph_connection *con) 1352 { 1353 int to = 0; 1354 1355 return read_partial(con, &to, sizeof(con->in_temp_ack), 1356 &con->in_temp_ack); 1357 } 1358 1359 1360 /* 1361 * We can finally discard anything that's been acked. 1362 */ 1363 static void process_ack(struct ceph_connection *con) 1364 { 1365 struct ceph_msg *m; 1366 u64 ack = le64_to_cpu(con->in_temp_ack); 1367 u64 seq; 1368 1369 while (!list_empty(&con->out_sent)) { 1370 m = list_first_entry(&con->out_sent, struct ceph_msg, 1371 list_head); 1372 seq = le64_to_cpu(m->hdr.seq); 1373 if (seq > ack) 1374 break; 1375 dout("got ack for seq %llu type %d at %p\n", seq, 1376 le16_to_cpu(m->hdr.type), m); 1377 ceph_msg_remove(m); 1378 } 1379 prepare_read_tag(con); 1380 } 1381 1382 1383 1384 1385 static int read_partial_message_section(struct ceph_connection *con, 1386 struct kvec *section, 1387 unsigned int sec_len, u32 *crc) 1388 { 1389 int ret, left; 1390 1391 BUG_ON(!section); 1392 1393 while (section->iov_len < sec_len) { 1394 BUG_ON(section->iov_base == NULL); 1395 left = sec_len - section->iov_len; 1396 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 1397 section->iov_len, left); 1398 if (ret <= 0) 1399 return ret; 1400 section->iov_len += ret; 1401 if (section->iov_len == sec_len) 1402 *crc = crc32c(0, section->iov_base, 1403 section->iov_len); 1404 } 1405 1406 return 1; 1407 } 1408 1409 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con, 1410 struct ceph_msg_header *hdr, 1411 int *skip); 1412 1413 1414 static int read_partial_message_pages(struct ceph_connection *con, 1415 struct page **pages, 1416 unsigned data_len, int datacrc) 1417 { 1418 void *p; 1419 int ret; 1420 int left; 1421 1422 left = min((int)(data_len - con->in_msg_pos.data_pos), 1423 (int)(PAGE_SIZE - con->in_msg_pos.page_pos)); 1424 /* (page) data */ 1425 BUG_ON(pages == NULL); 1426 p = kmap(pages[con->in_msg_pos.page]); 1427 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, 1428 left); 1429 if (ret > 0 && datacrc) 1430 con->in_data_crc = 1431 crc32c(con->in_data_crc, 1432 p + con->in_msg_pos.page_pos, ret); 1433 kunmap(pages[con->in_msg_pos.page]); 1434 if (ret <= 0) 1435 return ret; 1436 con->in_msg_pos.data_pos += ret; 1437 con->in_msg_pos.page_pos += ret; 1438 if (con->in_msg_pos.page_pos == PAGE_SIZE) { 1439 con->in_msg_pos.page_pos = 0; 1440 con->in_msg_pos.page++; 1441 } 1442 1443 return ret; 1444 } 1445 1446 #ifdef CONFIG_BLOCK 1447 static int read_partial_message_bio(struct ceph_connection *con, 1448 struct bio **bio_iter, int *bio_seg, 1449 unsigned data_len, int datacrc) 1450 { 1451 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg); 1452 void *p; 1453 int ret, left; 1454 1455 if (IS_ERR(bv)) 1456 return PTR_ERR(bv); 1457 1458 left = min((int)(data_len - con->in_msg_pos.data_pos), 1459 (int)(bv->bv_len - con->in_msg_pos.page_pos)); 1460 1461 p = kmap(bv->bv_page) + bv->bv_offset; 1462 1463 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, 1464 left); 1465 if (ret > 0 && datacrc) 1466 con->in_data_crc = 1467 crc32c(con->in_data_crc, 1468 p + con->in_msg_pos.page_pos, ret); 1469 kunmap(bv->bv_page); 1470 if (ret <= 0) 1471 return ret; 1472 con->in_msg_pos.data_pos += ret; 1473 con->in_msg_pos.page_pos += ret; 1474 if (con->in_msg_pos.page_pos == bv->bv_len) { 1475 con->in_msg_pos.page_pos = 0; 1476 iter_bio_next(bio_iter, bio_seg); 1477 } 1478 1479 return ret; 1480 } 1481 #endif 1482 1483 /* 1484 * read (part of) a message. 1485 */ 1486 static int read_partial_message(struct ceph_connection *con) 1487 { 1488 struct ceph_msg *m = con->in_msg; 1489 int ret; 1490 int to, left; 1491 unsigned front_len, middle_len, data_len; 1492 int datacrc = con->msgr->nocrc; 1493 int skip; 1494 u64 seq; 1495 1496 dout("read_partial_message con %p msg %p\n", con, m); 1497 1498 /* header */ 1499 while (con->in_base_pos < sizeof(con->in_hdr)) { 1500 left = sizeof(con->in_hdr) - con->in_base_pos; 1501 ret = ceph_tcp_recvmsg(con->sock, 1502 (char *)&con->in_hdr + con->in_base_pos, 1503 left); 1504 if (ret <= 0) 1505 return ret; 1506 con->in_base_pos += ret; 1507 if (con->in_base_pos == sizeof(con->in_hdr)) { 1508 u32 crc = crc32c(0, (void *)&con->in_hdr, 1509 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc)); 1510 if (crc != le32_to_cpu(con->in_hdr.crc)) { 1511 pr_err("read_partial_message bad hdr " 1512 " crc %u != expected %u\n", 1513 crc, con->in_hdr.crc); 1514 return -EBADMSG; 1515 } 1516 } 1517 } 1518 front_len = le32_to_cpu(con->in_hdr.front_len); 1519 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 1520 return -EIO; 1521 middle_len = le32_to_cpu(con->in_hdr.middle_len); 1522 if (middle_len > CEPH_MSG_MAX_DATA_LEN) 1523 return -EIO; 1524 data_len = le32_to_cpu(con->in_hdr.data_len); 1525 if (data_len > CEPH_MSG_MAX_DATA_LEN) 1526 return -EIO; 1527 1528 /* verify seq# */ 1529 seq = le64_to_cpu(con->in_hdr.seq); 1530 if ((s64)seq - (s64)con->in_seq < 1) { 1531 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 1532 ENTITY_NAME(con->peer_name), 1533 ceph_pr_addr(&con->peer_addr.in_addr), 1534 seq, con->in_seq + 1); 1535 con->in_base_pos = -front_len - middle_len - data_len - 1536 sizeof(m->footer); 1537 con->in_tag = CEPH_MSGR_TAG_READY; 1538 return 0; 1539 } else if ((s64)seq - (s64)con->in_seq > 1) { 1540 pr_err("read_partial_message bad seq %lld expected %lld\n", 1541 seq, con->in_seq + 1); 1542 con->error_msg = "bad message sequence # for incoming message"; 1543 return -EBADMSG; 1544 } 1545 1546 /* allocate message? */ 1547 if (!con->in_msg) { 1548 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 1549 con->in_hdr.front_len, con->in_hdr.data_len); 1550 skip = 0; 1551 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip); 1552 if (skip) { 1553 /* skip this message */ 1554 dout("alloc_msg said skip message\n"); 1555 BUG_ON(con->in_msg); 1556 con->in_base_pos = -front_len - middle_len - data_len - 1557 sizeof(m->footer); 1558 con->in_tag = CEPH_MSGR_TAG_READY; 1559 con->in_seq++; 1560 return 0; 1561 } 1562 if (!con->in_msg) { 1563 con->error_msg = 1564 "error allocating memory for incoming message"; 1565 return -ENOMEM; 1566 } 1567 m = con->in_msg; 1568 m->front.iov_len = 0; /* haven't read it yet */ 1569 if (m->middle) 1570 m->middle->vec.iov_len = 0; 1571 1572 con->in_msg_pos.page = 0; 1573 if (m->pages) 1574 con->in_msg_pos.page_pos = m->page_alignment; 1575 else 1576 con->in_msg_pos.page_pos = 0; 1577 con->in_msg_pos.data_pos = 0; 1578 } 1579 1580 /* front */ 1581 ret = read_partial_message_section(con, &m->front, front_len, 1582 &con->in_front_crc); 1583 if (ret <= 0) 1584 return ret; 1585 1586 /* middle */ 1587 if (m->middle) { 1588 ret = read_partial_message_section(con, &m->middle->vec, 1589 middle_len, 1590 &con->in_middle_crc); 1591 if (ret <= 0) 1592 return ret; 1593 } 1594 #ifdef CONFIG_BLOCK 1595 if (m->bio && !m->bio_iter) 1596 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg); 1597 #endif 1598 1599 /* (page) data */ 1600 while (con->in_msg_pos.data_pos < data_len) { 1601 if (m->pages) { 1602 ret = read_partial_message_pages(con, m->pages, 1603 data_len, datacrc); 1604 if (ret <= 0) 1605 return ret; 1606 #ifdef CONFIG_BLOCK 1607 } else if (m->bio) { 1608 1609 ret = read_partial_message_bio(con, 1610 &m->bio_iter, &m->bio_seg, 1611 data_len, datacrc); 1612 if (ret <= 0) 1613 return ret; 1614 #endif 1615 } else { 1616 BUG_ON(1); 1617 } 1618 } 1619 1620 /* footer */ 1621 to = sizeof(m->hdr) + sizeof(m->footer); 1622 while (con->in_base_pos < to) { 1623 left = to - con->in_base_pos; 1624 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer + 1625 (con->in_base_pos - sizeof(m->hdr)), 1626 left); 1627 if (ret <= 0) 1628 return ret; 1629 con->in_base_pos += ret; 1630 } 1631 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 1632 m, front_len, m->footer.front_crc, middle_len, 1633 m->footer.middle_crc, data_len, m->footer.data_crc); 1634 1635 /* crc ok? */ 1636 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 1637 pr_err("read_partial_message %p front crc %u != exp. %u\n", 1638 m, con->in_front_crc, m->footer.front_crc); 1639 return -EBADMSG; 1640 } 1641 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 1642 pr_err("read_partial_message %p middle crc %u != exp %u\n", 1643 m, con->in_middle_crc, m->footer.middle_crc); 1644 return -EBADMSG; 1645 } 1646 if (datacrc && 1647 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 1648 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 1649 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 1650 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 1651 return -EBADMSG; 1652 } 1653 1654 return 1; /* done! */ 1655 } 1656 1657 /* 1658 * Process message. This happens in the worker thread. The callback should 1659 * be careful not to do anything that waits on other incoming messages or it 1660 * may deadlock. 1661 */ 1662 static void process_message(struct ceph_connection *con) 1663 { 1664 struct ceph_msg *msg; 1665 1666 msg = con->in_msg; 1667 con->in_msg = NULL; 1668 1669 /* if first message, set peer_name */ 1670 if (con->peer_name.type == 0) 1671 con->peer_name = msg->hdr.src; 1672 1673 con->in_seq++; 1674 mutex_unlock(&con->mutex); 1675 1676 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 1677 msg, le64_to_cpu(msg->hdr.seq), 1678 ENTITY_NAME(msg->hdr.src), 1679 le16_to_cpu(msg->hdr.type), 1680 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 1681 le32_to_cpu(msg->hdr.front_len), 1682 le32_to_cpu(msg->hdr.data_len), 1683 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 1684 con->ops->dispatch(con, msg); 1685 1686 mutex_lock(&con->mutex); 1687 prepare_read_tag(con); 1688 } 1689 1690 1691 /* 1692 * Write something to the socket. Called in a worker thread when the 1693 * socket appears to be writeable and we have something ready to send. 1694 */ 1695 static int try_write(struct ceph_connection *con) 1696 { 1697 struct ceph_messenger *msgr = con->msgr; 1698 int ret = 1; 1699 1700 dout("try_write start %p state %lu nref %d\n", con, con->state, 1701 atomic_read(&con->nref)); 1702 1703 more: 1704 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 1705 1706 /* open the socket first? */ 1707 if (con->sock == NULL) { 1708 /* 1709 * if we were STANDBY and are reconnecting _this_ 1710 * connection, bump connect_seq now. Always bump 1711 * global_seq. 1712 */ 1713 if (test_and_clear_bit(STANDBY, &con->state)) 1714 con->connect_seq++; 1715 1716 prepare_write_banner(msgr, con); 1717 prepare_write_connect(msgr, con, 1); 1718 prepare_read_banner(con); 1719 set_bit(CONNECTING, &con->state); 1720 clear_bit(NEGOTIATING, &con->state); 1721 1722 BUG_ON(con->in_msg); 1723 con->in_tag = CEPH_MSGR_TAG_READY; 1724 dout("try_write initiating connect on %p new state %lu\n", 1725 con, con->state); 1726 con->sock = ceph_tcp_connect(con); 1727 if (IS_ERR(con->sock)) { 1728 con->sock = NULL; 1729 con->error_msg = "connect error"; 1730 ret = -1; 1731 goto out; 1732 } 1733 } 1734 1735 more_kvec: 1736 /* kvec data queued? */ 1737 if (con->out_skip) { 1738 ret = write_partial_skip(con); 1739 if (ret <= 0) 1740 goto done; 1741 if (ret < 0) { 1742 dout("try_write write_partial_skip err %d\n", ret); 1743 goto done; 1744 } 1745 } 1746 if (con->out_kvec_left) { 1747 ret = write_partial_kvec(con); 1748 if (ret <= 0) 1749 goto done; 1750 } 1751 1752 /* msg pages? */ 1753 if (con->out_msg) { 1754 if (con->out_msg_done) { 1755 ceph_msg_put(con->out_msg); 1756 con->out_msg = NULL; /* we're done with this one */ 1757 goto do_next; 1758 } 1759 1760 ret = write_partial_msg_pages(con); 1761 if (ret == 1) 1762 goto more_kvec; /* we need to send the footer, too! */ 1763 if (ret == 0) 1764 goto done; 1765 if (ret < 0) { 1766 dout("try_write write_partial_msg_pages err %d\n", 1767 ret); 1768 goto done; 1769 } 1770 } 1771 1772 do_next: 1773 if (!test_bit(CONNECTING, &con->state)) { 1774 /* is anything else pending? */ 1775 if (!list_empty(&con->out_queue)) { 1776 prepare_write_message(con); 1777 goto more; 1778 } 1779 if (con->in_seq > con->in_seq_acked) { 1780 prepare_write_ack(con); 1781 goto more; 1782 } 1783 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) { 1784 prepare_write_keepalive(con); 1785 goto more; 1786 } 1787 } 1788 1789 /* Nothing to do! */ 1790 clear_bit(WRITE_PENDING, &con->state); 1791 dout("try_write nothing else to write.\n"); 1792 done: 1793 ret = 0; 1794 out: 1795 dout("try_write done on %p\n", con); 1796 return ret; 1797 } 1798 1799 1800 1801 /* 1802 * Read what we can from the socket. 1803 */ 1804 static int try_read(struct ceph_connection *con) 1805 { 1806 int ret = -1; 1807 1808 if (!con->sock) 1809 return 0; 1810 1811 if (test_bit(STANDBY, &con->state)) 1812 return 0; 1813 1814 dout("try_read start on %p\n", con); 1815 1816 more: 1817 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 1818 con->in_base_pos); 1819 if (test_bit(CONNECTING, &con->state)) { 1820 if (!test_bit(NEGOTIATING, &con->state)) { 1821 dout("try_read connecting\n"); 1822 ret = read_partial_banner(con); 1823 if (ret <= 0) 1824 goto done; 1825 if (process_banner(con) < 0) { 1826 ret = -1; 1827 goto out; 1828 } 1829 } 1830 ret = read_partial_connect(con); 1831 if (ret <= 0) 1832 goto done; 1833 if (process_connect(con) < 0) { 1834 ret = -1; 1835 goto out; 1836 } 1837 goto more; 1838 } 1839 1840 if (con->in_base_pos < 0) { 1841 /* 1842 * skipping + discarding content. 1843 * 1844 * FIXME: there must be a better way to do this! 1845 */ 1846 static char buf[1024]; 1847 int skip = min(1024, -con->in_base_pos); 1848 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 1849 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 1850 if (ret <= 0) 1851 goto done; 1852 con->in_base_pos += ret; 1853 if (con->in_base_pos) 1854 goto more; 1855 } 1856 if (con->in_tag == CEPH_MSGR_TAG_READY) { 1857 /* 1858 * what's next? 1859 */ 1860 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 1861 if (ret <= 0) 1862 goto done; 1863 dout("try_read got tag %d\n", (int)con->in_tag); 1864 switch (con->in_tag) { 1865 case CEPH_MSGR_TAG_MSG: 1866 prepare_read_message(con); 1867 break; 1868 case CEPH_MSGR_TAG_ACK: 1869 prepare_read_ack(con); 1870 break; 1871 case CEPH_MSGR_TAG_CLOSE: 1872 set_bit(CLOSED, &con->state); /* fixme */ 1873 goto done; 1874 default: 1875 goto bad_tag; 1876 } 1877 } 1878 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 1879 ret = read_partial_message(con); 1880 if (ret <= 0) { 1881 switch (ret) { 1882 case -EBADMSG: 1883 con->error_msg = "bad crc"; 1884 ret = -EIO; 1885 goto out; 1886 case -EIO: 1887 con->error_msg = "io error"; 1888 goto out; 1889 default: 1890 goto done; 1891 } 1892 } 1893 if (con->in_tag == CEPH_MSGR_TAG_READY) 1894 goto more; 1895 process_message(con); 1896 goto more; 1897 } 1898 if (con->in_tag == CEPH_MSGR_TAG_ACK) { 1899 ret = read_partial_ack(con); 1900 if (ret <= 0) 1901 goto done; 1902 process_ack(con); 1903 goto more; 1904 } 1905 1906 done: 1907 ret = 0; 1908 out: 1909 dout("try_read done on %p\n", con); 1910 return ret; 1911 1912 bad_tag: 1913 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 1914 con->error_msg = "protocol error, garbage tag"; 1915 ret = -1; 1916 goto out; 1917 } 1918 1919 1920 /* 1921 * Atomically queue work on a connection. Bump @con reference to 1922 * avoid races with connection teardown. 1923 */ 1924 static void queue_con(struct ceph_connection *con) 1925 { 1926 if (test_bit(DEAD, &con->state)) { 1927 dout("queue_con %p ignoring: DEAD\n", 1928 con); 1929 return; 1930 } 1931 1932 if (!con->ops->get(con)) { 1933 dout("queue_con %p ref count 0\n", con); 1934 return; 1935 } 1936 1937 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) { 1938 dout("queue_con %p - already queued\n", con); 1939 con->ops->put(con); 1940 } else { 1941 dout("queue_con %p\n", con); 1942 } 1943 } 1944 1945 /* 1946 * Do some work on a connection. Drop a connection ref when we're done. 1947 */ 1948 static void con_work(struct work_struct *work) 1949 { 1950 struct ceph_connection *con = container_of(work, struct ceph_connection, 1951 work.work); 1952 1953 mutex_lock(&con->mutex); 1954 1955 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */ 1956 dout("con_work CLOSED\n"); 1957 con_close_socket(con); 1958 goto done; 1959 } 1960 if (test_and_clear_bit(OPENING, &con->state)) { 1961 /* reopen w/ new peer */ 1962 dout("con_work OPENING\n"); 1963 con_close_socket(con); 1964 } 1965 1966 if (test_and_clear_bit(SOCK_CLOSED, &con->state) || 1967 try_read(con) < 0 || 1968 try_write(con) < 0) { 1969 mutex_unlock(&con->mutex); 1970 ceph_fault(con); /* error/fault path */ 1971 goto done_unlocked; 1972 } 1973 1974 done: 1975 mutex_unlock(&con->mutex); 1976 done_unlocked: 1977 con->ops->put(con); 1978 } 1979 1980 1981 /* 1982 * Generic error/fault handler. A retry mechanism is used with 1983 * exponential backoff 1984 */ 1985 static void ceph_fault(struct ceph_connection *con) 1986 { 1987 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 1988 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 1989 dout("fault %p state %lu to peer %s\n", 1990 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 1991 1992 if (test_bit(LOSSYTX, &con->state)) { 1993 dout("fault on LOSSYTX channel\n"); 1994 goto out; 1995 } 1996 1997 mutex_lock(&con->mutex); 1998 if (test_bit(CLOSED, &con->state)) 1999 goto out_unlock; 2000 2001 con_close_socket(con); 2002 2003 if (con->in_msg) { 2004 ceph_msg_put(con->in_msg); 2005 con->in_msg = NULL; 2006 } 2007 2008 /* Requeue anything that hasn't been acked */ 2009 list_splice_init(&con->out_sent, &con->out_queue); 2010 2011 /* If there are no messages in the queue, place the connection 2012 * in a STANDBY state (i.e., don't try to reconnect just yet). */ 2013 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) { 2014 dout("fault setting STANDBY\n"); 2015 set_bit(STANDBY, &con->state); 2016 } else { 2017 /* retry after a delay. */ 2018 if (con->delay == 0) 2019 con->delay = BASE_DELAY_INTERVAL; 2020 else if (con->delay < MAX_DELAY_INTERVAL) 2021 con->delay *= 2; 2022 dout("fault queueing %p delay %lu\n", con, con->delay); 2023 con->ops->get(con); 2024 if (queue_delayed_work(ceph_msgr_wq, &con->work, 2025 round_jiffies_relative(con->delay)) == 0) 2026 con->ops->put(con); 2027 } 2028 2029 out_unlock: 2030 mutex_unlock(&con->mutex); 2031 out: 2032 /* 2033 * in case we faulted due to authentication, invalidate our 2034 * current tickets so that we can get new ones. 2035 */ 2036 if (con->auth_retry && con->ops->invalidate_authorizer) { 2037 dout("calling invalidate_authorizer()\n"); 2038 con->ops->invalidate_authorizer(con); 2039 } 2040 2041 if (con->ops->fault) 2042 con->ops->fault(con); 2043 } 2044 2045 2046 2047 /* 2048 * create a new messenger instance 2049 */ 2050 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr, 2051 u32 supported_features, 2052 u32 required_features) 2053 { 2054 struct ceph_messenger *msgr; 2055 2056 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL); 2057 if (msgr == NULL) 2058 return ERR_PTR(-ENOMEM); 2059 2060 msgr->supported_features = supported_features; 2061 msgr->required_features = required_features; 2062 2063 spin_lock_init(&msgr->global_seq_lock); 2064 2065 /* the zero page is needed if a request is "canceled" while the message 2066 * is being written over the socket */ 2067 msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO); 2068 if (!msgr->zero_page) { 2069 kfree(msgr); 2070 return ERR_PTR(-ENOMEM); 2071 } 2072 kmap(msgr->zero_page); 2073 2074 if (myaddr) 2075 msgr->inst.addr = *myaddr; 2076 2077 /* select a random nonce */ 2078 msgr->inst.addr.type = 0; 2079 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2080 encode_my_addr(msgr); 2081 2082 dout("messenger_create %p\n", msgr); 2083 return msgr; 2084 } 2085 EXPORT_SYMBOL(ceph_messenger_create); 2086 2087 void ceph_messenger_destroy(struct ceph_messenger *msgr) 2088 { 2089 dout("destroy %p\n", msgr); 2090 kunmap(msgr->zero_page); 2091 __free_page(msgr->zero_page); 2092 kfree(msgr); 2093 dout("destroyed messenger %p\n", msgr); 2094 } 2095 EXPORT_SYMBOL(ceph_messenger_destroy); 2096 2097 /* 2098 * Queue up an outgoing message on the given connection. 2099 */ 2100 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2101 { 2102 if (test_bit(CLOSED, &con->state)) { 2103 dout("con_send %p closed, dropping %p\n", con, msg); 2104 ceph_msg_put(msg); 2105 return; 2106 } 2107 2108 /* set src+dst */ 2109 msg->hdr.src = con->msgr->inst.name; 2110 2111 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2112 2113 msg->needs_out_seq = true; 2114 2115 /* queue */ 2116 mutex_lock(&con->mutex); 2117 BUG_ON(!list_empty(&msg->list_head)); 2118 list_add_tail(&msg->list_head, &con->out_queue); 2119 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2120 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2121 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2122 le32_to_cpu(msg->hdr.front_len), 2123 le32_to_cpu(msg->hdr.middle_len), 2124 le32_to_cpu(msg->hdr.data_len)); 2125 mutex_unlock(&con->mutex); 2126 2127 /* if there wasn't anything waiting to send before, queue 2128 * new work */ 2129 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0) 2130 queue_con(con); 2131 } 2132 EXPORT_SYMBOL(ceph_con_send); 2133 2134 /* 2135 * Revoke a message that was previously queued for send 2136 */ 2137 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg) 2138 { 2139 mutex_lock(&con->mutex); 2140 if (!list_empty(&msg->list_head)) { 2141 dout("con_revoke %p msg %p - was on queue\n", con, msg); 2142 list_del_init(&msg->list_head); 2143 ceph_msg_put(msg); 2144 msg->hdr.seq = 0; 2145 } 2146 if (con->out_msg == msg) { 2147 dout("con_revoke %p msg %p - was sending\n", con, msg); 2148 con->out_msg = NULL; 2149 if (con->out_kvec_is_msg) { 2150 con->out_skip = con->out_kvec_bytes; 2151 con->out_kvec_is_msg = false; 2152 } 2153 ceph_msg_put(msg); 2154 msg->hdr.seq = 0; 2155 } 2156 mutex_unlock(&con->mutex); 2157 } 2158 2159 /* 2160 * Revoke a message that we may be reading data into 2161 */ 2162 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg) 2163 { 2164 mutex_lock(&con->mutex); 2165 if (con->in_msg && con->in_msg == msg) { 2166 unsigned front_len = le32_to_cpu(con->in_hdr.front_len); 2167 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len); 2168 unsigned data_len = le32_to_cpu(con->in_hdr.data_len); 2169 2170 /* skip rest of message */ 2171 dout("con_revoke_pages %p msg %p revoked\n", con, msg); 2172 con->in_base_pos = con->in_base_pos - 2173 sizeof(struct ceph_msg_header) - 2174 front_len - 2175 middle_len - 2176 data_len - 2177 sizeof(struct ceph_msg_footer); 2178 ceph_msg_put(con->in_msg); 2179 con->in_msg = NULL; 2180 con->in_tag = CEPH_MSGR_TAG_READY; 2181 con->in_seq++; 2182 } else { 2183 dout("con_revoke_pages %p msg %p pages %p no-op\n", 2184 con, con->in_msg, msg); 2185 } 2186 mutex_unlock(&con->mutex); 2187 } 2188 2189 /* 2190 * Queue a keepalive byte to ensure the tcp connection is alive. 2191 */ 2192 void ceph_con_keepalive(struct ceph_connection *con) 2193 { 2194 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 && 2195 test_and_set_bit(WRITE_PENDING, &con->state) == 0) 2196 queue_con(con); 2197 } 2198 EXPORT_SYMBOL(ceph_con_keepalive); 2199 2200 2201 /* 2202 * construct a new message with given type, size 2203 * the new msg has a ref count of 1. 2204 */ 2205 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags) 2206 { 2207 struct ceph_msg *m; 2208 2209 m = kmalloc(sizeof(*m), flags); 2210 if (m == NULL) 2211 goto out; 2212 kref_init(&m->kref); 2213 INIT_LIST_HEAD(&m->list_head); 2214 2215 m->hdr.tid = 0; 2216 m->hdr.type = cpu_to_le16(type); 2217 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 2218 m->hdr.version = 0; 2219 m->hdr.front_len = cpu_to_le32(front_len); 2220 m->hdr.middle_len = 0; 2221 m->hdr.data_len = 0; 2222 m->hdr.data_off = 0; 2223 m->hdr.reserved = 0; 2224 m->footer.front_crc = 0; 2225 m->footer.middle_crc = 0; 2226 m->footer.data_crc = 0; 2227 m->footer.flags = 0; 2228 m->front_max = front_len; 2229 m->front_is_vmalloc = false; 2230 m->more_to_follow = false; 2231 m->pool = NULL; 2232 2233 /* front */ 2234 if (front_len) { 2235 if (front_len > PAGE_CACHE_SIZE) { 2236 m->front.iov_base = __vmalloc(front_len, flags, 2237 PAGE_KERNEL); 2238 m->front_is_vmalloc = true; 2239 } else { 2240 m->front.iov_base = kmalloc(front_len, flags); 2241 } 2242 if (m->front.iov_base == NULL) { 2243 pr_err("msg_new can't allocate %d bytes\n", 2244 front_len); 2245 goto out2; 2246 } 2247 } else { 2248 m->front.iov_base = NULL; 2249 } 2250 m->front.iov_len = front_len; 2251 2252 /* middle */ 2253 m->middle = NULL; 2254 2255 /* data */ 2256 m->nr_pages = 0; 2257 m->page_alignment = 0; 2258 m->pages = NULL; 2259 m->pagelist = NULL; 2260 m->bio = NULL; 2261 m->bio_iter = NULL; 2262 m->bio_seg = 0; 2263 m->trail = NULL; 2264 2265 dout("ceph_msg_new %p front %d\n", m, front_len); 2266 return m; 2267 2268 out2: 2269 ceph_msg_put(m); 2270 out: 2271 pr_err("msg_new can't create type %d front %d\n", type, front_len); 2272 return NULL; 2273 } 2274 EXPORT_SYMBOL(ceph_msg_new); 2275 2276 /* 2277 * Allocate "middle" portion of a message, if it is needed and wasn't 2278 * allocated by alloc_msg. This allows us to read a small fixed-size 2279 * per-type header in the front and then gracefully fail (i.e., 2280 * propagate the error to the caller based on info in the front) when 2281 * the middle is too large. 2282 */ 2283 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 2284 { 2285 int type = le16_to_cpu(msg->hdr.type); 2286 int middle_len = le32_to_cpu(msg->hdr.middle_len); 2287 2288 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 2289 ceph_msg_type_name(type), middle_len); 2290 BUG_ON(!middle_len); 2291 BUG_ON(msg->middle); 2292 2293 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 2294 if (!msg->middle) 2295 return -ENOMEM; 2296 return 0; 2297 } 2298 2299 /* 2300 * Generic message allocator, for incoming messages. 2301 */ 2302 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con, 2303 struct ceph_msg_header *hdr, 2304 int *skip) 2305 { 2306 int type = le16_to_cpu(hdr->type); 2307 int front_len = le32_to_cpu(hdr->front_len); 2308 int middle_len = le32_to_cpu(hdr->middle_len); 2309 struct ceph_msg *msg = NULL; 2310 int ret; 2311 2312 if (con->ops->alloc_msg) { 2313 mutex_unlock(&con->mutex); 2314 msg = con->ops->alloc_msg(con, hdr, skip); 2315 mutex_lock(&con->mutex); 2316 if (!msg || *skip) 2317 return NULL; 2318 } 2319 if (!msg) { 2320 *skip = 0; 2321 msg = ceph_msg_new(type, front_len, GFP_NOFS); 2322 if (!msg) { 2323 pr_err("unable to allocate msg type %d len %d\n", 2324 type, front_len); 2325 return NULL; 2326 } 2327 msg->page_alignment = le16_to_cpu(hdr->data_off); 2328 } 2329 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 2330 2331 if (middle_len && !msg->middle) { 2332 ret = ceph_alloc_middle(con, msg); 2333 if (ret < 0) { 2334 ceph_msg_put(msg); 2335 return NULL; 2336 } 2337 } 2338 2339 return msg; 2340 } 2341 2342 2343 /* 2344 * Free a generically kmalloc'd message. 2345 */ 2346 void ceph_msg_kfree(struct ceph_msg *m) 2347 { 2348 dout("msg_kfree %p\n", m); 2349 if (m->front_is_vmalloc) 2350 vfree(m->front.iov_base); 2351 else 2352 kfree(m->front.iov_base); 2353 kfree(m); 2354 } 2355 2356 /* 2357 * Drop a msg ref. Destroy as needed. 2358 */ 2359 void ceph_msg_last_put(struct kref *kref) 2360 { 2361 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 2362 2363 dout("ceph_msg_put last one on %p\n", m); 2364 WARN_ON(!list_empty(&m->list_head)); 2365 2366 /* drop middle, data, if any */ 2367 if (m->middle) { 2368 ceph_buffer_put(m->middle); 2369 m->middle = NULL; 2370 } 2371 m->nr_pages = 0; 2372 m->pages = NULL; 2373 2374 if (m->pagelist) { 2375 ceph_pagelist_release(m->pagelist); 2376 kfree(m->pagelist); 2377 m->pagelist = NULL; 2378 } 2379 2380 m->trail = NULL; 2381 2382 if (m->pool) 2383 ceph_msgpool_put(m->pool, m); 2384 else 2385 ceph_msg_kfree(m); 2386 } 2387 EXPORT_SYMBOL(ceph_msg_last_put); 2388 2389 void ceph_msg_dump(struct ceph_msg *msg) 2390 { 2391 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg, 2392 msg->front_max, msg->nr_pages); 2393 print_hex_dump(KERN_DEBUG, "header: ", 2394 DUMP_PREFIX_OFFSET, 16, 1, 2395 &msg->hdr, sizeof(msg->hdr), true); 2396 print_hex_dump(KERN_DEBUG, " front: ", 2397 DUMP_PREFIX_OFFSET, 16, 1, 2398 msg->front.iov_base, msg->front.iov_len, true); 2399 if (msg->middle) 2400 print_hex_dump(KERN_DEBUG, "middle: ", 2401 DUMP_PREFIX_OFFSET, 16, 1, 2402 msg->middle->vec.iov_base, 2403 msg->middle->vec.iov_len, true); 2404 print_hex_dump(KERN_DEBUG, "footer: ", 2405 DUMP_PREFIX_OFFSET, 16, 1, 2406 &msg->footer, sizeof(msg->footer), true); 2407 } 2408 EXPORT_SYMBOL(ceph_msg_dump); 2409