xref: /linux/net/ceph/messenger.c (revision 2f713615ddd9d805b6c5e79c52e0e11af99d2bf1)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 static bool con_flag_valid(unsigned long con_flag)
86 {
87 	switch (con_flag) {
88 	case CEPH_CON_F_LOSSYTX:
89 	case CEPH_CON_F_KEEPALIVE_PENDING:
90 	case CEPH_CON_F_WRITE_PENDING:
91 	case CEPH_CON_F_SOCK_CLOSED:
92 	case CEPH_CON_F_BACKOFF:
93 		return true;
94 	default:
95 		return false;
96 	}
97 }
98 
99 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
100 {
101 	BUG_ON(!con_flag_valid(con_flag));
102 
103 	clear_bit(con_flag, &con->flags);
104 }
105 
106 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
107 {
108 	BUG_ON(!con_flag_valid(con_flag));
109 
110 	set_bit(con_flag, &con->flags);
111 }
112 
113 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
114 {
115 	BUG_ON(!con_flag_valid(con_flag));
116 
117 	return test_bit(con_flag, &con->flags);
118 }
119 
120 bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
121 				  unsigned long con_flag)
122 {
123 	BUG_ON(!con_flag_valid(con_flag));
124 
125 	return test_and_clear_bit(con_flag, &con->flags);
126 }
127 
128 bool ceph_con_flag_test_and_set(struct ceph_connection *con,
129 				unsigned long con_flag)
130 {
131 	BUG_ON(!con_flag_valid(con_flag));
132 
133 	return test_and_set_bit(con_flag, &con->flags);
134 }
135 
136 /* Slab caches for frequently-allocated structures */
137 
138 static struct kmem_cache	*ceph_msg_cache;
139 
140 #ifdef CONFIG_LOCKDEP
141 static struct lock_class_key socket_class;
142 #endif
143 
144 static void queue_con(struct ceph_connection *con);
145 static void cancel_con(struct ceph_connection *con);
146 static void ceph_con_workfn(struct work_struct *);
147 static void con_fault(struct ceph_connection *con);
148 
149 /*
150  * Nicely render a sockaddr as a string.  An array of formatted
151  * strings is used, to approximate reentrancy.
152  */
153 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
154 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
155 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
156 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
157 
158 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
159 static atomic_t addr_str_seq = ATOMIC_INIT(0);
160 
161 struct page *ceph_zero_page;		/* used in certain error cases */
162 
163 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
164 {
165 	int i;
166 	char *s;
167 	struct sockaddr_storage ss = addr->in_addr; /* align */
168 	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
169 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
170 
171 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
172 	s = addr_str[i];
173 
174 	switch (ss.ss_family) {
175 	case AF_INET:
176 		snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
177 			 le32_to_cpu(addr->type), &in4->sin_addr,
178 			 ntohs(in4->sin_port));
179 		break;
180 
181 	case AF_INET6:
182 		snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
183 			 le32_to_cpu(addr->type), &in6->sin6_addr,
184 			 ntohs(in6->sin6_port));
185 		break;
186 
187 	default:
188 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
189 			 ss.ss_family);
190 	}
191 
192 	return s;
193 }
194 EXPORT_SYMBOL(ceph_pr_addr);
195 
196 void ceph_encode_my_addr(struct ceph_messenger *msgr)
197 {
198 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
199 	ceph_encode_banner_addr(&msgr->my_enc_addr);
200 }
201 
202 /*
203  * work queue for all reading and writing to/from the socket.
204  */
205 static struct workqueue_struct *ceph_msgr_wq;
206 
207 static int ceph_msgr_slab_init(void)
208 {
209 	BUG_ON(ceph_msg_cache);
210 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
211 	if (!ceph_msg_cache)
212 		return -ENOMEM;
213 
214 	return 0;
215 }
216 
217 static void ceph_msgr_slab_exit(void)
218 {
219 	BUG_ON(!ceph_msg_cache);
220 	kmem_cache_destroy(ceph_msg_cache);
221 	ceph_msg_cache = NULL;
222 }
223 
224 static void _ceph_msgr_exit(void)
225 {
226 	if (ceph_msgr_wq) {
227 		destroy_workqueue(ceph_msgr_wq);
228 		ceph_msgr_wq = NULL;
229 	}
230 
231 	BUG_ON(!ceph_zero_page);
232 	put_page(ceph_zero_page);
233 	ceph_zero_page = NULL;
234 
235 	ceph_msgr_slab_exit();
236 }
237 
238 int __init ceph_msgr_init(void)
239 {
240 	if (ceph_msgr_slab_init())
241 		return -ENOMEM;
242 
243 	BUG_ON(ceph_zero_page);
244 	ceph_zero_page = ZERO_PAGE(0);
245 	get_page(ceph_zero_page);
246 
247 	/*
248 	 * The number of active work items is limited by the number of
249 	 * connections, so leave @max_active at default.
250 	 */
251 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
252 	if (ceph_msgr_wq)
253 		return 0;
254 
255 	pr_err("msgr_init failed to create workqueue\n");
256 	_ceph_msgr_exit();
257 
258 	return -ENOMEM;
259 }
260 
261 void ceph_msgr_exit(void)
262 {
263 	BUG_ON(ceph_msgr_wq == NULL);
264 
265 	_ceph_msgr_exit();
266 }
267 
268 void ceph_msgr_flush(void)
269 {
270 	flush_workqueue(ceph_msgr_wq);
271 }
272 EXPORT_SYMBOL(ceph_msgr_flush);
273 
274 /* Connection socket state transition functions */
275 
276 static void con_sock_state_init(struct ceph_connection *con)
277 {
278 	int old_state;
279 
280 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
281 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
282 		printk("%s: unexpected old state %d\n", __func__, old_state);
283 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
284 	     CON_SOCK_STATE_CLOSED);
285 }
286 
287 static void con_sock_state_connecting(struct ceph_connection *con)
288 {
289 	int old_state;
290 
291 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
292 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
293 		printk("%s: unexpected old state %d\n", __func__, old_state);
294 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
295 	     CON_SOCK_STATE_CONNECTING);
296 }
297 
298 static void con_sock_state_connected(struct ceph_connection *con)
299 {
300 	int old_state;
301 
302 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
303 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
304 		printk("%s: unexpected old state %d\n", __func__, old_state);
305 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
306 	     CON_SOCK_STATE_CONNECTED);
307 }
308 
309 static void con_sock_state_closing(struct ceph_connection *con)
310 {
311 	int old_state;
312 
313 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
314 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
315 			old_state != CON_SOCK_STATE_CONNECTED &&
316 			old_state != CON_SOCK_STATE_CLOSING))
317 		printk("%s: unexpected old state %d\n", __func__, old_state);
318 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
319 	     CON_SOCK_STATE_CLOSING);
320 }
321 
322 static void con_sock_state_closed(struct ceph_connection *con)
323 {
324 	int old_state;
325 
326 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
327 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
328 		    old_state != CON_SOCK_STATE_CLOSING &&
329 		    old_state != CON_SOCK_STATE_CONNECTING &&
330 		    old_state != CON_SOCK_STATE_CLOSED))
331 		printk("%s: unexpected old state %d\n", __func__, old_state);
332 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
333 	     CON_SOCK_STATE_CLOSED);
334 }
335 
336 /*
337  * socket callback functions
338  */
339 
340 /* data available on socket, or listen socket received a connect */
341 static void ceph_sock_data_ready(struct sock *sk)
342 {
343 	struct ceph_connection *con = sk->sk_user_data;
344 	if (atomic_read(&con->msgr->stopping)) {
345 		return;
346 	}
347 
348 	if (sk->sk_state != TCP_CLOSE_WAIT) {
349 		dout("%s %p state = %d, queueing work\n", __func__,
350 		     con, con->state);
351 		queue_con(con);
352 	}
353 }
354 
355 /* socket has buffer space for writing */
356 static void ceph_sock_write_space(struct sock *sk)
357 {
358 	struct ceph_connection *con = sk->sk_user_data;
359 
360 	/* only queue to workqueue if there is data we want to write,
361 	 * and there is sufficient space in the socket buffer to accept
362 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
363 	 * doesn't get called again until try_write() fills the socket
364 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
365 	 * and net/core/stream.c:sk_stream_write_space().
366 	 */
367 	if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
368 		if (sk_stream_is_writeable(sk)) {
369 			dout("%s %p queueing write work\n", __func__, con);
370 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
371 			queue_con(con);
372 		}
373 	} else {
374 		dout("%s %p nothing to write\n", __func__, con);
375 	}
376 }
377 
378 /* socket's state has changed */
379 static void ceph_sock_state_change(struct sock *sk)
380 {
381 	struct ceph_connection *con = sk->sk_user_data;
382 
383 	dout("%s %p state = %d sk_state = %u\n", __func__,
384 	     con, con->state, sk->sk_state);
385 
386 	switch (sk->sk_state) {
387 	case TCP_CLOSE:
388 		dout("%s TCP_CLOSE\n", __func__);
389 		fallthrough;
390 	case TCP_CLOSE_WAIT:
391 		dout("%s TCP_CLOSE_WAIT\n", __func__);
392 		con_sock_state_closing(con);
393 		ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
394 		queue_con(con);
395 		break;
396 	case TCP_ESTABLISHED:
397 		dout("%s TCP_ESTABLISHED\n", __func__);
398 		con_sock_state_connected(con);
399 		queue_con(con);
400 		break;
401 	default:	/* Everything else is uninteresting */
402 		break;
403 	}
404 }
405 
406 /*
407  * set up socket callbacks
408  */
409 static void set_sock_callbacks(struct socket *sock,
410 			       struct ceph_connection *con)
411 {
412 	struct sock *sk = sock->sk;
413 	sk->sk_user_data = con;
414 	sk->sk_data_ready = ceph_sock_data_ready;
415 	sk->sk_write_space = ceph_sock_write_space;
416 	sk->sk_state_change = ceph_sock_state_change;
417 }
418 
419 
420 /*
421  * socket helpers
422  */
423 
424 /*
425  * initiate connection to a remote socket.
426  */
427 int ceph_tcp_connect(struct ceph_connection *con)
428 {
429 	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
430 	struct socket *sock;
431 	unsigned int noio_flag;
432 	int ret;
433 
434 	dout("%s con %p peer_addr %s\n", __func__, con,
435 	     ceph_pr_addr(&con->peer_addr));
436 	BUG_ON(con->sock);
437 
438 	/* sock_create_kern() allocates with GFP_KERNEL */
439 	noio_flag = memalloc_noio_save();
440 	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
441 			       SOCK_STREAM, IPPROTO_TCP, &sock);
442 	memalloc_noio_restore(noio_flag);
443 	if (ret)
444 		return ret;
445 	sock->sk->sk_allocation = GFP_NOFS;
446 
447 #ifdef CONFIG_LOCKDEP
448 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
449 #endif
450 
451 	set_sock_callbacks(sock, con);
452 
453 	con_sock_state_connecting(con);
454 	ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
455 				 O_NONBLOCK);
456 	if (ret == -EINPROGRESS) {
457 		dout("connect %s EINPROGRESS sk_state = %u\n",
458 		     ceph_pr_addr(&con->peer_addr),
459 		     sock->sk->sk_state);
460 	} else if (ret < 0) {
461 		pr_err("connect %s error %d\n",
462 		       ceph_pr_addr(&con->peer_addr), ret);
463 		sock_release(sock);
464 		return ret;
465 	}
466 
467 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
468 		tcp_sock_set_nodelay(sock->sk);
469 
470 	con->sock = sock;
471 	return 0;
472 }
473 
474 /*
475  * Shutdown/close the socket for the given connection.
476  */
477 int ceph_con_close_socket(struct ceph_connection *con)
478 {
479 	int rc = 0;
480 
481 	dout("%s con %p sock %p\n", __func__, con, con->sock);
482 	if (con->sock) {
483 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
484 		sock_release(con->sock);
485 		con->sock = NULL;
486 	}
487 
488 	/*
489 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
490 	 * independent of the connection mutex, and we could have
491 	 * received a socket close event before we had the chance to
492 	 * shut the socket down.
493 	 */
494 	ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
495 
496 	con_sock_state_closed(con);
497 	return rc;
498 }
499 
500 static void ceph_con_reset_protocol(struct ceph_connection *con)
501 {
502 	dout("%s con %p\n", __func__, con);
503 
504 	ceph_con_close_socket(con);
505 	if (con->in_msg) {
506 		WARN_ON(con->in_msg->con != con);
507 		ceph_msg_put(con->in_msg);
508 		con->in_msg = NULL;
509 	}
510 	if (con->out_msg) {
511 		WARN_ON(con->out_msg->con != con);
512 		ceph_msg_put(con->out_msg);
513 		con->out_msg = NULL;
514 	}
515 
516 	ceph_con_v1_reset_protocol(con);
517 }
518 
519 /*
520  * Reset a connection.  Discard all incoming and outgoing messages
521  * and clear *_seq state.
522  */
523 static void ceph_msg_remove(struct ceph_msg *msg)
524 {
525 	list_del_init(&msg->list_head);
526 
527 	ceph_msg_put(msg);
528 }
529 static void ceph_msg_remove_list(struct list_head *head)
530 {
531 	while (!list_empty(head)) {
532 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
533 							list_head);
534 		ceph_msg_remove(msg);
535 	}
536 }
537 
538 void ceph_con_reset_session(struct ceph_connection *con)
539 {
540 	dout("%s con %p\n", __func__, con);
541 
542 	WARN_ON(con->in_msg);
543 	WARN_ON(con->out_msg);
544 	ceph_msg_remove_list(&con->out_queue);
545 	ceph_msg_remove_list(&con->out_sent);
546 	con->out_seq = 0;
547 	con->in_seq = 0;
548 	con->in_seq_acked = 0;
549 
550 	ceph_con_v1_reset_session(con);
551 }
552 
553 /*
554  * mark a peer down.  drop any open connections.
555  */
556 void ceph_con_close(struct ceph_connection *con)
557 {
558 	mutex_lock(&con->mutex);
559 	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
560 	con->state = CEPH_CON_S_CLOSED;
561 
562 	ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX);  /* so we retry next
563 							  connect */
564 	ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
565 	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
566 	ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
567 
568 	ceph_con_reset_protocol(con);
569 	ceph_con_reset_session(con);
570 	cancel_con(con);
571 	mutex_unlock(&con->mutex);
572 }
573 EXPORT_SYMBOL(ceph_con_close);
574 
575 /*
576  * Reopen a closed connection, with a new peer address.
577  */
578 void ceph_con_open(struct ceph_connection *con,
579 		   __u8 entity_type, __u64 entity_num,
580 		   struct ceph_entity_addr *addr)
581 {
582 	mutex_lock(&con->mutex);
583 	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
584 
585 	WARN_ON(con->state != CEPH_CON_S_CLOSED);
586 	con->state = CEPH_CON_S_PREOPEN;
587 
588 	con->peer_name.type = (__u8) entity_type;
589 	con->peer_name.num = cpu_to_le64(entity_num);
590 
591 	memcpy(&con->peer_addr, addr, sizeof(*addr));
592 	con->delay = 0;      /* reset backoff memory */
593 	mutex_unlock(&con->mutex);
594 	queue_con(con);
595 }
596 EXPORT_SYMBOL(ceph_con_open);
597 
598 /*
599  * return true if this connection ever successfully opened
600  */
601 bool ceph_con_opened(struct ceph_connection *con)
602 {
603 	return ceph_con_v1_opened(con);
604 }
605 
606 /*
607  * initialize a new connection.
608  */
609 void ceph_con_init(struct ceph_connection *con, void *private,
610 	const struct ceph_connection_operations *ops,
611 	struct ceph_messenger *msgr)
612 {
613 	dout("con_init %p\n", con);
614 	memset(con, 0, sizeof(*con));
615 	con->private = private;
616 	con->ops = ops;
617 	con->msgr = msgr;
618 
619 	con_sock_state_init(con);
620 
621 	mutex_init(&con->mutex);
622 	INIT_LIST_HEAD(&con->out_queue);
623 	INIT_LIST_HEAD(&con->out_sent);
624 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
625 
626 	con->state = CEPH_CON_S_CLOSED;
627 }
628 EXPORT_SYMBOL(ceph_con_init);
629 
630 /*
631  * We maintain a global counter to order connection attempts.  Get
632  * a unique seq greater than @gt.
633  */
634 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
635 {
636 	u32 ret;
637 
638 	spin_lock(&msgr->global_seq_lock);
639 	if (msgr->global_seq < gt)
640 		msgr->global_seq = gt;
641 	ret = ++msgr->global_seq;
642 	spin_unlock(&msgr->global_seq_lock);
643 	return ret;
644 }
645 
646 /*
647  * Discard messages that have been acked by the server.
648  */
649 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
650 {
651 	struct ceph_msg *msg;
652 	u64 seq;
653 
654 	dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
655 	while (!list_empty(&con->out_sent)) {
656 		msg = list_first_entry(&con->out_sent, struct ceph_msg,
657 				       list_head);
658 		WARN_ON(msg->needs_out_seq);
659 		seq = le64_to_cpu(msg->hdr.seq);
660 		if (seq > ack_seq)
661 			break;
662 
663 		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
664 		     msg, seq);
665 		ceph_msg_remove(msg);
666 	}
667 }
668 
669 /*
670  * Discard messages that have been requeued in con_fault(), up to
671  * reconnect_seq.  This avoids gratuitously resending messages that
672  * the server had received and handled prior to reconnect.
673  */
674 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
675 {
676 	struct ceph_msg *msg;
677 	u64 seq;
678 
679 	dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
680 	while (!list_empty(&con->out_queue)) {
681 		msg = list_first_entry(&con->out_queue, struct ceph_msg,
682 				       list_head);
683 		if (msg->needs_out_seq)
684 			break;
685 		seq = le64_to_cpu(msg->hdr.seq);
686 		if (seq > reconnect_seq)
687 			break;
688 
689 		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
690 		     msg, seq);
691 		ceph_msg_remove(msg);
692 	}
693 }
694 
695 #ifdef CONFIG_BLOCK
696 
697 /*
698  * For a bio data item, a piece is whatever remains of the next
699  * entry in the current bio iovec, or the first entry in the next
700  * bio in the list.
701  */
702 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
703 					size_t length)
704 {
705 	struct ceph_msg_data *data = cursor->data;
706 	struct ceph_bio_iter *it = &cursor->bio_iter;
707 
708 	cursor->resid = min_t(size_t, length, data->bio_length);
709 	*it = data->bio_pos;
710 	if (cursor->resid < it->iter.bi_size)
711 		it->iter.bi_size = cursor->resid;
712 
713 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
714 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
715 }
716 
717 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
718 						size_t *page_offset,
719 						size_t *length)
720 {
721 	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
722 					   cursor->bio_iter.iter);
723 
724 	*page_offset = bv.bv_offset;
725 	*length = bv.bv_len;
726 	return bv.bv_page;
727 }
728 
729 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
730 					size_t bytes)
731 {
732 	struct ceph_bio_iter *it = &cursor->bio_iter;
733 	struct page *page = bio_iter_page(it->bio, it->iter);
734 
735 	BUG_ON(bytes > cursor->resid);
736 	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
737 	cursor->resid -= bytes;
738 	bio_advance_iter(it->bio, &it->iter, bytes);
739 
740 	if (!cursor->resid) {
741 		BUG_ON(!cursor->last_piece);
742 		return false;   /* no more data */
743 	}
744 
745 	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
746 		       page == bio_iter_page(it->bio, it->iter)))
747 		return false;	/* more bytes to process in this segment */
748 
749 	if (!it->iter.bi_size) {
750 		it->bio = it->bio->bi_next;
751 		it->iter = it->bio->bi_iter;
752 		if (cursor->resid < it->iter.bi_size)
753 			it->iter.bi_size = cursor->resid;
754 	}
755 
756 	BUG_ON(cursor->last_piece);
757 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
758 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
759 	return true;
760 }
761 #endif /* CONFIG_BLOCK */
762 
763 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
764 					size_t length)
765 {
766 	struct ceph_msg_data *data = cursor->data;
767 	struct bio_vec *bvecs = data->bvec_pos.bvecs;
768 
769 	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
770 	cursor->bvec_iter = data->bvec_pos.iter;
771 	cursor->bvec_iter.bi_size = cursor->resid;
772 
773 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
774 	cursor->last_piece =
775 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
776 }
777 
778 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
779 						size_t *page_offset,
780 						size_t *length)
781 {
782 	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
783 					   cursor->bvec_iter);
784 
785 	*page_offset = bv.bv_offset;
786 	*length = bv.bv_len;
787 	return bv.bv_page;
788 }
789 
790 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
791 					size_t bytes)
792 {
793 	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
794 	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
795 
796 	BUG_ON(bytes > cursor->resid);
797 	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
798 	cursor->resid -= bytes;
799 	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
800 
801 	if (!cursor->resid) {
802 		BUG_ON(!cursor->last_piece);
803 		return false;   /* no more data */
804 	}
805 
806 	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
807 		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
808 		return false;	/* more bytes to process in this segment */
809 
810 	BUG_ON(cursor->last_piece);
811 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
812 	cursor->last_piece =
813 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
814 	return true;
815 }
816 
817 /*
818  * For a page array, a piece comes from the first page in the array
819  * that has not already been fully consumed.
820  */
821 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
822 					size_t length)
823 {
824 	struct ceph_msg_data *data = cursor->data;
825 	int page_count;
826 
827 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
828 
829 	BUG_ON(!data->pages);
830 	BUG_ON(!data->length);
831 
832 	cursor->resid = min(length, data->length);
833 	page_count = calc_pages_for(data->alignment, (u64)data->length);
834 	cursor->page_offset = data->alignment & ~PAGE_MASK;
835 	cursor->page_index = 0;
836 	BUG_ON(page_count > (int)USHRT_MAX);
837 	cursor->page_count = (unsigned short)page_count;
838 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
839 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
840 }
841 
842 static struct page *
843 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
844 					size_t *page_offset, size_t *length)
845 {
846 	struct ceph_msg_data *data = cursor->data;
847 
848 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
849 
850 	BUG_ON(cursor->page_index >= cursor->page_count);
851 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
852 
853 	*page_offset = cursor->page_offset;
854 	if (cursor->last_piece)
855 		*length = cursor->resid;
856 	else
857 		*length = PAGE_SIZE - *page_offset;
858 
859 	return data->pages[cursor->page_index];
860 }
861 
862 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
863 						size_t bytes)
864 {
865 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
866 
867 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
868 
869 	/* Advance the cursor page offset */
870 
871 	cursor->resid -= bytes;
872 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
873 	if (!bytes || cursor->page_offset)
874 		return false;	/* more bytes to process in the current page */
875 
876 	if (!cursor->resid)
877 		return false;   /* no more data */
878 
879 	/* Move on to the next page; offset is already at 0 */
880 
881 	BUG_ON(cursor->page_index >= cursor->page_count);
882 	cursor->page_index++;
883 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
884 
885 	return true;
886 }
887 
888 /*
889  * For a pagelist, a piece is whatever remains to be consumed in the
890  * first page in the list, or the front of the next page.
891  */
892 static void
893 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
894 					size_t length)
895 {
896 	struct ceph_msg_data *data = cursor->data;
897 	struct ceph_pagelist *pagelist;
898 	struct page *page;
899 
900 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
901 
902 	pagelist = data->pagelist;
903 	BUG_ON(!pagelist);
904 
905 	if (!length)
906 		return;		/* pagelist can be assigned but empty */
907 
908 	BUG_ON(list_empty(&pagelist->head));
909 	page = list_first_entry(&pagelist->head, struct page, lru);
910 
911 	cursor->resid = min(length, pagelist->length);
912 	cursor->page = page;
913 	cursor->offset = 0;
914 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
915 }
916 
917 static struct page *
918 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
919 				size_t *page_offset, size_t *length)
920 {
921 	struct ceph_msg_data *data = cursor->data;
922 	struct ceph_pagelist *pagelist;
923 
924 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
925 
926 	pagelist = data->pagelist;
927 	BUG_ON(!pagelist);
928 
929 	BUG_ON(!cursor->page);
930 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
931 
932 	/* offset of first page in pagelist is always 0 */
933 	*page_offset = cursor->offset & ~PAGE_MASK;
934 	if (cursor->last_piece)
935 		*length = cursor->resid;
936 	else
937 		*length = PAGE_SIZE - *page_offset;
938 
939 	return cursor->page;
940 }
941 
942 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
943 						size_t bytes)
944 {
945 	struct ceph_msg_data *data = cursor->data;
946 	struct ceph_pagelist *pagelist;
947 
948 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
949 
950 	pagelist = data->pagelist;
951 	BUG_ON(!pagelist);
952 
953 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
954 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
955 
956 	/* Advance the cursor offset */
957 
958 	cursor->resid -= bytes;
959 	cursor->offset += bytes;
960 	/* offset of first page in pagelist is always 0 */
961 	if (!bytes || cursor->offset & ~PAGE_MASK)
962 		return false;	/* more bytes to process in the current page */
963 
964 	if (!cursor->resid)
965 		return false;   /* no more data */
966 
967 	/* Move on to the next page */
968 
969 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
970 	cursor->page = list_next_entry(cursor->page, lru);
971 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
972 
973 	return true;
974 }
975 
976 /*
977  * Message data is handled (sent or received) in pieces, where each
978  * piece resides on a single page.  The network layer might not
979  * consume an entire piece at once.  A data item's cursor keeps
980  * track of which piece is next to process and how much remains to
981  * be processed in that piece.  It also tracks whether the current
982  * piece is the last one in the data item.
983  */
984 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
985 {
986 	size_t length = cursor->total_resid;
987 
988 	switch (cursor->data->type) {
989 	case CEPH_MSG_DATA_PAGELIST:
990 		ceph_msg_data_pagelist_cursor_init(cursor, length);
991 		break;
992 	case CEPH_MSG_DATA_PAGES:
993 		ceph_msg_data_pages_cursor_init(cursor, length);
994 		break;
995 #ifdef CONFIG_BLOCK
996 	case CEPH_MSG_DATA_BIO:
997 		ceph_msg_data_bio_cursor_init(cursor, length);
998 		break;
999 #endif /* CONFIG_BLOCK */
1000 	case CEPH_MSG_DATA_BVECS:
1001 		ceph_msg_data_bvecs_cursor_init(cursor, length);
1002 		break;
1003 	case CEPH_MSG_DATA_NONE:
1004 	default:
1005 		/* BUG(); */
1006 		break;
1007 	}
1008 	cursor->need_crc = true;
1009 }
1010 
1011 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1012 			       struct ceph_msg *msg, size_t length)
1013 {
1014 	BUG_ON(!length);
1015 	BUG_ON(length > msg->data_length);
1016 	BUG_ON(!msg->num_data_items);
1017 
1018 	cursor->total_resid = length;
1019 	cursor->data = msg->data;
1020 
1021 	__ceph_msg_data_cursor_init(cursor);
1022 }
1023 
1024 /*
1025  * Return the page containing the next piece to process for a given
1026  * data item, and supply the page offset and length of that piece.
1027  * Indicate whether this is the last piece in this data item.
1028  */
1029 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1030 				size_t *page_offset, size_t *length,
1031 				bool *last_piece)
1032 {
1033 	struct page *page;
1034 
1035 	switch (cursor->data->type) {
1036 	case CEPH_MSG_DATA_PAGELIST:
1037 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1038 		break;
1039 	case CEPH_MSG_DATA_PAGES:
1040 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1041 		break;
1042 #ifdef CONFIG_BLOCK
1043 	case CEPH_MSG_DATA_BIO:
1044 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1045 		break;
1046 #endif /* CONFIG_BLOCK */
1047 	case CEPH_MSG_DATA_BVECS:
1048 		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1049 		break;
1050 	case CEPH_MSG_DATA_NONE:
1051 	default:
1052 		page = NULL;
1053 		break;
1054 	}
1055 
1056 	BUG_ON(!page);
1057 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1058 	BUG_ON(!*length);
1059 	BUG_ON(*length > cursor->resid);
1060 	if (last_piece)
1061 		*last_piece = cursor->last_piece;
1062 
1063 	return page;
1064 }
1065 
1066 /*
1067  * Returns true if the result moves the cursor on to the next piece
1068  * of the data item.
1069  */
1070 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1071 {
1072 	bool new_piece;
1073 
1074 	BUG_ON(bytes > cursor->resid);
1075 	switch (cursor->data->type) {
1076 	case CEPH_MSG_DATA_PAGELIST:
1077 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1078 		break;
1079 	case CEPH_MSG_DATA_PAGES:
1080 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1081 		break;
1082 #ifdef CONFIG_BLOCK
1083 	case CEPH_MSG_DATA_BIO:
1084 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1085 		break;
1086 #endif /* CONFIG_BLOCK */
1087 	case CEPH_MSG_DATA_BVECS:
1088 		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1089 		break;
1090 	case CEPH_MSG_DATA_NONE:
1091 	default:
1092 		BUG();
1093 		break;
1094 	}
1095 	cursor->total_resid -= bytes;
1096 
1097 	if (!cursor->resid && cursor->total_resid) {
1098 		WARN_ON(!cursor->last_piece);
1099 		cursor->data++;
1100 		__ceph_msg_data_cursor_init(cursor);
1101 		new_piece = true;
1102 	}
1103 	cursor->need_crc = new_piece;
1104 }
1105 
1106 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1107 		     unsigned int length)
1108 {
1109 	char *kaddr;
1110 
1111 	kaddr = kmap(page);
1112 	BUG_ON(kaddr == NULL);
1113 	crc = crc32c(crc, kaddr + page_offset, length);
1114 	kunmap(page);
1115 
1116 	return crc;
1117 }
1118 
1119 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1120 {
1121 	struct sockaddr_storage ss = addr->in_addr; /* align */
1122 	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1123 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1124 
1125 	switch (ss.ss_family) {
1126 	case AF_INET:
1127 		return addr4->s_addr == htonl(INADDR_ANY);
1128 	case AF_INET6:
1129 		return ipv6_addr_any(addr6);
1130 	default:
1131 		return true;
1132 	}
1133 }
1134 
1135 int ceph_addr_port(const struct ceph_entity_addr *addr)
1136 {
1137 	switch (get_unaligned(&addr->in_addr.ss_family)) {
1138 	case AF_INET:
1139 		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1140 	case AF_INET6:
1141 		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1142 	}
1143 	return 0;
1144 }
1145 
1146 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1147 {
1148 	switch (get_unaligned(&addr->in_addr.ss_family)) {
1149 	case AF_INET:
1150 		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1151 		break;
1152 	case AF_INET6:
1153 		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1154 		break;
1155 	}
1156 }
1157 
1158 /*
1159  * Unlike other *_pton function semantics, zero indicates success.
1160  */
1161 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1162 		char delim, const char **ipend)
1163 {
1164 	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1165 
1166 	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1167 		put_unaligned(AF_INET, &addr->in_addr.ss_family);
1168 		return 0;
1169 	}
1170 
1171 	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1172 		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1173 		return 0;
1174 	}
1175 
1176 	return -EINVAL;
1177 }
1178 
1179 /*
1180  * Extract hostname string and resolve using kernel DNS facility.
1181  */
1182 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1183 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1184 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1185 {
1186 	const char *end, *delim_p;
1187 	char *colon_p, *ip_addr = NULL;
1188 	int ip_len, ret;
1189 
1190 	/*
1191 	 * The end of the hostname occurs immediately preceding the delimiter or
1192 	 * the port marker (':') where the delimiter takes precedence.
1193 	 */
1194 	delim_p = memchr(name, delim, namelen);
1195 	colon_p = memchr(name, ':', namelen);
1196 
1197 	if (delim_p && colon_p)
1198 		end = delim_p < colon_p ? delim_p : colon_p;
1199 	else if (!delim_p && colon_p)
1200 		end = colon_p;
1201 	else {
1202 		end = delim_p;
1203 		if (!end) /* case: hostname:/ */
1204 			end = name + namelen;
1205 	}
1206 
1207 	if (end <= name)
1208 		return -EINVAL;
1209 
1210 	/* do dns_resolve upcall */
1211 	ip_len = dns_query(current->nsproxy->net_ns,
1212 			   NULL, name, end - name, NULL, &ip_addr, NULL, false);
1213 	if (ip_len > 0)
1214 		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1215 	else
1216 		ret = -ESRCH;
1217 
1218 	kfree(ip_addr);
1219 
1220 	*ipend = end;
1221 
1222 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1223 			ret, ret ? "failed" : ceph_pr_addr(addr));
1224 
1225 	return ret;
1226 }
1227 #else
1228 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1229 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1230 {
1231 	return -EINVAL;
1232 }
1233 #endif
1234 
1235 /*
1236  * Parse a server name (IP or hostname). If a valid IP address is not found
1237  * then try to extract a hostname to resolve using userspace DNS upcall.
1238  */
1239 static int ceph_parse_server_name(const char *name, size_t namelen,
1240 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1241 {
1242 	int ret;
1243 
1244 	ret = ceph_pton(name, namelen, addr, delim, ipend);
1245 	if (ret)
1246 		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1247 
1248 	return ret;
1249 }
1250 
1251 /*
1252  * Parse an ip[:port] list into an addr array.  Use the default
1253  * monitor port if a port isn't specified.
1254  */
1255 int ceph_parse_ips(const char *c, const char *end,
1256 		   struct ceph_entity_addr *addr,
1257 		   int max_count, int *count)
1258 {
1259 	int i, ret = -EINVAL;
1260 	const char *p = c;
1261 
1262 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1263 	for (i = 0; i < max_count; i++) {
1264 		const char *ipend;
1265 		int port;
1266 		char delim = ',';
1267 
1268 		if (*p == '[') {
1269 			delim = ']';
1270 			p++;
1271 		}
1272 
1273 		ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend);
1274 		if (ret)
1275 			goto bad;
1276 		ret = -EINVAL;
1277 
1278 		p = ipend;
1279 
1280 		if (delim == ']') {
1281 			if (*p != ']') {
1282 				dout("missing matching ']'\n");
1283 				goto bad;
1284 			}
1285 			p++;
1286 		}
1287 
1288 		/* port? */
1289 		if (p < end && *p == ':') {
1290 			port = 0;
1291 			p++;
1292 			while (p < end && *p >= '0' && *p <= '9') {
1293 				port = (port * 10) + (*p - '0');
1294 				p++;
1295 			}
1296 			if (port == 0)
1297 				port = CEPH_MON_PORT;
1298 			else if (port > 65535)
1299 				goto bad;
1300 		} else {
1301 			port = CEPH_MON_PORT;
1302 		}
1303 
1304 		ceph_addr_set_port(&addr[i], port);
1305 		addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1306 
1307 		dout("parse_ips got %s\n", ceph_pr_addr(&addr[i]));
1308 
1309 		if (p == end)
1310 			break;
1311 		if (*p != ',')
1312 			goto bad;
1313 		p++;
1314 	}
1315 
1316 	if (p != end)
1317 		goto bad;
1318 
1319 	if (count)
1320 		*count = i + 1;
1321 	return 0;
1322 
1323 bad:
1324 	return ret;
1325 }
1326 
1327 /*
1328  * Process message.  This happens in the worker thread.  The callback should
1329  * be careful not to do anything that waits on other incoming messages or it
1330  * may deadlock.
1331  */
1332 void ceph_con_process_message(struct ceph_connection *con)
1333 {
1334 	struct ceph_msg *msg = con->in_msg;
1335 
1336 	BUG_ON(con->in_msg->con != con);
1337 	con->in_msg = NULL;
1338 
1339 	/* if first message, set peer_name */
1340 	if (con->peer_name.type == 0)
1341 		con->peer_name = msg->hdr.src;
1342 
1343 	con->in_seq++;
1344 	mutex_unlock(&con->mutex);
1345 
1346 	dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1347 	     msg, le64_to_cpu(msg->hdr.seq),
1348 	     ENTITY_NAME(msg->hdr.src),
1349 	     le16_to_cpu(msg->hdr.type),
1350 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1351 	     le32_to_cpu(msg->hdr.front_len),
1352 	     le32_to_cpu(msg->hdr.middle_len),
1353 	     le32_to_cpu(msg->hdr.data_len),
1354 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1355 	con->ops->dispatch(con, msg);
1356 
1357 	mutex_lock(&con->mutex);
1358 }
1359 
1360 /*
1361  * Atomically queue work on a connection after the specified delay.
1362  * Bump @con reference to avoid races with connection teardown.
1363  * Returns 0 if work was queued, or an error code otherwise.
1364  */
1365 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1366 {
1367 	if (!con->ops->get(con)) {
1368 		dout("%s %p ref count 0\n", __func__, con);
1369 		return -ENOENT;
1370 	}
1371 
1372 	if (delay >= HZ)
1373 		delay = round_jiffies_relative(delay);
1374 
1375 	dout("%s %p %lu\n", __func__, con, delay);
1376 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1377 		dout("%s %p - already queued\n", __func__, con);
1378 		con->ops->put(con);
1379 		return -EBUSY;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 static void queue_con(struct ceph_connection *con)
1386 {
1387 	(void) queue_con_delay(con, 0);
1388 }
1389 
1390 static void cancel_con(struct ceph_connection *con)
1391 {
1392 	if (cancel_delayed_work(&con->work)) {
1393 		dout("%s %p\n", __func__, con);
1394 		con->ops->put(con);
1395 	}
1396 }
1397 
1398 static bool con_sock_closed(struct ceph_connection *con)
1399 {
1400 	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1401 		return false;
1402 
1403 #define CASE(x)								\
1404 	case CEPH_CON_S_ ## x:						\
1405 		con->error_msg = "socket closed (con state " #x ")";	\
1406 		break;
1407 
1408 	switch (con->state) {
1409 	CASE(CLOSED);
1410 	CASE(PREOPEN);
1411 	CASE(V1_BANNER);
1412 	CASE(V1_CONNECT_MSG);
1413 	CASE(OPEN);
1414 	CASE(STANDBY);
1415 	default:
1416 		BUG();
1417 	}
1418 #undef CASE
1419 
1420 	return true;
1421 }
1422 
1423 static bool con_backoff(struct ceph_connection *con)
1424 {
1425 	int ret;
1426 
1427 	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1428 		return false;
1429 
1430 	ret = queue_con_delay(con, con->delay);
1431 	if (ret) {
1432 		dout("%s: con %p FAILED to back off %lu\n", __func__,
1433 			con, con->delay);
1434 		BUG_ON(ret == -ENOENT);
1435 		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1436 	}
1437 
1438 	return true;
1439 }
1440 
1441 /* Finish fault handling; con->mutex must *not* be held here */
1442 
1443 static void con_fault_finish(struct ceph_connection *con)
1444 {
1445 	dout("%s %p\n", __func__, con);
1446 
1447 	/*
1448 	 * in case we faulted due to authentication, invalidate our
1449 	 * current tickets so that we can get new ones.
1450 	 */
1451 	if (con->auth_retry) {
1452 		dout("auth_retry %d, invalidating\n", con->auth_retry);
1453 		if (con->ops->invalidate_authorizer)
1454 			con->ops->invalidate_authorizer(con);
1455 		con->auth_retry = 0;
1456 	}
1457 
1458 	if (con->ops->fault)
1459 		con->ops->fault(con);
1460 }
1461 
1462 /*
1463  * Do some work on a connection.  Drop a connection ref when we're done.
1464  */
1465 static void ceph_con_workfn(struct work_struct *work)
1466 {
1467 	struct ceph_connection *con = container_of(work, struct ceph_connection,
1468 						   work.work);
1469 	bool fault;
1470 
1471 	mutex_lock(&con->mutex);
1472 	while (true) {
1473 		int ret;
1474 
1475 		if ((fault = con_sock_closed(con))) {
1476 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1477 			break;
1478 		}
1479 		if (con_backoff(con)) {
1480 			dout("%s: con %p BACKOFF\n", __func__, con);
1481 			break;
1482 		}
1483 		if (con->state == CEPH_CON_S_STANDBY) {
1484 			dout("%s: con %p STANDBY\n", __func__, con);
1485 			break;
1486 		}
1487 		if (con->state == CEPH_CON_S_CLOSED) {
1488 			dout("%s: con %p CLOSED\n", __func__, con);
1489 			BUG_ON(con->sock);
1490 			break;
1491 		}
1492 		if (con->state == CEPH_CON_S_PREOPEN) {
1493 			dout("%s: con %p PREOPEN\n", __func__, con);
1494 			BUG_ON(con->sock);
1495 		}
1496 
1497 		ret = ceph_con_v1_try_read(con);
1498 		if (ret < 0) {
1499 			if (ret == -EAGAIN)
1500 				continue;
1501 			if (!con->error_msg)
1502 				con->error_msg = "socket error on read";
1503 			fault = true;
1504 			break;
1505 		}
1506 
1507 		ret = ceph_con_v1_try_write(con);
1508 		if (ret < 0) {
1509 			if (ret == -EAGAIN)
1510 				continue;
1511 			if (!con->error_msg)
1512 				con->error_msg = "socket error on write";
1513 			fault = true;
1514 		}
1515 
1516 		break;	/* If we make it to here, we're done */
1517 	}
1518 	if (fault)
1519 		con_fault(con);
1520 	mutex_unlock(&con->mutex);
1521 
1522 	if (fault)
1523 		con_fault_finish(con);
1524 
1525 	con->ops->put(con);
1526 }
1527 
1528 /*
1529  * Generic error/fault handler.  A retry mechanism is used with
1530  * exponential backoff
1531  */
1532 static void con_fault(struct ceph_connection *con)
1533 {
1534 	dout("fault %p state %d to peer %s\n",
1535 	     con, con->state, ceph_pr_addr(&con->peer_addr));
1536 
1537 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1538 		ceph_pr_addr(&con->peer_addr), con->error_msg);
1539 	con->error_msg = NULL;
1540 
1541 	WARN_ON(con->state != CEPH_CON_S_V1_BANNER &&
1542 	       con->state != CEPH_CON_S_V1_CONNECT_MSG &&
1543 	       con->state != CEPH_CON_S_OPEN);
1544 
1545 	ceph_con_reset_protocol(con);
1546 
1547 	if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1548 		dout("fault on LOSSYTX channel, marking CLOSED\n");
1549 		con->state = CEPH_CON_S_CLOSED;
1550 		return;
1551 	}
1552 
1553 	/* Requeue anything that hasn't been acked */
1554 	list_splice_init(&con->out_sent, &con->out_queue);
1555 
1556 	/* If there are no messages queued or keepalive pending, place
1557 	 * the connection in a STANDBY state */
1558 	if (list_empty(&con->out_queue) &&
1559 	    !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1560 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1561 		ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1562 		con->state = CEPH_CON_S_STANDBY;
1563 	} else {
1564 		/* retry after a delay. */
1565 		con->state = CEPH_CON_S_PREOPEN;
1566 		if (!con->delay) {
1567 			con->delay = BASE_DELAY_INTERVAL;
1568 		} else if (con->delay < MAX_DELAY_INTERVAL) {
1569 			con->delay *= 2;
1570 			if (con->delay > MAX_DELAY_INTERVAL)
1571 				con->delay = MAX_DELAY_INTERVAL;
1572 		}
1573 		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1574 		queue_con(con);
1575 	}
1576 }
1577 
1578 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1579 {
1580 	u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1581 	msgr->inst.addr.nonce = cpu_to_le32(nonce);
1582 	ceph_encode_my_addr(msgr);
1583 }
1584 
1585 /*
1586  * initialize a new messenger instance
1587  */
1588 void ceph_messenger_init(struct ceph_messenger *msgr,
1589 			 struct ceph_entity_addr *myaddr)
1590 {
1591 	spin_lock_init(&msgr->global_seq_lock);
1592 
1593 	if (myaddr) {
1594 		memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1595 		       sizeof(msgr->inst.addr.in_addr));
1596 		ceph_addr_set_port(&msgr->inst.addr, 0);
1597 	}
1598 
1599 	msgr->inst.addr.type = 0;
1600 
1601 	/* generate a random non-zero nonce */
1602 	do {
1603 		get_random_bytes(&msgr->inst.addr.nonce,
1604 				 sizeof(msgr->inst.addr.nonce));
1605 	} while (!msgr->inst.addr.nonce);
1606 	ceph_encode_my_addr(msgr);
1607 
1608 	atomic_set(&msgr->stopping, 0);
1609 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1610 
1611 	dout("%s %p\n", __func__, msgr);
1612 }
1613 
1614 void ceph_messenger_fini(struct ceph_messenger *msgr)
1615 {
1616 	put_net(read_pnet(&msgr->net));
1617 }
1618 
1619 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1620 {
1621 	if (msg->con)
1622 		msg->con->ops->put(msg->con);
1623 
1624 	msg->con = con ? con->ops->get(con) : NULL;
1625 	BUG_ON(msg->con != con);
1626 }
1627 
1628 static void clear_standby(struct ceph_connection *con)
1629 {
1630 	/* come back from STANDBY? */
1631 	if (con->state == CEPH_CON_S_STANDBY) {
1632 		dout("clear_standby %p and ++connect_seq\n", con);
1633 		con->state = CEPH_CON_S_PREOPEN;
1634 		con->connect_seq++;
1635 		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1636 		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1637 	}
1638 }
1639 
1640 /*
1641  * Queue up an outgoing message on the given connection.
1642  *
1643  * Consumes a ref on @msg.
1644  */
1645 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1646 {
1647 	/* set src+dst */
1648 	msg->hdr.src = con->msgr->inst.name;
1649 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1650 	msg->needs_out_seq = true;
1651 
1652 	mutex_lock(&con->mutex);
1653 
1654 	if (con->state == CEPH_CON_S_CLOSED) {
1655 		dout("con_send %p closed, dropping %p\n", con, msg);
1656 		ceph_msg_put(msg);
1657 		mutex_unlock(&con->mutex);
1658 		return;
1659 	}
1660 
1661 	msg_con_set(msg, con);
1662 
1663 	BUG_ON(!list_empty(&msg->list_head));
1664 	list_add_tail(&msg->list_head, &con->out_queue);
1665 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1666 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1667 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1668 	     le32_to_cpu(msg->hdr.front_len),
1669 	     le32_to_cpu(msg->hdr.middle_len),
1670 	     le32_to_cpu(msg->hdr.data_len));
1671 
1672 	clear_standby(con);
1673 	mutex_unlock(&con->mutex);
1674 
1675 	/* if there wasn't anything waiting to send before, queue
1676 	 * new work */
1677 	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1678 		queue_con(con);
1679 }
1680 EXPORT_SYMBOL(ceph_con_send);
1681 
1682 /*
1683  * Revoke a message that was previously queued for send
1684  */
1685 void ceph_msg_revoke(struct ceph_msg *msg)
1686 {
1687 	struct ceph_connection *con = msg->con;
1688 
1689 	if (!con) {
1690 		dout("%s msg %p null con\n", __func__, msg);
1691 		return;		/* Message not in our possession */
1692 	}
1693 
1694 	mutex_lock(&con->mutex);
1695 	if (list_empty(&msg->list_head)) {
1696 		WARN_ON(con->out_msg == msg);
1697 		dout("%s con %p msg %p not linked\n", __func__, con, msg);
1698 		mutex_unlock(&con->mutex);
1699 		return;
1700 	}
1701 
1702 	dout("%s con %p msg %p was linked\n", __func__, con, msg);
1703 	msg->hdr.seq = 0;
1704 	ceph_msg_remove(msg);
1705 
1706 	if (con->out_msg == msg) {
1707 		WARN_ON(con->state != CEPH_CON_S_OPEN);
1708 		dout("%s con %p msg %p was sending\n", __func__, con, msg);
1709 		ceph_con_v1_revoke(con);
1710 		ceph_msg_put(con->out_msg);
1711 		con->out_msg = NULL;
1712 	} else {
1713 		dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1714 		     con, msg, con->out_msg);
1715 	}
1716 	mutex_unlock(&con->mutex);
1717 }
1718 
1719 /*
1720  * Revoke a message that we may be reading data into
1721  */
1722 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1723 {
1724 	struct ceph_connection *con = msg->con;
1725 
1726 	if (!con) {
1727 		dout("%s msg %p null con\n", __func__, msg);
1728 		return;		/* Message not in our possession */
1729 	}
1730 
1731 	mutex_lock(&con->mutex);
1732 	if (con->in_msg == msg) {
1733 		WARN_ON(con->state != CEPH_CON_S_OPEN);
1734 		dout("%s con %p msg %p was recving\n", __func__, con, msg);
1735 		ceph_con_v1_revoke_incoming(con);
1736 		ceph_msg_put(con->in_msg);
1737 		con->in_msg = NULL;
1738 	} else {
1739 		dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1740 		     con, msg, con->in_msg);
1741 	}
1742 	mutex_unlock(&con->mutex);
1743 }
1744 
1745 /*
1746  * Queue a keepalive byte to ensure the tcp connection is alive.
1747  */
1748 void ceph_con_keepalive(struct ceph_connection *con)
1749 {
1750 	dout("con_keepalive %p\n", con);
1751 	mutex_lock(&con->mutex);
1752 	clear_standby(con);
1753 	ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1754 	mutex_unlock(&con->mutex);
1755 
1756 	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1757 		queue_con(con);
1758 }
1759 EXPORT_SYMBOL(ceph_con_keepalive);
1760 
1761 bool ceph_con_keepalive_expired(struct ceph_connection *con,
1762 			       unsigned long interval)
1763 {
1764 	if (interval > 0 &&
1765 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1766 		struct timespec64 now;
1767 		struct timespec64 ts;
1768 		ktime_get_real_ts64(&now);
1769 		jiffies_to_timespec64(interval, &ts);
1770 		ts = timespec64_add(con->last_keepalive_ack, ts);
1771 		return timespec64_compare(&now, &ts) >= 0;
1772 	}
1773 	return false;
1774 }
1775 
1776 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1777 {
1778 	BUG_ON(msg->num_data_items >= msg->max_data_items);
1779 	return &msg->data[msg->num_data_items++];
1780 }
1781 
1782 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1783 {
1784 	if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1785 		int num_pages = calc_pages_for(data->alignment, data->length);
1786 		ceph_release_page_vector(data->pages, num_pages);
1787 	} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1788 		ceph_pagelist_release(data->pagelist);
1789 	}
1790 }
1791 
1792 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1793 			     size_t length, size_t alignment, bool own_pages)
1794 {
1795 	struct ceph_msg_data *data;
1796 
1797 	BUG_ON(!pages);
1798 	BUG_ON(!length);
1799 
1800 	data = ceph_msg_data_add(msg);
1801 	data->type = CEPH_MSG_DATA_PAGES;
1802 	data->pages = pages;
1803 	data->length = length;
1804 	data->alignment = alignment & ~PAGE_MASK;
1805 	data->own_pages = own_pages;
1806 
1807 	msg->data_length += length;
1808 }
1809 EXPORT_SYMBOL(ceph_msg_data_add_pages);
1810 
1811 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1812 				struct ceph_pagelist *pagelist)
1813 {
1814 	struct ceph_msg_data *data;
1815 
1816 	BUG_ON(!pagelist);
1817 	BUG_ON(!pagelist->length);
1818 
1819 	data = ceph_msg_data_add(msg);
1820 	data->type = CEPH_MSG_DATA_PAGELIST;
1821 	refcount_inc(&pagelist->refcnt);
1822 	data->pagelist = pagelist;
1823 
1824 	msg->data_length += pagelist->length;
1825 }
1826 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1827 
1828 #ifdef	CONFIG_BLOCK
1829 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1830 			   u32 length)
1831 {
1832 	struct ceph_msg_data *data;
1833 
1834 	data = ceph_msg_data_add(msg);
1835 	data->type = CEPH_MSG_DATA_BIO;
1836 	data->bio_pos = *bio_pos;
1837 	data->bio_length = length;
1838 
1839 	msg->data_length += length;
1840 }
1841 EXPORT_SYMBOL(ceph_msg_data_add_bio);
1842 #endif	/* CONFIG_BLOCK */
1843 
1844 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1845 			     struct ceph_bvec_iter *bvec_pos)
1846 {
1847 	struct ceph_msg_data *data;
1848 
1849 	data = ceph_msg_data_add(msg);
1850 	data->type = CEPH_MSG_DATA_BVECS;
1851 	data->bvec_pos = *bvec_pos;
1852 
1853 	msg->data_length += bvec_pos->iter.bi_size;
1854 }
1855 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1856 
1857 /*
1858  * construct a new message with given type, size
1859  * the new msg has a ref count of 1.
1860  */
1861 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1862 			       gfp_t flags, bool can_fail)
1863 {
1864 	struct ceph_msg *m;
1865 
1866 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
1867 	if (m == NULL)
1868 		goto out;
1869 
1870 	m->hdr.type = cpu_to_le16(type);
1871 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1872 	m->hdr.front_len = cpu_to_le32(front_len);
1873 
1874 	INIT_LIST_HEAD(&m->list_head);
1875 	kref_init(&m->kref);
1876 
1877 	/* front */
1878 	if (front_len) {
1879 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
1880 		if (m->front.iov_base == NULL) {
1881 			dout("ceph_msg_new can't allocate %d bytes\n",
1882 			     front_len);
1883 			goto out2;
1884 		}
1885 	} else {
1886 		m->front.iov_base = NULL;
1887 	}
1888 	m->front_alloc_len = m->front.iov_len = front_len;
1889 
1890 	if (max_data_items) {
1891 		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1892 					flags);
1893 		if (!m->data)
1894 			goto out2;
1895 
1896 		m->max_data_items = max_data_items;
1897 	}
1898 
1899 	dout("ceph_msg_new %p front %d\n", m, front_len);
1900 	return m;
1901 
1902 out2:
1903 	ceph_msg_put(m);
1904 out:
1905 	if (!can_fail) {
1906 		pr_err("msg_new can't create type %d front %d\n", type,
1907 		       front_len);
1908 		WARN_ON(1);
1909 	} else {
1910 		dout("msg_new can't create type %d front %d\n", type,
1911 		     front_len);
1912 	}
1913 	return NULL;
1914 }
1915 EXPORT_SYMBOL(ceph_msg_new2);
1916 
1917 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1918 			      bool can_fail)
1919 {
1920 	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1921 }
1922 EXPORT_SYMBOL(ceph_msg_new);
1923 
1924 /*
1925  * Allocate "middle" portion of a message, if it is needed and wasn't
1926  * allocated by alloc_msg.  This allows us to read a small fixed-size
1927  * per-type header in the front and then gracefully fail (i.e.,
1928  * propagate the error to the caller based on info in the front) when
1929  * the middle is too large.
1930  */
1931 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1932 {
1933 	int type = le16_to_cpu(msg->hdr.type);
1934 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
1935 
1936 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1937 	     ceph_msg_type_name(type), middle_len);
1938 	BUG_ON(!middle_len);
1939 	BUG_ON(msg->middle);
1940 
1941 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1942 	if (!msg->middle)
1943 		return -ENOMEM;
1944 	return 0;
1945 }
1946 
1947 /*
1948  * Allocate a message for receiving an incoming message on a
1949  * connection, and save the result in con->in_msg.  Uses the
1950  * connection's private alloc_msg op if available.
1951  *
1952  * Returns 0 on success, or a negative error code.
1953  *
1954  * On success, if we set *skip = 1:
1955  *  - the next message should be skipped and ignored.
1956  *  - con->in_msg == NULL
1957  * or if we set *skip = 0:
1958  *  - con->in_msg is non-null.
1959  * On error (ENOMEM, EAGAIN, ...),
1960  *  - con->in_msg == NULL
1961  */
1962 int ceph_con_in_msg_alloc(struct ceph_connection *con,
1963 			  struct ceph_msg_header *hdr, int *skip)
1964 {
1965 	int middle_len = le32_to_cpu(hdr->middle_len);
1966 	struct ceph_msg *msg;
1967 	int ret = 0;
1968 
1969 	BUG_ON(con->in_msg != NULL);
1970 	BUG_ON(!con->ops->alloc_msg);
1971 
1972 	mutex_unlock(&con->mutex);
1973 	msg = con->ops->alloc_msg(con, hdr, skip);
1974 	mutex_lock(&con->mutex);
1975 	if (con->state != CEPH_CON_S_OPEN) {
1976 		if (msg)
1977 			ceph_msg_put(msg);
1978 		return -EAGAIN;
1979 	}
1980 	if (msg) {
1981 		BUG_ON(*skip);
1982 		msg_con_set(msg, con);
1983 		con->in_msg = msg;
1984 	} else {
1985 		/*
1986 		 * Null message pointer means either we should skip
1987 		 * this message or we couldn't allocate memory.  The
1988 		 * former is not an error.
1989 		 */
1990 		if (*skip)
1991 			return 0;
1992 
1993 		con->error_msg = "error allocating memory for incoming message";
1994 		return -ENOMEM;
1995 	}
1996 	memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
1997 
1998 	if (middle_len && !con->in_msg->middle) {
1999 		ret = ceph_alloc_middle(con, con->in_msg);
2000 		if (ret < 0) {
2001 			ceph_msg_put(con->in_msg);
2002 			con->in_msg = NULL;
2003 		}
2004 	}
2005 
2006 	return ret;
2007 }
2008 
2009 void ceph_con_get_out_msg(struct ceph_connection *con)
2010 {
2011 	struct ceph_msg *msg;
2012 
2013 	BUG_ON(list_empty(&con->out_queue));
2014 	msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2015 	WARN_ON(msg->con != con);
2016 
2017 	/*
2018 	 * Put the message on "sent" list using a ref from ceph_con_send().
2019 	 * It is put when the message is acked or revoked.
2020 	 */
2021 	list_move_tail(&msg->list_head, &con->out_sent);
2022 
2023 	/*
2024 	 * Only assign outgoing seq # if we haven't sent this message
2025 	 * yet.  If it is requeued, resend with it's original seq.
2026 	 */
2027 	if (msg->needs_out_seq) {
2028 		msg->hdr.seq = cpu_to_le64(++con->out_seq);
2029 		msg->needs_out_seq = false;
2030 
2031 		if (con->ops->reencode_message)
2032 			con->ops->reencode_message(msg);
2033 	}
2034 
2035 	/*
2036 	 * Get a ref for out_msg.  It is put when we are done sending the
2037 	 * message or in case of a fault.
2038 	 */
2039 	WARN_ON(con->out_msg);
2040 	con->out_msg = ceph_msg_get(msg);
2041 }
2042 
2043 /*
2044  * Free a generically kmalloc'd message.
2045  */
2046 static void ceph_msg_free(struct ceph_msg *m)
2047 {
2048 	dout("%s %p\n", __func__, m);
2049 	kvfree(m->front.iov_base);
2050 	kfree(m->data);
2051 	kmem_cache_free(ceph_msg_cache, m);
2052 }
2053 
2054 static void ceph_msg_release(struct kref *kref)
2055 {
2056 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2057 	int i;
2058 
2059 	dout("%s %p\n", __func__, m);
2060 	WARN_ON(!list_empty(&m->list_head));
2061 
2062 	msg_con_set(m, NULL);
2063 
2064 	/* drop middle, data, if any */
2065 	if (m->middle) {
2066 		ceph_buffer_put(m->middle);
2067 		m->middle = NULL;
2068 	}
2069 
2070 	for (i = 0; i < m->num_data_items; i++)
2071 		ceph_msg_data_destroy(&m->data[i]);
2072 
2073 	if (m->pool)
2074 		ceph_msgpool_put(m->pool, m);
2075 	else
2076 		ceph_msg_free(m);
2077 }
2078 
2079 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2080 {
2081 	dout("%s %p (was %d)\n", __func__, msg,
2082 	     kref_read(&msg->kref));
2083 	kref_get(&msg->kref);
2084 	return msg;
2085 }
2086 EXPORT_SYMBOL(ceph_msg_get);
2087 
2088 void ceph_msg_put(struct ceph_msg *msg)
2089 {
2090 	dout("%s %p (was %d)\n", __func__, msg,
2091 	     kref_read(&msg->kref));
2092 	kref_put(&msg->kref, ceph_msg_release);
2093 }
2094 EXPORT_SYMBOL(ceph_msg_put);
2095 
2096 void ceph_msg_dump(struct ceph_msg *msg)
2097 {
2098 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2099 		 msg->front_alloc_len, msg->data_length);
2100 	print_hex_dump(KERN_DEBUG, "header: ",
2101 		       DUMP_PREFIX_OFFSET, 16, 1,
2102 		       &msg->hdr, sizeof(msg->hdr), true);
2103 	print_hex_dump(KERN_DEBUG, " front: ",
2104 		       DUMP_PREFIX_OFFSET, 16, 1,
2105 		       msg->front.iov_base, msg->front.iov_len, true);
2106 	if (msg->middle)
2107 		print_hex_dump(KERN_DEBUG, "middle: ",
2108 			       DUMP_PREFIX_OFFSET, 16, 1,
2109 			       msg->middle->vec.iov_base,
2110 			       msg->middle->vec.iov_len, true);
2111 	print_hex_dump(KERN_DEBUG, "footer: ",
2112 		       DUMP_PREFIX_OFFSET, 16, 1,
2113 		       &msg->footer, sizeof(msg->footer), true);
2114 }
2115 EXPORT_SYMBOL(ceph_msg_dump);
2116