xref: /linux/net/ceph/messenger.c (revision 394d83c17fac2b7bcf05cb99d1e945135767bb6b)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <net/tcp.h>
15 
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 
21 /*
22  * Ceph uses the messenger to exchange ceph_msg messages with other
23  * hosts in the system.  The messenger provides ordered and reliable
24  * delivery.  We tolerate TCP disconnects by reconnecting (with
25  * exponential backoff) in the case of a fault (disconnection, bad
26  * crc, protocol error).  Acks allow sent messages to be discarded by
27  * the sender.
28  */
29 
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg = CEPH_MSGR_TAG_MSG;
32 static char tag_ack = CEPH_MSGR_TAG_ACK;
33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
34 
35 #ifdef CONFIG_LOCKDEP
36 static struct lock_class_key socket_class;
37 #endif
38 
39 
40 static void queue_con(struct ceph_connection *con);
41 static void con_work(struct work_struct *);
42 static void ceph_fault(struct ceph_connection *con);
43 
44 /*
45  * nicely render a sockaddr as a string.
46  */
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
50 static DEFINE_SPINLOCK(addr_str_lock);
51 static int last_addr_str;
52 
53 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
54 {
55 	int i;
56 	char *s;
57 	struct sockaddr_in *in4 = (void *)ss;
58 	struct sockaddr_in6 *in6 = (void *)ss;
59 
60 	spin_lock(&addr_str_lock);
61 	i = last_addr_str++;
62 	if (last_addr_str == MAX_ADDR_STR)
63 		last_addr_str = 0;
64 	spin_unlock(&addr_str_lock);
65 	s = addr_str[i];
66 
67 	switch (ss->ss_family) {
68 	case AF_INET:
69 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
70 			 (unsigned int)ntohs(in4->sin_port));
71 		break;
72 
73 	case AF_INET6:
74 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
75 			 (unsigned int)ntohs(in6->sin6_port));
76 		break;
77 
78 	default:
79 		sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
80 	}
81 
82 	return s;
83 }
84 EXPORT_SYMBOL(ceph_pr_addr);
85 
86 static void encode_my_addr(struct ceph_messenger *msgr)
87 {
88 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
89 	ceph_encode_addr(&msgr->my_enc_addr);
90 }
91 
92 /*
93  * work queue for all reading and writing to/from the socket.
94  */
95 struct workqueue_struct *ceph_msgr_wq;
96 
97 int ceph_msgr_init(void)
98 {
99 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
100 	if (!ceph_msgr_wq) {
101 		pr_err("msgr_init failed to create workqueue\n");
102 		return -ENOMEM;
103 	}
104 	return 0;
105 }
106 EXPORT_SYMBOL(ceph_msgr_init);
107 
108 void ceph_msgr_exit(void)
109 {
110 	destroy_workqueue(ceph_msgr_wq);
111 }
112 EXPORT_SYMBOL(ceph_msgr_exit);
113 
114 void ceph_msgr_flush(void)
115 {
116 	flush_workqueue(ceph_msgr_wq);
117 }
118 EXPORT_SYMBOL(ceph_msgr_flush);
119 
120 
121 /*
122  * socket callback functions
123  */
124 
125 /* data available on socket, or listen socket received a connect */
126 static void ceph_data_ready(struct sock *sk, int count_unused)
127 {
128 	struct ceph_connection *con =
129 		(struct ceph_connection *)sk->sk_user_data;
130 	if (sk->sk_state != TCP_CLOSE_WAIT) {
131 		dout("ceph_data_ready on %p state = %lu, queueing work\n",
132 		     con, con->state);
133 		queue_con(con);
134 	}
135 }
136 
137 /* socket has buffer space for writing */
138 static void ceph_write_space(struct sock *sk)
139 {
140 	struct ceph_connection *con =
141 		(struct ceph_connection *)sk->sk_user_data;
142 
143 	/* only queue to workqueue if there is data we want to write. */
144 	if (test_bit(WRITE_PENDING, &con->state)) {
145 		dout("ceph_write_space %p queueing write work\n", con);
146 		queue_con(con);
147 	} else {
148 		dout("ceph_write_space %p nothing to write\n", con);
149 	}
150 
151 	/* since we have our own write_space, clear the SOCK_NOSPACE flag */
152 	clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
153 }
154 
155 /* socket's state has changed */
156 static void ceph_state_change(struct sock *sk)
157 {
158 	struct ceph_connection *con =
159 		(struct ceph_connection *)sk->sk_user_data;
160 
161 	dout("ceph_state_change %p state = %lu sk_state = %u\n",
162 	     con, con->state, sk->sk_state);
163 
164 	if (test_bit(CLOSED, &con->state))
165 		return;
166 
167 	switch (sk->sk_state) {
168 	case TCP_CLOSE:
169 		dout("ceph_state_change TCP_CLOSE\n");
170 	case TCP_CLOSE_WAIT:
171 		dout("ceph_state_change TCP_CLOSE_WAIT\n");
172 		if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
173 			if (test_bit(CONNECTING, &con->state))
174 				con->error_msg = "connection failed";
175 			else
176 				con->error_msg = "socket closed";
177 			queue_con(con);
178 		}
179 		break;
180 	case TCP_ESTABLISHED:
181 		dout("ceph_state_change TCP_ESTABLISHED\n");
182 		queue_con(con);
183 		break;
184 	}
185 }
186 
187 /*
188  * set up socket callbacks
189  */
190 static void set_sock_callbacks(struct socket *sock,
191 			       struct ceph_connection *con)
192 {
193 	struct sock *sk = sock->sk;
194 	sk->sk_user_data = (void *)con;
195 	sk->sk_data_ready = ceph_data_ready;
196 	sk->sk_write_space = ceph_write_space;
197 	sk->sk_state_change = ceph_state_change;
198 }
199 
200 
201 /*
202  * socket helpers
203  */
204 
205 /*
206  * initiate connection to a remote socket.
207  */
208 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
209 {
210 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
211 	struct socket *sock;
212 	int ret;
213 
214 	BUG_ON(con->sock);
215 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
216 			       IPPROTO_TCP, &sock);
217 	if (ret)
218 		return ERR_PTR(ret);
219 	con->sock = sock;
220 	sock->sk->sk_allocation = GFP_NOFS;
221 
222 #ifdef CONFIG_LOCKDEP
223 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
224 #endif
225 
226 	set_sock_callbacks(sock, con);
227 
228 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
229 
230 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
231 				 O_NONBLOCK);
232 	if (ret == -EINPROGRESS) {
233 		dout("connect %s EINPROGRESS sk_state = %u\n",
234 		     ceph_pr_addr(&con->peer_addr.in_addr),
235 		     sock->sk->sk_state);
236 		ret = 0;
237 	}
238 	if (ret < 0) {
239 		pr_err("connect %s error %d\n",
240 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
241 		sock_release(sock);
242 		con->sock = NULL;
243 		con->error_msg = "connect error";
244 	}
245 
246 	if (ret < 0)
247 		return ERR_PTR(ret);
248 	return sock;
249 }
250 
251 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
252 {
253 	struct kvec iov = {buf, len};
254 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
255 
256 	return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
257 }
258 
259 /*
260  * write something.  @more is true if caller will be sending more data
261  * shortly.
262  */
263 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
264 		     size_t kvlen, size_t len, int more)
265 {
266 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
267 
268 	if (more)
269 		msg.msg_flags |= MSG_MORE;
270 	else
271 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
272 
273 	return kernel_sendmsg(sock, &msg, iov, kvlen, len);
274 }
275 
276 
277 /*
278  * Shutdown/close the socket for the given connection.
279  */
280 static int con_close_socket(struct ceph_connection *con)
281 {
282 	int rc;
283 
284 	dout("con_close_socket on %p sock %p\n", con, con->sock);
285 	if (!con->sock)
286 		return 0;
287 	set_bit(SOCK_CLOSED, &con->state);
288 	rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
289 	sock_release(con->sock);
290 	con->sock = NULL;
291 	clear_bit(SOCK_CLOSED, &con->state);
292 	return rc;
293 }
294 
295 /*
296  * Reset a connection.  Discard all incoming and outgoing messages
297  * and clear *_seq state.
298  */
299 static void ceph_msg_remove(struct ceph_msg *msg)
300 {
301 	list_del_init(&msg->list_head);
302 	ceph_msg_put(msg);
303 }
304 static void ceph_msg_remove_list(struct list_head *head)
305 {
306 	while (!list_empty(head)) {
307 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
308 							list_head);
309 		ceph_msg_remove(msg);
310 	}
311 }
312 
313 static void reset_connection(struct ceph_connection *con)
314 {
315 	/* reset connection, out_queue, msg_ and connect_seq */
316 	/* discard existing out_queue and msg_seq */
317 	ceph_msg_remove_list(&con->out_queue);
318 	ceph_msg_remove_list(&con->out_sent);
319 
320 	if (con->in_msg) {
321 		ceph_msg_put(con->in_msg);
322 		con->in_msg = NULL;
323 	}
324 
325 	con->connect_seq = 0;
326 	con->out_seq = 0;
327 	if (con->out_msg) {
328 		ceph_msg_put(con->out_msg);
329 		con->out_msg = NULL;
330 	}
331 	con->out_keepalive_pending = false;
332 	con->in_seq = 0;
333 	con->in_seq_acked = 0;
334 }
335 
336 /*
337  * mark a peer down.  drop any open connections.
338  */
339 void ceph_con_close(struct ceph_connection *con)
340 {
341 	dout("con_close %p peer %s\n", con,
342 	     ceph_pr_addr(&con->peer_addr.in_addr));
343 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
344 	clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
345 	clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
346 	clear_bit(KEEPALIVE_PENDING, &con->state);
347 	clear_bit(WRITE_PENDING, &con->state);
348 	mutex_lock(&con->mutex);
349 	reset_connection(con);
350 	con->peer_global_seq = 0;
351 	cancel_delayed_work(&con->work);
352 	mutex_unlock(&con->mutex);
353 	queue_con(con);
354 }
355 EXPORT_SYMBOL(ceph_con_close);
356 
357 /*
358  * Reopen a closed connection, with a new peer address.
359  */
360 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
361 {
362 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
363 	set_bit(OPENING, &con->state);
364 	clear_bit(CLOSED, &con->state);
365 	memcpy(&con->peer_addr, addr, sizeof(*addr));
366 	con->delay = 0;      /* reset backoff memory */
367 	queue_con(con);
368 }
369 EXPORT_SYMBOL(ceph_con_open);
370 
371 /*
372  * return true if this connection ever successfully opened
373  */
374 bool ceph_con_opened(struct ceph_connection *con)
375 {
376 	return con->connect_seq > 0;
377 }
378 
379 /*
380  * generic get/put
381  */
382 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
383 {
384 	dout("con_get %p nref = %d -> %d\n", con,
385 	     atomic_read(&con->nref), atomic_read(&con->nref) + 1);
386 	if (atomic_inc_not_zero(&con->nref))
387 		return con;
388 	return NULL;
389 }
390 
391 void ceph_con_put(struct ceph_connection *con)
392 {
393 	dout("con_put %p nref = %d -> %d\n", con,
394 	     atomic_read(&con->nref), atomic_read(&con->nref) - 1);
395 	BUG_ON(atomic_read(&con->nref) == 0);
396 	if (atomic_dec_and_test(&con->nref)) {
397 		BUG_ON(con->sock);
398 		kfree(con);
399 	}
400 }
401 
402 /*
403  * initialize a new connection.
404  */
405 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
406 {
407 	dout("con_init %p\n", con);
408 	memset(con, 0, sizeof(*con));
409 	atomic_set(&con->nref, 1);
410 	con->msgr = msgr;
411 	mutex_init(&con->mutex);
412 	INIT_LIST_HEAD(&con->out_queue);
413 	INIT_LIST_HEAD(&con->out_sent);
414 	INIT_DELAYED_WORK(&con->work, con_work);
415 }
416 EXPORT_SYMBOL(ceph_con_init);
417 
418 
419 /*
420  * We maintain a global counter to order connection attempts.  Get
421  * a unique seq greater than @gt.
422  */
423 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
424 {
425 	u32 ret;
426 
427 	spin_lock(&msgr->global_seq_lock);
428 	if (msgr->global_seq < gt)
429 		msgr->global_seq = gt;
430 	ret = ++msgr->global_seq;
431 	spin_unlock(&msgr->global_seq_lock);
432 	return ret;
433 }
434 
435 
436 /*
437  * Prepare footer for currently outgoing message, and finish things
438  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
439  */
440 static void prepare_write_message_footer(struct ceph_connection *con, int v)
441 {
442 	struct ceph_msg *m = con->out_msg;
443 
444 	dout("prepare_write_message_footer %p\n", con);
445 	con->out_kvec_is_msg = true;
446 	con->out_kvec[v].iov_base = &m->footer;
447 	con->out_kvec[v].iov_len = sizeof(m->footer);
448 	con->out_kvec_bytes += sizeof(m->footer);
449 	con->out_kvec_left++;
450 	con->out_more = m->more_to_follow;
451 	con->out_msg_done = true;
452 }
453 
454 /*
455  * Prepare headers for the next outgoing message.
456  */
457 static void prepare_write_message(struct ceph_connection *con)
458 {
459 	struct ceph_msg *m;
460 	int v = 0;
461 
462 	con->out_kvec_bytes = 0;
463 	con->out_kvec_is_msg = true;
464 	con->out_msg_done = false;
465 
466 	/* Sneak an ack in there first?  If we can get it into the same
467 	 * TCP packet that's a good thing. */
468 	if (con->in_seq > con->in_seq_acked) {
469 		con->in_seq_acked = con->in_seq;
470 		con->out_kvec[v].iov_base = &tag_ack;
471 		con->out_kvec[v++].iov_len = 1;
472 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
473 		con->out_kvec[v].iov_base = &con->out_temp_ack;
474 		con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
475 		con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
476 	}
477 
478 	m = list_first_entry(&con->out_queue,
479 		       struct ceph_msg, list_head);
480 	con->out_msg = m;
481 	if (test_bit(LOSSYTX, &con->state)) {
482 		list_del_init(&m->list_head);
483 	} else {
484 		/* put message on sent list */
485 		ceph_msg_get(m);
486 		list_move_tail(&m->list_head, &con->out_sent);
487 	}
488 
489 	/*
490 	 * only assign outgoing seq # if we haven't sent this message
491 	 * yet.  if it is requeued, resend with it's original seq.
492 	 */
493 	if (m->needs_out_seq) {
494 		m->hdr.seq = cpu_to_le64(++con->out_seq);
495 		m->needs_out_seq = false;
496 	}
497 
498 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
499 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
500 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
501 	     le32_to_cpu(m->hdr.data_len),
502 	     m->nr_pages);
503 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
504 
505 	/* tag + hdr + front + middle */
506 	con->out_kvec[v].iov_base = &tag_msg;
507 	con->out_kvec[v++].iov_len = 1;
508 	con->out_kvec[v].iov_base = &m->hdr;
509 	con->out_kvec[v++].iov_len = sizeof(m->hdr);
510 	con->out_kvec[v++] = m->front;
511 	if (m->middle)
512 		con->out_kvec[v++] = m->middle->vec;
513 	con->out_kvec_left = v;
514 	con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
515 		(m->middle ? m->middle->vec.iov_len : 0);
516 	con->out_kvec_cur = con->out_kvec;
517 
518 	/* fill in crc (except data pages), footer */
519 	con->out_msg->hdr.crc =
520 		cpu_to_le32(crc32c(0, (void *)&m->hdr,
521 				      sizeof(m->hdr) - sizeof(m->hdr.crc)));
522 	con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
523 	con->out_msg->footer.front_crc =
524 		cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
525 	if (m->middle)
526 		con->out_msg->footer.middle_crc =
527 			cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
528 					   m->middle->vec.iov_len));
529 	else
530 		con->out_msg->footer.middle_crc = 0;
531 	con->out_msg->footer.data_crc = 0;
532 	dout("prepare_write_message front_crc %u data_crc %u\n",
533 	     le32_to_cpu(con->out_msg->footer.front_crc),
534 	     le32_to_cpu(con->out_msg->footer.middle_crc));
535 
536 	/* is there a data payload? */
537 	if (le32_to_cpu(m->hdr.data_len) > 0) {
538 		/* initialize page iterator */
539 		con->out_msg_pos.page = 0;
540 		if (m->pages)
541 			con->out_msg_pos.page_pos = m->page_alignment;
542 		else
543 			con->out_msg_pos.page_pos = 0;
544 		con->out_msg_pos.data_pos = 0;
545 		con->out_msg_pos.did_page_crc = 0;
546 		con->out_more = 1;  /* data + footer will follow */
547 	} else {
548 		/* no, queue up footer too and be done */
549 		prepare_write_message_footer(con, v);
550 	}
551 
552 	set_bit(WRITE_PENDING, &con->state);
553 }
554 
555 /*
556  * Prepare an ack.
557  */
558 static void prepare_write_ack(struct ceph_connection *con)
559 {
560 	dout("prepare_write_ack %p %llu -> %llu\n", con,
561 	     con->in_seq_acked, con->in_seq);
562 	con->in_seq_acked = con->in_seq;
563 
564 	con->out_kvec[0].iov_base = &tag_ack;
565 	con->out_kvec[0].iov_len = 1;
566 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
567 	con->out_kvec[1].iov_base = &con->out_temp_ack;
568 	con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
569 	con->out_kvec_left = 2;
570 	con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
571 	con->out_kvec_cur = con->out_kvec;
572 	con->out_more = 1;  /* more will follow.. eventually.. */
573 	set_bit(WRITE_PENDING, &con->state);
574 }
575 
576 /*
577  * Prepare to write keepalive byte.
578  */
579 static void prepare_write_keepalive(struct ceph_connection *con)
580 {
581 	dout("prepare_write_keepalive %p\n", con);
582 	con->out_kvec[0].iov_base = &tag_keepalive;
583 	con->out_kvec[0].iov_len = 1;
584 	con->out_kvec_left = 1;
585 	con->out_kvec_bytes = 1;
586 	con->out_kvec_cur = con->out_kvec;
587 	set_bit(WRITE_PENDING, &con->state);
588 }
589 
590 /*
591  * Connection negotiation.
592  */
593 
594 static void prepare_connect_authorizer(struct ceph_connection *con)
595 {
596 	void *auth_buf;
597 	int auth_len = 0;
598 	int auth_protocol = 0;
599 
600 	mutex_unlock(&con->mutex);
601 	if (con->ops->get_authorizer)
602 		con->ops->get_authorizer(con, &auth_buf, &auth_len,
603 					 &auth_protocol, &con->auth_reply_buf,
604 					 &con->auth_reply_buf_len,
605 					 con->auth_retry);
606 	mutex_lock(&con->mutex);
607 
608 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
609 	con->out_connect.authorizer_len = cpu_to_le32(auth_len);
610 
611 	con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
612 	con->out_kvec[con->out_kvec_left].iov_len = auth_len;
613 	con->out_kvec_left++;
614 	con->out_kvec_bytes += auth_len;
615 }
616 
617 /*
618  * We connected to a peer and are saying hello.
619  */
620 static void prepare_write_banner(struct ceph_messenger *msgr,
621 				 struct ceph_connection *con)
622 {
623 	int len = strlen(CEPH_BANNER);
624 
625 	con->out_kvec[0].iov_base = CEPH_BANNER;
626 	con->out_kvec[0].iov_len = len;
627 	con->out_kvec[1].iov_base = &msgr->my_enc_addr;
628 	con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
629 	con->out_kvec_left = 2;
630 	con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
631 	con->out_kvec_cur = con->out_kvec;
632 	con->out_more = 0;
633 	set_bit(WRITE_PENDING, &con->state);
634 }
635 
636 static void prepare_write_connect(struct ceph_messenger *msgr,
637 				  struct ceph_connection *con,
638 				  int after_banner)
639 {
640 	unsigned global_seq = get_global_seq(con->msgr, 0);
641 	int proto;
642 
643 	switch (con->peer_name.type) {
644 	case CEPH_ENTITY_TYPE_MON:
645 		proto = CEPH_MONC_PROTOCOL;
646 		break;
647 	case CEPH_ENTITY_TYPE_OSD:
648 		proto = CEPH_OSDC_PROTOCOL;
649 		break;
650 	case CEPH_ENTITY_TYPE_MDS:
651 		proto = CEPH_MDSC_PROTOCOL;
652 		break;
653 	default:
654 		BUG();
655 	}
656 
657 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
658 	     con->connect_seq, global_seq, proto);
659 
660 	con->out_connect.features = cpu_to_le64(msgr->supported_features);
661 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
662 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
663 	con->out_connect.global_seq = cpu_to_le32(global_seq);
664 	con->out_connect.protocol_version = cpu_to_le32(proto);
665 	con->out_connect.flags = 0;
666 
667 	if (!after_banner) {
668 		con->out_kvec_left = 0;
669 		con->out_kvec_bytes = 0;
670 	}
671 	con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
672 	con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
673 	con->out_kvec_left++;
674 	con->out_kvec_bytes += sizeof(con->out_connect);
675 	con->out_kvec_cur = con->out_kvec;
676 	con->out_more = 0;
677 	set_bit(WRITE_PENDING, &con->state);
678 
679 	prepare_connect_authorizer(con);
680 }
681 
682 
683 /*
684  * write as much of pending kvecs to the socket as we can.
685  *  1 -> done
686  *  0 -> socket full, but more to do
687  * <0 -> error
688  */
689 static int write_partial_kvec(struct ceph_connection *con)
690 {
691 	int ret;
692 
693 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
694 	while (con->out_kvec_bytes > 0) {
695 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
696 				       con->out_kvec_left, con->out_kvec_bytes,
697 				       con->out_more);
698 		if (ret <= 0)
699 			goto out;
700 		con->out_kvec_bytes -= ret;
701 		if (con->out_kvec_bytes == 0)
702 			break;            /* done */
703 		while (ret > 0) {
704 			if (ret >= con->out_kvec_cur->iov_len) {
705 				ret -= con->out_kvec_cur->iov_len;
706 				con->out_kvec_cur++;
707 				con->out_kvec_left--;
708 			} else {
709 				con->out_kvec_cur->iov_len -= ret;
710 				con->out_kvec_cur->iov_base += ret;
711 				ret = 0;
712 				break;
713 			}
714 		}
715 	}
716 	con->out_kvec_left = 0;
717 	con->out_kvec_is_msg = false;
718 	ret = 1;
719 out:
720 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
721 	     con->out_kvec_bytes, con->out_kvec_left, ret);
722 	return ret;  /* done! */
723 }
724 
725 #ifdef CONFIG_BLOCK
726 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
727 {
728 	if (!bio) {
729 		*iter = NULL;
730 		*seg = 0;
731 		return;
732 	}
733 	*iter = bio;
734 	*seg = bio->bi_idx;
735 }
736 
737 static void iter_bio_next(struct bio **bio_iter, int *seg)
738 {
739 	if (*bio_iter == NULL)
740 		return;
741 
742 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
743 
744 	(*seg)++;
745 	if (*seg == (*bio_iter)->bi_vcnt)
746 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
747 }
748 #endif
749 
750 /*
751  * Write as much message data payload as we can.  If we finish, queue
752  * up the footer.
753  *  1 -> done, footer is now queued in out_kvec[].
754  *  0 -> socket full, but more to do
755  * <0 -> error
756  */
757 static int write_partial_msg_pages(struct ceph_connection *con)
758 {
759 	struct ceph_msg *msg = con->out_msg;
760 	unsigned data_len = le32_to_cpu(msg->hdr.data_len);
761 	size_t len;
762 	int crc = con->msgr->nocrc;
763 	int ret;
764 	int total_max_write;
765 	int in_trail = 0;
766 	size_t trail_len = (msg->trail ? msg->trail->length : 0);
767 
768 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
769 	     con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
770 	     con->out_msg_pos.page_pos);
771 
772 #ifdef CONFIG_BLOCK
773 	if (msg->bio && !msg->bio_iter)
774 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
775 #endif
776 
777 	while (data_len > con->out_msg_pos.data_pos) {
778 		struct page *page = NULL;
779 		void *kaddr = NULL;
780 		int max_write = PAGE_SIZE;
781 		int page_shift = 0;
782 
783 		total_max_write = data_len - trail_len -
784 			con->out_msg_pos.data_pos;
785 
786 		/*
787 		 * if we are calculating the data crc (the default), we need
788 		 * to map the page.  if our pages[] has been revoked, use the
789 		 * zero page.
790 		 */
791 
792 		/* have we reached the trail part of the data? */
793 		if (con->out_msg_pos.data_pos >= data_len - trail_len) {
794 			in_trail = 1;
795 
796 			total_max_write = data_len - con->out_msg_pos.data_pos;
797 
798 			page = list_first_entry(&msg->trail->head,
799 						struct page, lru);
800 			if (crc)
801 				kaddr = kmap(page);
802 			max_write = PAGE_SIZE;
803 		} else if (msg->pages) {
804 			page = msg->pages[con->out_msg_pos.page];
805 			if (crc)
806 				kaddr = kmap(page);
807 		} else if (msg->pagelist) {
808 			page = list_first_entry(&msg->pagelist->head,
809 						struct page, lru);
810 			if (crc)
811 				kaddr = kmap(page);
812 #ifdef CONFIG_BLOCK
813 		} else if (msg->bio) {
814 			struct bio_vec *bv;
815 
816 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
817 			page = bv->bv_page;
818 			page_shift = bv->bv_offset;
819 			if (crc)
820 				kaddr = kmap(page) + page_shift;
821 			max_write = bv->bv_len;
822 #endif
823 		} else {
824 			page = con->msgr->zero_page;
825 			if (crc)
826 				kaddr = page_address(con->msgr->zero_page);
827 		}
828 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
829 			    total_max_write);
830 
831 		if (crc && !con->out_msg_pos.did_page_crc) {
832 			void *base = kaddr + con->out_msg_pos.page_pos;
833 			u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
834 
835 			BUG_ON(kaddr == NULL);
836 			con->out_msg->footer.data_crc =
837 				cpu_to_le32(crc32c(tmpcrc, base, len));
838 			con->out_msg_pos.did_page_crc = 1;
839 		}
840 		ret = kernel_sendpage(con->sock, page,
841 				      con->out_msg_pos.page_pos + page_shift,
842 				      len,
843 				      MSG_DONTWAIT | MSG_NOSIGNAL |
844 				      MSG_MORE);
845 
846 		if (crc &&
847 		    (msg->pages || msg->pagelist || msg->bio || in_trail))
848 			kunmap(page);
849 
850 		if (ret <= 0)
851 			goto out;
852 
853 		con->out_msg_pos.data_pos += ret;
854 		con->out_msg_pos.page_pos += ret;
855 		if (ret == len) {
856 			con->out_msg_pos.page_pos = 0;
857 			con->out_msg_pos.page++;
858 			con->out_msg_pos.did_page_crc = 0;
859 			if (in_trail)
860 				list_move_tail(&page->lru,
861 					       &msg->trail->head);
862 			else if (msg->pagelist)
863 				list_move_tail(&page->lru,
864 					       &msg->pagelist->head);
865 #ifdef CONFIG_BLOCK
866 			else if (msg->bio)
867 				iter_bio_next(&msg->bio_iter, &msg->bio_seg);
868 #endif
869 		}
870 	}
871 
872 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
873 
874 	/* prepare and queue up footer, too */
875 	if (!crc)
876 		con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
877 	con->out_kvec_bytes = 0;
878 	con->out_kvec_left = 0;
879 	con->out_kvec_cur = con->out_kvec;
880 	prepare_write_message_footer(con, 0);
881 	ret = 1;
882 out:
883 	return ret;
884 }
885 
886 /*
887  * write some zeros
888  */
889 static int write_partial_skip(struct ceph_connection *con)
890 {
891 	int ret;
892 
893 	while (con->out_skip > 0) {
894 		struct kvec iov = {
895 			.iov_base = page_address(con->msgr->zero_page),
896 			.iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
897 		};
898 
899 		ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
900 		if (ret <= 0)
901 			goto out;
902 		con->out_skip -= ret;
903 	}
904 	ret = 1;
905 out:
906 	return ret;
907 }
908 
909 /*
910  * Prepare to read connection handshake, or an ack.
911  */
912 static void prepare_read_banner(struct ceph_connection *con)
913 {
914 	dout("prepare_read_banner %p\n", con);
915 	con->in_base_pos = 0;
916 }
917 
918 static void prepare_read_connect(struct ceph_connection *con)
919 {
920 	dout("prepare_read_connect %p\n", con);
921 	con->in_base_pos = 0;
922 }
923 
924 static void prepare_read_ack(struct ceph_connection *con)
925 {
926 	dout("prepare_read_ack %p\n", con);
927 	con->in_base_pos = 0;
928 }
929 
930 static void prepare_read_tag(struct ceph_connection *con)
931 {
932 	dout("prepare_read_tag %p\n", con);
933 	con->in_base_pos = 0;
934 	con->in_tag = CEPH_MSGR_TAG_READY;
935 }
936 
937 /*
938  * Prepare to read a message.
939  */
940 static int prepare_read_message(struct ceph_connection *con)
941 {
942 	dout("prepare_read_message %p\n", con);
943 	BUG_ON(con->in_msg != NULL);
944 	con->in_base_pos = 0;
945 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
946 	return 0;
947 }
948 
949 
950 static int read_partial(struct ceph_connection *con,
951 			int *to, int size, void *object)
952 {
953 	*to += size;
954 	while (con->in_base_pos < *to) {
955 		int left = *to - con->in_base_pos;
956 		int have = size - left;
957 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
958 		if (ret <= 0)
959 			return ret;
960 		con->in_base_pos += ret;
961 	}
962 	return 1;
963 }
964 
965 
966 /*
967  * Read all or part of the connect-side handshake on a new connection
968  */
969 static int read_partial_banner(struct ceph_connection *con)
970 {
971 	int ret, to = 0;
972 
973 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
974 
975 	/* peer's banner */
976 	ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
977 	if (ret <= 0)
978 		goto out;
979 	ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
980 			   &con->actual_peer_addr);
981 	if (ret <= 0)
982 		goto out;
983 	ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
984 			   &con->peer_addr_for_me);
985 	if (ret <= 0)
986 		goto out;
987 out:
988 	return ret;
989 }
990 
991 static int read_partial_connect(struct ceph_connection *con)
992 {
993 	int ret, to = 0;
994 
995 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
996 
997 	ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
998 	if (ret <= 0)
999 		goto out;
1000 	ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1001 			   con->auth_reply_buf);
1002 	if (ret <= 0)
1003 		goto out;
1004 
1005 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1006 	     con, (int)con->in_reply.tag,
1007 	     le32_to_cpu(con->in_reply.connect_seq),
1008 	     le32_to_cpu(con->in_reply.global_seq));
1009 out:
1010 	return ret;
1011 
1012 }
1013 
1014 /*
1015  * Verify the hello banner looks okay.
1016  */
1017 static int verify_hello(struct ceph_connection *con)
1018 {
1019 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1020 		pr_err("connect to %s got bad banner\n",
1021 		       ceph_pr_addr(&con->peer_addr.in_addr));
1022 		con->error_msg = "protocol error, bad banner";
1023 		return -1;
1024 	}
1025 	return 0;
1026 }
1027 
1028 static bool addr_is_blank(struct sockaddr_storage *ss)
1029 {
1030 	switch (ss->ss_family) {
1031 	case AF_INET:
1032 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1033 	case AF_INET6:
1034 		return
1035 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1036 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1037 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1038 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1039 	}
1040 	return false;
1041 }
1042 
1043 static int addr_port(struct sockaddr_storage *ss)
1044 {
1045 	switch (ss->ss_family) {
1046 	case AF_INET:
1047 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1048 	case AF_INET6:
1049 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1050 	}
1051 	return 0;
1052 }
1053 
1054 static void addr_set_port(struct sockaddr_storage *ss, int p)
1055 {
1056 	switch (ss->ss_family) {
1057 	case AF_INET:
1058 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1059 	case AF_INET6:
1060 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1061 	}
1062 }
1063 
1064 /*
1065  * Parse an ip[:port] list into an addr array.  Use the default
1066  * monitor port if a port isn't specified.
1067  */
1068 int ceph_parse_ips(const char *c, const char *end,
1069 		   struct ceph_entity_addr *addr,
1070 		   int max_count, int *count)
1071 {
1072 	int i;
1073 	const char *p = c;
1074 
1075 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1076 	for (i = 0; i < max_count; i++) {
1077 		const char *ipend;
1078 		struct sockaddr_storage *ss = &addr[i].in_addr;
1079 		struct sockaddr_in *in4 = (void *)ss;
1080 		struct sockaddr_in6 *in6 = (void *)ss;
1081 		int port;
1082 		char delim = ',';
1083 
1084 		if (*p == '[') {
1085 			delim = ']';
1086 			p++;
1087 		}
1088 
1089 		memset(ss, 0, sizeof(*ss));
1090 		if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1091 			     delim, &ipend))
1092 			ss->ss_family = AF_INET;
1093 		else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1094 				  delim, &ipend))
1095 			ss->ss_family = AF_INET6;
1096 		else
1097 			goto bad;
1098 		p = ipend;
1099 
1100 		if (delim == ']') {
1101 			if (*p != ']') {
1102 				dout("missing matching ']'\n");
1103 				goto bad;
1104 			}
1105 			p++;
1106 		}
1107 
1108 		/* port? */
1109 		if (p < end && *p == ':') {
1110 			port = 0;
1111 			p++;
1112 			while (p < end && *p >= '0' && *p <= '9') {
1113 				port = (port * 10) + (*p - '0');
1114 				p++;
1115 			}
1116 			if (port > 65535 || port == 0)
1117 				goto bad;
1118 		} else {
1119 			port = CEPH_MON_PORT;
1120 		}
1121 
1122 		addr_set_port(ss, port);
1123 
1124 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1125 
1126 		if (p == end)
1127 			break;
1128 		if (*p != ',')
1129 			goto bad;
1130 		p++;
1131 	}
1132 
1133 	if (p != end)
1134 		goto bad;
1135 
1136 	if (count)
1137 		*count = i + 1;
1138 	return 0;
1139 
1140 bad:
1141 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1142 	return -EINVAL;
1143 }
1144 EXPORT_SYMBOL(ceph_parse_ips);
1145 
1146 static int process_banner(struct ceph_connection *con)
1147 {
1148 	dout("process_banner on %p\n", con);
1149 
1150 	if (verify_hello(con) < 0)
1151 		return -1;
1152 
1153 	ceph_decode_addr(&con->actual_peer_addr);
1154 	ceph_decode_addr(&con->peer_addr_for_me);
1155 
1156 	/*
1157 	 * Make sure the other end is who we wanted.  note that the other
1158 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1159 	 * them the benefit of the doubt.
1160 	 */
1161 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1162 		   sizeof(con->peer_addr)) != 0 &&
1163 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1164 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1165 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1166 			   ceph_pr_addr(&con->peer_addr.in_addr),
1167 			   (int)le32_to_cpu(con->peer_addr.nonce),
1168 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1169 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1170 		con->error_msg = "wrong peer at address";
1171 		return -1;
1172 	}
1173 
1174 	/*
1175 	 * did we learn our address?
1176 	 */
1177 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1178 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1179 
1180 		memcpy(&con->msgr->inst.addr.in_addr,
1181 		       &con->peer_addr_for_me.in_addr,
1182 		       sizeof(con->peer_addr_for_me.in_addr));
1183 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1184 		encode_my_addr(con->msgr);
1185 		dout("process_banner learned my addr is %s\n",
1186 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1187 	}
1188 
1189 	set_bit(NEGOTIATING, &con->state);
1190 	prepare_read_connect(con);
1191 	return 0;
1192 }
1193 
1194 static void fail_protocol(struct ceph_connection *con)
1195 {
1196 	reset_connection(con);
1197 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
1198 
1199 	mutex_unlock(&con->mutex);
1200 	if (con->ops->bad_proto)
1201 		con->ops->bad_proto(con);
1202 	mutex_lock(&con->mutex);
1203 }
1204 
1205 static int process_connect(struct ceph_connection *con)
1206 {
1207 	u64 sup_feat = con->msgr->supported_features;
1208 	u64 req_feat = con->msgr->required_features;
1209 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1210 
1211 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1212 
1213 	switch (con->in_reply.tag) {
1214 	case CEPH_MSGR_TAG_FEATURES:
1215 		pr_err("%s%lld %s feature set mismatch,"
1216 		       " my %llx < server's %llx, missing %llx\n",
1217 		       ENTITY_NAME(con->peer_name),
1218 		       ceph_pr_addr(&con->peer_addr.in_addr),
1219 		       sup_feat, server_feat, server_feat & ~sup_feat);
1220 		con->error_msg = "missing required protocol features";
1221 		fail_protocol(con);
1222 		return -1;
1223 
1224 	case CEPH_MSGR_TAG_BADPROTOVER:
1225 		pr_err("%s%lld %s protocol version mismatch,"
1226 		       " my %d != server's %d\n",
1227 		       ENTITY_NAME(con->peer_name),
1228 		       ceph_pr_addr(&con->peer_addr.in_addr),
1229 		       le32_to_cpu(con->out_connect.protocol_version),
1230 		       le32_to_cpu(con->in_reply.protocol_version));
1231 		con->error_msg = "protocol version mismatch";
1232 		fail_protocol(con);
1233 		return -1;
1234 
1235 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1236 		con->auth_retry++;
1237 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1238 		     con->auth_retry);
1239 		if (con->auth_retry == 2) {
1240 			con->error_msg = "connect authorization failure";
1241 			reset_connection(con);
1242 			set_bit(CLOSED, &con->state);
1243 			return -1;
1244 		}
1245 		con->auth_retry = 1;
1246 		prepare_write_connect(con->msgr, con, 0);
1247 		prepare_read_connect(con);
1248 		break;
1249 
1250 	case CEPH_MSGR_TAG_RESETSESSION:
1251 		/*
1252 		 * If we connected with a large connect_seq but the peer
1253 		 * has no record of a session with us (no connection, or
1254 		 * connect_seq == 0), they will send RESETSESION to indicate
1255 		 * that they must have reset their session, and may have
1256 		 * dropped messages.
1257 		 */
1258 		dout("process_connect got RESET peer seq %u\n",
1259 		     le32_to_cpu(con->in_connect.connect_seq));
1260 		pr_err("%s%lld %s connection reset\n",
1261 		       ENTITY_NAME(con->peer_name),
1262 		       ceph_pr_addr(&con->peer_addr.in_addr));
1263 		reset_connection(con);
1264 		prepare_write_connect(con->msgr, con, 0);
1265 		prepare_read_connect(con);
1266 
1267 		/* Tell ceph about it. */
1268 		mutex_unlock(&con->mutex);
1269 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1270 		if (con->ops->peer_reset)
1271 			con->ops->peer_reset(con);
1272 		mutex_lock(&con->mutex);
1273 		break;
1274 
1275 	case CEPH_MSGR_TAG_RETRY_SESSION:
1276 		/*
1277 		 * If we sent a smaller connect_seq than the peer has, try
1278 		 * again with a larger value.
1279 		 */
1280 		dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1281 		     le32_to_cpu(con->out_connect.connect_seq),
1282 		     le32_to_cpu(con->in_connect.connect_seq));
1283 		con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1284 		prepare_write_connect(con->msgr, con, 0);
1285 		prepare_read_connect(con);
1286 		break;
1287 
1288 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1289 		/*
1290 		 * If we sent a smaller global_seq than the peer has, try
1291 		 * again with a larger value.
1292 		 */
1293 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1294 		     con->peer_global_seq,
1295 		     le32_to_cpu(con->in_connect.global_seq));
1296 		get_global_seq(con->msgr,
1297 			       le32_to_cpu(con->in_connect.global_seq));
1298 		prepare_write_connect(con->msgr, con, 0);
1299 		prepare_read_connect(con);
1300 		break;
1301 
1302 	case CEPH_MSGR_TAG_READY:
1303 		if (req_feat & ~server_feat) {
1304 			pr_err("%s%lld %s protocol feature mismatch,"
1305 			       " my required %llx > server's %llx, need %llx\n",
1306 			       ENTITY_NAME(con->peer_name),
1307 			       ceph_pr_addr(&con->peer_addr.in_addr),
1308 			       req_feat, server_feat, req_feat & ~server_feat);
1309 			con->error_msg = "missing required protocol features";
1310 			fail_protocol(con);
1311 			return -1;
1312 		}
1313 		clear_bit(CONNECTING, &con->state);
1314 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1315 		con->connect_seq++;
1316 		con->peer_features = server_feat;
1317 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1318 		     con->peer_global_seq,
1319 		     le32_to_cpu(con->in_reply.connect_seq),
1320 		     con->connect_seq);
1321 		WARN_ON(con->connect_seq !=
1322 			le32_to_cpu(con->in_reply.connect_seq));
1323 
1324 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1325 			set_bit(LOSSYTX, &con->state);
1326 
1327 		prepare_read_tag(con);
1328 		break;
1329 
1330 	case CEPH_MSGR_TAG_WAIT:
1331 		/*
1332 		 * If there is a connection race (we are opening
1333 		 * connections to each other), one of us may just have
1334 		 * to WAIT.  This shouldn't happen if we are the
1335 		 * client.
1336 		 */
1337 		pr_err("process_connect peer connecting WAIT\n");
1338 
1339 	default:
1340 		pr_err("connect protocol error, will retry\n");
1341 		con->error_msg = "protocol error, garbage tag during connect";
1342 		return -1;
1343 	}
1344 	return 0;
1345 }
1346 
1347 
1348 /*
1349  * read (part of) an ack
1350  */
1351 static int read_partial_ack(struct ceph_connection *con)
1352 {
1353 	int to = 0;
1354 
1355 	return read_partial(con, &to, sizeof(con->in_temp_ack),
1356 			    &con->in_temp_ack);
1357 }
1358 
1359 
1360 /*
1361  * We can finally discard anything that's been acked.
1362  */
1363 static void process_ack(struct ceph_connection *con)
1364 {
1365 	struct ceph_msg *m;
1366 	u64 ack = le64_to_cpu(con->in_temp_ack);
1367 	u64 seq;
1368 
1369 	while (!list_empty(&con->out_sent)) {
1370 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1371 				     list_head);
1372 		seq = le64_to_cpu(m->hdr.seq);
1373 		if (seq > ack)
1374 			break;
1375 		dout("got ack for seq %llu type %d at %p\n", seq,
1376 		     le16_to_cpu(m->hdr.type), m);
1377 		ceph_msg_remove(m);
1378 	}
1379 	prepare_read_tag(con);
1380 }
1381 
1382 
1383 
1384 
1385 static int read_partial_message_section(struct ceph_connection *con,
1386 					struct kvec *section,
1387 					unsigned int sec_len, u32 *crc)
1388 {
1389 	int ret, left;
1390 
1391 	BUG_ON(!section);
1392 
1393 	while (section->iov_len < sec_len) {
1394 		BUG_ON(section->iov_base == NULL);
1395 		left = sec_len - section->iov_len;
1396 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1397 				       section->iov_len, left);
1398 		if (ret <= 0)
1399 			return ret;
1400 		section->iov_len += ret;
1401 		if (section->iov_len == sec_len)
1402 			*crc = crc32c(0, section->iov_base,
1403 				      section->iov_len);
1404 	}
1405 
1406 	return 1;
1407 }
1408 
1409 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1410 				struct ceph_msg_header *hdr,
1411 				int *skip);
1412 
1413 
1414 static int read_partial_message_pages(struct ceph_connection *con,
1415 				      struct page **pages,
1416 				      unsigned data_len, int datacrc)
1417 {
1418 	void *p;
1419 	int ret;
1420 	int left;
1421 
1422 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1423 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1424 	/* (page) data */
1425 	BUG_ON(pages == NULL);
1426 	p = kmap(pages[con->in_msg_pos.page]);
1427 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1428 			       left);
1429 	if (ret > 0 && datacrc)
1430 		con->in_data_crc =
1431 			crc32c(con->in_data_crc,
1432 				  p + con->in_msg_pos.page_pos, ret);
1433 	kunmap(pages[con->in_msg_pos.page]);
1434 	if (ret <= 0)
1435 		return ret;
1436 	con->in_msg_pos.data_pos += ret;
1437 	con->in_msg_pos.page_pos += ret;
1438 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1439 		con->in_msg_pos.page_pos = 0;
1440 		con->in_msg_pos.page++;
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 #ifdef CONFIG_BLOCK
1447 static int read_partial_message_bio(struct ceph_connection *con,
1448 				    struct bio **bio_iter, int *bio_seg,
1449 				    unsigned data_len, int datacrc)
1450 {
1451 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1452 	void *p;
1453 	int ret, left;
1454 
1455 	if (IS_ERR(bv))
1456 		return PTR_ERR(bv);
1457 
1458 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1459 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1460 
1461 	p = kmap(bv->bv_page) + bv->bv_offset;
1462 
1463 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1464 			       left);
1465 	if (ret > 0 && datacrc)
1466 		con->in_data_crc =
1467 			crc32c(con->in_data_crc,
1468 				  p + con->in_msg_pos.page_pos, ret);
1469 	kunmap(bv->bv_page);
1470 	if (ret <= 0)
1471 		return ret;
1472 	con->in_msg_pos.data_pos += ret;
1473 	con->in_msg_pos.page_pos += ret;
1474 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1475 		con->in_msg_pos.page_pos = 0;
1476 		iter_bio_next(bio_iter, bio_seg);
1477 	}
1478 
1479 	return ret;
1480 }
1481 #endif
1482 
1483 /*
1484  * read (part of) a message.
1485  */
1486 static int read_partial_message(struct ceph_connection *con)
1487 {
1488 	struct ceph_msg *m = con->in_msg;
1489 	int ret;
1490 	int to, left;
1491 	unsigned front_len, middle_len, data_len;
1492 	int datacrc = con->msgr->nocrc;
1493 	int skip;
1494 	u64 seq;
1495 
1496 	dout("read_partial_message con %p msg %p\n", con, m);
1497 
1498 	/* header */
1499 	while (con->in_base_pos < sizeof(con->in_hdr)) {
1500 		left = sizeof(con->in_hdr) - con->in_base_pos;
1501 		ret = ceph_tcp_recvmsg(con->sock,
1502 				       (char *)&con->in_hdr + con->in_base_pos,
1503 				       left);
1504 		if (ret <= 0)
1505 			return ret;
1506 		con->in_base_pos += ret;
1507 		if (con->in_base_pos == sizeof(con->in_hdr)) {
1508 			u32 crc = crc32c(0, (void *)&con->in_hdr,
1509 				 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1510 			if (crc != le32_to_cpu(con->in_hdr.crc)) {
1511 				pr_err("read_partial_message bad hdr "
1512 				       " crc %u != expected %u\n",
1513 				       crc, con->in_hdr.crc);
1514 				return -EBADMSG;
1515 			}
1516 		}
1517 	}
1518 	front_len = le32_to_cpu(con->in_hdr.front_len);
1519 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1520 		return -EIO;
1521 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1522 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1523 		return -EIO;
1524 	data_len = le32_to_cpu(con->in_hdr.data_len);
1525 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1526 		return -EIO;
1527 
1528 	/* verify seq# */
1529 	seq = le64_to_cpu(con->in_hdr.seq);
1530 	if ((s64)seq - (s64)con->in_seq < 1) {
1531 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1532 			ENTITY_NAME(con->peer_name),
1533 			ceph_pr_addr(&con->peer_addr.in_addr),
1534 			seq, con->in_seq + 1);
1535 		con->in_base_pos = -front_len - middle_len - data_len -
1536 			sizeof(m->footer);
1537 		con->in_tag = CEPH_MSGR_TAG_READY;
1538 		return 0;
1539 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1540 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1541 		       seq, con->in_seq + 1);
1542 		con->error_msg = "bad message sequence # for incoming message";
1543 		return -EBADMSG;
1544 	}
1545 
1546 	/* allocate message? */
1547 	if (!con->in_msg) {
1548 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1549 		     con->in_hdr.front_len, con->in_hdr.data_len);
1550 		skip = 0;
1551 		con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1552 		if (skip) {
1553 			/* skip this message */
1554 			dout("alloc_msg said skip message\n");
1555 			BUG_ON(con->in_msg);
1556 			con->in_base_pos = -front_len - middle_len - data_len -
1557 				sizeof(m->footer);
1558 			con->in_tag = CEPH_MSGR_TAG_READY;
1559 			con->in_seq++;
1560 			return 0;
1561 		}
1562 		if (!con->in_msg) {
1563 			con->error_msg =
1564 				"error allocating memory for incoming message";
1565 			return -ENOMEM;
1566 		}
1567 		m = con->in_msg;
1568 		m->front.iov_len = 0;    /* haven't read it yet */
1569 		if (m->middle)
1570 			m->middle->vec.iov_len = 0;
1571 
1572 		con->in_msg_pos.page = 0;
1573 		if (m->pages)
1574 			con->in_msg_pos.page_pos = m->page_alignment;
1575 		else
1576 			con->in_msg_pos.page_pos = 0;
1577 		con->in_msg_pos.data_pos = 0;
1578 	}
1579 
1580 	/* front */
1581 	ret = read_partial_message_section(con, &m->front, front_len,
1582 					   &con->in_front_crc);
1583 	if (ret <= 0)
1584 		return ret;
1585 
1586 	/* middle */
1587 	if (m->middle) {
1588 		ret = read_partial_message_section(con, &m->middle->vec,
1589 						   middle_len,
1590 						   &con->in_middle_crc);
1591 		if (ret <= 0)
1592 			return ret;
1593 	}
1594 #ifdef CONFIG_BLOCK
1595 	if (m->bio && !m->bio_iter)
1596 		init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1597 #endif
1598 
1599 	/* (page) data */
1600 	while (con->in_msg_pos.data_pos < data_len) {
1601 		if (m->pages) {
1602 			ret = read_partial_message_pages(con, m->pages,
1603 						 data_len, datacrc);
1604 			if (ret <= 0)
1605 				return ret;
1606 #ifdef CONFIG_BLOCK
1607 		} else if (m->bio) {
1608 
1609 			ret = read_partial_message_bio(con,
1610 						 &m->bio_iter, &m->bio_seg,
1611 						 data_len, datacrc);
1612 			if (ret <= 0)
1613 				return ret;
1614 #endif
1615 		} else {
1616 			BUG_ON(1);
1617 		}
1618 	}
1619 
1620 	/* footer */
1621 	to = sizeof(m->hdr) + sizeof(m->footer);
1622 	while (con->in_base_pos < to) {
1623 		left = to - con->in_base_pos;
1624 		ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1625 				       (con->in_base_pos - sizeof(m->hdr)),
1626 				       left);
1627 		if (ret <= 0)
1628 			return ret;
1629 		con->in_base_pos += ret;
1630 	}
1631 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1632 	     m, front_len, m->footer.front_crc, middle_len,
1633 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1634 
1635 	/* crc ok? */
1636 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1637 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1638 		       m, con->in_front_crc, m->footer.front_crc);
1639 		return -EBADMSG;
1640 	}
1641 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1642 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1643 		       m, con->in_middle_crc, m->footer.middle_crc);
1644 		return -EBADMSG;
1645 	}
1646 	if (datacrc &&
1647 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1648 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1649 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1650 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1651 		return -EBADMSG;
1652 	}
1653 
1654 	return 1; /* done! */
1655 }
1656 
1657 /*
1658  * Process message.  This happens in the worker thread.  The callback should
1659  * be careful not to do anything that waits on other incoming messages or it
1660  * may deadlock.
1661  */
1662 static void process_message(struct ceph_connection *con)
1663 {
1664 	struct ceph_msg *msg;
1665 
1666 	msg = con->in_msg;
1667 	con->in_msg = NULL;
1668 
1669 	/* if first message, set peer_name */
1670 	if (con->peer_name.type == 0)
1671 		con->peer_name = msg->hdr.src;
1672 
1673 	con->in_seq++;
1674 	mutex_unlock(&con->mutex);
1675 
1676 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1677 	     msg, le64_to_cpu(msg->hdr.seq),
1678 	     ENTITY_NAME(msg->hdr.src),
1679 	     le16_to_cpu(msg->hdr.type),
1680 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1681 	     le32_to_cpu(msg->hdr.front_len),
1682 	     le32_to_cpu(msg->hdr.data_len),
1683 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1684 	con->ops->dispatch(con, msg);
1685 
1686 	mutex_lock(&con->mutex);
1687 	prepare_read_tag(con);
1688 }
1689 
1690 
1691 /*
1692  * Write something to the socket.  Called in a worker thread when the
1693  * socket appears to be writeable and we have something ready to send.
1694  */
1695 static int try_write(struct ceph_connection *con)
1696 {
1697 	struct ceph_messenger *msgr = con->msgr;
1698 	int ret = 1;
1699 
1700 	dout("try_write start %p state %lu nref %d\n", con, con->state,
1701 	     atomic_read(&con->nref));
1702 
1703 more:
1704 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1705 
1706 	/* open the socket first? */
1707 	if (con->sock == NULL) {
1708 		/*
1709 		 * if we were STANDBY and are reconnecting _this_
1710 		 * connection, bump connect_seq now.  Always bump
1711 		 * global_seq.
1712 		 */
1713 		if (test_and_clear_bit(STANDBY, &con->state))
1714 			con->connect_seq++;
1715 
1716 		prepare_write_banner(msgr, con);
1717 		prepare_write_connect(msgr, con, 1);
1718 		prepare_read_banner(con);
1719 		set_bit(CONNECTING, &con->state);
1720 		clear_bit(NEGOTIATING, &con->state);
1721 
1722 		BUG_ON(con->in_msg);
1723 		con->in_tag = CEPH_MSGR_TAG_READY;
1724 		dout("try_write initiating connect on %p new state %lu\n",
1725 		     con, con->state);
1726 		con->sock = ceph_tcp_connect(con);
1727 		if (IS_ERR(con->sock)) {
1728 			con->sock = NULL;
1729 			con->error_msg = "connect error";
1730 			ret = -1;
1731 			goto out;
1732 		}
1733 	}
1734 
1735 more_kvec:
1736 	/* kvec data queued? */
1737 	if (con->out_skip) {
1738 		ret = write_partial_skip(con);
1739 		if (ret <= 0)
1740 			goto done;
1741 		if (ret < 0) {
1742 			dout("try_write write_partial_skip err %d\n", ret);
1743 			goto done;
1744 		}
1745 	}
1746 	if (con->out_kvec_left) {
1747 		ret = write_partial_kvec(con);
1748 		if (ret <= 0)
1749 			goto done;
1750 	}
1751 
1752 	/* msg pages? */
1753 	if (con->out_msg) {
1754 		if (con->out_msg_done) {
1755 			ceph_msg_put(con->out_msg);
1756 			con->out_msg = NULL;   /* we're done with this one */
1757 			goto do_next;
1758 		}
1759 
1760 		ret = write_partial_msg_pages(con);
1761 		if (ret == 1)
1762 			goto more_kvec;  /* we need to send the footer, too! */
1763 		if (ret == 0)
1764 			goto done;
1765 		if (ret < 0) {
1766 			dout("try_write write_partial_msg_pages err %d\n",
1767 			     ret);
1768 			goto done;
1769 		}
1770 	}
1771 
1772 do_next:
1773 	if (!test_bit(CONNECTING, &con->state)) {
1774 		/* is anything else pending? */
1775 		if (!list_empty(&con->out_queue)) {
1776 			prepare_write_message(con);
1777 			goto more;
1778 		}
1779 		if (con->in_seq > con->in_seq_acked) {
1780 			prepare_write_ack(con);
1781 			goto more;
1782 		}
1783 		if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1784 			prepare_write_keepalive(con);
1785 			goto more;
1786 		}
1787 	}
1788 
1789 	/* Nothing to do! */
1790 	clear_bit(WRITE_PENDING, &con->state);
1791 	dout("try_write nothing else to write.\n");
1792 done:
1793 	ret = 0;
1794 out:
1795 	dout("try_write done on %p\n", con);
1796 	return ret;
1797 }
1798 
1799 
1800 
1801 /*
1802  * Read what we can from the socket.
1803  */
1804 static int try_read(struct ceph_connection *con)
1805 {
1806 	int ret = -1;
1807 
1808 	if (!con->sock)
1809 		return 0;
1810 
1811 	if (test_bit(STANDBY, &con->state))
1812 		return 0;
1813 
1814 	dout("try_read start on %p\n", con);
1815 
1816 more:
1817 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1818 	     con->in_base_pos);
1819 	if (test_bit(CONNECTING, &con->state)) {
1820 		if (!test_bit(NEGOTIATING, &con->state)) {
1821 			dout("try_read connecting\n");
1822 			ret = read_partial_banner(con);
1823 			if (ret <= 0)
1824 				goto done;
1825 			if (process_banner(con) < 0) {
1826 				ret = -1;
1827 				goto out;
1828 			}
1829 		}
1830 		ret = read_partial_connect(con);
1831 		if (ret <= 0)
1832 			goto done;
1833 		if (process_connect(con) < 0) {
1834 			ret = -1;
1835 			goto out;
1836 		}
1837 		goto more;
1838 	}
1839 
1840 	if (con->in_base_pos < 0) {
1841 		/*
1842 		 * skipping + discarding content.
1843 		 *
1844 		 * FIXME: there must be a better way to do this!
1845 		 */
1846 		static char buf[1024];
1847 		int skip = min(1024, -con->in_base_pos);
1848 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1849 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1850 		if (ret <= 0)
1851 			goto done;
1852 		con->in_base_pos += ret;
1853 		if (con->in_base_pos)
1854 			goto more;
1855 	}
1856 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
1857 		/*
1858 		 * what's next?
1859 		 */
1860 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1861 		if (ret <= 0)
1862 			goto done;
1863 		dout("try_read got tag %d\n", (int)con->in_tag);
1864 		switch (con->in_tag) {
1865 		case CEPH_MSGR_TAG_MSG:
1866 			prepare_read_message(con);
1867 			break;
1868 		case CEPH_MSGR_TAG_ACK:
1869 			prepare_read_ack(con);
1870 			break;
1871 		case CEPH_MSGR_TAG_CLOSE:
1872 			set_bit(CLOSED, &con->state);   /* fixme */
1873 			goto done;
1874 		default:
1875 			goto bad_tag;
1876 		}
1877 	}
1878 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1879 		ret = read_partial_message(con);
1880 		if (ret <= 0) {
1881 			switch (ret) {
1882 			case -EBADMSG:
1883 				con->error_msg = "bad crc";
1884 				ret = -EIO;
1885 				goto out;
1886 			case -EIO:
1887 				con->error_msg = "io error";
1888 				goto out;
1889 			default:
1890 				goto done;
1891 			}
1892 		}
1893 		if (con->in_tag == CEPH_MSGR_TAG_READY)
1894 			goto more;
1895 		process_message(con);
1896 		goto more;
1897 	}
1898 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1899 		ret = read_partial_ack(con);
1900 		if (ret <= 0)
1901 			goto done;
1902 		process_ack(con);
1903 		goto more;
1904 	}
1905 
1906 done:
1907 	ret = 0;
1908 out:
1909 	dout("try_read done on %p\n", con);
1910 	return ret;
1911 
1912 bad_tag:
1913 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1914 	con->error_msg = "protocol error, garbage tag";
1915 	ret = -1;
1916 	goto out;
1917 }
1918 
1919 
1920 /*
1921  * Atomically queue work on a connection.  Bump @con reference to
1922  * avoid races with connection teardown.
1923  */
1924 static void queue_con(struct ceph_connection *con)
1925 {
1926 	if (test_bit(DEAD, &con->state)) {
1927 		dout("queue_con %p ignoring: DEAD\n",
1928 		     con);
1929 		return;
1930 	}
1931 
1932 	if (!con->ops->get(con)) {
1933 		dout("queue_con %p ref count 0\n", con);
1934 		return;
1935 	}
1936 
1937 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
1938 		dout("queue_con %p - already queued\n", con);
1939 		con->ops->put(con);
1940 	} else {
1941 		dout("queue_con %p\n", con);
1942 	}
1943 }
1944 
1945 /*
1946  * Do some work on a connection.  Drop a connection ref when we're done.
1947  */
1948 static void con_work(struct work_struct *work)
1949 {
1950 	struct ceph_connection *con = container_of(work, struct ceph_connection,
1951 						   work.work);
1952 
1953 	mutex_lock(&con->mutex);
1954 
1955 	if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1956 		dout("con_work CLOSED\n");
1957 		con_close_socket(con);
1958 		goto done;
1959 	}
1960 	if (test_and_clear_bit(OPENING, &con->state)) {
1961 		/* reopen w/ new peer */
1962 		dout("con_work OPENING\n");
1963 		con_close_socket(con);
1964 	}
1965 
1966 	if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1967 	    try_read(con) < 0 ||
1968 	    try_write(con) < 0) {
1969 		mutex_unlock(&con->mutex);
1970 		ceph_fault(con);     /* error/fault path */
1971 		goto done_unlocked;
1972 	}
1973 
1974 done:
1975 	mutex_unlock(&con->mutex);
1976 done_unlocked:
1977 	con->ops->put(con);
1978 }
1979 
1980 
1981 /*
1982  * Generic error/fault handler.  A retry mechanism is used with
1983  * exponential backoff
1984  */
1985 static void ceph_fault(struct ceph_connection *con)
1986 {
1987 	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1988 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
1989 	dout("fault %p state %lu to peer %s\n",
1990 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
1991 
1992 	if (test_bit(LOSSYTX, &con->state)) {
1993 		dout("fault on LOSSYTX channel\n");
1994 		goto out;
1995 	}
1996 
1997 	mutex_lock(&con->mutex);
1998 	if (test_bit(CLOSED, &con->state))
1999 		goto out_unlock;
2000 
2001 	con_close_socket(con);
2002 
2003 	if (con->in_msg) {
2004 		ceph_msg_put(con->in_msg);
2005 		con->in_msg = NULL;
2006 	}
2007 
2008 	/* Requeue anything that hasn't been acked */
2009 	list_splice_init(&con->out_sent, &con->out_queue);
2010 
2011 	/* If there are no messages in the queue, place the connection
2012 	 * in a STANDBY state (i.e., don't try to reconnect just yet). */
2013 	if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
2014 		dout("fault setting STANDBY\n");
2015 		set_bit(STANDBY, &con->state);
2016 	} else {
2017 		/* retry after a delay. */
2018 		if (con->delay == 0)
2019 			con->delay = BASE_DELAY_INTERVAL;
2020 		else if (con->delay < MAX_DELAY_INTERVAL)
2021 			con->delay *= 2;
2022 		dout("fault queueing %p delay %lu\n", con, con->delay);
2023 		con->ops->get(con);
2024 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2025 				       round_jiffies_relative(con->delay)) == 0)
2026 			con->ops->put(con);
2027 	}
2028 
2029 out_unlock:
2030 	mutex_unlock(&con->mutex);
2031 out:
2032 	/*
2033 	 * in case we faulted due to authentication, invalidate our
2034 	 * current tickets so that we can get new ones.
2035 	 */
2036 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2037 		dout("calling invalidate_authorizer()\n");
2038 		con->ops->invalidate_authorizer(con);
2039 	}
2040 
2041 	if (con->ops->fault)
2042 		con->ops->fault(con);
2043 }
2044 
2045 
2046 
2047 /*
2048  * create a new messenger instance
2049  */
2050 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2051 					     u32 supported_features,
2052 					     u32 required_features)
2053 {
2054 	struct ceph_messenger *msgr;
2055 
2056 	msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2057 	if (msgr == NULL)
2058 		return ERR_PTR(-ENOMEM);
2059 
2060 	msgr->supported_features = supported_features;
2061 	msgr->required_features = required_features;
2062 
2063 	spin_lock_init(&msgr->global_seq_lock);
2064 
2065 	/* the zero page is needed if a request is "canceled" while the message
2066 	 * is being written over the socket */
2067 	msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2068 	if (!msgr->zero_page) {
2069 		kfree(msgr);
2070 		return ERR_PTR(-ENOMEM);
2071 	}
2072 	kmap(msgr->zero_page);
2073 
2074 	if (myaddr)
2075 		msgr->inst.addr = *myaddr;
2076 
2077 	/* select a random nonce */
2078 	msgr->inst.addr.type = 0;
2079 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2080 	encode_my_addr(msgr);
2081 
2082 	dout("messenger_create %p\n", msgr);
2083 	return msgr;
2084 }
2085 EXPORT_SYMBOL(ceph_messenger_create);
2086 
2087 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2088 {
2089 	dout("destroy %p\n", msgr);
2090 	kunmap(msgr->zero_page);
2091 	__free_page(msgr->zero_page);
2092 	kfree(msgr);
2093 	dout("destroyed messenger %p\n", msgr);
2094 }
2095 EXPORT_SYMBOL(ceph_messenger_destroy);
2096 
2097 /*
2098  * Queue up an outgoing message on the given connection.
2099  */
2100 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2101 {
2102 	if (test_bit(CLOSED, &con->state)) {
2103 		dout("con_send %p closed, dropping %p\n", con, msg);
2104 		ceph_msg_put(msg);
2105 		return;
2106 	}
2107 
2108 	/* set src+dst */
2109 	msg->hdr.src = con->msgr->inst.name;
2110 
2111 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2112 
2113 	msg->needs_out_seq = true;
2114 
2115 	/* queue */
2116 	mutex_lock(&con->mutex);
2117 	BUG_ON(!list_empty(&msg->list_head));
2118 	list_add_tail(&msg->list_head, &con->out_queue);
2119 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2120 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2121 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2122 	     le32_to_cpu(msg->hdr.front_len),
2123 	     le32_to_cpu(msg->hdr.middle_len),
2124 	     le32_to_cpu(msg->hdr.data_len));
2125 	mutex_unlock(&con->mutex);
2126 
2127 	/* if there wasn't anything waiting to send before, queue
2128 	 * new work */
2129 	if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2130 		queue_con(con);
2131 }
2132 EXPORT_SYMBOL(ceph_con_send);
2133 
2134 /*
2135  * Revoke a message that was previously queued for send
2136  */
2137 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2138 {
2139 	mutex_lock(&con->mutex);
2140 	if (!list_empty(&msg->list_head)) {
2141 		dout("con_revoke %p msg %p - was on queue\n", con, msg);
2142 		list_del_init(&msg->list_head);
2143 		ceph_msg_put(msg);
2144 		msg->hdr.seq = 0;
2145 	}
2146 	if (con->out_msg == msg) {
2147 		dout("con_revoke %p msg %p - was sending\n", con, msg);
2148 		con->out_msg = NULL;
2149 		if (con->out_kvec_is_msg) {
2150 			con->out_skip = con->out_kvec_bytes;
2151 			con->out_kvec_is_msg = false;
2152 		}
2153 		ceph_msg_put(msg);
2154 		msg->hdr.seq = 0;
2155 	}
2156 	mutex_unlock(&con->mutex);
2157 }
2158 
2159 /*
2160  * Revoke a message that we may be reading data into
2161  */
2162 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2163 {
2164 	mutex_lock(&con->mutex);
2165 	if (con->in_msg && con->in_msg == msg) {
2166 		unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2167 		unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2168 		unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2169 
2170 		/* skip rest of message */
2171 		dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2172 			con->in_base_pos = con->in_base_pos -
2173 				sizeof(struct ceph_msg_header) -
2174 				front_len -
2175 				middle_len -
2176 				data_len -
2177 				sizeof(struct ceph_msg_footer);
2178 		ceph_msg_put(con->in_msg);
2179 		con->in_msg = NULL;
2180 		con->in_tag = CEPH_MSGR_TAG_READY;
2181 		con->in_seq++;
2182 	} else {
2183 		dout("con_revoke_pages %p msg %p pages %p no-op\n",
2184 		     con, con->in_msg, msg);
2185 	}
2186 	mutex_unlock(&con->mutex);
2187 }
2188 
2189 /*
2190  * Queue a keepalive byte to ensure the tcp connection is alive.
2191  */
2192 void ceph_con_keepalive(struct ceph_connection *con)
2193 {
2194 	if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2195 	    test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2196 		queue_con(con);
2197 }
2198 EXPORT_SYMBOL(ceph_con_keepalive);
2199 
2200 
2201 /*
2202  * construct a new message with given type, size
2203  * the new msg has a ref count of 1.
2204  */
2205 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2206 {
2207 	struct ceph_msg *m;
2208 
2209 	m = kmalloc(sizeof(*m), flags);
2210 	if (m == NULL)
2211 		goto out;
2212 	kref_init(&m->kref);
2213 	INIT_LIST_HEAD(&m->list_head);
2214 
2215 	m->hdr.tid = 0;
2216 	m->hdr.type = cpu_to_le16(type);
2217 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2218 	m->hdr.version = 0;
2219 	m->hdr.front_len = cpu_to_le32(front_len);
2220 	m->hdr.middle_len = 0;
2221 	m->hdr.data_len = 0;
2222 	m->hdr.data_off = 0;
2223 	m->hdr.reserved = 0;
2224 	m->footer.front_crc = 0;
2225 	m->footer.middle_crc = 0;
2226 	m->footer.data_crc = 0;
2227 	m->footer.flags = 0;
2228 	m->front_max = front_len;
2229 	m->front_is_vmalloc = false;
2230 	m->more_to_follow = false;
2231 	m->pool = NULL;
2232 
2233 	/* front */
2234 	if (front_len) {
2235 		if (front_len > PAGE_CACHE_SIZE) {
2236 			m->front.iov_base = __vmalloc(front_len, flags,
2237 						      PAGE_KERNEL);
2238 			m->front_is_vmalloc = true;
2239 		} else {
2240 			m->front.iov_base = kmalloc(front_len, flags);
2241 		}
2242 		if (m->front.iov_base == NULL) {
2243 			pr_err("msg_new can't allocate %d bytes\n",
2244 			     front_len);
2245 			goto out2;
2246 		}
2247 	} else {
2248 		m->front.iov_base = NULL;
2249 	}
2250 	m->front.iov_len = front_len;
2251 
2252 	/* middle */
2253 	m->middle = NULL;
2254 
2255 	/* data */
2256 	m->nr_pages = 0;
2257 	m->page_alignment = 0;
2258 	m->pages = NULL;
2259 	m->pagelist = NULL;
2260 	m->bio = NULL;
2261 	m->bio_iter = NULL;
2262 	m->bio_seg = 0;
2263 	m->trail = NULL;
2264 
2265 	dout("ceph_msg_new %p front %d\n", m, front_len);
2266 	return m;
2267 
2268 out2:
2269 	ceph_msg_put(m);
2270 out:
2271 	pr_err("msg_new can't create type %d front %d\n", type, front_len);
2272 	return NULL;
2273 }
2274 EXPORT_SYMBOL(ceph_msg_new);
2275 
2276 /*
2277  * Allocate "middle" portion of a message, if it is needed and wasn't
2278  * allocated by alloc_msg.  This allows us to read a small fixed-size
2279  * per-type header in the front and then gracefully fail (i.e.,
2280  * propagate the error to the caller based on info in the front) when
2281  * the middle is too large.
2282  */
2283 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2284 {
2285 	int type = le16_to_cpu(msg->hdr.type);
2286 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2287 
2288 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2289 	     ceph_msg_type_name(type), middle_len);
2290 	BUG_ON(!middle_len);
2291 	BUG_ON(msg->middle);
2292 
2293 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2294 	if (!msg->middle)
2295 		return -ENOMEM;
2296 	return 0;
2297 }
2298 
2299 /*
2300  * Generic message allocator, for incoming messages.
2301  */
2302 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2303 				struct ceph_msg_header *hdr,
2304 				int *skip)
2305 {
2306 	int type = le16_to_cpu(hdr->type);
2307 	int front_len = le32_to_cpu(hdr->front_len);
2308 	int middle_len = le32_to_cpu(hdr->middle_len);
2309 	struct ceph_msg *msg = NULL;
2310 	int ret;
2311 
2312 	if (con->ops->alloc_msg) {
2313 		mutex_unlock(&con->mutex);
2314 		msg = con->ops->alloc_msg(con, hdr, skip);
2315 		mutex_lock(&con->mutex);
2316 		if (!msg || *skip)
2317 			return NULL;
2318 	}
2319 	if (!msg) {
2320 		*skip = 0;
2321 		msg = ceph_msg_new(type, front_len, GFP_NOFS);
2322 		if (!msg) {
2323 			pr_err("unable to allocate msg type %d len %d\n",
2324 			       type, front_len);
2325 			return NULL;
2326 		}
2327 		msg->page_alignment = le16_to_cpu(hdr->data_off);
2328 	}
2329 	memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2330 
2331 	if (middle_len && !msg->middle) {
2332 		ret = ceph_alloc_middle(con, msg);
2333 		if (ret < 0) {
2334 			ceph_msg_put(msg);
2335 			return NULL;
2336 		}
2337 	}
2338 
2339 	return msg;
2340 }
2341 
2342 
2343 /*
2344  * Free a generically kmalloc'd message.
2345  */
2346 void ceph_msg_kfree(struct ceph_msg *m)
2347 {
2348 	dout("msg_kfree %p\n", m);
2349 	if (m->front_is_vmalloc)
2350 		vfree(m->front.iov_base);
2351 	else
2352 		kfree(m->front.iov_base);
2353 	kfree(m);
2354 }
2355 
2356 /*
2357  * Drop a msg ref.  Destroy as needed.
2358  */
2359 void ceph_msg_last_put(struct kref *kref)
2360 {
2361 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2362 
2363 	dout("ceph_msg_put last one on %p\n", m);
2364 	WARN_ON(!list_empty(&m->list_head));
2365 
2366 	/* drop middle, data, if any */
2367 	if (m->middle) {
2368 		ceph_buffer_put(m->middle);
2369 		m->middle = NULL;
2370 	}
2371 	m->nr_pages = 0;
2372 	m->pages = NULL;
2373 
2374 	if (m->pagelist) {
2375 		ceph_pagelist_release(m->pagelist);
2376 		kfree(m->pagelist);
2377 		m->pagelist = NULL;
2378 	}
2379 
2380 	m->trail = NULL;
2381 
2382 	if (m->pool)
2383 		ceph_msgpool_put(m->pool, m);
2384 	else
2385 		ceph_msg_kfree(m);
2386 }
2387 EXPORT_SYMBOL(ceph_msg_last_put);
2388 
2389 void ceph_msg_dump(struct ceph_msg *msg)
2390 {
2391 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2392 		 msg->front_max, msg->nr_pages);
2393 	print_hex_dump(KERN_DEBUG, "header: ",
2394 		       DUMP_PREFIX_OFFSET, 16, 1,
2395 		       &msg->hdr, sizeof(msg->hdr), true);
2396 	print_hex_dump(KERN_DEBUG, " front: ",
2397 		       DUMP_PREFIX_OFFSET, 16, 1,
2398 		       msg->front.iov_base, msg->front.iov_len, true);
2399 	if (msg->middle)
2400 		print_hex_dump(KERN_DEBUG, "middle: ",
2401 			       DUMP_PREFIX_OFFSET, 16, 1,
2402 			       msg->middle->vec.iov_base,
2403 			       msg->middle->vec.iov_len, true);
2404 	print_hex_dump(KERN_DEBUG, "footer: ",
2405 		       DUMP_PREFIX_OFFSET, 16, 1,
2406 		       &msg->footer, sizeof(msg->footer), true);
2407 }
2408 EXPORT_SYMBOL(ceph_msg_dump);
2409