xref: /linux/net/ceph/messenger.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16 
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22 
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31 
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg = CEPH_MSGR_TAG_MSG;
34 static char tag_ack = CEPH_MSGR_TAG_ACK;
35 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36 
37 #ifdef CONFIG_LOCKDEP
38 static struct lock_class_key socket_class;
39 #endif
40 
41 /*
42  * When skipping (ignoring) a block of input we read it into a "skip
43  * buffer," which is this many bytes in size.
44  */
45 #define SKIP_BUF_SIZE	1024
46 
47 static void queue_con(struct ceph_connection *con);
48 static void con_work(struct work_struct *);
49 static void ceph_fault(struct ceph_connection *con);
50 
51 /*
52  * Nicely render a sockaddr as a string.  An array of formatted
53  * strings is used, to approximate reentrancy.
54  */
55 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
56 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
57 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
58 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
59 
60 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
61 static atomic_t addr_str_seq = ATOMIC_INIT(0);
62 
63 static struct page *zero_page;		/* used in certain error cases */
64 
65 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
66 {
67 	int i;
68 	char *s;
69 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
70 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
71 
72 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
73 	s = addr_str[i];
74 
75 	switch (ss->ss_family) {
76 	case AF_INET:
77 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
78 			 ntohs(in4->sin_port));
79 		break;
80 
81 	case AF_INET6:
82 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
83 			 ntohs(in6->sin6_port));
84 		break;
85 
86 	default:
87 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
88 			 ss->ss_family);
89 	}
90 
91 	return s;
92 }
93 EXPORT_SYMBOL(ceph_pr_addr);
94 
95 static void encode_my_addr(struct ceph_messenger *msgr)
96 {
97 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
98 	ceph_encode_addr(&msgr->my_enc_addr);
99 }
100 
101 /*
102  * work queue for all reading and writing to/from the socket.
103  */
104 static struct workqueue_struct *ceph_msgr_wq;
105 
106 void _ceph_msgr_exit(void)
107 {
108 	if (ceph_msgr_wq) {
109 		destroy_workqueue(ceph_msgr_wq);
110 		ceph_msgr_wq = NULL;
111 	}
112 
113 	BUG_ON(zero_page == NULL);
114 	kunmap(zero_page);
115 	page_cache_release(zero_page);
116 	zero_page = NULL;
117 }
118 
119 int ceph_msgr_init(void)
120 {
121 	BUG_ON(zero_page != NULL);
122 	zero_page = ZERO_PAGE(0);
123 	page_cache_get(zero_page);
124 
125 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
126 	if (ceph_msgr_wq)
127 		return 0;
128 
129 	pr_err("msgr_init failed to create workqueue\n");
130 	_ceph_msgr_exit();
131 
132 	return -ENOMEM;
133 }
134 EXPORT_SYMBOL(ceph_msgr_init);
135 
136 void ceph_msgr_exit(void)
137 {
138 	BUG_ON(ceph_msgr_wq == NULL);
139 
140 	_ceph_msgr_exit();
141 }
142 EXPORT_SYMBOL(ceph_msgr_exit);
143 
144 void ceph_msgr_flush(void)
145 {
146 	flush_workqueue(ceph_msgr_wq);
147 }
148 EXPORT_SYMBOL(ceph_msgr_flush);
149 
150 
151 /*
152  * socket callback functions
153  */
154 
155 /* data available on socket, or listen socket received a connect */
156 static void ceph_data_ready(struct sock *sk, int count_unused)
157 {
158 	struct ceph_connection *con = sk->sk_user_data;
159 
160 	if (sk->sk_state != TCP_CLOSE_WAIT) {
161 		dout("ceph_data_ready on %p state = %lu, queueing work\n",
162 		     con, con->state);
163 		queue_con(con);
164 	}
165 }
166 
167 /* socket has buffer space for writing */
168 static void ceph_write_space(struct sock *sk)
169 {
170 	struct ceph_connection *con = sk->sk_user_data;
171 
172 	/* only queue to workqueue if there is data we want to write,
173 	 * and there is sufficient space in the socket buffer to accept
174 	 * more data.  clear SOCK_NOSPACE so that ceph_write_space()
175 	 * doesn't get called again until try_write() fills the socket
176 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
177 	 * and net/core/stream.c:sk_stream_write_space().
178 	 */
179 	if (test_bit(WRITE_PENDING, &con->state)) {
180 		if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
181 			dout("ceph_write_space %p queueing write work\n", con);
182 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
183 			queue_con(con);
184 		}
185 	} else {
186 		dout("ceph_write_space %p nothing to write\n", con);
187 	}
188 }
189 
190 /* socket's state has changed */
191 static void ceph_state_change(struct sock *sk)
192 {
193 	struct ceph_connection *con = sk->sk_user_data;
194 
195 	dout("ceph_state_change %p state = %lu sk_state = %u\n",
196 	     con, con->state, sk->sk_state);
197 
198 	if (test_bit(CLOSED, &con->state))
199 		return;
200 
201 	switch (sk->sk_state) {
202 	case TCP_CLOSE:
203 		dout("ceph_state_change TCP_CLOSE\n");
204 	case TCP_CLOSE_WAIT:
205 		dout("ceph_state_change TCP_CLOSE_WAIT\n");
206 		if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
207 			if (test_bit(CONNECTING, &con->state))
208 				con->error_msg = "connection failed";
209 			else
210 				con->error_msg = "socket closed";
211 			queue_con(con);
212 		}
213 		break;
214 	case TCP_ESTABLISHED:
215 		dout("ceph_state_change TCP_ESTABLISHED\n");
216 		queue_con(con);
217 		break;
218 	default:	/* Everything else is uninteresting */
219 		break;
220 	}
221 }
222 
223 /*
224  * set up socket callbacks
225  */
226 static void set_sock_callbacks(struct socket *sock,
227 			       struct ceph_connection *con)
228 {
229 	struct sock *sk = sock->sk;
230 	sk->sk_user_data = con;
231 	sk->sk_data_ready = ceph_data_ready;
232 	sk->sk_write_space = ceph_write_space;
233 	sk->sk_state_change = ceph_state_change;
234 }
235 
236 
237 /*
238  * socket helpers
239  */
240 
241 /*
242  * initiate connection to a remote socket.
243  */
244 static int ceph_tcp_connect(struct ceph_connection *con)
245 {
246 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
247 	struct socket *sock;
248 	int ret;
249 
250 	BUG_ON(con->sock);
251 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
252 			       IPPROTO_TCP, &sock);
253 	if (ret)
254 		return ret;
255 	sock->sk->sk_allocation = GFP_NOFS;
256 
257 #ifdef CONFIG_LOCKDEP
258 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
259 #endif
260 
261 	set_sock_callbacks(sock, con);
262 
263 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
264 
265 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
266 				 O_NONBLOCK);
267 	if (ret == -EINPROGRESS) {
268 		dout("connect %s EINPROGRESS sk_state = %u\n",
269 		     ceph_pr_addr(&con->peer_addr.in_addr),
270 		     sock->sk->sk_state);
271 	} else if (ret < 0) {
272 		pr_err("connect %s error %d\n",
273 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
274 		sock_release(sock);
275 		con->error_msg = "connect error";
276 
277 		return ret;
278 	}
279 	con->sock = sock;
280 
281 	return 0;
282 }
283 
284 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
285 {
286 	struct kvec iov = {buf, len};
287 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
288 	int r;
289 
290 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
291 	if (r == -EAGAIN)
292 		r = 0;
293 	return r;
294 }
295 
296 /*
297  * write something.  @more is true if caller will be sending more data
298  * shortly.
299  */
300 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
301 		     size_t kvlen, size_t len, int more)
302 {
303 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
304 	int r;
305 
306 	if (more)
307 		msg.msg_flags |= MSG_MORE;
308 	else
309 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
310 
311 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
312 	if (r == -EAGAIN)
313 		r = 0;
314 	return r;
315 }
316 
317 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
318 		     int offset, size_t size, int more)
319 {
320 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
321 	int ret;
322 
323 	ret = kernel_sendpage(sock, page, offset, size, flags);
324 	if (ret == -EAGAIN)
325 		ret = 0;
326 
327 	return ret;
328 }
329 
330 
331 /*
332  * Shutdown/close the socket for the given connection.
333  */
334 static int con_close_socket(struct ceph_connection *con)
335 {
336 	int rc;
337 
338 	dout("con_close_socket on %p sock %p\n", con, con->sock);
339 	if (!con->sock)
340 		return 0;
341 	set_bit(SOCK_CLOSED, &con->state);
342 	rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
343 	sock_release(con->sock);
344 	con->sock = NULL;
345 	clear_bit(SOCK_CLOSED, &con->state);
346 	return rc;
347 }
348 
349 /*
350  * Reset a connection.  Discard all incoming and outgoing messages
351  * and clear *_seq state.
352  */
353 static void ceph_msg_remove(struct ceph_msg *msg)
354 {
355 	list_del_init(&msg->list_head);
356 	ceph_msg_put(msg);
357 }
358 static void ceph_msg_remove_list(struct list_head *head)
359 {
360 	while (!list_empty(head)) {
361 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
362 							list_head);
363 		ceph_msg_remove(msg);
364 	}
365 }
366 
367 static void reset_connection(struct ceph_connection *con)
368 {
369 	/* reset connection, out_queue, msg_ and connect_seq */
370 	/* discard existing out_queue and msg_seq */
371 	ceph_msg_remove_list(&con->out_queue);
372 	ceph_msg_remove_list(&con->out_sent);
373 
374 	if (con->in_msg) {
375 		ceph_msg_put(con->in_msg);
376 		con->in_msg = NULL;
377 	}
378 
379 	con->connect_seq = 0;
380 	con->out_seq = 0;
381 	if (con->out_msg) {
382 		ceph_msg_put(con->out_msg);
383 		con->out_msg = NULL;
384 	}
385 	con->in_seq = 0;
386 	con->in_seq_acked = 0;
387 }
388 
389 /*
390  * mark a peer down.  drop any open connections.
391  */
392 void ceph_con_close(struct ceph_connection *con)
393 {
394 	dout("con_close %p peer %s\n", con,
395 	     ceph_pr_addr(&con->peer_addr.in_addr));
396 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
397 	clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
398 	clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
399 	clear_bit(KEEPALIVE_PENDING, &con->state);
400 	clear_bit(WRITE_PENDING, &con->state);
401 	mutex_lock(&con->mutex);
402 	reset_connection(con);
403 	con->peer_global_seq = 0;
404 	cancel_delayed_work(&con->work);
405 	mutex_unlock(&con->mutex);
406 	queue_con(con);
407 }
408 EXPORT_SYMBOL(ceph_con_close);
409 
410 /*
411  * Reopen a closed connection, with a new peer address.
412  */
413 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
414 {
415 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
416 	set_bit(OPENING, &con->state);
417 	clear_bit(CLOSED, &con->state);
418 	memcpy(&con->peer_addr, addr, sizeof(*addr));
419 	con->delay = 0;      /* reset backoff memory */
420 	queue_con(con);
421 }
422 EXPORT_SYMBOL(ceph_con_open);
423 
424 /*
425  * return true if this connection ever successfully opened
426  */
427 bool ceph_con_opened(struct ceph_connection *con)
428 {
429 	return con->connect_seq > 0;
430 }
431 
432 /*
433  * generic get/put
434  */
435 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
436 {
437 	int nref = __atomic_add_unless(&con->nref, 1, 0);
438 
439 	dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
440 
441 	return nref ? con : NULL;
442 }
443 
444 void ceph_con_put(struct ceph_connection *con)
445 {
446 	int nref = atomic_dec_return(&con->nref);
447 
448 	BUG_ON(nref < 0);
449 	if (nref == 0) {
450 		BUG_ON(con->sock);
451 		kfree(con);
452 	}
453 	dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
454 }
455 
456 /*
457  * initialize a new connection.
458  */
459 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
460 {
461 	dout("con_init %p\n", con);
462 	memset(con, 0, sizeof(*con));
463 	atomic_set(&con->nref, 1);
464 	con->msgr = msgr;
465 	mutex_init(&con->mutex);
466 	INIT_LIST_HEAD(&con->out_queue);
467 	INIT_LIST_HEAD(&con->out_sent);
468 	INIT_DELAYED_WORK(&con->work, con_work);
469 }
470 EXPORT_SYMBOL(ceph_con_init);
471 
472 
473 /*
474  * We maintain a global counter to order connection attempts.  Get
475  * a unique seq greater than @gt.
476  */
477 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
478 {
479 	u32 ret;
480 
481 	spin_lock(&msgr->global_seq_lock);
482 	if (msgr->global_seq < gt)
483 		msgr->global_seq = gt;
484 	ret = ++msgr->global_seq;
485 	spin_unlock(&msgr->global_seq_lock);
486 	return ret;
487 }
488 
489 static void ceph_con_out_kvec_reset(struct ceph_connection *con)
490 {
491 	con->out_kvec_left = 0;
492 	con->out_kvec_bytes = 0;
493 	con->out_kvec_cur = &con->out_kvec[0];
494 }
495 
496 static void ceph_con_out_kvec_add(struct ceph_connection *con,
497 				size_t size, void *data)
498 {
499 	int index;
500 
501 	index = con->out_kvec_left;
502 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
503 
504 	con->out_kvec[index].iov_len = size;
505 	con->out_kvec[index].iov_base = data;
506 	con->out_kvec_left++;
507 	con->out_kvec_bytes += size;
508 }
509 
510 /*
511  * Prepare footer for currently outgoing message, and finish things
512  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
513  */
514 static void prepare_write_message_footer(struct ceph_connection *con)
515 {
516 	struct ceph_msg *m = con->out_msg;
517 	int v = con->out_kvec_left;
518 
519 	dout("prepare_write_message_footer %p\n", con);
520 	con->out_kvec_is_msg = true;
521 	con->out_kvec[v].iov_base = &m->footer;
522 	con->out_kvec[v].iov_len = sizeof(m->footer);
523 	con->out_kvec_bytes += sizeof(m->footer);
524 	con->out_kvec_left++;
525 	con->out_more = m->more_to_follow;
526 	con->out_msg_done = true;
527 }
528 
529 /*
530  * Prepare headers for the next outgoing message.
531  */
532 static void prepare_write_message(struct ceph_connection *con)
533 {
534 	struct ceph_msg *m;
535 	u32 crc;
536 
537 	ceph_con_out_kvec_reset(con);
538 	con->out_kvec_is_msg = true;
539 	con->out_msg_done = false;
540 
541 	/* Sneak an ack in there first?  If we can get it into the same
542 	 * TCP packet that's a good thing. */
543 	if (con->in_seq > con->in_seq_acked) {
544 		con->in_seq_acked = con->in_seq;
545 		ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
546 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
547 		ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
548 			&con->out_temp_ack);
549 	}
550 
551 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
552 	con->out_msg = m;
553 
554 	/* put message on sent list */
555 	ceph_msg_get(m);
556 	list_move_tail(&m->list_head, &con->out_sent);
557 
558 	/*
559 	 * only assign outgoing seq # if we haven't sent this message
560 	 * yet.  if it is requeued, resend with it's original seq.
561 	 */
562 	if (m->needs_out_seq) {
563 		m->hdr.seq = cpu_to_le64(++con->out_seq);
564 		m->needs_out_seq = false;
565 	}
566 #ifdef CONFIG_BLOCK
567 	else
568 		m->bio_iter = NULL;
569 #endif
570 
571 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
572 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
573 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
574 	     le32_to_cpu(m->hdr.data_len),
575 	     m->nr_pages);
576 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
577 
578 	/* tag + hdr + front + middle */
579 	ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
580 	ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
581 	ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
582 
583 	if (m->middle)
584 		ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
585 			m->middle->vec.iov_base);
586 
587 	/* fill in crc (except data pages), footer */
588 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
589 	con->out_msg->hdr.crc = cpu_to_le32(crc);
590 	con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
591 
592 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
593 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
594 	if (m->middle) {
595 		crc = crc32c(0, m->middle->vec.iov_base,
596 				m->middle->vec.iov_len);
597 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
598 	} else
599 		con->out_msg->footer.middle_crc = 0;
600 	con->out_msg->footer.data_crc = 0;
601 	dout("prepare_write_message front_crc %u data_crc %u\n",
602 	     le32_to_cpu(con->out_msg->footer.front_crc),
603 	     le32_to_cpu(con->out_msg->footer.middle_crc));
604 
605 	/* is there a data payload? */
606 	if (le32_to_cpu(m->hdr.data_len) > 0) {
607 		/* initialize page iterator */
608 		con->out_msg_pos.page = 0;
609 		if (m->pages)
610 			con->out_msg_pos.page_pos = m->page_alignment;
611 		else
612 			con->out_msg_pos.page_pos = 0;
613 		con->out_msg_pos.data_pos = 0;
614 		con->out_msg_pos.did_page_crc = false;
615 		con->out_more = 1;  /* data + footer will follow */
616 	} else {
617 		/* no, queue up footer too and be done */
618 		prepare_write_message_footer(con);
619 	}
620 
621 	set_bit(WRITE_PENDING, &con->state);
622 }
623 
624 /*
625  * Prepare an ack.
626  */
627 static void prepare_write_ack(struct ceph_connection *con)
628 {
629 	dout("prepare_write_ack %p %llu -> %llu\n", con,
630 	     con->in_seq_acked, con->in_seq);
631 	con->in_seq_acked = con->in_seq;
632 
633 	ceph_con_out_kvec_reset(con);
634 
635 	ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
636 
637 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
638 	ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
639 				&con->out_temp_ack);
640 
641 	con->out_more = 1;  /* more will follow.. eventually.. */
642 	set_bit(WRITE_PENDING, &con->state);
643 }
644 
645 /*
646  * Prepare to write keepalive byte.
647  */
648 static void prepare_write_keepalive(struct ceph_connection *con)
649 {
650 	dout("prepare_write_keepalive %p\n", con);
651 	ceph_con_out_kvec_reset(con);
652 	ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
653 	set_bit(WRITE_PENDING, &con->state);
654 }
655 
656 /*
657  * Connection negotiation.
658  */
659 
660 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
661 						int *auth_proto)
662 {
663 	struct ceph_auth_handshake *auth;
664 
665 	if (!con->ops->get_authorizer) {
666 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
667 		con->out_connect.authorizer_len = 0;
668 
669 		return NULL;
670 	}
671 
672 	/* Can't hold the mutex while getting authorizer */
673 
674 	mutex_unlock(&con->mutex);
675 
676 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
677 
678 	mutex_lock(&con->mutex);
679 
680 	if (IS_ERR(auth))
681 		return auth;
682 	if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->state))
683 		return ERR_PTR(-EAGAIN);
684 
685 	con->auth_reply_buf = auth->authorizer_reply_buf;
686 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
687 
688 
689 	return auth;
690 }
691 
692 /*
693  * We connected to a peer and are saying hello.
694  */
695 static void prepare_write_banner(struct ceph_connection *con)
696 {
697 	ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
698 	ceph_con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
699 					&con->msgr->my_enc_addr);
700 
701 	con->out_more = 0;
702 	set_bit(WRITE_PENDING, &con->state);
703 }
704 
705 static int prepare_write_connect(struct ceph_connection *con)
706 {
707 	unsigned int global_seq = get_global_seq(con->msgr, 0);
708 	int proto;
709 	int auth_proto;
710 	struct ceph_auth_handshake *auth;
711 
712 	switch (con->peer_name.type) {
713 	case CEPH_ENTITY_TYPE_MON:
714 		proto = CEPH_MONC_PROTOCOL;
715 		break;
716 	case CEPH_ENTITY_TYPE_OSD:
717 		proto = CEPH_OSDC_PROTOCOL;
718 		break;
719 	case CEPH_ENTITY_TYPE_MDS:
720 		proto = CEPH_MDSC_PROTOCOL;
721 		break;
722 	default:
723 		BUG();
724 	}
725 
726 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
727 	     con->connect_seq, global_seq, proto);
728 
729 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
730 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
731 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
732 	con->out_connect.global_seq = cpu_to_le32(global_seq);
733 	con->out_connect.protocol_version = cpu_to_le32(proto);
734 	con->out_connect.flags = 0;
735 
736 	auth_proto = CEPH_AUTH_UNKNOWN;
737 	auth = get_connect_authorizer(con, &auth_proto);
738 	if (IS_ERR(auth))
739 		return PTR_ERR(auth);
740 
741 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
742 	con->out_connect.authorizer_len = auth ?
743 		cpu_to_le32(auth->authorizer_buf_len) : 0;
744 
745 	ceph_con_out_kvec_add(con, sizeof (con->out_connect),
746 					&con->out_connect);
747 	if (auth && auth->authorizer_buf_len)
748 		ceph_con_out_kvec_add(con, auth->authorizer_buf_len,
749 					auth->authorizer_buf);
750 
751 	con->out_more = 0;
752 	set_bit(WRITE_PENDING, &con->state);
753 
754 	return 0;
755 }
756 
757 /*
758  * write as much of pending kvecs to the socket as we can.
759  *  1 -> done
760  *  0 -> socket full, but more to do
761  * <0 -> error
762  */
763 static int write_partial_kvec(struct ceph_connection *con)
764 {
765 	int ret;
766 
767 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
768 	while (con->out_kvec_bytes > 0) {
769 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
770 				       con->out_kvec_left, con->out_kvec_bytes,
771 				       con->out_more);
772 		if (ret <= 0)
773 			goto out;
774 		con->out_kvec_bytes -= ret;
775 		if (con->out_kvec_bytes == 0)
776 			break;            /* done */
777 
778 		/* account for full iov entries consumed */
779 		while (ret >= con->out_kvec_cur->iov_len) {
780 			BUG_ON(!con->out_kvec_left);
781 			ret -= con->out_kvec_cur->iov_len;
782 			con->out_kvec_cur++;
783 			con->out_kvec_left--;
784 		}
785 		/* and for a partially-consumed entry */
786 		if (ret) {
787 			con->out_kvec_cur->iov_len -= ret;
788 			con->out_kvec_cur->iov_base += ret;
789 		}
790 	}
791 	con->out_kvec_left = 0;
792 	con->out_kvec_is_msg = false;
793 	ret = 1;
794 out:
795 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
796 	     con->out_kvec_bytes, con->out_kvec_left, ret);
797 	return ret;  /* done! */
798 }
799 
800 #ifdef CONFIG_BLOCK
801 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
802 {
803 	if (!bio) {
804 		*iter = NULL;
805 		*seg = 0;
806 		return;
807 	}
808 	*iter = bio;
809 	*seg = bio->bi_idx;
810 }
811 
812 static void iter_bio_next(struct bio **bio_iter, int *seg)
813 {
814 	if (*bio_iter == NULL)
815 		return;
816 
817 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
818 
819 	(*seg)++;
820 	if (*seg == (*bio_iter)->bi_vcnt)
821 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
822 }
823 #endif
824 
825 /*
826  * Write as much message data payload as we can.  If we finish, queue
827  * up the footer.
828  *  1 -> done, footer is now queued in out_kvec[].
829  *  0 -> socket full, but more to do
830  * <0 -> error
831  */
832 static int write_partial_msg_pages(struct ceph_connection *con)
833 {
834 	struct ceph_msg *msg = con->out_msg;
835 	unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
836 	size_t len;
837 	bool do_datacrc = !con->msgr->nocrc;
838 	int ret;
839 	int total_max_write;
840 	int in_trail = 0;
841 	size_t trail_len = (msg->trail ? msg->trail->length : 0);
842 
843 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
844 	     con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
845 	     con->out_msg_pos.page_pos);
846 
847 #ifdef CONFIG_BLOCK
848 	if (msg->bio && !msg->bio_iter)
849 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
850 #endif
851 
852 	while (data_len > con->out_msg_pos.data_pos) {
853 		struct page *page = NULL;
854 		int max_write = PAGE_SIZE;
855 		int bio_offset = 0;
856 
857 		total_max_write = data_len - trail_len -
858 			con->out_msg_pos.data_pos;
859 
860 		/*
861 		 * if we are calculating the data crc (the default), we need
862 		 * to map the page.  if our pages[] has been revoked, use the
863 		 * zero page.
864 		 */
865 
866 		/* have we reached the trail part of the data? */
867 		if (con->out_msg_pos.data_pos >= data_len - trail_len) {
868 			in_trail = 1;
869 
870 			total_max_write = data_len - con->out_msg_pos.data_pos;
871 
872 			page = list_first_entry(&msg->trail->head,
873 						struct page, lru);
874 			max_write = PAGE_SIZE;
875 		} else if (msg->pages) {
876 			page = msg->pages[con->out_msg_pos.page];
877 		} else if (msg->pagelist) {
878 			page = list_first_entry(&msg->pagelist->head,
879 						struct page, lru);
880 #ifdef CONFIG_BLOCK
881 		} else if (msg->bio) {
882 			struct bio_vec *bv;
883 
884 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
885 			page = bv->bv_page;
886 			bio_offset = bv->bv_offset;
887 			max_write = bv->bv_len;
888 #endif
889 		} else {
890 			page = zero_page;
891 		}
892 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
893 			    total_max_write);
894 
895 		if (do_datacrc && !con->out_msg_pos.did_page_crc) {
896 			void *base;
897 			u32 crc;
898 			u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
899 			char *kaddr;
900 
901 			kaddr = kmap(page);
902 			BUG_ON(kaddr == NULL);
903 			base = kaddr + con->out_msg_pos.page_pos + bio_offset;
904 			crc = crc32c(tmpcrc, base, len);
905 			con->out_msg->footer.data_crc = cpu_to_le32(crc);
906 			con->out_msg_pos.did_page_crc = true;
907 		}
908 		ret = ceph_tcp_sendpage(con->sock, page,
909 				      con->out_msg_pos.page_pos + bio_offset,
910 				      len, 1);
911 
912 		if (do_datacrc)
913 			kunmap(page);
914 
915 		if (ret <= 0)
916 			goto out;
917 
918 		con->out_msg_pos.data_pos += ret;
919 		con->out_msg_pos.page_pos += ret;
920 		if (ret == len) {
921 			con->out_msg_pos.page_pos = 0;
922 			con->out_msg_pos.page++;
923 			con->out_msg_pos.did_page_crc = false;
924 			if (in_trail)
925 				list_move_tail(&page->lru,
926 					       &msg->trail->head);
927 			else if (msg->pagelist)
928 				list_move_tail(&page->lru,
929 					       &msg->pagelist->head);
930 #ifdef CONFIG_BLOCK
931 			else if (msg->bio)
932 				iter_bio_next(&msg->bio_iter, &msg->bio_seg);
933 #endif
934 		}
935 	}
936 
937 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
938 
939 	/* prepare and queue up footer, too */
940 	if (!do_datacrc)
941 		con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
942 	ceph_con_out_kvec_reset(con);
943 	prepare_write_message_footer(con);
944 	ret = 1;
945 out:
946 	return ret;
947 }
948 
949 /*
950  * write some zeros
951  */
952 static int write_partial_skip(struct ceph_connection *con)
953 {
954 	int ret;
955 
956 	while (con->out_skip > 0) {
957 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
958 
959 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
960 		if (ret <= 0)
961 			goto out;
962 		con->out_skip -= ret;
963 	}
964 	ret = 1;
965 out:
966 	return ret;
967 }
968 
969 /*
970  * Prepare to read connection handshake, or an ack.
971  */
972 static void prepare_read_banner(struct ceph_connection *con)
973 {
974 	dout("prepare_read_banner %p\n", con);
975 	con->in_base_pos = 0;
976 }
977 
978 static void prepare_read_connect(struct ceph_connection *con)
979 {
980 	dout("prepare_read_connect %p\n", con);
981 	con->in_base_pos = 0;
982 }
983 
984 static void prepare_read_ack(struct ceph_connection *con)
985 {
986 	dout("prepare_read_ack %p\n", con);
987 	con->in_base_pos = 0;
988 }
989 
990 static void prepare_read_tag(struct ceph_connection *con)
991 {
992 	dout("prepare_read_tag %p\n", con);
993 	con->in_base_pos = 0;
994 	con->in_tag = CEPH_MSGR_TAG_READY;
995 }
996 
997 /*
998  * Prepare to read a message.
999  */
1000 static int prepare_read_message(struct ceph_connection *con)
1001 {
1002 	dout("prepare_read_message %p\n", con);
1003 	BUG_ON(con->in_msg != NULL);
1004 	con->in_base_pos = 0;
1005 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1006 	return 0;
1007 }
1008 
1009 
1010 static int read_partial(struct ceph_connection *con,
1011 			int end, int size, void *object)
1012 {
1013 	while (con->in_base_pos < end) {
1014 		int left = end - con->in_base_pos;
1015 		int have = size - left;
1016 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1017 		if (ret <= 0)
1018 			return ret;
1019 		con->in_base_pos += ret;
1020 	}
1021 	return 1;
1022 }
1023 
1024 
1025 /*
1026  * Read all or part of the connect-side handshake on a new connection
1027  */
1028 static int read_partial_banner(struct ceph_connection *con)
1029 {
1030 	int size;
1031 	int end;
1032 	int ret;
1033 
1034 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1035 
1036 	/* peer's banner */
1037 	size = strlen(CEPH_BANNER);
1038 	end = size;
1039 	ret = read_partial(con, end, size, con->in_banner);
1040 	if (ret <= 0)
1041 		goto out;
1042 
1043 	size = sizeof (con->actual_peer_addr);
1044 	end += size;
1045 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1046 	if (ret <= 0)
1047 		goto out;
1048 
1049 	size = sizeof (con->peer_addr_for_me);
1050 	end += size;
1051 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1052 	if (ret <= 0)
1053 		goto out;
1054 
1055 out:
1056 	return ret;
1057 }
1058 
1059 static int read_partial_connect(struct ceph_connection *con)
1060 {
1061 	int size;
1062 	int end;
1063 	int ret;
1064 
1065 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1066 
1067 	size = sizeof (con->in_reply);
1068 	end = size;
1069 	ret = read_partial(con, end, size, &con->in_reply);
1070 	if (ret <= 0)
1071 		goto out;
1072 
1073 	size = le32_to_cpu(con->in_reply.authorizer_len);
1074 	end += size;
1075 	ret = read_partial(con, end, size, con->auth_reply_buf);
1076 	if (ret <= 0)
1077 		goto out;
1078 
1079 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1080 	     con, (int)con->in_reply.tag,
1081 	     le32_to_cpu(con->in_reply.connect_seq),
1082 	     le32_to_cpu(con->in_reply.global_seq));
1083 out:
1084 	return ret;
1085 
1086 }
1087 
1088 /*
1089  * Verify the hello banner looks okay.
1090  */
1091 static int verify_hello(struct ceph_connection *con)
1092 {
1093 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1094 		pr_err("connect to %s got bad banner\n",
1095 		       ceph_pr_addr(&con->peer_addr.in_addr));
1096 		con->error_msg = "protocol error, bad banner";
1097 		return -1;
1098 	}
1099 	return 0;
1100 }
1101 
1102 static bool addr_is_blank(struct sockaddr_storage *ss)
1103 {
1104 	switch (ss->ss_family) {
1105 	case AF_INET:
1106 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1107 	case AF_INET6:
1108 		return
1109 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1110 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1111 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1112 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1113 	}
1114 	return false;
1115 }
1116 
1117 static int addr_port(struct sockaddr_storage *ss)
1118 {
1119 	switch (ss->ss_family) {
1120 	case AF_INET:
1121 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1122 	case AF_INET6:
1123 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1124 	}
1125 	return 0;
1126 }
1127 
1128 static void addr_set_port(struct sockaddr_storage *ss, int p)
1129 {
1130 	switch (ss->ss_family) {
1131 	case AF_INET:
1132 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1133 		break;
1134 	case AF_INET6:
1135 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1136 		break;
1137 	}
1138 }
1139 
1140 /*
1141  * Unlike other *_pton function semantics, zero indicates success.
1142  */
1143 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1144 		char delim, const char **ipend)
1145 {
1146 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1147 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1148 
1149 	memset(ss, 0, sizeof(*ss));
1150 
1151 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1152 		ss->ss_family = AF_INET;
1153 		return 0;
1154 	}
1155 
1156 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1157 		ss->ss_family = AF_INET6;
1158 		return 0;
1159 	}
1160 
1161 	return -EINVAL;
1162 }
1163 
1164 /*
1165  * Extract hostname string and resolve using kernel DNS facility.
1166  */
1167 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1168 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1169 		struct sockaddr_storage *ss, char delim, const char **ipend)
1170 {
1171 	const char *end, *delim_p;
1172 	char *colon_p, *ip_addr = NULL;
1173 	int ip_len, ret;
1174 
1175 	/*
1176 	 * The end of the hostname occurs immediately preceding the delimiter or
1177 	 * the port marker (':') where the delimiter takes precedence.
1178 	 */
1179 	delim_p = memchr(name, delim, namelen);
1180 	colon_p = memchr(name, ':', namelen);
1181 
1182 	if (delim_p && colon_p)
1183 		end = delim_p < colon_p ? delim_p : colon_p;
1184 	else if (!delim_p && colon_p)
1185 		end = colon_p;
1186 	else {
1187 		end = delim_p;
1188 		if (!end) /* case: hostname:/ */
1189 			end = name + namelen;
1190 	}
1191 
1192 	if (end <= name)
1193 		return -EINVAL;
1194 
1195 	/* do dns_resolve upcall */
1196 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1197 	if (ip_len > 0)
1198 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1199 	else
1200 		ret = -ESRCH;
1201 
1202 	kfree(ip_addr);
1203 
1204 	*ipend = end;
1205 
1206 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1207 			ret, ret ? "failed" : ceph_pr_addr(ss));
1208 
1209 	return ret;
1210 }
1211 #else
1212 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1213 		struct sockaddr_storage *ss, char delim, const char **ipend)
1214 {
1215 	return -EINVAL;
1216 }
1217 #endif
1218 
1219 /*
1220  * Parse a server name (IP or hostname). If a valid IP address is not found
1221  * then try to extract a hostname to resolve using userspace DNS upcall.
1222  */
1223 static int ceph_parse_server_name(const char *name, size_t namelen,
1224 			struct sockaddr_storage *ss, char delim, const char **ipend)
1225 {
1226 	int ret;
1227 
1228 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1229 	if (ret)
1230 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1231 
1232 	return ret;
1233 }
1234 
1235 /*
1236  * Parse an ip[:port] list into an addr array.  Use the default
1237  * monitor port if a port isn't specified.
1238  */
1239 int ceph_parse_ips(const char *c, const char *end,
1240 		   struct ceph_entity_addr *addr,
1241 		   int max_count, int *count)
1242 {
1243 	int i, ret = -EINVAL;
1244 	const char *p = c;
1245 
1246 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1247 	for (i = 0; i < max_count; i++) {
1248 		const char *ipend;
1249 		struct sockaddr_storage *ss = &addr[i].in_addr;
1250 		int port;
1251 		char delim = ',';
1252 
1253 		if (*p == '[') {
1254 			delim = ']';
1255 			p++;
1256 		}
1257 
1258 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1259 		if (ret)
1260 			goto bad;
1261 		ret = -EINVAL;
1262 
1263 		p = ipend;
1264 
1265 		if (delim == ']') {
1266 			if (*p != ']') {
1267 				dout("missing matching ']'\n");
1268 				goto bad;
1269 			}
1270 			p++;
1271 		}
1272 
1273 		/* port? */
1274 		if (p < end && *p == ':') {
1275 			port = 0;
1276 			p++;
1277 			while (p < end && *p >= '0' && *p <= '9') {
1278 				port = (port * 10) + (*p - '0');
1279 				p++;
1280 			}
1281 			if (port > 65535 || port == 0)
1282 				goto bad;
1283 		} else {
1284 			port = CEPH_MON_PORT;
1285 		}
1286 
1287 		addr_set_port(ss, port);
1288 
1289 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1290 
1291 		if (p == end)
1292 			break;
1293 		if (*p != ',')
1294 			goto bad;
1295 		p++;
1296 	}
1297 
1298 	if (p != end)
1299 		goto bad;
1300 
1301 	if (count)
1302 		*count = i + 1;
1303 	return 0;
1304 
1305 bad:
1306 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1307 	return ret;
1308 }
1309 EXPORT_SYMBOL(ceph_parse_ips);
1310 
1311 static int process_banner(struct ceph_connection *con)
1312 {
1313 	dout("process_banner on %p\n", con);
1314 
1315 	if (verify_hello(con) < 0)
1316 		return -1;
1317 
1318 	ceph_decode_addr(&con->actual_peer_addr);
1319 	ceph_decode_addr(&con->peer_addr_for_me);
1320 
1321 	/*
1322 	 * Make sure the other end is who we wanted.  note that the other
1323 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1324 	 * them the benefit of the doubt.
1325 	 */
1326 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1327 		   sizeof(con->peer_addr)) != 0 &&
1328 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1329 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1330 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1331 			   ceph_pr_addr(&con->peer_addr.in_addr),
1332 			   (int)le32_to_cpu(con->peer_addr.nonce),
1333 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1334 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1335 		con->error_msg = "wrong peer at address";
1336 		return -1;
1337 	}
1338 
1339 	/*
1340 	 * did we learn our address?
1341 	 */
1342 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1343 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1344 
1345 		memcpy(&con->msgr->inst.addr.in_addr,
1346 		       &con->peer_addr_for_me.in_addr,
1347 		       sizeof(con->peer_addr_for_me.in_addr));
1348 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1349 		encode_my_addr(con->msgr);
1350 		dout("process_banner learned my addr is %s\n",
1351 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1352 	}
1353 
1354 	set_bit(NEGOTIATING, &con->state);
1355 	prepare_read_connect(con);
1356 	return 0;
1357 }
1358 
1359 static void fail_protocol(struct ceph_connection *con)
1360 {
1361 	reset_connection(con);
1362 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
1363 
1364 	mutex_unlock(&con->mutex);
1365 	if (con->ops->bad_proto)
1366 		con->ops->bad_proto(con);
1367 	mutex_lock(&con->mutex);
1368 }
1369 
1370 static int process_connect(struct ceph_connection *con)
1371 {
1372 	u64 sup_feat = con->msgr->supported_features;
1373 	u64 req_feat = con->msgr->required_features;
1374 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1375 	int ret;
1376 
1377 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1378 
1379 	switch (con->in_reply.tag) {
1380 	case CEPH_MSGR_TAG_FEATURES:
1381 		pr_err("%s%lld %s feature set mismatch,"
1382 		       " my %llx < server's %llx, missing %llx\n",
1383 		       ENTITY_NAME(con->peer_name),
1384 		       ceph_pr_addr(&con->peer_addr.in_addr),
1385 		       sup_feat, server_feat, server_feat & ~sup_feat);
1386 		con->error_msg = "missing required protocol features";
1387 		fail_protocol(con);
1388 		return -1;
1389 
1390 	case CEPH_MSGR_TAG_BADPROTOVER:
1391 		pr_err("%s%lld %s protocol version mismatch,"
1392 		       " my %d != server's %d\n",
1393 		       ENTITY_NAME(con->peer_name),
1394 		       ceph_pr_addr(&con->peer_addr.in_addr),
1395 		       le32_to_cpu(con->out_connect.protocol_version),
1396 		       le32_to_cpu(con->in_reply.protocol_version));
1397 		con->error_msg = "protocol version mismatch";
1398 		fail_protocol(con);
1399 		return -1;
1400 
1401 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1402 		con->auth_retry++;
1403 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1404 		     con->auth_retry);
1405 		if (con->auth_retry == 2) {
1406 			con->error_msg = "connect authorization failure";
1407 			return -1;
1408 		}
1409 		con->auth_retry = 1;
1410 		ceph_con_out_kvec_reset(con);
1411 		ret = prepare_write_connect(con);
1412 		if (ret < 0)
1413 			return ret;
1414 		prepare_read_connect(con);
1415 		break;
1416 
1417 	case CEPH_MSGR_TAG_RESETSESSION:
1418 		/*
1419 		 * If we connected with a large connect_seq but the peer
1420 		 * has no record of a session with us (no connection, or
1421 		 * connect_seq == 0), they will send RESETSESION to indicate
1422 		 * that they must have reset their session, and may have
1423 		 * dropped messages.
1424 		 */
1425 		dout("process_connect got RESET peer seq %u\n",
1426 		     le32_to_cpu(con->in_connect.connect_seq));
1427 		pr_err("%s%lld %s connection reset\n",
1428 		       ENTITY_NAME(con->peer_name),
1429 		       ceph_pr_addr(&con->peer_addr.in_addr));
1430 		reset_connection(con);
1431 		ceph_con_out_kvec_reset(con);
1432 		ret = prepare_write_connect(con);
1433 		if (ret < 0)
1434 			return ret;
1435 		prepare_read_connect(con);
1436 
1437 		/* Tell ceph about it. */
1438 		mutex_unlock(&con->mutex);
1439 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1440 		if (con->ops->peer_reset)
1441 			con->ops->peer_reset(con);
1442 		mutex_lock(&con->mutex);
1443 		if (test_bit(CLOSED, &con->state) ||
1444 		    test_bit(OPENING, &con->state))
1445 			return -EAGAIN;
1446 		break;
1447 
1448 	case CEPH_MSGR_TAG_RETRY_SESSION:
1449 		/*
1450 		 * If we sent a smaller connect_seq than the peer has, try
1451 		 * again with a larger value.
1452 		 */
1453 		dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1454 		     le32_to_cpu(con->out_connect.connect_seq),
1455 		     le32_to_cpu(con->in_connect.connect_seq));
1456 		con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1457 		ceph_con_out_kvec_reset(con);
1458 		ret = prepare_write_connect(con);
1459 		if (ret < 0)
1460 			return ret;
1461 		prepare_read_connect(con);
1462 		break;
1463 
1464 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1465 		/*
1466 		 * If we sent a smaller global_seq than the peer has, try
1467 		 * again with a larger value.
1468 		 */
1469 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1470 		     con->peer_global_seq,
1471 		     le32_to_cpu(con->in_connect.global_seq));
1472 		get_global_seq(con->msgr,
1473 			       le32_to_cpu(con->in_connect.global_seq));
1474 		ceph_con_out_kvec_reset(con);
1475 		ret = prepare_write_connect(con);
1476 		if (ret < 0)
1477 			return ret;
1478 		prepare_read_connect(con);
1479 		break;
1480 
1481 	case CEPH_MSGR_TAG_READY:
1482 		if (req_feat & ~server_feat) {
1483 			pr_err("%s%lld %s protocol feature mismatch,"
1484 			       " my required %llx > server's %llx, need %llx\n",
1485 			       ENTITY_NAME(con->peer_name),
1486 			       ceph_pr_addr(&con->peer_addr.in_addr),
1487 			       req_feat, server_feat, req_feat & ~server_feat);
1488 			con->error_msg = "missing required protocol features";
1489 			fail_protocol(con);
1490 			return -1;
1491 		}
1492 		clear_bit(CONNECTING, &con->state);
1493 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1494 		con->connect_seq++;
1495 		con->peer_features = server_feat;
1496 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1497 		     con->peer_global_seq,
1498 		     le32_to_cpu(con->in_reply.connect_seq),
1499 		     con->connect_seq);
1500 		WARN_ON(con->connect_seq !=
1501 			le32_to_cpu(con->in_reply.connect_seq));
1502 
1503 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1504 			set_bit(LOSSYTX, &con->state);
1505 
1506 		prepare_read_tag(con);
1507 		break;
1508 
1509 	case CEPH_MSGR_TAG_WAIT:
1510 		/*
1511 		 * If there is a connection race (we are opening
1512 		 * connections to each other), one of us may just have
1513 		 * to WAIT.  This shouldn't happen if we are the
1514 		 * client.
1515 		 */
1516 		pr_err("process_connect got WAIT as client\n");
1517 		con->error_msg = "protocol error, got WAIT as client";
1518 		return -1;
1519 
1520 	default:
1521 		pr_err("connect protocol error, will retry\n");
1522 		con->error_msg = "protocol error, garbage tag during connect";
1523 		return -1;
1524 	}
1525 	return 0;
1526 }
1527 
1528 
1529 /*
1530  * read (part of) an ack
1531  */
1532 static int read_partial_ack(struct ceph_connection *con)
1533 {
1534 	int size = sizeof (con->in_temp_ack);
1535 	int end = size;
1536 
1537 	return read_partial(con, end, size, &con->in_temp_ack);
1538 }
1539 
1540 
1541 /*
1542  * We can finally discard anything that's been acked.
1543  */
1544 static void process_ack(struct ceph_connection *con)
1545 {
1546 	struct ceph_msg *m;
1547 	u64 ack = le64_to_cpu(con->in_temp_ack);
1548 	u64 seq;
1549 
1550 	while (!list_empty(&con->out_sent)) {
1551 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1552 				     list_head);
1553 		seq = le64_to_cpu(m->hdr.seq);
1554 		if (seq > ack)
1555 			break;
1556 		dout("got ack for seq %llu type %d at %p\n", seq,
1557 		     le16_to_cpu(m->hdr.type), m);
1558 		m->ack_stamp = jiffies;
1559 		ceph_msg_remove(m);
1560 	}
1561 	prepare_read_tag(con);
1562 }
1563 
1564 
1565 
1566 
1567 static int read_partial_message_section(struct ceph_connection *con,
1568 					struct kvec *section,
1569 					unsigned int sec_len, u32 *crc)
1570 {
1571 	int ret, left;
1572 
1573 	BUG_ON(!section);
1574 
1575 	while (section->iov_len < sec_len) {
1576 		BUG_ON(section->iov_base == NULL);
1577 		left = sec_len - section->iov_len;
1578 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1579 				       section->iov_len, left);
1580 		if (ret <= 0)
1581 			return ret;
1582 		section->iov_len += ret;
1583 	}
1584 	if (section->iov_len == sec_len)
1585 		*crc = crc32c(0, section->iov_base, section->iov_len);
1586 
1587 	return 1;
1588 }
1589 
1590 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1591 				struct ceph_msg_header *hdr,
1592 				int *skip);
1593 
1594 
1595 static int read_partial_message_pages(struct ceph_connection *con,
1596 				      struct page **pages,
1597 				      unsigned int data_len, bool do_datacrc)
1598 {
1599 	void *p;
1600 	int ret;
1601 	int left;
1602 
1603 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1604 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1605 	/* (page) data */
1606 	BUG_ON(pages == NULL);
1607 	p = kmap(pages[con->in_msg_pos.page]);
1608 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1609 			       left);
1610 	if (ret > 0 && do_datacrc)
1611 		con->in_data_crc =
1612 			crc32c(con->in_data_crc,
1613 				  p + con->in_msg_pos.page_pos, ret);
1614 	kunmap(pages[con->in_msg_pos.page]);
1615 	if (ret <= 0)
1616 		return ret;
1617 	con->in_msg_pos.data_pos += ret;
1618 	con->in_msg_pos.page_pos += ret;
1619 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1620 		con->in_msg_pos.page_pos = 0;
1621 		con->in_msg_pos.page++;
1622 	}
1623 
1624 	return ret;
1625 }
1626 
1627 #ifdef CONFIG_BLOCK
1628 static int read_partial_message_bio(struct ceph_connection *con,
1629 				    struct bio **bio_iter, int *bio_seg,
1630 				    unsigned int data_len, bool do_datacrc)
1631 {
1632 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1633 	void *p;
1634 	int ret, left;
1635 
1636 	if (IS_ERR(bv))
1637 		return PTR_ERR(bv);
1638 
1639 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1640 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1641 
1642 	p = kmap(bv->bv_page) + bv->bv_offset;
1643 
1644 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1645 			       left);
1646 	if (ret > 0 && do_datacrc)
1647 		con->in_data_crc =
1648 			crc32c(con->in_data_crc,
1649 				  p + con->in_msg_pos.page_pos, ret);
1650 	kunmap(bv->bv_page);
1651 	if (ret <= 0)
1652 		return ret;
1653 	con->in_msg_pos.data_pos += ret;
1654 	con->in_msg_pos.page_pos += ret;
1655 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1656 		con->in_msg_pos.page_pos = 0;
1657 		iter_bio_next(bio_iter, bio_seg);
1658 	}
1659 
1660 	return ret;
1661 }
1662 #endif
1663 
1664 /*
1665  * read (part of) a message.
1666  */
1667 static int read_partial_message(struct ceph_connection *con)
1668 {
1669 	struct ceph_msg *m = con->in_msg;
1670 	int size;
1671 	int end;
1672 	int ret;
1673 	unsigned int front_len, middle_len, data_len;
1674 	bool do_datacrc = !con->msgr->nocrc;
1675 	int skip;
1676 	u64 seq;
1677 	u32 crc;
1678 
1679 	dout("read_partial_message con %p msg %p\n", con, m);
1680 
1681 	/* header */
1682 	size = sizeof (con->in_hdr);
1683 	end = size;
1684 	ret = read_partial(con, end, size, &con->in_hdr);
1685 	if (ret <= 0)
1686 		return ret;
1687 
1688 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1689 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
1690 		pr_err("read_partial_message bad hdr "
1691 		       " crc %u != expected %u\n",
1692 		       crc, con->in_hdr.crc);
1693 		return -EBADMSG;
1694 	}
1695 
1696 	front_len = le32_to_cpu(con->in_hdr.front_len);
1697 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1698 		return -EIO;
1699 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1700 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1701 		return -EIO;
1702 	data_len = le32_to_cpu(con->in_hdr.data_len);
1703 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1704 		return -EIO;
1705 
1706 	/* verify seq# */
1707 	seq = le64_to_cpu(con->in_hdr.seq);
1708 	if ((s64)seq - (s64)con->in_seq < 1) {
1709 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1710 			ENTITY_NAME(con->peer_name),
1711 			ceph_pr_addr(&con->peer_addr.in_addr),
1712 			seq, con->in_seq + 1);
1713 		con->in_base_pos = -front_len - middle_len - data_len -
1714 			sizeof(m->footer);
1715 		con->in_tag = CEPH_MSGR_TAG_READY;
1716 		return 0;
1717 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1718 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1719 		       seq, con->in_seq + 1);
1720 		con->error_msg = "bad message sequence # for incoming message";
1721 		return -EBADMSG;
1722 	}
1723 
1724 	/* allocate message? */
1725 	if (!con->in_msg) {
1726 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1727 		     con->in_hdr.front_len, con->in_hdr.data_len);
1728 		skip = 0;
1729 		con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1730 		if (skip) {
1731 			/* skip this message */
1732 			dout("alloc_msg said skip message\n");
1733 			BUG_ON(con->in_msg);
1734 			con->in_base_pos = -front_len - middle_len - data_len -
1735 				sizeof(m->footer);
1736 			con->in_tag = CEPH_MSGR_TAG_READY;
1737 			con->in_seq++;
1738 			return 0;
1739 		}
1740 		if (!con->in_msg) {
1741 			con->error_msg =
1742 				"error allocating memory for incoming message";
1743 			return -ENOMEM;
1744 		}
1745 		m = con->in_msg;
1746 		m->front.iov_len = 0;    /* haven't read it yet */
1747 		if (m->middle)
1748 			m->middle->vec.iov_len = 0;
1749 
1750 		con->in_msg_pos.page = 0;
1751 		if (m->pages)
1752 			con->in_msg_pos.page_pos = m->page_alignment;
1753 		else
1754 			con->in_msg_pos.page_pos = 0;
1755 		con->in_msg_pos.data_pos = 0;
1756 	}
1757 
1758 	/* front */
1759 	ret = read_partial_message_section(con, &m->front, front_len,
1760 					   &con->in_front_crc);
1761 	if (ret <= 0)
1762 		return ret;
1763 
1764 	/* middle */
1765 	if (m->middle) {
1766 		ret = read_partial_message_section(con, &m->middle->vec,
1767 						   middle_len,
1768 						   &con->in_middle_crc);
1769 		if (ret <= 0)
1770 			return ret;
1771 	}
1772 #ifdef CONFIG_BLOCK
1773 	if (m->bio && !m->bio_iter)
1774 		init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1775 #endif
1776 
1777 	/* (page) data */
1778 	while (con->in_msg_pos.data_pos < data_len) {
1779 		if (m->pages) {
1780 			ret = read_partial_message_pages(con, m->pages,
1781 						 data_len, do_datacrc);
1782 			if (ret <= 0)
1783 				return ret;
1784 #ifdef CONFIG_BLOCK
1785 		} else if (m->bio) {
1786 
1787 			ret = read_partial_message_bio(con,
1788 						 &m->bio_iter, &m->bio_seg,
1789 						 data_len, do_datacrc);
1790 			if (ret <= 0)
1791 				return ret;
1792 #endif
1793 		} else {
1794 			BUG_ON(1);
1795 		}
1796 	}
1797 
1798 	/* footer */
1799 	size = sizeof (m->footer);
1800 	end += size;
1801 	ret = read_partial(con, end, size, &m->footer);
1802 	if (ret <= 0)
1803 		return ret;
1804 
1805 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1806 	     m, front_len, m->footer.front_crc, middle_len,
1807 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1808 
1809 	/* crc ok? */
1810 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1811 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1812 		       m, con->in_front_crc, m->footer.front_crc);
1813 		return -EBADMSG;
1814 	}
1815 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1816 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1817 		       m, con->in_middle_crc, m->footer.middle_crc);
1818 		return -EBADMSG;
1819 	}
1820 	if (do_datacrc &&
1821 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1822 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1823 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1824 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1825 		return -EBADMSG;
1826 	}
1827 
1828 	return 1; /* done! */
1829 }
1830 
1831 /*
1832  * Process message.  This happens in the worker thread.  The callback should
1833  * be careful not to do anything that waits on other incoming messages or it
1834  * may deadlock.
1835  */
1836 static void process_message(struct ceph_connection *con)
1837 {
1838 	struct ceph_msg *msg;
1839 
1840 	msg = con->in_msg;
1841 	con->in_msg = NULL;
1842 
1843 	/* if first message, set peer_name */
1844 	if (con->peer_name.type == 0)
1845 		con->peer_name = msg->hdr.src;
1846 
1847 	con->in_seq++;
1848 	mutex_unlock(&con->mutex);
1849 
1850 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1851 	     msg, le64_to_cpu(msg->hdr.seq),
1852 	     ENTITY_NAME(msg->hdr.src),
1853 	     le16_to_cpu(msg->hdr.type),
1854 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1855 	     le32_to_cpu(msg->hdr.front_len),
1856 	     le32_to_cpu(msg->hdr.data_len),
1857 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1858 	con->ops->dispatch(con, msg);
1859 
1860 	mutex_lock(&con->mutex);
1861 	prepare_read_tag(con);
1862 }
1863 
1864 
1865 /*
1866  * Write something to the socket.  Called in a worker thread when the
1867  * socket appears to be writeable and we have something ready to send.
1868  */
1869 static int try_write(struct ceph_connection *con)
1870 {
1871 	int ret = 1;
1872 
1873 	dout("try_write start %p state %lu nref %d\n", con, con->state,
1874 	     atomic_read(&con->nref));
1875 
1876 more:
1877 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1878 
1879 	/* open the socket first? */
1880 	if (con->sock == NULL) {
1881 		ceph_con_out_kvec_reset(con);
1882 		prepare_write_banner(con);
1883 		ret = prepare_write_connect(con);
1884 		if (ret < 0)
1885 			goto out;
1886 		prepare_read_banner(con);
1887 		set_bit(CONNECTING, &con->state);
1888 		clear_bit(NEGOTIATING, &con->state);
1889 
1890 		BUG_ON(con->in_msg);
1891 		con->in_tag = CEPH_MSGR_TAG_READY;
1892 		dout("try_write initiating connect on %p new state %lu\n",
1893 		     con, con->state);
1894 		ret = ceph_tcp_connect(con);
1895 		if (ret < 0) {
1896 			con->error_msg = "connect error";
1897 			goto out;
1898 		}
1899 	}
1900 
1901 more_kvec:
1902 	/* kvec data queued? */
1903 	if (con->out_skip) {
1904 		ret = write_partial_skip(con);
1905 		if (ret <= 0)
1906 			goto out;
1907 	}
1908 	if (con->out_kvec_left) {
1909 		ret = write_partial_kvec(con);
1910 		if (ret <= 0)
1911 			goto out;
1912 	}
1913 
1914 	/* msg pages? */
1915 	if (con->out_msg) {
1916 		if (con->out_msg_done) {
1917 			ceph_msg_put(con->out_msg);
1918 			con->out_msg = NULL;   /* we're done with this one */
1919 			goto do_next;
1920 		}
1921 
1922 		ret = write_partial_msg_pages(con);
1923 		if (ret == 1)
1924 			goto more_kvec;  /* we need to send the footer, too! */
1925 		if (ret == 0)
1926 			goto out;
1927 		if (ret < 0) {
1928 			dout("try_write write_partial_msg_pages err %d\n",
1929 			     ret);
1930 			goto out;
1931 		}
1932 	}
1933 
1934 do_next:
1935 	if (!test_bit(CONNECTING, &con->state)) {
1936 		/* is anything else pending? */
1937 		if (!list_empty(&con->out_queue)) {
1938 			prepare_write_message(con);
1939 			goto more;
1940 		}
1941 		if (con->in_seq > con->in_seq_acked) {
1942 			prepare_write_ack(con);
1943 			goto more;
1944 		}
1945 		if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1946 			prepare_write_keepalive(con);
1947 			goto more;
1948 		}
1949 	}
1950 
1951 	/* Nothing to do! */
1952 	clear_bit(WRITE_PENDING, &con->state);
1953 	dout("try_write nothing else to write.\n");
1954 	ret = 0;
1955 out:
1956 	dout("try_write done on %p ret %d\n", con, ret);
1957 	return ret;
1958 }
1959 
1960 
1961 
1962 /*
1963  * Read what we can from the socket.
1964  */
1965 static int try_read(struct ceph_connection *con)
1966 {
1967 	int ret = -1;
1968 
1969 	if (!con->sock)
1970 		return 0;
1971 
1972 	if (test_bit(STANDBY, &con->state))
1973 		return 0;
1974 
1975 	dout("try_read start on %p\n", con);
1976 
1977 more:
1978 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1979 	     con->in_base_pos);
1980 
1981 	/*
1982 	 * process_connect and process_message drop and re-take
1983 	 * con->mutex.  make sure we handle a racing close or reopen.
1984 	 */
1985 	if (test_bit(CLOSED, &con->state) ||
1986 	    test_bit(OPENING, &con->state)) {
1987 		ret = -EAGAIN;
1988 		goto out;
1989 	}
1990 
1991 	if (test_bit(CONNECTING, &con->state)) {
1992 		if (!test_bit(NEGOTIATING, &con->state)) {
1993 			dout("try_read connecting\n");
1994 			ret = read_partial_banner(con);
1995 			if (ret <= 0)
1996 				goto out;
1997 			ret = process_banner(con);
1998 			if (ret < 0)
1999 				goto out;
2000 		}
2001 		ret = read_partial_connect(con);
2002 		if (ret <= 0)
2003 			goto out;
2004 		ret = process_connect(con);
2005 		if (ret < 0)
2006 			goto out;
2007 		goto more;
2008 	}
2009 
2010 	if (con->in_base_pos < 0) {
2011 		/*
2012 		 * skipping + discarding content.
2013 		 *
2014 		 * FIXME: there must be a better way to do this!
2015 		 */
2016 		static char buf[SKIP_BUF_SIZE];
2017 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2018 
2019 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2020 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2021 		if (ret <= 0)
2022 			goto out;
2023 		con->in_base_pos += ret;
2024 		if (con->in_base_pos)
2025 			goto more;
2026 	}
2027 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2028 		/*
2029 		 * what's next?
2030 		 */
2031 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2032 		if (ret <= 0)
2033 			goto out;
2034 		dout("try_read got tag %d\n", (int)con->in_tag);
2035 		switch (con->in_tag) {
2036 		case CEPH_MSGR_TAG_MSG:
2037 			prepare_read_message(con);
2038 			break;
2039 		case CEPH_MSGR_TAG_ACK:
2040 			prepare_read_ack(con);
2041 			break;
2042 		case CEPH_MSGR_TAG_CLOSE:
2043 			set_bit(CLOSED, &con->state);   /* fixme */
2044 			goto out;
2045 		default:
2046 			goto bad_tag;
2047 		}
2048 	}
2049 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2050 		ret = read_partial_message(con);
2051 		if (ret <= 0) {
2052 			switch (ret) {
2053 			case -EBADMSG:
2054 				con->error_msg = "bad crc";
2055 				ret = -EIO;
2056 				break;
2057 			case -EIO:
2058 				con->error_msg = "io error";
2059 				break;
2060 			}
2061 			goto out;
2062 		}
2063 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2064 			goto more;
2065 		process_message(con);
2066 		goto more;
2067 	}
2068 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2069 		ret = read_partial_ack(con);
2070 		if (ret <= 0)
2071 			goto out;
2072 		process_ack(con);
2073 		goto more;
2074 	}
2075 
2076 out:
2077 	dout("try_read done on %p ret %d\n", con, ret);
2078 	return ret;
2079 
2080 bad_tag:
2081 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2082 	con->error_msg = "protocol error, garbage tag";
2083 	ret = -1;
2084 	goto out;
2085 }
2086 
2087 
2088 /*
2089  * Atomically queue work on a connection.  Bump @con reference to
2090  * avoid races with connection teardown.
2091  */
2092 static void queue_con(struct ceph_connection *con)
2093 {
2094 	if (test_bit(DEAD, &con->state)) {
2095 		dout("queue_con %p ignoring: DEAD\n",
2096 		     con);
2097 		return;
2098 	}
2099 
2100 	if (!con->ops->get(con)) {
2101 		dout("queue_con %p ref count 0\n", con);
2102 		return;
2103 	}
2104 
2105 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2106 		dout("queue_con %p - already queued\n", con);
2107 		con->ops->put(con);
2108 	} else {
2109 		dout("queue_con %p\n", con);
2110 	}
2111 }
2112 
2113 /*
2114  * Do some work on a connection.  Drop a connection ref when we're done.
2115  */
2116 static void con_work(struct work_struct *work)
2117 {
2118 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2119 						   work.work);
2120 	int ret;
2121 
2122 	mutex_lock(&con->mutex);
2123 restart:
2124 	if (test_and_clear_bit(BACKOFF, &con->state)) {
2125 		dout("con_work %p backing off\n", con);
2126 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2127 				       round_jiffies_relative(con->delay))) {
2128 			dout("con_work %p backoff %lu\n", con, con->delay);
2129 			mutex_unlock(&con->mutex);
2130 			return;
2131 		} else {
2132 			con->ops->put(con);
2133 			dout("con_work %p FAILED to back off %lu\n", con,
2134 			     con->delay);
2135 		}
2136 	}
2137 
2138 	if (test_bit(STANDBY, &con->state)) {
2139 		dout("con_work %p STANDBY\n", con);
2140 		goto done;
2141 	}
2142 	if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2143 		dout("con_work CLOSED\n");
2144 		con_close_socket(con);
2145 		goto done;
2146 	}
2147 	if (test_and_clear_bit(OPENING, &con->state)) {
2148 		/* reopen w/ new peer */
2149 		dout("con_work OPENING\n");
2150 		con_close_socket(con);
2151 	}
2152 
2153 	if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2154 		goto fault;
2155 
2156 	ret = try_read(con);
2157 	if (ret == -EAGAIN)
2158 		goto restart;
2159 	if (ret < 0)
2160 		goto fault;
2161 
2162 	ret = try_write(con);
2163 	if (ret == -EAGAIN)
2164 		goto restart;
2165 	if (ret < 0)
2166 		goto fault;
2167 
2168 done:
2169 	mutex_unlock(&con->mutex);
2170 done_unlocked:
2171 	con->ops->put(con);
2172 	return;
2173 
2174 fault:
2175 	mutex_unlock(&con->mutex);
2176 	ceph_fault(con);     /* error/fault path */
2177 	goto done_unlocked;
2178 }
2179 
2180 
2181 /*
2182  * Generic error/fault handler.  A retry mechanism is used with
2183  * exponential backoff
2184  */
2185 static void ceph_fault(struct ceph_connection *con)
2186 {
2187 	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2188 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2189 	dout("fault %p state %lu to peer %s\n",
2190 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2191 
2192 	if (test_bit(LOSSYTX, &con->state)) {
2193 		dout("fault on LOSSYTX channel\n");
2194 		goto out;
2195 	}
2196 
2197 	mutex_lock(&con->mutex);
2198 	if (test_bit(CLOSED, &con->state))
2199 		goto out_unlock;
2200 
2201 	con_close_socket(con);
2202 
2203 	if (con->in_msg) {
2204 		ceph_msg_put(con->in_msg);
2205 		con->in_msg = NULL;
2206 	}
2207 
2208 	/* Requeue anything that hasn't been acked */
2209 	list_splice_init(&con->out_sent, &con->out_queue);
2210 
2211 	/* If there are no messages queued or keepalive pending, place
2212 	 * the connection in a STANDBY state */
2213 	if (list_empty(&con->out_queue) &&
2214 	    !test_bit(KEEPALIVE_PENDING, &con->state)) {
2215 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2216 		clear_bit(WRITE_PENDING, &con->state);
2217 		set_bit(STANDBY, &con->state);
2218 	} else {
2219 		/* retry after a delay. */
2220 		if (con->delay == 0)
2221 			con->delay = BASE_DELAY_INTERVAL;
2222 		else if (con->delay < MAX_DELAY_INTERVAL)
2223 			con->delay *= 2;
2224 		con->ops->get(con);
2225 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2226 				       round_jiffies_relative(con->delay))) {
2227 			dout("fault queued %p delay %lu\n", con, con->delay);
2228 		} else {
2229 			con->ops->put(con);
2230 			dout("fault failed to queue %p delay %lu, backoff\n",
2231 			     con, con->delay);
2232 			/*
2233 			 * In many cases we see a socket state change
2234 			 * while con_work is running and end up
2235 			 * queuing (non-delayed) work, such that we
2236 			 * can't backoff with a delay.  Set a flag so
2237 			 * that when con_work restarts we schedule the
2238 			 * delay then.
2239 			 */
2240 			set_bit(BACKOFF, &con->state);
2241 		}
2242 	}
2243 
2244 out_unlock:
2245 	mutex_unlock(&con->mutex);
2246 out:
2247 	/*
2248 	 * in case we faulted due to authentication, invalidate our
2249 	 * current tickets so that we can get new ones.
2250 	 */
2251 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2252 		dout("calling invalidate_authorizer()\n");
2253 		con->ops->invalidate_authorizer(con);
2254 	}
2255 
2256 	if (con->ops->fault)
2257 		con->ops->fault(con);
2258 }
2259 
2260 
2261 
2262 /*
2263  * create a new messenger instance
2264  */
2265 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2266 					     u32 supported_features,
2267 					     u32 required_features)
2268 {
2269 	struct ceph_messenger *msgr;
2270 
2271 	msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2272 	if (msgr == NULL)
2273 		return ERR_PTR(-ENOMEM);
2274 
2275 	msgr->supported_features = supported_features;
2276 	msgr->required_features = required_features;
2277 
2278 	spin_lock_init(&msgr->global_seq_lock);
2279 
2280 	if (myaddr)
2281 		msgr->inst.addr = *myaddr;
2282 
2283 	/* select a random nonce */
2284 	msgr->inst.addr.type = 0;
2285 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2286 	encode_my_addr(msgr);
2287 
2288 	dout("messenger_create %p\n", msgr);
2289 	return msgr;
2290 }
2291 EXPORT_SYMBOL(ceph_messenger_create);
2292 
2293 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2294 {
2295 	dout("destroy %p\n", msgr);
2296 	kfree(msgr);
2297 	dout("destroyed messenger %p\n", msgr);
2298 }
2299 EXPORT_SYMBOL(ceph_messenger_destroy);
2300 
2301 static void clear_standby(struct ceph_connection *con)
2302 {
2303 	/* come back from STANDBY? */
2304 	if (test_and_clear_bit(STANDBY, &con->state)) {
2305 		mutex_lock(&con->mutex);
2306 		dout("clear_standby %p and ++connect_seq\n", con);
2307 		con->connect_seq++;
2308 		WARN_ON(test_bit(WRITE_PENDING, &con->state));
2309 		WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2310 		mutex_unlock(&con->mutex);
2311 	}
2312 }
2313 
2314 /*
2315  * Queue up an outgoing message on the given connection.
2316  */
2317 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2318 {
2319 	if (test_bit(CLOSED, &con->state)) {
2320 		dout("con_send %p closed, dropping %p\n", con, msg);
2321 		ceph_msg_put(msg);
2322 		return;
2323 	}
2324 
2325 	/* set src+dst */
2326 	msg->hdr.src = con->msgr->inst.name;
2327 
2328 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2329 
2330 	msg->needs_out_seq = true;
2331 
2332 	/* queue */
2333 	mutex_lock(&con->mutex);
2334 	BUG_ON(!list_empty(&msg->list_head));
2335 	list_add_tail(&msg->list_head, &con->out_queue);
2336 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2337 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2338 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2339 	     le32_to_cpu(msg->hdr.front_len),
2340 	     le32_to_cpu(msg->hdr.middle_len),
2341 	     le32_to_cpu(msg->hdr.data_len));
2342 	mutex_unlock(&con->mutex);
2343 
2344 	/* if there wasn't anything waiting to send before, queue
2345 	 * new work */
2346 	clear_standby(con);
2347 	if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2348 		queue_con(con);
2349 }
2350 EXPORT_SYMBOL(ceph_con_send);
2351 
2352 /*
2353  * Revoke a message that was previously queued for send
2354  */
2355 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2356 {
2357 	mutex_lock(&con->mutex);
2358 	if (!list_empty(&msg->list_head)) {
2359 		dout("con_revoke %p msg %p - was on queue\n", con, msg);
2360 		list_del_init(&msg->list_head);
2361 		ceph_msg_put(msg);
2362 		msg->hdr.seq = 0;
2363 	}
2364 	if (con->out_msg == msg) {
2365 		dout("con_revoke %p msg %p - was sending\n", con, msg);
2366 		con->out_msg = NULL;
2367 		if (con->out_kvec_is_msg) {
2368 			con->out_skip = con->out_kvec_bytes;
2369 			con->out_kvec_is_msg = false;
2370 		}
2371 		ceph_msg_put(msg);
2372 		msg->hdr.seq = 0;
2373 	}
2374 	mutex_unlock(&con->mutex);
2375 }
2376 
2377 /*
2378  * Revoke a message that we may be reading data into
2379  */
2380 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2381 {
2382 	mutex_lock(&con->mutex);
2383 	if (con->in_msg && con->in_msg == msg) {
2384 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2385 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2386 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2387 
2388 		/* skip rest of message */
2389 		dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2390 			con->in_base_pos = con->in_base_pos -
2391 				sizeof(struct ceph_msg_header) -
2392 				front_len -
2393 				middle_len -
2394 				data_len -
2395 				sizeof(struct ceph_msg_footer);
2396 		ceph_msg_put(con->in_msg);
2397 		con->in_msg = NULL;
2398 		con->in_tag = CEPH_MSGR_TAG_READY;
2399 		con->in_seq++;
2400 	} else {
2401 		dout("con_revoke_pages %p msg %p pages %p no-op\n",
2402 		     con, con->in_msg, msg);
2403 	}
2404 	mutex_unlock(&con->mutex);
2405 }
2406 
2407 /*
2408  * Queue a keepalive byte to ensure the tcp connection is alive.
2409  */
2410 void ceph_con_keepalive(struct ceph_connection *con)
2411 {
2412 	dout("con_keepalive %p\n", con);
2413 	clear_standby(con);
2414 	if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2415 	    test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2416 		queue_con(con);
2417 }
2418 EXPORT_SYMBOL(ceph_con_keepalive);
2419 
2420 
2421 /*
2422  * construct a new message with given type, size
2423  * the new msg has a ref count of 1.
2424  */
2425 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2426 			      bool can_fail)
2427 {
2428 	struct ceph_msg *m;
2429 
2430 	m = kmalloc(sizeof(*m), flags);
2431 	if (m == NULL)
2432 		goto out;
2433 	kref_init(&m->kref);
2434 	INIT_LIST_HEAD(&m->list_head);
2435 
2436 	m->hdr.tid = 0;
2437 	m->hdr.type = cpu_to_le16(type);
2438 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2439 	m->hdr.version = 0;
2440 	m->hdr.front_len = cpu_to_le32(front_len);
2441 	m->hdr.middle_len = 0;
2442 	m->hdr.data_len = 0;
2443 	m->hdr.data_off = 0;
2444 	m->hdr.reserved = 0;
2445 	m->footer.front_crc = 0;
2446 	m->footer.middle_crc = 0;
2447 	m->footer.data_crc = 0;
2448 	m->footer.flags = 0;
2449 	m->front_max = front_len;
2450 	m->front_is_vmalloc = false;
2451 	m->more_to_follow = false;
2452 	m->ack_stamp = 0;
2453 	m->pool = NULL;
2454 
2455 	/* middle */
2456 	m->middle = NULL;
2457 
2458 	/* data */
2459 	m->nr_pages = 0;
2460 	m->page_alignment = 0;
2461 	m->pages = NULL;
2462 	m->pagelist = NULL;
2463 	m->bio = NULL;
2464 	m->bio_iter = NULL;
2465 	m->bio_seg = 0;
2466 	m->trail = NULL;
2467 
2468 	/* front */
2469 	if (front_len) {
2470 		if (front_len > PAGE_CACHE_SIZE) {
2471 			m->front.iov_base = __vmalloc(front_len, flags,
2472 						      PAGE_KERNEL);
2473 			m->front_is_vmalloc = true;
2474 		} else {
2475 			m->front.iov_base = kmalloc(front_len, flags);
2476 		}
2477 		if (m->front.iov_base == NULL) {
2478 			dout("ceph_msg_new can't allocate %d bytes\n",
2479 			     front_len);
2480 			goto out2;
2481 		}
2482 	} else {
2483 		m->front.iov_base = NULL;
2484 	}
2485 	m->front.iov_len = front_len;
2486 
2487 	dout("ceph_msg_new %p front %d\n", m, front_len);
2488 	return m;
2489 
2490 out2:
2491 	ceph_msg_put(m);
2492 out:
2493 	if (!can_fail) {
2494 		pr_err("msg_new can't create type %d front %d\n", type,
2495 		       front_len);
2496 		WARN_ON(1);
2497 	} else {
2498 		dout("msg_new can't create type %d front %d\n", type,
2499 		     front_len);
2500 	}
2501 	return NULL;
2502 }
2503 EXPORT_SYMBOL(ceph_msg_new);
2504 
2505 /*
2506  * Allocate "middle" portion of a message, if it is needed and wasn't
2507  * allocated by alloc_msg.  This allows us to read a small fixed-size
2508  * per-type header in the front and then gracefully fail (i.e.,
2509  * propagate the error to the caller based on info in the front) when
2510  * the middle is too large.
2511  */
2512 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2513 {
2514 	int type = le16_to_cpu(msg->hdr.type);
2515 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2516 
2517 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2518 	     ceph_msg_type_name(type), middle_len);
2519 	BUG_ON(!middle_len);
2520 	BUG_ON(msg->middle);
2521 
2522 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2523 	if (!msg->middle)
2524 		return -ENOMEM;
2525 	return 0;
2526 }
2527 
2528 /*
2529  * Generic message allocator, for incoming messages.
2530  */
2531 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2532 				struct ceph_msg_header *hdr,
2533 				int *skip)
2534 {
2535 	int type = le16_to_cpu(hdr->type);
2536 	int front_len = le32_to_cpu(hdr->front_len);
2537 	int middle_len = le32_to_cpu(hdr->middle_len);
2538 	struct ceph_msg *msg = NULL;
2539 	int ret;
2540 
2541 	if (con->ops->alloc_msg) {
2542 		mutex_unlock(&con->mutex);
2543 		msg = con->ops->alloc_msg(con, hdr, skip);
2544 		mutex_lock(&con->mutex);
2545 		if (!msg || *skip)
2546 			return NULL;
2547 	}
2548 	if (!msg) {
2549 		*skip = 0;
2550 		msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2551 		if (!msg) {
2552 			pr_err("unable to allocate msg type %d len %d\n",
2553 			       type, front_len);
2554 			return NULL;
2555 		}
2556 		msg->page_alignment = le16_to_cpu(hdr->data_off);
2557 	}
2558 	memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2559 
2560 	if (middle_len && !msg->middle) {
2561 		ret = ceph_alloc_middle(con, msg);
2562 		if (ret < 0) {
2563 			ceph_msg_put(msg);
2564 			return NULL;
2565 		}
2566 	}
2567 
2568 	return msg;
2569 }
2570 
2571 
2572 /*
2573  * Free a generically kmalloc'd message.
2574  */
2575 void ceph_msg_kfree(struct ceph_msg *m)
2576 {
2577 	dout("msg_kfree %p\n", m);
2578 	if (m->front_is_vmalloc)
2579 		vfree(m->front.iov_base);
2580 	else
2581 		kfree(m->front.iov_base);
2582 	kfree(m);
2583 }
2584 
2585 /*
2586  * Drop a msg ref.  Destroy as needed.
2587  */
2588 void ceph_msg_last_put(struct kref *kref)
2589 {
2590 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2591 
2592 	dout("ceph_msg_put last one on %p\n", m);
2593 	WARN_ON(!list_empty(&m->list_head));
2594 
2595 	/* drop middle, data, if any */
2596 	if (m->middle) {
2597 		ceph_buffer_put(m->middle);
2598 		m->middle = NULL;
2599 	}
2600 	m->nr_pages = 0;
2601 	m->pages = NULL;
2602 
2603 	if (m->pagelist) {
2604 		ceph_pagelist_release(m->pagelist);
2605 		kfree(m->pagelist);
2606 		m->pagelist = NULL;
2607 	}
2608 
2609 	m->trail = NULL;
2610 
2611 	if (m->pool)
2612 		ceph_msgpool_put(m->pool, m);
2613 	else
2614 		ceph_msg_kfree(m);
2615 }
2616 EXPORT_SYMBOL(ceph_msg_last_put);
2617 
2618 void ceph_msg_dump(struct ceph_msg *msg)
2619 {
2620 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2621 		 msg->front_max, msg->nr_pages);
2622 	print_hex_dump(KERN_DEBUG, "header: ",
2623 		       DUMP_PREFIX_OFFSET, 16, 1,
2624 		       &msg->hdr, sizeof(msg->hdr), true);
2625 	print_hex_dump(KERN_DEBUG, " front: ",
2626 		       DUMP_PREFIX_OFFSET, 16, 1,
2627 		       msg->front.iov_base, msg->front.iov_len, true);
2628 	if (msg->middle)
2629 		print_hex_dump(KERN_DEBUG, "middle: ",
2630 			       DUMP_PREFIX_OFFSET, 16, 1,
2631 			       msg->middle->vec.iov_base,
2632 			       msg->middle->vec.iov_len, true);
2633 	print_hex_dump(KERN_DEBUG, "footer: ",
2634 		       DUMP_PREFIX_OFFSET, 16, 1,
2635 		       &msg->footer, sizeof(msg->footer), true);
2636 }
2637 EXPORT_SYMBOL(ceph_msg_dump);
2638