xref: /linux/net/ceph/messenger.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16 
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22 
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31 
32 /*
33  * We track the state of the socket on a given connection using
34  * values defined below.  The transition to a new socket state is
35  * handled by a function which verifies we aren't coming from an
36  * unexpected state.
37  *
38  *      --------
39  *      | NEW* |  transient initial state
40  *      --------
41  *          | con_sock_state_init()
42  *          v
43  *      ----------
44  *      | CLOSED |  initialized, but no socket (and no
45  *      ----------  TCP connection)
46  *       ^      \
47  *       |       \ con_sock_state_connecting()
48  *       |        ----------------------
49  *       |                              \
50  *       + con_sock_state_closed()       \
51  *       |+---------------------------    \
52  *       | \                          \    \
53  *       |  -----------                \    \
54  *       |  | CLOSING |  socket event;  \    \
55  *       |  -----------  await close     \    \
56  *       |       ^                        \   |
57  *       |       |                         \  |
58  *       |       + con_sock_state_closing() \ |
59  *       |      / \                         | |
60  *       |     /   ---------------          | |
61  *       |    /                   \         v v
62  *       |   /                    --------------
63  *       |  /    -----------------| CONNECTING |  socket created, TCP
64  *       |  |   /                 --------------  connect initiated
65  *       |  |   | con_sock_state_connected()
66  *       |  |   v
67  *      -------------
68  *      | CONNECTED |  TCP connection established
69  *      -------------
70  *
71  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72  */
73 
74 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
79 
80 /*
81  * connection states
82  */
83 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
84 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
89 
90 /*
91  * ceph_connection flag bits
92  */
93 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
94 				       * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
99 
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104 
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108 
109 /*
110  * When skipping (ignoring) a block of input we read it into a "skip
111  * buffer," which is this many bytes in size.
112  */
113 #define SKIP_BUF_SIZE	1024
114 
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118 
119 /*
120  * Nicely render a sockaddr as a string.  An array of formatted
121  * strings is used, to approximate reentrancy.
122  */
123 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
124 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
127 
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130 
131 static struct page *zero_page;		/* used in certain error cases */
132 
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135 	int i;
136 	char *s;
137 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139 
140 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141 	s = addr_str[i];
142 
143 	switch (ss->ss_family) {
144 	case AF_INET:
145 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146 			 ntohs(in4->sin_port));
147 		break;
148 
149 	case AF_INET6:
150 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151 			 ntohs(in6->sin6_port));
152 		break;
153 
154 	default:
155 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156 			 ss->ss_family);
157 	}
158 
159 	return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162 
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166 	ceph_encode_addr(&msgr->my_enc_addr);
167 }
168 
169 /*
170  * work queue for all reading and writing to/from the socket.
171  */
172 static struct workqueue_struct *ceph_msgr_wq;
173 
174 void _ceph_msgr_exit(void)
175 {
176 	if (ceph_msgr_wq) {
177 		destroy_workqueue(ceph_msgr_wq);
178 		ceph_msgr_wq = NULL;
179 	}
180 
181 	BUG_ON(zero_page == NULL);
182 	kunmap(zero_page);
183 	page_cache_release(zero_page);
184 	zero_page = NULL;
185 }
186 
187 int ceph_msgr_init(void)
188 {
189 	BUG_ON(zero_page != NULL);
190 	zero_page = ZERO_PAGE(0);
191 	page_cache_get(zero_page);
192 
193 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194 	if (ceph_msgr_wq)
195 		return 0;
196 
197 	pr_err("msgr_init failed to create workqueue\n");
198 	_ceph_msgr_exit();
199 
200 	return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203 
204 void ceph_msgr_exit(void)
205 {
206 	BUG_ON(ceph_msgr_wq == NULL);
207 
208 	_ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211 
212 void ceph_msgr_flush(void)
213 {
214 	flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217 
218 /* Connection socket state transition functions */
219 
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222 	int old_state;
223 
224 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226 		printk("%s: unexpected old state %d\n", __func__, old_state);
227 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228 	     CON_SOCK_STATE_CLOSED);
229 }
230 
231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233 	int old_state;
234 
235 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237 		printk("%s: unexpected old state %d\n", __func__, old_state);
238 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239 	     CON_SOCK_STATE_CONNECTING);
240 }
241 
242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244 	int old_state;
245 
246 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248 		printk("%s: unexpected old state %d\n", __func__, old_state);
249 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250 	     CON_SOCK_STATE_CONNECTED);
251 }
252 
253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255 	int old_state;
256 
257 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259 			old_state != CON_SOCK_STATE_CONNECTED &&
260 			old_state != CON_SOCK_STATE_CLOSING))
261 		printk("%s: unexpected old state %d\n", __func__, old_state);
262 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263 	     CON_SOCK_STATE_CLOSING);
264 }
265 
266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268 	int old_state;
269 
270 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272 		    old_state != CON_SOCK_STATE_CLOSING &&
273 		    old_state != CON_SOCK_STATE_CONNECTING &&
274 		    old_state != CON_SOCK_STATE_CLOSED))
275 		printk("%s: unexpected old state %d\n", __func__, old_state);
276 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277 	     CON_SOCK_STATE_CLOSED);
278 }
279 
280 /*
281  * socket callback functions
282  */
283 
284 /* data available on socket, or listen socket received a connect */
285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287 	struct ceph_connection *con = sk->sk_user_data;
288 	if (atomic_read(&con->msgr->stopping)) {
289 		return;
290 	}
291 
292 	if (sk->sk_state != TCP_CLOSE_WAIT) {
293 		dout("%s on %p state = %lu, queueing work\n", __func__,
294 		     con, con->state);
295 		queue_con(con);
296 	}
297 }
298 
299 /* socket has buffer space for writing */
300 static void ceph_sock_write_space(struct sock *sk)
301 {
302 	struct ceph_connection *con = sk->sk_user_data;
303 
304 	/* only queue to workqueue if there is data we want to write,
305 	 * and there is sufficient space in the socket buffer to accept
306 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
307 	 * doesn't get called again until try_write() fills the socket
308 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309 	 * and net/core/stream.c:sk_stream_write_space().
310 	 */
311 	if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312 		if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313 			dout("%s %p queueing write work\n", __func__, con);
314 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315 			queue_con(con);
316 		}
317 	} else {
318 		dout("%s %p nothing to write\n", __func__, con);
319 	}
320 }
321 
322 /* socket's state has changed */
323 static void ceph_sock_state_change(struct sock *sk)
324 {
325 	struct ceph_connection *con = sk->sk_user_data;
326 
327 	dout("%s %p state = %lu sk_state = %u\n", __func__,
328 	     con, con->state, sk->sk_state);
329 
330 	switch (sk->sk_state) {
331 	case TCP_CLOSE:
332 		dout("%s TCP_CLOSE\n", __func__);
333 	case TCP_CLOSE_WAIT:
334 		dout("%s TCP_CLOSE_WAIT\n", __func__);
335 		con_sock_state_closing(con);
336 		set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337 		queue_con(con);
338 		break;
339 	case TCP_ESTABLISHED:
340 		dout("%s TCP_ESTABLISHED\n", __func__);
341 		con_sock_state_connected(con);
342 		queue_con(con);
343 		break;
344 	default:	/* Everything else is uninteresting */
345 		break;
346 	}
347 }
348 
349 /*
350  * set up socket callbacks
351  */
352 static void set_sock_callbacks(struct socket *sock,
353 			       struct ceph_connection *con)
354 {
355 	struct sock *sk = sock->sk;
356 	sk->sk_user_data = con;
357 	sk->sk_data_ready = ceph_sock_data_ready;
358 	sk->sk_write_space = ceph_sock_write_space;
359 	sk->sk_state_change = ceph_sock_state_change;
360 }
361 
362 
363 /*
364  * socket helpers
365  */
366 
367 /*
368  * initiate connection to a remote socket.
369  */
370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373 	struct socket *sock;
374 	int ret;
375 
376 	BUG_ON(con->sock);
377 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378 			       IPPROTO_TCP, &sock);
379 	if (ret)
380 		return ret;
381 	sock->sk->sk_allocation = GFP_NOFS;
382 
383 #ifdef CONFIG_LOCKDEP
384 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386 
387 	set_sock_callbacks(sock, con);
388 
389 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390 
391 	con_sock_state_connecting(con);
392 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393 				 O_NONBLOCK);
394 	if (ret == -EINPROGRESS) {
395 		dout("connect %s EINPROGRESS sk_state = %u\n",
396 		     ceph_pr_addr(&con->peer_addr.in_addr),
397 		     sock->sk->sk_state);
398 	} else if (ret < 0) {
399 		pr_err("connect %s error %d\n",
400 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
401 		sock_release(sock);
402 		con->error_msg = "connect error";
403 
404 		return ret;
405 	}
406 	con->sock = sock;
407 	return 0;
408 }
409 
410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412 	struct kvec iov = {buf, len};
413 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414 	int r;
415 
416 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417 	if (r == -EAGAIN)
418 		r = 0;
419 	return r;
420 }
421 
422 /*
423  * write something.  @more is true if caller will be sending more data
424  * shortly.
425  */
426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427 		     size_t kvlen, size_t len, int more)
428 {
429 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430 	int r;
431 
432 	if (more)
433 		msg.msg_flags |= MSG_MORE;
434 	else
435 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
436 
437 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438 	if (r == -EAGAIN)
439 		r = 0;
440 	return r;
441 }
442 
443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444 		     int offset, size_t size, int more)
445 {
446 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447 	int ret;
448 
449 	ret = kernel_sendpage(sock, page, offset, size, flags);
450 	if (ret == -EAGAIN)
451 		ret = 0;
452 
453 	return ret;
454 }
455 
456 
457 /*
458  * Shutdown/close the socket for the given connection.
459  */
460 static int con_close_socket(struct ceph_connection *con)
461 {
462 	int rc = 0;
463 
464 	dout("con_close_socket on %p sock %p\n", con, con->sock);
465 	if (con->sock) {
466 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467 		sock_release(con->sock);
468 		con->sock = NULL;
469 	}
470 
471 	/*
472 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
473 	 * independent of the connection mutex, and we could have
474 	 * received a socket close event before we had the chance to
475 	 * shut the socket down.
476 	 */
477 	clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
478 
479 	con_sock_state_closed(con);
480 	return rc;
481 }
482 
483 /*
484  * Reset a connection.  Discard all incoming and outgoing messages
485  * and clear *_seq state.
486  */
487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489 	list_del_init(&msg->list_head);
490 	BUG_ON(msg->con == NULL);
491 	msg->con->ops->put(msg->con);
492 	msg->con = NULL;
493 
494 	ceph_msg_put(msg);
495 }
496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498 	while (!list_empty(head)) {
499 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500 							list_head);
501 		ceph_msg_remove(msg);
502 	}
503 }
504 
505 static void reset_connection(struct ceph_connection *con)
506 {
507 	/* reset connection, out_queue, msg_ and connect_seq */
508 	/* discard existing out_queue and msg_seq */
509 	ceph_msg_remove_list(&con->out_queue);
510 	ceph_msg_remove_list(&con->out_sent);
511 
512 	if (con->in_msg) {
513 		BUG_ON(con->in_msg->con != con);
514 		con->in_msg->con = NULL;
515 		ceph_msg_put(con->in_msg);
516 		con->in_msg = NULL;
517 		con->ops->put(con);
518 	}
519 
520 	con->connect_seq = 0;
521 	con->out_seq = 0;
522 	if (con->out_msg) {
523 		ceph_msg_put(con->out_msg);
524 		con->out_msg = NULL;
525 	}
526 	con->in_seq = 0;
527 	con->in_seq_acked = 0;
528 }
529 
530 /*
531  * mark a peer down.  drop any open connections.
532  */
533 void ceph_con_close(struct ceph_connection *con)
534 {
535 	mutex_lock(&con->mutex);
536 	dout("con_close %p peer %s\n", con,
537 	     ceph_pr_addr(&con->peer_addr.in_addr));
538 	con->state = CON_STATE_CLOSED;
539 
540 	clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
541 	clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
542 	clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
543 	clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
544 	clear_bit(CON_FLAG_BACKOFF, &con->flags);
545 
546 	reset_connection(con);
547 	con->peer_global_seq = 0;
548 	cancel_delayed_work(&con->work);
549 	con_close_socket(con);
550 	mutex_unlock(&con->mutex);
551 }
552 EXPORT_SYMBOL(ceph_con_close);
553 
554 /*
555  * Reopen a closed connection, with a new peer address.
556  */
557 void ceph_con_open(struct ceph_connection *con,
558 		   __u8 entity_type, __u64 entity_num,
559 		   struct ceph_entity_addr *addr)
560 {
561 	mutex_lock(&con->mutex);
562 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
563 
564 	BUG_ON(con->state != CON_STATE_CLOSED);
565 	con->state = CON_STATE_PREOPEN;
566 
567 	con->peer_name.type = (__u8) entity_type;
568 	con->peer_name.num = cpu_to_le64(entity_num);
569 
570 	memcpy(&con->peer_addr, addr, sizeof(*addr));
571 	con->delay = 0;      /* reset backoff memory */
572 	mutex_unlock(&con->mutex);
573 	queue_con(con);
574 }
575 EXPORT_SYMBOL(ceph_con_open);
576 
577 /*
578  * return true if this connection ever successfully opened
579  */
580 bool ceph_con_opened(struct ceph_connection *con)
581 {
582 	return con->connect_seq > 0;
583 }
584 
585 /*
586  * initialize a new connection.
587  */
588 void ceph_con_init(struct ceph_connection *con, void *private,
589 	const struct ceph_connection_operations *ops,
590 	struct ceph_messenger *msgr)
591 {
592 	dout("con_init %p\n", con);
593 	memset(con, 0, sizeof(*con));
594 	con->private = private;
595 	con->ops = ops;
596 	con->msgr = msgr;
597 
598 	con_sock_state_init(con);
599 
600 	mutex_init(&con->mutex);
601 	INIT_LIST_HEAD(&con->out_queue);
602 	INIT_LIST_HEAD(&con->out_sent);
603 	INIT_DELAYED_WORK(&con->work, con_work);
604 
605 	con->state = CON_STATE_CLOSED;
606 }
607 EXPORT_SYMBOL(ceph_con_init);
608 
609 
610 /*
611  * We maintain a global counter to order connection attempts.  Get
612  * a unique seq greater than @gt.
613  */
614 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
615 {
616 	u32 ret;
617 
618 	spin_lock(&msgr->global_seq_lock);
619 	if (msgr->global_seq < gt)
620 		msgr->global_seq = gt;
621 	ret = ++msgr->global_seq;
622 	spin_unlock(&msgr->global_seq_lock);
623 	return ret;
624 }
625 
626 static void con_out_kvec_reset(struct ceph_connection *con)
627 {
628 	con->out_kvec_left = 0;
629 	con->out_kvec_bytes = 0;
630 	con->out_kvec_cur = &con->out_kvec[0];
631 }
632 
633 static void con_out_kvec_add(struct ceph_connection *con,
634 				size_t size, void *data)
635 {
636 	int index;
637 
638 	index = con->out_kvec_left;
639 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
640 
641 	con->out_kvec[index].iov_len = size;
642 	con->out_kvec[index].iov_base = data;
643 	con->out_kvec_left++;
644 	con->out_kvec_bytes += size;
645 }
646 
647 #ifdef CONFIG_BLOCK
648 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
649 {
650 	if (!bio) {
651 		*iter = NULL;
652 		*seg = 0;
653 		return;
654 	}
655 	*iter = bio;
656 	*seg = bio->bi_idx;
657 }
658 
659 static void iter_bio_next(struct bio **bio_iter, int *seg)
660 {
661 	if (*bio_iter == NULL)
662 		return;
663 
664 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
665 
666 	(*seg)++;
667 	if (*seg == (*bio_iter)->bi_vcnt)
668 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
669 }
670 #endif
671 
672 static void prepare_write_message_data(struct ceph_connection *con)
673 {
674 	struct ceph_msg *msg = con->out_msg;
675 
676 	BUG_ON(!msg);
677 	BUG_ON(!msg->hdr.data_len);
678 
679 	/* initialize page iterator */
680 	con->out_msg_pos.page = 0;
681 	if (msg->pages)
682 		con->out_msg_pos.page_pos = msg->page_alignment;
683 	else
684 		con->out_msg_pos.page_pos = 0;
685 #ifdef CONFIG_BLOCK
686 	if (msg->bio)
687 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
688 #endif
689 	con->out_msg_pos.data_pos = 0;
690 	con->out_msg_pos.did_page_crc = false;
691 	con->out_more = 1;  /* data + footer will follow */
692 }
693 
694 /*
695  * Prepare footer for currently outgoing message, and finish things
696  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
697  */
698 static void prepare_write_message_footer(struct ceph_connection *con)
699 {
700 	struct ceph_msg *m = con->out_msg;
701 	int v = con->out_kvec_left;
702 
703 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
704 
705 	dout("prepare_write_message_footer %p\n", con);
706 	con->out_kvec_is_msg = true;
707 	con->out_kvec[v].iov_base = &m->footer;
708 	con->out_kvec[v].iov_len = sizeof(m->footer);
709 	con->out_kvec_bytes += sizeof(m->footer);
710 	con->out_kvec_left++;
711 	con->out_more = m->more_to_follow;
712 	con->out_msg_done = true;
713 }
714 
715 /*
716  * Prepare headers for the next outgoing message.
717  */
718 static void prepare_write_message(struct ceph_connection *con)
719 {
720 	struct ceph_msg *m;
721 	u32 crc;
722 
723 	con_out_kvec_reset(con);
724 	con->out_kvec_is_msg = true;
725 	con->out_msg_done = false;
726 
727 	/* Sneak an ack in there first?  If we can get it into the same
728 	 * TCP packet that's a good thing. */
729 	if (con->in_seq > con->in_seq_acked) {
730 		con->in_seq_acked = con->in_seq;
731 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
733 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
734 			&con->out_temp_ack);
735 	}
736 
737 	BUG_ON(list_empty(&con->out_queue));
738 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
739 	con->out_msg = m;
740 	BUG_ON(m->con != con);
741 
742 	/* put message on sent list */
743 	ceph_msg_get(m);
744 	list_move_tail(&m->list_head, &con->out_sent);
745 
746 	/*
747 	 * only assign outgoing seq # if we haven't sent this message
748 	 * yet.  if it is requeued, resend with it's original seq.
749 	 */
750 	if (m->needs_out_seq) {
751 		m->hdr.seq = cpu_to_le64(++con->out_seq);
752 		m->needs_out_seq = false;
753 	}
754 #ifdef CONFIG_BLOCK
755 	else
756 		m->bio_iter = NULL;
757 #endif
758 
759 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
760 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
761 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
762 	     le32_to_cpu(m->hdr.data_len),
763 	     m->nr_pages);
764 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
765 
766 	/* tag + hdr + front + middle */
767 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
768 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
769 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
770 
771 	if (m->middle)
772 		con_out_kvec_add(con, m->middle->vec.iov_len,
773 			m->middle->vec.iov_base);
774 
775 	/* fill in crc (except data pages), footer */
776 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
777 	con->out_msg->hdr.crc = cpu_to_le32(crc);
778 	con->out_msg->footer.flags = 0;
779 
780 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
781 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
782 	if (m->middle) {
783 		crc = crc32c(0, m->middle->vec.iov_base,
784 				m->middle->vec.iov_len);
785 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
786 	} else
787 		con->out_msg->footer.middle_crc = 0;
788 	dout("%s front_crc %u middle_crc %u\n", __func__,
789 	     le32_to_cpu(con->out_msg->footer.front_crc),
790 	     le32_to_cpu(con->out_msg->footer.middle_crc));
791 
792 	/* is there a data payload? */
793 	con->out_msg->footer.data_crc = 0;
794 	if (m->hdr.data_len)
795 		prepare_write_message_data(con);
796 	else
797 		/* no, queue up footer too and be done */
798 		prepare_write_message_footer(con);
799 
800 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
801 }
802 
803 /*
804  * Prepare an ack.
805  */
806 static void prepare_write_ack(struct ceph_connection *con)
807 {
808 	dout("prepare_write_ack %p %llu -> %llu\n", con,
809 	     con->in_seq_acked, con->in_seq);
810 	con->in_seq_acked = con->in_seq;
811 
812 	con_out_kvec_reset(con);
813 
814 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
815 
816 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
817 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
818 				&con->out_temp_ack);
819 
820 	con->out_more = 1;  /* more will follow.. eventually.. */
821 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
822 }
823 
824 /*
825  * Prepare to write keepalive byte.
826  */
827 static void prepare_write_keepalive(struct ceph_connection *con)
828 {
829 	dout("prepare_write_keepalive %p\n", con);
830 	con_out_kvec_reset(con);
831 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
832 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
833 }
834 
835 /*
836  * Connection negotiation.
837  */
838 
839 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
840 						int *auth_proto)
841 {
842 	struct ceph_auth_handshake *auth;
843 
844 	if (!con->ops->get_authorizer) {
845 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
846 		con->out_connect.authorizer_len = 0;
847 		return NULL;
848 	}
849 
850 	/* Can't hold the mutex while getting authorizer */
851 	mutex_unlock(&con->mutex);
852 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
853 	mutex_lock(&con->mutex);
854 
855 	if (IS_ERR(auth))
856 		return auth;
857 	if (con->state != CON_STATE_NEGOTIATING)
858 		return ERR_PTR(-EAGAIN);
859 
860 	con->auth_reply_buf = auth->authorizer_reply_buf;
861 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
862 	return auth;
863 }
864 
865 /*
866  * We connected to a peer and are saying hello.
867  */
868 static void prepare_write_banner(struct ceph_connection *con)
869 {
870 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
871 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
872 					&con->msgr->my_enc_addr);
873 
874 	con->out_more = 0;
875 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
876 }
877 
878 static int prepare_write_connect(struct ceph_connection *con)
879 {
880 	unsigned int global_seq = get_global_seq(con->msgr, 0);
881 	int proto;
882 	int auth_proto;
883 	struct ceph_auth_handshake *auth;
884 
885 	switch (con->peer_name.type) {
886 	case CEPH_ENTITY_TYPE_MON:
887 		proto = CEPH_MONC_PROTOCOL;
888 		break;
889 	case CEPH_ENTITY_TYPE_OSD:
890 		proto = CEPH_OSDC_PROTOCOL;
891 		break;
892 	case CEPH_ENTITY_TYPE_MDS:
893 		proto = CEPH_MDSC_PROTOCOL;
894 		break;
895 	default:
896 		BUG();
897 	}
898 
899 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
900 	     con->connect_seq, global_seq, proto);
901 
902 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
903 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
904 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
905 	con->out_connect.global_seq = cpu_to_le32(global_seq);
906 	con->out_connect.protocol_version = cpu_to_le32(proto);
907 	con->out_connect.flags = 0;
908 
909 	auth_proto = CEPH_AUTH_UNKNOWN;
910 	auth = get_connect_authorizer(con, &auth_proto);
911 	if (IS_ERR(auth))
912 		return PTR_ERR(auth);
913 
914 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
915 	con->out_connect.authorizer_len = auth ?
916 		cpu_to_le32(auth->authorizer_buf_len) : 0;
917 
918 	con_out_kvec_reset(con);
919 	con_out_kvec_add(con, sizeof (con->out_connect),
920 					&con->out_connect);
921 	if (auth && auth->authorizer_buf_len)
922 		con_out_kvec_add(con, auth->authorizer_buf_len,
923 					auth->authorizer_buf);
924 
925 	con->out_more = 0;
926 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
927 
928 	return 0;
929 }
930 
931 /*
932  * write as much of pending kvecs to the socket as we can.
933  *  1 -> done
934  *  0 -> socket full, but more to do
935  * <0 -> error
936  */
937 static int write_partial_kvec(struct ceph_connection *con)
938 {
939 	int ret;
940 
941 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
942 	while (con->out_kvec_bytes > 0) {
943 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
944 				       con->out_kvec_left, con->out_kvec_bytes,
945 				       con->out_more);
946 		if (ret <= 0)
947 			goto out;
948 		con->out_kvec_bytes -= ret;
949 		if (con->out_kvec_bytes == 0)
950 			break;            /* done */
951 
952 		/* account for full iov entries consumed */
953 		while (ret >= con->out_kvec_cur->iov_len) {
954 			BUG_ON(!con->out_kvec_left);
955 			ret -= con->out_kvec_cur->iov_len;
956 			con->out_kvec_cur++;
957 			con->out_kvec_left--;
958 		}
959 		/* and for a partially-consumed entry */
960 		if (ret) {
961 			con->out_kvec_cur->iov_len -= ret;
962 			con->out_kvec_cur->iov_base += ret;
963 		}
964 	}
965 	con->out_kvec_left = 0;
966 	con->out_kvec_is_msg = false;
967 	ret = 1;
968 out:
969 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
970 	     con->out_kvec_bytes, con->out_kvec_left, ret);
971 	return ret;  /* done! */
972 }
973 
974 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
975 			size_t len, size_t sent, bool in_trail)
976 {
977 	struct ceph_msg *msg = con->out_msg;
978 
979 	BUG_ON(!msg);
980 	BUG_ON(!sent);
981 
982 	con->out_msg_pos.data_pos += sent;
983 	con->out_msg_pos.page_pos += sent;
984 	if (sent < len)
985 		return;
986 
987 	BUG_ON(sent != len);
988 	con->out_msg_pos.page_pos = 0;
989 	con->out_msg_pos.page++;
990 	con->out_msg_pos.did_page_crc = false;
991 	if (in_trail)
992 		list_move_tail(&page->lru,
993 			       &msg->trail->head);
994 	else if (msg->pagelist)
995 		list_move_tail(&page->lru,
996 			       &msg->pagelist->head);
997 #ifdef CONFIG_BLOCK
998 	else if (msg->bio)
999 		iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1000 #endif
1001 }
1002 
1003 /*
1004  * Write as much message data payload as we can.  If we finish, queue
1005  * up the footer.
1006  *  1 -> done, footer is now queued in out_kvec[].
1007  *  0 -> socket full, but more to do
1008  * <0 -> error
1009  */
1010 static int write_partial_msg_pages(struct ceph_connection *con)
1011 {
1012 	struct ceph_msg *msg = con->out_msg;
1013 	unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1014 	size_t len;
1015 	bool do_datacrc = !con->msgr->nocrc;
1016 	int ret;
1017 	int total_max_write;
1018 	bool in_trail = false;
1019 	const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1020 	const size_t trail_off = data_len - trail_len;
1021 
1022 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1023 	     con, msg, con->out_msg_pos.page, msg->nr_pages,
1024 	     con->out_msg_pos.page_pos);
1025 
1026 	/*
1027 	 * Iterate through each page that contains data to be
1028 	 * written, and send as much as possible for each.
1029 	 *
1030 	 * If we are calculating the data crc (the default), we will
1031 	 * need to map the page.  If we have no pages, they have
1032 	 * been revoked, so use the zero page.
1033 	 */
1034 	while (data_len > con->out_msg_pos.data_pos) {
1035 		struct page *page = NULL;
1036 		int max_write = PAGE_SIZE;
1037 		int bio_offset = 0;
1038 
1039 		in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1040 		if (!in_trail)
1041 			total_max_write = trail_off - con->out_msg_pos.data_pos;
1042 
1043 		if (in_trail) {
1044 			total_max_write = data_len - con->out_msg_pos.data_pos;
1045 
1046 			page = list_first_entry(&msg->trail->head,
1047 						struct page, lru);
1048 		} else if (msg->pages) {
1049 			page = msg->pages[con->out_msg_pos.page];
1050 		} else if (msg->pagelist) {
1051 			page = list_first_entry(&msg->pagelist->head,
1052 						struct page, lru);
1053 #ifdef CONFIG_BLOCK
1054 		} else if (msg->bio) {
1055 			struct bio_vec *bv;
1056 
1057 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1058 			page = bv->bv_page;
1059 			bio_offset = bv->bv_offset;
1060 			max_write = bv->bv_len;
1061 #endif
1062 		} else {
1063 			page = zero_page;
1064 		}
1065 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
1066 			    total_max_write);
1067 
1068 		if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1069 			void *base;
1070 			u32 crc = le32_to_cpu(msg->footer.data_crc);
1071 			char *kaddr;
1072 
1073 			kaddr = kmap(page);
1074 			BUG_ON(kaddr == NULL);
1075 			base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1076 			crc = crc32c(crc, base, len);
1077 			msg->footer.data_crc = cpu_to_le32(crc);
1078 			con->out_msg_pos.did_page_crc = true;
1079 		}
1080 		ret = ceph_tcp_sendpage(con->sock, page,
1081 				      con->out_msg_pos.page_pos + bio_offset,
1082 				      len, 1);
1083 
1084 		if (do_datacrc)
1085 			kunmap(page);
1086 
1087 		if (ret <= 0)
1088 			goto out;
1089 
1090 		out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1091 	}
1092 
1093 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1094 
1095 	/* prepare and queue up footer, too */
1096 	if (!do_datacrc)
1097 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1098 	con_out_kvec_reset(con);
1099 	prepare_write_message_footer(con);
1100 	ret = 1;
1101 out:
1102 	return ret;
1103 }
1104 
1105 /*
1106  * write some zeros
1107  */
1108 static int write_partial_skip(struct ceph_connection *con)
1109 {
1110 	int ret;
1111 
1112 	while (con->out_skip > 0) {
1113 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1114 
1115 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1116 		if (ret <= 0)
1117 			goto out;
1118 		con->out_skip -= ret;
1119 	}
1120 	ret = 1;
1121 out:
1122 	return ret;
1123 }
1124 
1125 /*
1126  * Prepare to read connection handshake, or an ack.
1127  */
1128 static void prepare_read_banner(struct ceph_connection *con)
1129 {
1130 	dout("prepare_read_banner %p\n", con);
1131 	con->in_base_pos = 0;
1132 }
1133 
1134 static void prepare_read_connect(struct ceph_connection *con)
1135 {
1136 	dout("prepare_read_connect %p\n", con);
1137 	con->in_base_pos = 0;
1138 }
1139 
1140 static void prepare_read_ack(struct ceph_connection *con)
1141 {
1142 	dout("prepare_read_ack %p\n", con);
1143 	con->in_base_pos = 0;
1144 }
1145 
1146 static void prepare_read_tag(struct ceph_connection *con)
1147 {
1148 	dout("prepare_read_tag %p\n", con);
1149 	con->in_base_pos = 0;
1150 	con->in_tag = CEPH_MSGR_TAG_READY;
1151 }
1152 
1153 /*
1154  * Prepare to read a message.
1155  */
1156 static int prepare_read_message(struct ceph_connection *con)
1157 {
1158 	dout("prepare_read_message %p\n", con);
1159 	BUG_ON(con->in_msg != NULL);
1160 	con->in_base_pos = 0;
1161 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1162 	return 0;
1163 }
1164 
1165 
1166 static int read_partial(struct ceph_connection *con,
1167 			int end, int size, void *object)
1168 {
1169 	while (con->in_base_pos < end) {
1170 		int left = end - con->in_base_pos;
1171 		int have = size - left;
1172 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1173 		if (ret <= 0)
1174 			return ret;
1175 		con->in_base_pos += ret;
1176 	}
1177 	return 1;
1178 }
1179 
1180 
1181 /*
1182  * Read all or part of the connect-side handshake on a new connection
1183  */
1184 static int read_partial_banner(struct ceph_connection *con)
1185 {
1186 	int size;
1187 	int end;
1188 	int ret;
1189 
1190 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1191 
1192 	/* peer's banner */
1193 	size = strlen(CEPH_BANNER);
1194 	end = size;
1195 	ret = read_partial(con, end, size, con->in_banner);
1196 	if (ret <= 0)
1197 		goto out;
1198 
1199 	size = sizeof (con->actual_peer_addr);
1200 	end += size;
1201 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1202 	if (ret <= 0)
1203 		goto out;
1204 
1205 	size = sizeof (con->peer_addr_for_me);
1206 	end += size;
1207 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1208 	if (ret <= 0)
1209 		goto out;
1210 
1211 out:
1212 	return ret;
1213 }
1214 
1215 static int read_partial_connect(struct ceph_connection *con)
1216 {
1217 	int size;
1218 	int end;
1219 	int ret;
1220 
1221 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1222 
1223 	size = sizeof (con->in_reply);
1224 	end = size;
1225 	ret = read_partial(con, end, size, &con->in_reply);
1226 	if (ret <= 0)
1227 		goto out;
1228 
1229 	size = le32_to_cpu(con->in_reply.authorizer_len);
1230 	end += size;
1231 	ret = read_partial(con, end, size, con->auth_reply_buf);
1232 	if (ret <= 0)
1233 		goto out;
1234 
1235 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1236 	     con, (int)con->in_reply.tag,
1237 	     le32_to_cpu(con->in_reply.connect_seq),
1238 	     le32_to_cpu(con->in_reply.global_seq));
1239 out:
1240 	return ret;
1241 
1242 }
1243 
1244 /*
1245  * Verify the hello banner looks okay.
1246  */
1247 static int verify_hello(struct ceph_connection *con)
1248 {
1249 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1250 		pr_err("connect to %s got bad banner\n",
1251 		       ceph_pr_addr(&con->peer_addr.in_addr));
1252 		con->error_msg = "protocol error, bad banner";
1253 		return -1;
1254 	}
1255 	return 0;
1256 }
1257 
1258 static bool addr_is_blank(struct sockaddr_storage *ss)
1259 {
1260 	switch (ss->ss_family) {
1261 	case AF_INET:
1262 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1263 	case AF_INET6:
1264 		return
1265 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1266 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1267 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1268 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1269 	}
1270 	return false;
1271 }
1272 
1273 static int addr_port(struct sockaddr_storage *ss)
1274 {
1275 	switch (ss->ss_family) {
1276 	case AF_INET:
1277 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1278 	case AF_INET6:
1279 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1280 	}
1281 	return 0;
1282 }
1283 
1284 static void addr_set_port(struct sockaddr_storage *ss, int p)
1285 {
1286 	switch (ss->ss_family) {
1287 	case AF_INET:
1288 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1289 		break;
1290 	case AF_INET6:
1291 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1292 		break;
1293 	}
1294 }
1295 
1296 /*
1297  * Unlike other *_pton function semantics, zero indicates success.
1298  */
1299 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1300 		char delim, const char **ipend)
1301 {
1302 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1303 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1304 
1305 	memset(ss, 0, sizeof(*ss));
1306 
1307 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1308 		ss->ss_family = AF_INET;
1309 		return 0;
1310 	}
1311 
1312 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1313 		ss->ss_family = AF_INET6;
1314 		return 0;
1315 	}
1316 
1317 	return -EINVAL;
1318 }
1319 
1320 /*
1321  * Extract hostname string and resolve using kernel DNS facility.
1322  */
1323 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1324 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1325 		struct sockaddr_storage *ss, char delim, const char **ipend)
1326 {
1327 	const char *end, *delim_p;
1328 	char *colon_p, *ip_addr = NULL;
1329 	int ip_len, ret;
1330 
1331 	/*
1332 	 * The end of the hostname occurs immediately preceding the delimiter or
1333 	 * the port marker (':') where the delimiter takes precedence.
1334 	 */
1335 	delim_p = memchr(name, delim, namelen);
1336 	colon_p = memchr(name, ':', namelen);
1337 
1338 	if (delim_p && colon_p)
1339 		end = delim_p < colon_p ? delim_p : colon_p;
1340 	else if (!delim_p && colon_p)
1341 		end = colon_p;
1342 	else {
1343 		end = delim_p;
1344 		if (!end) /* case: hostname:/ */
1345 			end = name + namelen;
1346 	}
1347 
1348 	if (end <= name)
1349 		return -EINVAL;
1350 
1351 	/* do dns_resolve upcall */
1352 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1353 	if (ip_len > 0)
1354 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1355 	else
1356 		ret = -ESRCH;
1357 
1358 	kfree(ip_addr);
1359 
1360 	*ipend = end;
1361 
1362 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1363 			ret, ret ? "failed" : ceph_pr_addr(ss));
1364 
1365 	return ret;
1366 }
1367 #else
1368 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1369 		struct sockaddr_storage *ss, char delim, const char **ipend)
1370 {
1371 	return -EINVAL;
1372 }
1373 #endif
1374 
1375 /*
1376  * Parse a server name (IP or hostname). If a valid IP address is not found
1377  * then try to extract a hostname to resolve using userspace DNS upcall.
1378  */
1379 static int ceph_parse_server_name(const char *name, size_t namelen,
1380 			struct sockaddr_storage *ss, char delim, const char **ipend)
1381 {
1382 	int ret;
1383 
1384 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1385 	if (ret)
1386 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1387 
1388 	return ret;
1389 }
1390 
1391 /*
1392  * Parse an ip[:port] list into an addr array.  Use the default
1393  * monitor port if a port isn't specified.
1394  */
1395 int ceph_parse_ips(const char *c, const char *end,
1396 		   struct ceph_entity_addr *addr,
1397 		   int max_count, int *count)
1398 {
1399 	int i, ret = -EINVAL;
1400 	const char *p = c;
1401 
1402 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1403 	for (i = 0; i < max_count; i++) {
1404 		const char *ipend;
1405 		struct sockaddr_storage *ss = &addr[i].in_addr;
1406 		int port;
1407 		char delim = ',';
1408 
1409 		if (*p == '[') {
1410 			delim = ']';
1411 			p++;
1412 		}
1413 
1414 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1415 		if (ret)
1416 			goto bad;
1417 		ret = -EINVAL;
1418 
1419 		p = ipend;
1420 
1421 		if (delim == ']') {
1422 			if (*p != ']') {
1423 				dout("missing matching ']'\n");
1424 				goto bad;
1425 			}
1426 			p++;
1427 		}
1428 
1429 		/* port? */
1430 		if (p < end && *p == ':') {
1431 			port = 0;
1432 			p++;
1433 			while (p < end && *p >= '0' && *p <= '9') {
1434 				port = (port * 10) + (*p - '0');
1435 				p++;
1436 			}
1437 			if (port > 65535 || port == 0)
1438 				goto bad;
1439 		} else {
1440 			port = CEPH_MON_PORT;
1441 		}
1442 
1443 		addr_set_port(ss, port);
1444 
1445 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1446 
1447 		if (p == end)
1448 			break;
1449 		if (*p != ',')
1450 			goto bad;
1451 		p++;
1452 	}
1453 
1454 	if (p != end)
1455 		goto bad;
1456 
1457 	if (count)
1458 		*count = i + 1;
1459 	return 0;
1460 
1461 bad:
1462 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1463 	return ret;
1464 }
1465 EXPORT_SYMBOL(ceph_parse_ips);
1466 
1467 static int process_banner(struct ceph_connection *con)
1468 {
1469 	dout("process_banner on %p\n", con);
1470 
1471 	if (verify_hello(con) < 0)
1472 		return -1;
1473 
1474 	ceph_decode_addr(&con->actual_peer_addr);
1475 	ceph_decode_addr(&con->peer_addr_for_me);
1476 
1477 	/*
1478 	 * Make sure the other end is who we wanted.  note that the other
1479 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1480 	 * them the benefit of the doubt.
1481 	 */
1482 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1483 		   sizeof(con->peer_addr)) != 0 &&
1484 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1485 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1486 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1487 			   ceph_pr_addr(&con->peer_addr.in_addr),
1488 			   (int)le32_to_cpu(con->peer_addr.nonce),
1489 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1490 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1491 		con->error_msg = "wrong peer at address";
1492 		return -1;
1493 	}
1494 
1495 	/*
1496 	 * did we learn our address?
1497 	 */
1498 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1499 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1500 
1501 		memcpy(&con->msgr->inst.addr.in_addr,
1502 		       &con->peer_addr_for_me.in_addr,
1503 		       sizeof(con->peer_addr_for_me.in_addr));
1504 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1505 		encode_my_addr(con->msgr);
1506 		dout("process_banner learned my addr is %s\n",
1507 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 static void fail_protocol(struct ceph_connection *con)
1514 {
1515 	reset_connection(con);
1516 	BUG_ON(con->state != CON_STATE_NEGOTIATING);
1517 	con->state = CON_STATE_CLOSED;
1518 }
1519 
1520 static int process_connect(struct ceph_connection *con)
1521 {
1522 	u64 sup_feat = con->msgr->supported_features;
1523 	u64 req_feat = con->msgr->required_features;
1524 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1525 	int ret;
1526 
1527 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1528 
1529 	switch (con->in_reply.tag) {
1530 	case CEPH_MSGR_TAG_FEATURES:
1531 		pr_err("%s%lld %s feature set mismatch,"
1532 		       " my %llx < server's %llx, missing %llx\n",
1533 		       ENTITY_NAME(con->peer_name),
1534 		       ceph_pr_addr(&con->peer_addr.in_addr),
1535 		       sup_feat, server_feat, server_feat & ~sup_feat);
1536 		con->error_msg = "missing required protocol features";
1537 		fail_protocol(con);
1538 		return -1;
1539 
1540 	case CEPH_MSGR_TAG_BADPROTOVER:
1541 		pr_err("%s%lld %s protocol version mismatch,"
1542 		       " my %d != server's %d\n",
1543 		       ENTITY_NAME(con->peer_name),
1544 		       ceph_pr_addr(&con->peer_addr.in_addr),
1545 		       le32_to_cpu(con->out_connect.protocol_version),
1546 		       le32_to_cpu(con->in_reply.protocol_version));
1547 		con->error_msg = "protocol version mismatch";
1548 		fail_protocol(con);
1549 		return -1;
1550 
1551 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1552 		con->auth_retry++;
1553 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1554 		     con->auth_retry);
1555 		if (con->auth_retry == 2) {
1556 			con->error_msg = "connect authorization failure";
1557 			return -1;
1558 		}
1559 		con->auth_retry = 1;
1560 		ret = prepare_write_connect(con);
1561 		if (ret < 0)
1562 			return ret;
1563 		prepare_read_connect(con);
1564 		break;
1565 
1566 	case CEPH_MSGR_TAG_RESETSESSION:
1567 		/*
1568 		 * If we connected with a large connect_seq but the peer
1569 		 * has no record of a session with us (no connection, or
1570 		 * connect_seq == 0), they will send RESETSESION to indicate
1571 		 * that they must have reset their session, and may have
1572 		 * dropped messages.
1573 		 */
1574 		dout("process_connect got RESET peer seq %u\n",
1575 		     le32_to_cpu(con->in_reply.connect_seq));
1576 		pr_err("%s%lld %s connection reset\n",
1577 		       ENTITY_NAME(con->peer_name),
1578 		       ceph_pr_addr(&con->peer_addr.in_addr));
1579 		reset_connection(con);
1580 		ret = prepare_write_connect(con);
1581 		if (ret < 0)
1582 			return ret;
1583 		prepare_read_connect(con);
1584 
1585 		/* Tell ceph about it. */
1586 		mutex_unlock(&con->mutex);
1587 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1588 		if (con->ops->peer_reset)
1589 			con->ops->peer_reset(con);
1590 		mutex_lock(&con->mutex);
1591 		if (con->state != CON_STATE_NEGOTIATING)
1592 			return -EAGAIN;
1593 		break;
1594 
1595 	case CEPH_MSGR_TAG_RETRY_SESSION:
1596 		/*
1597 		 * If we sent a smaller connect_seq than the peer has, try
1598 		 * again with a larger value.
1599 		 */
1600 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1601 		     le32_to_cpu(con->out_connect.connect_seq),
1602 		     le32_to_cpu(con->in_reply.connect_seq));
1603 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1604 		ret = prepare_write_connect(con);
1605 		if (ret < 0)
1606 			return ret;
1607 		prepare_read_connect(con);
1608 		break;
1609 
1610 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1611 		/*
1612 		 * If we sent a smaller global_seq than the peer has, try
1613 		 * again with a larger value.
1614 		 */
1615 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1616 		     con->peer_global_seq,
1617 		     le32_to_cpu(con->in_reply.global_seq));
1618 		get_global_seq(con->msgr,
1619 			       le32_to_cpu(con->in_reply.global_seq));
1620 		ret = prepare_write_connect(con);
1621 		if (ret < 0)
1622 			return ret;
1623 		prepare_read_connect(con);
1624 		break;
1625 
1626 	case CEPH_MSGR_TAG_READY:
1627 		if (req_feat & ~server_feat) {
1628 			pr_err("%s%lld %s protocol feature mismatch,"
1629 			       " my required %llx > server's %llx, need %llx\n",
1630 			       ENTITY_NAME(con->peer_name),
1631 			       ceph_pr_addr(&con->peer_addr.in_addr),
1632 			       req_feat, server_feat, req_feat & ~server_feat);
1633 			con->error_msg = "missing required protocol features";
1634 			fail_protocol(con);
1635 			return -1;
1636 		}
1637 
1638 		BUG_ON(con->state != CON_STATE_NEGOTIATING);
1639 		con->state = CON_STATE_OPEN;
1640 
1641 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1642 		con->connect_seq++;
1643 		con->peer_features = server_feat;
1644 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1645 		     con->peer_global_seq,
1646 		     le32_to_cpu(con->in_reply.connect_seq),
1647 		     con->connect_seq);
1648 		WARN_ON(con->connect_seq !=
1649 			le32_to_cpu(con->in_reply.connect_seq));
1650 
1651 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1652 			set_bit(CON_FLAG_LOSSYTX, &con->flags);
1653 
1654 		con->delay = 0;      /* reset backoff memory */
1655 
1656 		prepare_read_tag(con);
1657 		break;
1658 
1659 	case CEPH_MSGR_TAG_WAIT:
1660 		/*
1661 		 * If there is a connection race (we are opening
1662 		 * connections to each other), one of us may just have
1663 		 * to WAIT.  This shouldn't happen if we are the
1664 		 * client.
1665 		 */
1666 		pr_err("process_connect got WAIT as client\n");
1667 		con->error_msg = "protocol error, got WAIT as client";
1668 		return -1;
1669 
1670 	default:
1671 		pr_err("connect protocol error, will retry\n");
1672 		con->error_msg = "protocol error, garbage tag during connect";
1673 		return -1;
1674 	}
1675 	return 0;
1676 }
1677 
1678 
1679 /*
1680  * read (part of) an ack
1681  */
1682 static int read_partial_ack(struct ceph_connection *con)
1683 {
1684 	int size = sizeof (con->in_temp_ack);
1685 	int end = size;
1686 
1687 	return read_partial(con, end, size, &con->in_temp_ack);
1688 }
1689 
1690 
1691 /*
1692  * We can finally discard anything that's been acked.
1693  */
1694 static void process_ack(struct ceph_connection *con)
1695 {
1696 	struct ceph_msg *m;
1697 	u64 ack = le64_to_cpu(con->in_temp_ack);
1698 	u64 seq;
1699 
1700 	while (!list_empty(&con->out_sent)) {
1701 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1702 				     list_head);
1703 		seq = le64_to_cpu(m->hdr.seq);
1704 		if (seq > ack)
1705 			break;
1706 		dout("got ack for seq %llu type %d at %p\n", seq,
1707 		     le16_to_cpu(m->hdr.type), m);
1708 		m->ack_stamp = jiffies;
1709 		ceph_msg_remove(m);
1710 	}
1711 	prepare_read_tag(con);
1712 }
1713 
1714 
1715 
1716 
1717 static int read_partial_message_section(struct ceph_connection *con,
1718 					struct kvec *section,
1719 					unsigned int sec_len, u32 *crc)
1720 {
1721 	int ret, left;
1722 
1723 	BUG_ON(!section);
1724 
1725 	while (section->iov_len < sec_len) {
1726 		BUG_ON(section->iov_base == NULL);
1727 		left = sec_len - section->iov_len;
1728 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1729 				       section->iov_len, left);
1730 		if (ret <= 0)
1731 			return ret;
1732 		section->iov_len += ret;
1733 	}
1734 	if (section->iov_len == sec_len)
1735 		*crc = crc32c(0, section->iov_base, section->iov_len);
1736 
1737 	return 1;
1738 }
1739 
1740 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1741 
1742 static int read_partial_message_pages(struct ceph_connection *con,
1743 				      struct page **pages,
1744 				      unsigned int data_len, bool do_datacrc)
1745 {
1746 	void *p;
1747 	int ret;
1748 	int left;
1749 
1750 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1751 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1752 	/* (page) data */
1753 	BUG_ON(pages == NULL);
1754 	p = kmap(pages[con->in_msg_pos.page]);
1755 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1756 			       left);
1757 	if (ret > 0 && do_datacrc)
1758 		con->in_data_crc =
1759 			crc32c(con->in_data_crc,
1760 				  p + con->in_msg_pos.page_pos, ret);
1761 	kunmap(pages[con->in_msg_pos.page]);
1762 	if (ret <= 0)
1763 		return ret;
1764 	con->in_msg_pos.data_pos += ret;
1765 	con->in_msg_pos.page_pos += ret;
1766 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1767 		con->in_msg_pos.page_pos = 0;
1768 		con->in_msg_pos.page++;
1769 	}
1770 
1771 	return ret;
1772 }
1773 
1774 #ifdef CONFIG_BLOCK
1775 static int read_partial_message_bio(struct ceph_connection *con,
1776 				    struct bio **bio_iter, int *bio_seg,
1777 				    unsigned int data_len, bool do_datacrc)
1778 {
1779 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1780 	void *p;
1781 	int ret, left;
1782 
1783 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1784 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1785 
1786 	p = kmap(bv->bv_page) + bv->bv_offset;
1787 
1788 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1789 			       left);
1790 	if (ret > 0 && do_datacrc)
1791 		con->in_data_crc =
1792 			crc32c(con->in_data_crc,
1793 				  p + con->in_msg_pos.page_pos, ret);
1794 	kunmap(bv->bv_page);
1795 	if (ret <= 0)
1796 		return ret;
1797 	con->in_msg_pos.data_pos += ret;
1798 	con->in_msg_pos.page_pos += ret;
1799 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1800 		con->in_msg_pos.page_pos = 0;
1801 		iter_bio_next(bio_iter, bio_seg);
1802 	}
1803 
1804 	return ret;
1805 }
1806 #endif
1807 
1808 /*
1809  * read (part of) a message.
1810  */
1811 static int read_partial_message(struct ceph_connection *con)
1812 {
1813 	struct ceph_msg *m = con->in_msg;
1814 	int size;
1815 	int end;
1816 	int ret;
1817 	unsigned int front_len, middle_len, data_len;
1818 	bool do_datacrc = !con->msgr->nocrc;
1819 	u64 seq;
1820 	u32 crc;
1821 
1822 	dout("read_partial_message con %p msg %p\n", con, m);
1823 
1824 	/* header */
1825 	size = sizeof (con->in_hdr);
1826 	end = size;
1827 	ret = read_partial(con, end, size, &con->in_hdr);
1828 	if (ret <= 0)
1829 		return ret;
1830 
1831 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1832 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
1833 		pr_err("read_partial_message bad hdr "
1834 		       " crc %u != expected %u\n",
1835 		       crc, con->in_hdr.crc);
1836 		return -EBADMSG;
1837 	}
1838 
1839 	front_len = le32_to_cpu(con->in_hdr.front_len);
1840 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1841 		return -EIO;
1842 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1843 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1844 		return -EIO;
1845 	data_len = le32_to_cpu(con->in_hdr.data_len);
1846 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1847 		return -EIO;
1848 
1849 	/* verify seq# */
1850 	seq = le64_to_cpu(con->in_hdr.seq);
1851 	if ((s64)seq - (s64)con->in_seq < 1) {
1852 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1853 			ENTITY_NAME(con->peer_name),
1854 			ceph_pr_addr(&con->peer_addr.in_addr),
1855 			seq, con->in_seq + 1);
1856 		con->in_base_pos = -front_len - middle_len - data_len -
1857 			sizeof(m->footer);
1858 		con->in_tag = CEPH_MSGR_TAG_READY;
1859 		return 0;
1860 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1861 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1862 		       seq, con->in_seq + 1);
1863 		con->error_msg = "bad message sequence # for incoming message";
1864 		return -EBADMSG;
1865 	}
1866 
1867 	/* allocate message? */
1868 	if (!con->in_msg) {
1869 		int skip = 0;
1870 
1871 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1872 		     con->in_hdr.front_len, con->in_hdr.data_len);
1873 		ret = ceph_con_in_msg_alloc(con, &skip);
1874 		if (ret < 0)
1875 			return ret;
1876 		if (skip) {
1877 			/* skip this message */
1878 			dout("alloc_msg said skip message\n");
1879 			BUG_ON(con->in_msg);
1880 			con->in_base_pos = -front_len - middle_len - data_len -
1881 				sizeof(m->footer);
1882 			con->in_tag = CEPH_MSGR_TAG_READY;
1883 			con->in_seq++;
1884 			return 0;
1885 		}
1886 
1887 		BUG_ON(!con->in_msg);
1888 		BUG_ON(con->in_msg->con != con);
1889 		m = con->in_msg;
1890 		m->front.iov_len = 0;    /* haven't read it yet */
1891 		if (m->middle)
1892 			m->middle->vec.iov_len = 0;
1893 
1894 		con->in_msg_pos.page = 0;
1895 		if (m->pages)
1896 			con->in_msg_pos.page_pos = m->page_alignment;
1897 		else
1898 			con->in_msg_pos.page_pos = 0;
1899 		con->in_msg_pos.data_pos = 0;
1900 
1901 #ifdef CONFIG_BLOCK
1902 		if (m->bio)
1903 			init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1904 #endif
1905 	}
1906 
1907 	/* front */
1908 	ret = read_partial_message_section(con, &m->front, front_len,
1909 					   &con->in_front_crc);
1910 	if (ret <= 0)
1911 		return ret;
1912 
1913 	/* middle */
1914 	if (m->middle) {
1915 		ret = read_partial_message_section(con, &m->middle->vec,
1916 						   middle_len,
1917 						   &con->in_middle_crc);
1918 		if (ret <= 0)
1919 			return ret;
1920 	}
1921 
1922 	/* (page) data */
1923 	while (con->in_msg_pos.data_pos < data_len) {
1924 		if (m->pages) {
1925 			ret = read_partial_message_pages(con, m->pages,
1926 						 data_len, do_datacrc);
1927 			if (ret <= 0)
1928 				return ret;
1929 #ifdef CONFIG_BLOCK
1930 		} else if (m->bio) {
1931 			BUG_ON(!m->bio_iter);
1932 			ret = read_partial_message_bio(con,
1933 						 &m->bio_iter, &m->bio_seg,
1934 						 data_len, do_datacrc);
1935 			if (ret <= 0)
1936 				return ret;
1937 #endif
1938 		} else {
1939 			BUG_ON(1);
1940 		}
1941 	}
1942 
1943 	/* footer */
1944 	size = sizeof (m->footer);
1945 	end += size;
1946 	ret = read_partial(con, end, size, &m->footer);
1947 	if (ret <= 0)
1948 		return ret;
1949 
1950 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1951 	     m, front_len, m->footer.front_crc, middle_len,
1952 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1953 
1954 	/* crc ok? */
1955 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1956 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1957 		       m, con->in_front_crc, m->footer.front_crc);
1958 		return -EBADMSG;
1959 	}
1960 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1961 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1962 		       m, con->in_middle_crc, m->footer.middle_crc);
1963 		return -EBADMSG;
1964 	}
1965 	if (do_datacrc &&
1966 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1967 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1968 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1969 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1970 		return -EBADMSG;
1971 	}
1972 
1973 	return 1; /* done! */
1974 }
1975 
1976 /*
1977  * Process message.  This happens in the worker thread.  The callback should
1978  * be careful not to do anything that waits on other incoming messages or it
1979  * may deadlock.
1980  */
1981 static void process_message(struct ceph_connection *con)
1982 {
1983 	struct ceph_msg *msg;
1984 
1985 	BUG_ON(con->in_msg->con != con);
1986 	con->in_msg->con = NULL;
1987 	msg = con->in_msg;
1988 	con->in_msg = NULL;
1989 	con->ops->put(con);
1990 
1991 	/* if first message, set peer_name */
1992 	if (con->peer_name.type == 0)
1993 		con->peer_name = msg->hdr.src;
1994 
1995 	con->in_seq++;
1996 	mutex_unlock(&con->mutex);
1997 
1998 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1999 	     msg, le64_to_cpu(msg->hdr.seq),
2000 	     ENTITY_NAME(msg->hdr.src),
2001 	     le16_to_cpu(msg->hdr.type),
2002 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2003 	     le32_to_cpu(msg->hdr.front_len),
2004 	     le32_to_cpu(msg->hdr.data_len),
2005 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2006 	con->ops->dispatch(con, msg);
2007 
2008 	mutex_lock(&con->mutex);
2009 }
2010 
2011 
2012 /*
2013  * Write something to the socket.  Called in a worker thread when the
2014  * socket appears to be writeable and we have something ready to send.
2015  */
2016 static int try_write(struct ceph_connection *con)
2017 {
2018 	int ret = 1;
2019 
2020 	dout("try_write start %p state %lu\n", con, con->state);
2021 
2022 more:
2023 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2024 
2025 	/* open the socket first? */
2026 	if (con->state == CON_STATE_PREOPEN) {
2027 		BUG_ON(con->sock);
2028 		con->state = CON_STATE_CONNECTING;
2029 
2030 		con_out_kvec_reset(con);
2031 		prepare_write_banner(con);
2032 		prepare_read_banner(con);
2033 
2034 		BUG_ON(con->in_msg);
2035 		con->in_tag = CEPH_MSGR_TAG_READY;
2036 		dout("try_write initiating connect on %p new state %lu\n",
2037 		     con, con->state);
2038 		ret = ceph_tcp_connect(con);
2039 		if (ret < 0) {
2040 			con->error_msg = "connect error";
2041 			goto out;
2042 		}
2043 	}
2044 
2045 more_kvec:
2046 	/* kvec data queued? */
2047 	if (con->out_skip) {
2048 		ret = write_partial_skip(con);
2049 		if (ret <= 0)
2050 			goto out;
2051 	}
2052 	if (con->out_kvec_left) {
2053 		ret = write_partial_kvec(con);
2054 		if (ret <= 0)
2055 			goto out;
2056 	}
2057 
2058 	/* msg pages? */
2059 	if (con->out_msg) {
2060 		if (con->out_msg_done) {
2061 			ceph_msg_put(con->out_msg);
2062 			con->out_msg = NULL;   /* we're done with this one */
2063 			goto do_next;
2064 		}
2065 
2066 		ret = write_partial_msg_pages(con);
2067 		if (ret == 1)
2068 			goto more_kvec;  /* we need to send the footer, too! */
2069 		if (ret == 0)
2070 			goto out;
2071 		if (ret < 0) {
2072 			dout("try_write write_partial_msg_pages err %d\n",
2073 			     ret);
2074 			goto out;
2075 		}
2076 	}
2077 
2078 do_next:
2079 	if (con->state == CON_STATE_OPEN) {
2080 		/* is anything else pending? */
2081 		if (!list_empty(&con->out_queue)) {
2082 			prepare_write_message(con);
2083 			goto more;
2084 		}
2085 		if (con->in_seq > con->in_seq_acked) {
2086 			prepare_write_ack(con);
2087 			goto more;
2088 		}
2089 		if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2090 				       &con->flags)) {
2091 			prepare_write_keepalive(con);
2092 			goto more;
2093 		}
2094 	}
2095 
2096 	/* Nothing to do! */
2097 	clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2098 	dout("try_write nothing else to write.\n");
2099 	ret = 0;
2100 out:
2101 	dout("try_write done on %p ret %d\n", con, ret);
2102 	return ret;
2103 }
2104 
2105 
2106 
2107 /*
2108  * Read what we can from the socket.
2109  */
2110 static int try_read(struct ceph_connection *con)
2111 {
2112 	int ret = -1;
2113 
2114 more:
2115 	dout("try_read start on %p state %lu\n", con, con->state);
2116 	if (con->state != CON_STATE_CONNECTING &&
2117 	    con->state != CON_STATE_NEGOTIATING &&
2118 	    con->state != CON_STATE_OPEN)
2119 		return 0;
2120 
2121 	BUG_ON(!con->sock);
2122 
2123 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2124 	     con->in_base_pos);
2125 
2126 	if (con->state == CON_STATE_CONNECTING) {
2127 		dout("try_read connecting\n");
2128 		ret = read_partial_banner(con);
2129 		if (ret <= 0)
2130 			goto out;
2131 		ret = process_banner(con);
2132 		if (ret < 0)
2133 			goto out;
2134 
2135 		BUG_ON(con->state != CON_STATE_CONNECTING);
2136 		con->state = CON_STATE_NEGOTIATING;
2137 
2138 		/* Banner is good, exchange connection info */
2139 		ret = prepare_write_connect(con);
2140 		if (ret < 0)
2141 			goto out;
2142 		prepare_read_connect(con);
2143 
2144 		/* Send connection info before awaiting response */
2145 		goto out;
2146 	}
2147 
2148 	if (con->state == CON_STATE_NEGOTIATING) {
2149 		dout("try_read negotiating\n");
2150 		ret = read_partial_connect(con);
2151 		if (ret <= 0)
2152 			goto out;
2153 		ret = process_connect(con);
2154 		if (ret < 0)
2155 			goto out;
2156 		goto more;
2157 	}
2158 
2159 	BUG_ON(con->state != CON_STATE_OPEN);
2160 
2161 	if (con->in_base_pos < 0) {
2162 		/*
2163 		 * skipping + discarding content.
2164 		 *
2165 		 * FIXME: there must be a better way to do this!
2166 		 */
2167 		static char buf[SKIP_BUF_SIZE];
2168 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2169 
2170 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2171 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2172 		if (ret <= 0)
2173 			goto out;
2174 		con->in_base_pos += ret;
2175 		if (con->in_base_pos)
2176 			goto more;
2177 	}
2178 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2179 		/*
2180 		 * what's next?
2181 		 */
2182 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2183 		if (ret <= 0)
2184 			goto out;
2185 		dout("try_read got tag %d\n", (int)con->in_tag);
2186 		switch (con->in_tag) {
2187 		case CEPH_MSGR_TAG_MSG:
2188 			prepare_read_message(con);
2189 			break;
2190 		case CEPH_MSGR_TAG_ACK:
2191 			prepare_read_ack(con);
2192 			break;
2193 		case CEPH_MSGR_TAG_CLOSE:
2194 			con_close_socket(con);
2195 			con->state = CON_STATE_CLOSED;
2196 			goto out;
2197 		default:
2198 			goto bad_tag;
2199 		}
2200 	}
2201 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2202 		ret = read_partial_message(con);
2203 		if (ret <= 0) {
2204 			switch (ret) {
2205 			case -EBADMSG:
2206 				con->error_msg = "bad crc";
2207 				ret = -EIO;
2208 				break;
2209 			case -EIO:
2210 				con->error_msg = "io error";
2211 				break;
2212 			}
2213 			goto out;
2214 		}
2215 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2216 			goto more;
2217 		process_message(con);
2218 		if (con->state == CON_STATE_OPEN)
2219 			prepare_read_tag(con);
2220 		goto more;
2221 	}
2222 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2223 		ret = read_partial_ack(con);
2224 		if (ret <= 0)
2225 			goto out;
2226 		process_ack(con);
2227 		goto more;
2228 	}
2229 
2230 out:
2231 	dout("try_read done on %p ret %d\n", con, ret);
2232 	return ret;
2233 
2234 bad_tag:
2235 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2236 	con->error_msg = "protocol error, garbage tag";
2237 	ret = -1;
2238 	goto out;
2239 }
2240 
2241 
2242 /*
2243  * Atomically queue work on a connection.  Bump @con reference to
2244  * avoid races with connection teardown.
2245  */
2246 static void queue_con(struct ceph_connection *con)
2247 {
2248 	if (!con->ops->get(con)) {
2249 		dout("queue_con %p ref count 0\n", con);
2250 		return;
2251 	}
2252 
2253 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2254 		dout("queue_con %p - already queued\n", con);
2255 		con->ops->put(con);
2256 	} else {
2257 		dout("queue_con %p\n", con);
2258 	}
2259 }
2260 
2261 /*
2262  * Do some work on a connection.  Drop a connection ref when we're done.
2263  */
2264 static void con_work(struct work_struct *work)
2265 {
2266 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2267 						   work.work);
2268 	int ret;
2269 
2270 	mutex_lock(&con->mutex);
2271 restart:
2272 	if (test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags)) {
2273 		switch (con->state) {
2274 		case CON_STATE_CONNECTING:
2275 			con->error_msg = "connection failed";
2276 			break;
2277 		case CON_STATE_NEGOTIATING:
2278 			con->error_msg = "negotiation failed";
2279 			break;
2280 		case CON_STATE_OPEN:
2281 			con->error_msg = "socket closed";
2282 			break;
2283 		default:
2284 			dout("unrecognized con state %d\n", (int)con->state);
2285 			con->error_msg = "unrecognized con state";
2286 			BUG();
2287 		}
2288 		goto fault;
2289 	}
2290 
2291 	if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2292 		dout("con_work %p backing off\n", con);
2293 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2294 				       round_jiffies_relative(con->delay))) {
2295 			dout("con_work %p backoff %lu\n", con, con->delay);
2296 			mutex_unlock(&con->mutex);
2297 			return;
2298 		} else {
2299 			con->ops->put(con);
2300 			dout("con_work %p FAILED to back off %lu\n", con,
2301 			     con->delay);
2302 		}
2303 	}
2304 
2305 	if (con->state == CON_STATE_STANDBY) {
2306 		dout("con_work %p STANDBY\n", con);
2307 		goto done;
2308 	}
2309 	if (con->state == CON_STATE_CLOSED) {
2310 		dout("con_work %p CLOSED\n", con);
2311 		BUG_ON(con->sock);
2312 		goto done;
2313 	}
2314 	if (con->state == CON_STATE_PREOPEN) {
2315 		dout("con_work OPENING\n");
2316 		BUG_ON(con->sock);
2317 	}
2318 
2319 	ret = try_read(con);
2320 	if (ret == -EAGAIN)
2321 		goto restart;
2322 	if (ret < 0) {
2323 		con->error_msg = "socket error on read";
2324 		goto fault;
2325 	}
2326 
2327 	ret = try_write(con);
2328 	if (ret == -EAGAIN)
2329 		goto restart;
2330 	if (ret < 0) {
2331 		con->error_msg = "socket error on write";
2332 		goto fault;
2333 	}
2334 
2335 done:
2336 	mutex_unlock(&con->mutex);
2337 done_unlocked:
2338 	con->ops->put(con);
2339 	return;
2340 
2341 fault:
2342 	ceph_fault(con);     /* error/fault path */
2343 	goto done_unlocked;
2344 }
2345 
2346 
2347 /*
2348  * Generic error/fault handler.  A retry mechanism is used with
2349  * exponential backoff
2350  */
2351 static void ceph_fault(struct ceph_connection *con)
2352 	__releases(con->mutex)
2353 {
2354 	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2355 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2356 	dout("fault %p state %lu to peer %s\n",
2357 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2358 
2359 	BUG_ON(con->state != CON_STATE_CONNECTING &&
2360 	       con->state != CON_STATE_NEGOTIATING &&
2361 	       con->state != CON_STATE_OPEN);
2362 
2363 	con_close_socket(con);
2364 
2365 	if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2366 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2367 		con->state = CON_STATE_CLOSED;
2368 		goto out_unlock;
2369 	}
2370 
2371 	if (con->in_msg) {
2372 		BUG_ON(con->in_msg->con != con);
2373 		con->in_msg->con = NULL;
2374 		ceph_msg_put(con->in_msg);
2375 		con->in_msg = NULL;
2376 		con->ops->put(con);
2377 	}
2378 
2379 	/* Requeue anything that hasn't been acked */
2380 	list_splice_init(&con->out_sent, &con->out_queue);
2381 
2382 	/* If there are no messages queued or keepalive pending, place
2383 	 * the connection in a STANDBY state */
2384 	if (list_empty(&con->out_queue) &&
2385 	    !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2386 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2387 		clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2388 		con->state = CON_STATE_STANDBY;
2389 	} else {
2390 		/* retry after a delay. */
2391 		con->state = CON_STATE_PREOPEN;
2392 		if (con->delay == 0)
2393 			con->delay = BASE_DELAY_INTERVAL;
2394 		else if (con->delay < MAX_DELAY_INTERVAL)
2395 			con->delay *= 2;
2396 		con->ops->get(con);
2397 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2398 				       round_jiffies_relative(con->delay))) {
2399 			dout("fault queued %p delay %lu\n", con, con->delay);
2400 		} else {
2401 			con->ops->put(con);
2402 			dout("fault failed to queue %p delay %lu, backoff\n",
2403 			     con, con->delay);
2404 			/*
2405 			 * In many cases we see a socket state change
2406 			 * while con_work is running and end up
2407 			 * queuing (non-delayed) work, such that we
2408 			 * can't backoff with a delay.  Set a flag so
2409 			 * that when con_work restarts we schedule the
2410 			 * delay then.
2411 			 */
2412 			set_bit(CON_FLAG_BACKOFF, &con->flags);
2413 		}
2414 	}
2415 
2416 out_unlock:
2417 	mutex_unlock(&con->mutex);
2418 	/*
2419 	 * in case we faulted due to authentication, invalidate our
2420 	 * current tickets so that we can get new ones.
2421 	 */
2422 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2423 		dout("calling invalidate_authorizer()\n");
2424 		con->ops->invalidate_authorizer(con);
2425 	}
2426 
2427 	if (con->ops->fault)
2428 		con->ops->fault(con);
2429 }
2430 
2431 
2432 
2433 /*
2434  * initialize a new messenger instance
2435  */
2436 void ceph_messenger_init(struct ceph_messenger *msgr,
2437 			struct ceph_entity_addr *myaddr,
2438 			u32 supported_features,
2439 			u32 required_features,
2440 			bool nocrc)
2441 {
2442 	msgr->supported_features = supported_features;
2443 	msgr->required_features = required_features;
2444 
2445 	spin_lock_init(&msgr->global_seq_lock);
2446 
2447 	if (myaddr)
2448 		msgr->inst.addr = *myaddr;
2449 
2450 	/* select a random nonce */
2451 	msgr->inst.addr.type = 0;
2452 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2453 	encode_my_addr(msgr);
2454 	msgr->nocrc = nocrc;
2455 
2456 	atomic_set(&msgr->stopping, 0);
2457 
2458 	dout("%s %p\n", __func__, msgr);
2459 }
2460 EXPORT_SYMBOL(ceph_messenger_init);
2461 
2462 static void clear_standby(struct ceph_connection *con)
2463 {
2464 	/* come back from STANDBY? */
2465 	if (con->state == CON_STATE_STANDBY) {
2466 		dout("clear_standby %p and ++connect_seq\n", con);
2467 		con->state = CON_STATE_PREOPEN;
2468 		con->connect_seq++;
2469 		WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2470 		WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2471 	}
2472 }
2473 
2474 /*
2475  * Queue up an outgoing message on the given connection.
2476  */
2477 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2478 {
2479 	/* set src+dst */
2480 	msg->hdr.src = con->msgr->inst.name;
2481 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2482 	msg->needs_out_seq = true;
2483 
2484 	mutex_lock(&con->mutex);
2485 
2486 	if (con->state == CON_STATE_CLOSED) {
2487 		dout("con_send %p closed, dropping %p\n", con, msg);
2488 		ceph_msg_put(msg);
2489 		mutex_unlock(&con->mutex);
2490 		return;
2491 	}
2492 
2493 	BUG_ON(msg->con != NULL);
2494 	msg->con = con->ops->get(con);
2495 	BUG_ON(msg->con == NULL);
2496 
2497 	BUG_ON(!list_empty(&msg->list_head));
2498 	list_add_tail(&msg->list_head, &con->out_queue);
2499 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2500 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2501 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2502 	     le32_to_cpu(msg->hdr.front_len),
2503 	     le32_to_cpu(msg->hdr.middle_len),
2504 	     le32_to_cpu(msg->hdr.data_len));
2505 
2506 	clear_standby(con);
2507 	mutex_unlock(&con->mutex);
2508 
2509 	/* if there wasn't anything waiting to send before, queue
2510 	 * new work */
2511 	if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2512 		queue_con(con);
2513 }
2514 EXPORT_SYMBOL(ceph_con_send);
2515 
2516 /*
2517  * Revoke a message that was previously queued for send
2518  */
2519 void ceph_msg_revoke(struct ceph_msg *msg)
2520 {
2521 	struct ceph_connection *con = msg->con;
2522 
2523 	if (!con)
2524 		return;		/* Message not in our possession */
2525 
2526 	mutex_lock(&con->mutex);
2527 	if (!list_empty(&msg->list_head)) {
2528 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2529 		list_del_init(&msg->list_head);
2530 		BUG_ON(msg->con == NULL);
2531 		msg->con->ops->put(msg->con);
2532 		msg->con = NULL;
2533 		msg->hdr.seq = 0;
2534 
2535 		ceph_msg_put(msg);
2536 	}
2537 	if (con->out_msg == msg) {
2538 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
2539 		con->out_msg = NULL;
2540 		if (con->out_kvec_is_msg) {
2541 			con->out_skip = con->out_kvec_bytes;
2542 			con->out_kvec_is_msg = false;
2543 		}
2544 		msg->hdr.seq = 0;
2545 
2546 		ceph_msg_put(msg);
2547 	}
2548 	mutex_unlock(&con->mutex);
2549 }
2550 
2551 /*
2552  * Revoke a message that we may be reading data into
2553  */
2554 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2555 {
2556 	struct ceph_connection *con;
2557 
2558 	BUG_ON(msg == NULL);
2559 	if (!msg->con) {
2560 		dout("%s msg %p null con\n", __func__, msg);
2561 
2562 		return;		/* Message not in our possession */
2563 	}
2564 
2565 	con = msg->con;
2566 	mutex_lock(&con->mutex);
2567 	if (con->in_msg == msg) {
2568 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2569 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2570 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2571 
2572 		/* skip rest of message */
2573 		dout("%s %p msg %p revoked\n", __func__, con, msg);
2574 		con->in_base_pos = con->in_base_pos -
2575 				sizeof(struct ceph_msg_header) -
2576 				front_len -
2577 				middle_len -
2578 				data_len -
2579 				sizeof(struct ceph_msg_footer);
2580 		ceph_msg_put(con->in_msg);
2581 		con->in_msg = NULL;
2582 		con->in_tag = CEPH_MSGR_TAG_READY;
2583 		con->in_seq++;
2584 	} else {
2585 		dout("%s %p in_msg %p msg %p no-op\n",
2586 		     __func__, con, con->in_msg, msg);
2587 	}
2588 	mutex_unlock(&con->mutex);
2589 }
2590 
2591 /*
2592  * Queue a keepalive byte to ensure the tcp connection is alive.
2593  */
2594 void ceph_con_keepalive(struct ceph_connection *con)
2595 {
2596 	dout("con_keepalive %p\n", con);
2597 	mutex_lock(&con->mutex);
2598 	clear_standby(con);
2599 	mutex_unlock(&con->mutex);
2600 	if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2601 	    test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2602 		queue_con(con);
2603 }
2604 EXPORT_SYMBOL(ceph_con_keepalive);
2605 
2606 
2607 /*
2608  * construct a new message with given type, size
2609  * the new msg has a ref count of 1.
2610  */
2611 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2612 			      bool can_fail)
2613 {
2614 	struct ceph_msg *m;
2615 
2616 	m = kmalloc(sizeof(*m), flags);
2617 	if (m == NULL)
2618 		goto out;
2619 	kref_init(&m->kref);
2620 
2621 	m->con = NULL;
2622 	INIT_LIST_HEAD(&m->list_head);
2623 
2624 	m->hdr.tid = 0;
2625 	m->hdr.type = cpu_to_le16(type);
2626 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2627 	m->hdr.version = 0;
2628 	m->hdr.front_len = cpu_to_le32(front_len);
2629 	m->hdr.middle_len = 0;
2630 	m->hdr.data_len = 0;
2631 	m->hdr.data_off = 0;
2632 	m->hdr.reserved = 0;
2633 	m->footer.front_crc = 0;
2634 	m->footer.middle_crc = 0;
2635 	m->footer.data_crc = 0;
2636 	m->footer.flags = 0;
2637 	m->front_max = front_len;
2638 	m->front_is_vmalloc = false;
2639 	m->more_to_follow = false;
2640 	m->ack_stamp = 0;
2641 	m->pool = NULL;
2642 
2643 	/* middle */
2644 	m->middle = NULL;
2645 
2646 	/* data */
2647 	m->nr_pages = 0;
2648 	m->page_alignment = 0;
2649 	m->pages = NULL;
2650 	m->pagelist = NULL;
2651 	m->bio = NULL;
2652 	m->bio_iter = NULL;
2653 	m->bio_seg = 0;
2654 	m->trail = NULL;
2655 
2656 	/* front */
2657 	if (front_len) {
2658 		if (front_len > PAGE_CACHE_SIZE) {
2659 			m->front.iov_base = __vmalloc(front_len, flags,
2660 						      PAGE_KERNEL);
2661 			m->front_is_vmalloc = true;
2662 		} else {
2663 			m->front.iov_base = kmalloc(front_len, flags);
2664 		}
2665 		if (m->front.iov_base == NULL) {
2666 			dout("ceph_msg_new can't allocate %d bytes\n",
2667 			     front_len);
2668 			goto out2;
2669 		}
2670 	} else {
2671 		m->front.iov_base = NULL;
2672 	}
2673 	m->front.iov_len = front_len;
2674 
2675 	dout("ceph_msg_new %p front %d\n", m, front_len);
2676 	return m;
2677 
2678 out2:
2679 	ceph_msg_put(m);
2680 out:
2681 	if (!can_fail) {
2682 		pr_err("msg_new can't create type %d front %d\n", type,
2683 		       front_len);
2684 		WARN_ON(1);
2685 	} else {
2686 		dout("msg_new can't create type %d front %d\n", type,
2687 		     front_len);
2688 	}
2689 	return NULL;
2690 }
2691 EXPORT_SYMBOL(ceph_msg_new);
2692 
2693 /*
2694  * Allocate "middle" portion of a message, if it is needed and wasn't
2695  * allocated by alloc_msg.  This allows us to read a small fixed-size
2696  * per-type header in the front and then gracefully fail (i.e.,
2697  * propagate the error to the caller based on info in the front) when
2698  * the middle is too large.
2699  */
2700 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2701 {
2702 	int type = le16_to_cpu(msg->hdr.type);
2703 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2704 
2705 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2706 	     ceph_msg_type_name(type), middle_len);
2707 	BUG_ON(!middle_len);
2708 	BUG_ON(msg->middle);
2709 
2710 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2711 	if (!msg->middle)
2712 		return -ENOMEM;
2713 	return 0;
2714 }
2715 
2716 /*
2717  * Allocate a message for receiving an incoming message on a
2718  * connection, and save the result in con->in_msg.  Uses the
2719  * connection's private alloc_msg op if available.
2720  *
2721  * Returns 0 on success, or a negative error code.
2722  *
2723  * On success, if we set *skip = 1:
2724  *  - the next message should be skipped and ignored.
2725  *  - con->in_msg == NULL
2726  * or if we set *skip = 0:
2727  *  - con->in_msg is non-null.
2728  * On error (ENOMEM, EAGAIN, ...),
2729  *  - con->in_msg == NULL
2730  */
2731 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2732 {
2733 	struct ceph_msg_header *hdr = &con->in_hdr;
2734 	int type = le16_to_cpu(hdr->type);
2735 	int front_len = le32_to_cpu(hdr->front_len);
2736 	int middle_len = le32_to_cpu(hdr->middle_len);
2737 	int ret = 0;
2738 
2739 	BUG_ON(con->in_msg != NULL);
2740 
2741 	if (con->ops->alloc_msg) {
2742 		struct ceph_msg *msg;
2743 
2744 		mutex_unlock(&con->mutex);
2745 		msg = con->ops->alloc_msg(con, hdr, skip);
2746 		mutex_lock(&con->mutex);
2747 		if (con->state != CON_STATE_OPEN) {
2748 			ceph_msg_put(msg);
2749 			return -EAGAIN;
2750 		}
2751 		con->in_msg = msg;
2752 		if (con->in_msg) {
2753 			con->in_msg->con = con->ops->get(con);
2754 			BUG_ON(con->in_msg->con == NULL);
2755 		}
2756 		if (*skip) {
2757 			con->in_msg = NULL;
2758 			return 0;
2759 		}
2760 		if (!con->in_msg) {
2761 			con->error_msg =
2762 				"error allocating memory for incoming message";
2763 			return -ENOMEM;
2764 		}
2765 	}
2766 	if (!con->in_msg) {
2767 		con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2768 		if (!con->in_msg) {
2769 			pr_err("unable to allocate msg type %d len %d\n",
2770 			       type, front_len);
2771 			return -ENOMEM;
2772 		}
2773 		con->in_msg->con = con->ops->get(con);
2774 		BUG_ON(con->in_msg->con == NULL);
2775 		con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2776 	}
2777 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2778 
2779 	if (middle_len && !con->in_msg->middle) {
2780 		ret = ceph_alloc_middle(con, con->in_msg);
2781 		if (ret < 0) {
2782 			ceph_msg_put(con->in_msg);
2783 			con->in_msg = NULL;
2784 		}
2785 	}
2786 
2787 	return ret;
2788 }
2789 
2790 
2791 /*
2792  * Free a generically kmalloc'd message.
2793  */
2794 void ceph_msg_kfree(struct ceph_msg *m)
2795 {
2796 	dout("msg_kfree %p\n", m);
2797 	if (m->front_is_vmalloc)
2798 		vfree(m->front.iov_base);
2799 	else
2800 		kfree(m->front.iov_base);
2801 	kfree(m);
2802 }
2803 
2804 /*
2805  * Drop a msg ref.  Destroy as needed.
2806  */
2807 void ceph_msg_last_put(struct kref *kref)
2808 {
2809 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2810 
2811 	dout("ceph_msg_put last one on %p\n", m);
2812 	WARN_ON(!list_empty(&m->list_head));
2813 
2814 	/* drop middle, data, if any */
2815 	if (m->middle) {
2816 		ceph_buffer_put(m->middle);
2817 		m->middle = NULL;
2818 	}
2819 	m->nr_pages = 0;
2820 	m->pages = NULL;
2821 
2822 	if (m->pagelist) {
2823 		ceph_pagelist_release(m->pagelist);
2824 		kfree(m->pagelist);
2825 		m->pagelist = NULL;
2826 	}
2827 
2828 	m->trail = NULL;
2829 
2830 	if (m->pool)
2831 		ceph_msgpool_put(m->pool, m);
2832 	else
2833 		ceph_msg_kfree(m);
2834 }
2835 EXPORT_SYMBOL(ceph_msg_last_put);
2836 
2837 void ceph_msg_dump(struct ceph_msg *msg)
2838 {
2839 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2840 		 msg->front_max, msg->nr_pages);
2841 	print_hex_dump(KERN_DEBUG, "header: ",
2842 		       DUMP_PREFIX_OFFSET, 16, 1,
2843 		       &msg->hdr, sizeof(msg->hdr), true);
2844 	print_hex_dump(KERN_DEBUG, " front: ",
2845 		       DUMP_PREFIX_OFFSET, 16, 1,
2846 		       msg->front.iov_base, msg->front.iov_len, true);
2847 	if (msg->middle)
2848 		print_hex_dump(KERN_DEBUG, "middle: ",
2849 			       DUMP_PREFIX_OFFSET, 16, 1,
2850 			       msg->middle->vec.iov_base,
2851 			       msg->middle->vec.iov_len, true);
2852 	print_hex_dump(KERN_DEBUG, "footer: ",
2853 		       DUMP_PREFIX_OFFSET, 16, 1,
2854 		       &msg->footer, sizeof(msg->footer), true);
2855 }
2856 EXPORT_SYMBOL(ceph_msg_dump);
2857