xref: /linux/net/ceph/messenger.c (revision 1a69f7a161a78aead07cd4b811d796950e892fa4)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 static bool con_flag_valid(unsigned long con_flag)
86 {
87 	switch (con_flag) {
88 	case CEPH_CON_F_LOSSYTX:
89 	case CEPH_CON_F_KEEPALIVE_PENDING:
90 	case CEPH_CON_F_WRITE_PENDING:
91 	case CEPH_CON_F_SOCK_CLOSED:
92 	case CEPH_CON_F_BACKOFF:
93 		return true;
94 	default:
95 		return false;
96 	}
97 }
98 
99 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
100 {
101 	BUG_ON(!con_flag_valid(con_flag));
102 
103 	clear_bit(con_flag, &con->flags);
104 }
105 
106 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
107 {
108 	BUG_ON(!con_flag_valid(con_flag));
109 
110 	set_bit(con_flag, &con->flags);
111 }
112 
113 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
114 {
115 	BUG_ON(!con_flag_valid(con_flag));
116 
117 	return test_bit(con_flag, &con->flags);
118 }
119 
120 bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
121 				  unsigned long con_flag)
122 {
123 	BUG_ON(!con_flag_valid(con_flag));
124 
125 	return test_and_clear_bit(con_flag, &con->flags);
126 }
127 
128 bool ceph_con_flag_test_and_set(struct ceph_connection *con,
129 				unsigned long con_flag)
130 {
131 	BUG_ON(!con_flag_valid(con_flag));
132 
133 	return test_and_set_bit(con_flag, &con->flags);
134 }
135 
136 /* Slab caches for frequently-allocated structures */
137 
138 static struct kmem_cache	*ceph_msg_cache;
139 
140 #ifdef CONFIG_LOCKDEP
141 static struct lock_class_key socket_class;
142 #endif
143 
144 static void queue_con(struct ceph_connection *con);
145 static void cancel_con(struct ceph_connection *con);
146 static void ceph_con_workfn(struct work_struct *);
147 static void con_fault(struct ceph_connection *con);
148 
149 /*
150  * Nicely render a sockaddr as a string.  An array of formatted
151  * strings is used, to approximate reentrancy.
152  */
153 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
154 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
155 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
156 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
157 
158 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
159 static atomic_t addr_str_seq = ATOMIC_INIT(0);
160 
161 struct page *ceph_zero_page;		/* used in certain error cases */
162 
163 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
164 {
165 	int i;
166 	char *s;
167 	struct sockaddr_storage ss = addr->in_addr; /* align */
168 	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
169 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
170 
171 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
172 	s = addr_str[i];
173 
174 	switch (ss.ss_family) {
175 	case AF_INET:
176 		snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
177 			 le32_to_cpu(addr->type), &in4->sin_addr,
178 			 ntohs(in4->sin_port));
179 		break;
180 
181 	case AF_INET6:
182 		snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
183 			 le32_to_cpu(addr->type), &in6->sin6_addr,
184 			 ntohs(in6->sin6_port));
185 		break;
186 
187 	default:
188 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
189 			 ss.ss_family);
190 	}
191 
192 	return s;
193 }
194 EXPORT_SYMBOL(ceph_pr_addr);
195 
196 void ceph_encode_my_addr(struct ceph_messenger *msgr)
197 {
198 	if (!ceph_msgr2(from_msgr(msgr))) {
199 		memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
200 		       sizeof(msgr->my_enc_addr));
201 		ceph_encode_banner_addr(&msgr->my_enc_addr);
202 	}
203 }
204 
205 /*
206  * work queue for all reading and writing to/from the socket.
207  */
208 static struct workqueue_struct *ceph_msgr_wq;
209 
210 static int ceph_msgr_slab_init(void)
211 {
212 	BUG_ON(ceph_msg_cache);
213 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
214 	if (!ceph_msg_cache)
215 		return -ENOMEM;
216 
217 	return 0;
218 }
219 
220 static void ceph_msgr_slab_exit(void)
221 {
222 	BUG_ON(!ceph_msg_cache);
223 	kmem_cache_destroy(ceph_msg_cache);
224 	ceph_msg_cache = NULL;
225 }
226 
227 static void _ceph_msgr_exit(void)
228 {
229 	if (ceph_msgr_wq) {
230 		destroy_workqueue(ceph_msgr_wq);
231 		ceph_msgr_wq = NULL;
232 	}
233 
234 	BUG_ON(!ceph_zero_page);
235 	put_page(ceph_zero_page);
236 	ceph_zero_page = NULL;
237 
238 	ceph_msgr_slab_exit();
239 }
240 
241 int __init ceph_msgr_init(void)
242 {
243 	if (ceph_msgr_slab_init())
244 		return -ENOMEM;
245 
246 	BUG_ON(ceph_zero_page);
247 	ceph_zero_page = ZERO_PAGE(0);
248 	get_page(ceph_zero_page);
249 
250 	/*
251 	 * The number of active work items is limited by the number of
252 	 * connections, so leave @max_active at default.
253 	 */
254 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
255 	if (ceph_msgr_wq)
256 		return 0;
257 
258 	pr_err("msgr_init failed to create workqueue\n");
259 	_ceph_msgr_exit();
260 
261 	return -ENOMEM;
262 }
263 
264 void ceph_msgr_exit(void)
265 {
266 	BUG_ON(ceph_msgr_wq == NULL);
267 
268 	_ceph_msgr_exit();
269 }
270 
271 void ceph_msgr_flush(void)
272 {
273 	flush_workqueue(ceph_msgr_wq);
274 }
275 EXPORT_SYMBOL(ceph_msgr_flush);
276 
277 /* Connection socket state transition functions */
278 
279 static void con_sock_state_init(struct ceph_connection *con)
280 {
281 	int old_state;
282 
283 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
284 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
285 		printk("%s: unexpected old state %d\n", __func__, old_state);
286 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
287 	     CON_SOCK_STATE_CLOSED);
288 }
289 
290 static void con_sock_state_connecting(struct ceph_connection *con)
291 {
292 	int old_state;
293 
294 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
295 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
296 		printk("%s: unexpected old state %d\n", __func__, old_state);
297 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
298 	     CON_SOCK_STATE_CONNECTING);
299 }
300 
301 static void con_sock_state_connected(struct ceph_connection *con)
302 {
303 	int old_state;
304 
305 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
306 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
307 		printk("%s: unexpected old state %d\n", __func__, old_state);
308 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
309 	     CON_SOCK_STATE_CONNECTED);
310 }
311 
312 static void con_sock_state_closing(struct ceph_connection *con)
313 {
314 	int old_state;
315 
316 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
317 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
318 			old_state != CON_SOCK_STATE_CONNECTED &&
319 			old_state != CON_SOCK_STATE_CLOSING))
320 		printk("%s: unexpected old state %d\n", __func__, old_state);
321 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
322 	     CON_SOCK_STATE_CLOSING);
323 }
324 
325 static void con_sock_state_closed(struct ceph_connection *con)
326 {
327 	int old_state;
328 
329 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
330 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
331 		    old_state != CON_SOCK_STATE_CLOSING &&
332 		    old_state != CON_SOCK_STATE_CONNECTING &&
333 		    old_state != CON_SOCK_STATE_CLOSED))
334 		printk("%s: unexpected old state %d\n", __func__, old_state);
335 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
336 	     CON_SOCK_STATE_CLOSED);
337 }
338 
339 /*
340  * socket callback functions
341  */
342 
343 /* data available on socket, or listen socket received a connect */
344 static void ceph_sock_data_ready(struct sock *sk)
345 {
346 	struct ceph_connection *con = sk->sk_user_data;
347 	if (atomic_read(&con->msgr->stopping)) {
348 		return;
349 	}
350 
351 	if (sk->sk_state != TCP_CLOSE_WAIT) {
352 		dout("%s %p state = %d, queueing work\n", __func__,
353 		     con, con->state);
354 		queue_con(con);
355 	}
356 }
357 
358 /* socket has buffer space for writing */
359 static void ceph_sock_write_space(struct sock *sk)
360 {
361 	struct ceph_connection *con = sk->sk_user_data;
362 
363 	/* only queue to workqueue if there is data we want to write,
364 	 * and there is sufficient space in the socket buffer to accept
365 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
366 	 * doesn't get called again until try_write() fills the socket
367 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
368 	 * and net/core/stream.c:sk_stream_write_space().
369 	 */
370 	if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
371 		if (sk_stream_is_writeable(sk)) {
372 			dout("%s %p queueing write work\n", __func__, con);
373 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
374 			queue_con(con);
375 		}
376 	} else {
377 		dout("%s %p nothing to write\n", __func__, con);
378 	}
379 }
380 
381 /* socket's state has changed */
382 static void ceph_sock_state_change(struct sock *sk)
383 {
384 	struct ceph_connection *con = sk->sk_user_data;
385 
386 	dout("%s %p state = %d sk_state = %u\n", __func__,
387 	     con, con->state, sk->sk_state);
388 
389 	switch (sk->sk_state) {
390 	case TCP_CLOSE:
391 		dout("%s TCP_CLOSE\n", __func__);
392 		fallthrough;
393 	case TCP_CLOSE_WAIT:
394 		dout("%s TCP_CLOSE_WAIT\n", __func__);
395 		con_sock_state_closing(con);
396 		ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
397 		queue_con(con);
398 		break;
399 	case TCP_ESTABLISHED:
400 		dout("%s TCP_ESTABLISHED\n", __func__);
401 		con_sock_state_connected(con);
402 		queue_con(con);
403 		break;
404 	default:	/* Everything else is uninteresting */
405 		break;
406 	}
407 }
408 
409 /*
410  * set up socket callbacks
411  */
412 static void set_sock_callbacks(struct socket *sock,
413 			       struct ceph_connection *con)
414 {
415 	struct sock *sk = sock->sk;
416 	sk->sk_user_data = con;
417 	sk->sk_data_ready = ceph_sock_data_ready;
418 	sk->sk_write_space = ceph_sock_write_space;
419 	sk->sk_state_change = ceph_sock_state_change;
420 }
421 
422 
423 /*
424  * socket helpers
425  */
426 
427 /*
428  * initiate connection to a remote socket.
429  */
430 int ceph_tcp_connect(struct ceph_connection *con)
431 {
432 	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
433 	struct socket *sock;
434 	unsigned int noio_flag;
435 	int ret;
436 
437 	dout("%s con %p peer_addr %s\n", __func__, con,
438 	     ceph_pr_addr(&con->peer_addr));
439 	BUG_ON(con->sock);
440 
441 	/* sock_create_kern() allocates with GFP_KERNEL */
442 	noio_flag = memalloc_noio_save();
443 	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
444 			       SOCK_STREAM, IPPROTO_TCP, &sock);
445 	memalloc_noio_restore(noio_flag);
446 	if (ret)
447 		return ret;
448 	sock->sk->sk_allocation = GFP_NOFS;
449 	sock->sk->sk_use_task_frag = false;
450 
451 #ifdef CONFIG_LOCKDEP
452 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
453 #endif
454 
455 	set_sock_callbacks(sock, con);
456 
457 	con_sock_state_connecting(con);
458 	ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
459 				 O_NONBLOCK);
460 	if (ret == -EINPROGRESS) {
461 		dout("connect %s EINPROGRESS sk_state = %u\n",
462 		     ceph_pr_addr(&con->peer_addr),
463 		     sock->sk->sk_state);
464 	} else if (ret < 0) {
465 		pr_err("connect %s error %d\n",
466 		       ceph_pr_addr(&con->peer_addr), ret);
467 		sock_release(sock);
468 		return ret;
469 	}
470 
471 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
472 		tcp_sock_set_nodelay(sock->sk);
473 
474 	con->sock = sock;
475 	return 0;
476 }
477 
478 /*
479  * Shutdown/close the socket for the given connection.
480  */
481 int ceph_con_close_socket(struct ceph_connection *con)
482 {
483 	int rc = 0;
484 
485 	dout("%s con %p sock %p\n", __func__, con, con->sock);
486 	if (con->sock) {
487 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
488 		sock_release(con->sock);
489 		con->sock = NULL;
490 	}
491 
492 	/*
493 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
494 	 * independent of the connection mutex, and we could have
495 	 * received a socket close event before we had the chance to
496 	 * shut the socket down.
497 	 */
498 	ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
499 
500 	con_sock_state_closed(con);
501 	return rc;
502 }
503 
504 static void ceph_con_reset_protocol(struct ceph_connection *con)
505 {
506 	dout("%s con %p\n", __func__, con);
507 
508 	ceph_con_close_socket(con);
509 	if (con->in_msg) {
510 		WARN_ON(con->in_msg->con != con);
511 		ceph_msg_put(con->in_msg);
512 		con->in_msg = NULL;
513 	}
514 	if (con->out_msg) {
515 		WARN_ON(con->out_msg->con != con);
516 		ceph_msg_put(con->out_msg);
517 		con->out_msg = NULL;
518 	}
519 	if (con->bounce_page) {
520 		__free_page(con->bounce_page);
521 		con->bounce_page = NULL;
522 	}
523 
524 	if (ceph_msgr2(from_msgr(con->msgr)))
525 		ceph_con_v2_reset_protocol(con);
526 	else
527 		ceph_con_v1_reset_protocol(con);
528 }
529 
530 /*
531  * Reset a connection.  Discard all incoming and outgoing messages
532  * and clear *_seq state.
533  */
534 static void ceph_msg_remove(struct ceph_msg *msg)
535 {
536 	list_del_init(&msg->list_head);
537 
538 	ceph_msg_put(msg);
539 }
540 
541 static void ceph_msg_remove_list(struct list_head *head)
542 {
543 	while (!list_empty(head)) {
544 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
545 							list_head);
546 		ceph_msg_remove(msg);
547 	}
548 }
549 
550 void ceph_con_reset_session(struct ceph_connection *con)
551 {
552 	dout("%s con %p\n", __func__, con);
553 
554 	WARN_ON(con->in_msg);
555 	WARN_ON(con->out_msg);
556 	ceph_msg_remove_list(&con->out_queue);
557 	ceph_msg_remove_list(&con->out_sent);
558 	con->out_seq = 0;
559 	con->in_seq = 0;
560 	con->in_seq_acked = 0;
561 
562 	if (ceph_msgr2(from_msgr(con->msgr)))
563 		ceph_con_v2_reset_session(con);
564 	else
565 		ceph_con_v1_reset_session(con);
566 }
567 
568 /*
569  * mark a peer down.  drop any open connections.
570  */
571 void ceph_con_close(struct ceph_connection *con)
572 {
573 	mutex_lock(&con->mutex);
574 	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
575 	con->state = CEPH_CON_S_CLOSED;
576 
577 	ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX);  /* so we retry next
578 							  connect */
579 	ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
580 	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
581 	ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
582 
583 	ceph_con_reset_protocol(con);
584 	ceph_con_reset_session(con);
585 	cancel_con(con);
586 	mutex_unlock(&con->mutex);
587 }
588 EXPORT_SYMBOL(ceph_con_close);
589 
590 /*
591  * Reopen a closed connection, with a new peer address.
592  */
593 void ceph_con_open(struct ceph_connection *con,
594 		   __u8 entity_type, __u64 entity_num,
595 		   struct ceph_entity_addr *addr)
596 {
597 	mutex_lock(&con->mutex);
598 	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
599 
600 	WARN_ON(con->state != CEPH_CON_S_CLOSED);
601 	con->state = CEPH_CON_S_PREOPEN;
602 
603 	con->peer_name.type = (__u8) entity_type;
604 	con->peer_name.num = cpu_to_le64(entity_num);
605 
606 	memcpy(&con->peer_addr, addr, sizeof(*addr));
607 	con->delay = 0;      /* reset backoff memory */
608 	mutex_unlock(&con->mutex);
609 	queue_con(con);
610 }
611 EXPORT_SYMBOL(ceph_con_open);
612 
613 /*
614  * return true if this connection ever successfully opened
615  */
616 bool ceph_con_opened(struct ceph_connection *con)
617 {
618 	if (ceph_msgr2(from_msgr(con->msgr)))
619 		return ceph_con_v2_opened(con);
620 
621 	return ceph_con_v1_opened(con);
622 }
623 
624 /*
625  * initialize a new connection.
626  */
627 void ceph_con_init(struct ceph_connection *con, void *private,
628 	const struct ceph_connection_operations *ops,
629 	struct ceph_messenger *msgr)
630 {
631 	dout("con_init %p\n", con);
632 	memset(con, 0, sizeof(*con));
633 	con->private = private;
634 	con->ops = ops;
635 	con->msgr = msgr;
636 
637 	con_sock_state_init(con);
638 
639 	mutex_init(&con->mutex);
640 	INIT_LIST_HEAD(&con->out_queue);
641 	INIT_LIST_HEAD(&con->out_sent);
642 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
643 
644 	con->state = CEPH_CON_S_CLOSED;
645 }
646 EXPORT_SYMBOL(ceph_con_init);
647 
648 /*
649  * We maintain a global counter to order connection attempts.  Get
650  * a unique seq greater than @gt.
651  */
652 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
653 {
654 	u32 ret;
655 
656 	spin_lock(&msgr->global_seq_lock);
657 	if (msgr->global_seq < gt)
658 		msgr->global_seq = gt;
659 	ret = ++msgr->global_seq;
660 	spin_unlock(&msgr->global_seq_lock);
661 	return ret;
662 }
663 
664 /*
665  * Discard messages that have been acked by the server.
666  */
667 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
668 {
669 	struct ceph_msg *msg;
670 	u64 seq;
671 
672 	dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
673 	while (!list_empty(&con->out_sent)) {
674 		msg = list_first_entry(&con->out_sent, struct ceph_msg,
675 				       list_head);
676 		WARN_ON(msg->needs_out_seq);
677 		seq = le64_to_cpu(msg->hdr.seq);
678 		if (seq > ack_seq)
679 			break;
680 
681 		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
682 		     msg, seq);
683 		ceph_msg_remove(msg);
684 	}
685 }
686 
687 /*
688  * Discard messages that have been requeued in con_fault(), up to
689  * reconnect_seq.  This avoids gratuitously resending messages that
690  * the server had received and handled prior to reconnect.
691  */
692 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
693 {
694 	struct ceph_msg *msg;
695 	u64 seq;
696 
697 	dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
698 	while (!list_empty(&con->out_queue)) {
699 		msg = list_first_entry(&con->out_queue, struct ceph_msg,
700 				       list_head);
701 		if (msg->needs_out_seq)
702 			break;
703 		seq = le64_to_cpu(msg->hdr.seq);
704 		if (seq > reconnect_seq)
705 			break;
706 
707 		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
708 		     msg, seq);
709 		ceph_msg_remove(msg);
710 	}
711 }
712 
713 #ifdef CONFIG_BLOCK
714 
715 /*
716  * For a bio data item, a piece is whatever remains of the next
717  * entry in the current bio iovec, or the first entry in the next
718  * bio in the list.
719  */
720 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
721 					size_t length)
722 {
723 	struct ceph_msg_data *data = cursor->data;
724 	struct ceph_bio_iter *it = &cursor->bio_iter;
725 
726 	cursor->resid = min_t(size_t, length, data->bio_length);
727 	*it = data->bio_pos;
728 	if (cursor->resid < it->iter.bi_size)
729 		it->iter.bi_size = cursor->resid;
730 
731 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
732 }
733 
734 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
735 						size_t *page_offset,
736 						size_t *length)
737 {
738 	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
739 					   cursor->bio_iter.iter);
740 
741 	*page_offset = bv.bv_offset;
742 	*length = bv.bv_len;
743 	return bv.bv_page;
744 }
745 
746 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
747 					size_t bytes)
748 {
749 	struct ceph_bio_iter *it = &cursor->bio_iter;
750 	struct page *page = bio_iter_page(it->bio, it->iter);
751 
752 	BUG_ON(bytes > cursor->resid);
753 	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
754 	cursor->resid -= bytes;
755 	bio_advance_iter(it->bio, &it->iter, bytes);
756 
757 	if (!cursor->resid)
758 		return false;   /* no more data */
759 
760 	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
761 		       page == bio_iter_page(it->bio, it->iter)))
762 		return false;	/* more bytes to process in this segment */
763 
764 	if (!it->iter.bi_size) {
765 		it->bio = it->bio->bi_next;
766 		it->iter = it->bio->bi_iter;
767 		if (cursor->resid < it->iter.bi_size)
768 			it->iter.bi_size = cursor->resid;
769 	}
770 
771 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
772 	return true;
773 }
774 #endif /* CONFIG_BLOCK */
775 
776 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
777 					size_t length)
778 {
779 	struct ceph_msg_data *data = cursor->data;
780 	struct bio_vec *bvecs = data->bvec_pos.bvecs;
781 
782 	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
783 	cursor->bvec_iter = data->bvec_pos.iter;
784 	cursor->bvec_iter.bi_size = cursor->resid;
785 
786 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
787 }
788 
789 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
790 						size_t *page_offset,
791 						size_t *length)
792 {
793 	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
794 					   cursor->bvec_iter);
795 
796 	*page_offset = bv.bv_offset;
797 	*length = bv.bv_len;
798 	return bv.bv_page;
799 }
800 
801 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
802 					size_t bytes)
803 {
804 	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
805 	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
806 
807 	BUG_ON(bytes > cursor->resid);
808 	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
809 	cursor->resid -= bytes;
810 	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
811 
812 	if (!cursor->resid)
813 		return false;   /* no more data */
814 
815 	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
816 		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
817 		return false;	/* more bytes to process in this segment */
818 
819 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
820 	return true;
821 }
822 
823 /*
824  * For a page array, a piece comes from the first page in the array
825  * that has not already been fully consumed.
826  */
827 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
828 					size_t length)
829 {
830 	struct ceph_msg_data *data = cursor->data;
831 	int page_count;
832 
833 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
834 
835 	BUG_ON(!data->pages);
836 	BUG_ON(!data->length);
837 
838 	cursor->resid = min(length, data->length);
839 	page_count = calc_pages_for(data->alignment, (u64)data->length);
840 	cursor->page_offset = data->alignment & ~PAGE_MASK;
841 	cursor->page_index = 0;
842 	BUG_ON(page_count > (int)USHRT_MAX);
843 	cursor->page_count = (unsigned short)page_count;
844 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
845 }
846 
847 static struct page *
848 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
849 					size_t *page_offset, size_t *length)
850 {
851 	struct ceph_msg_data *data = cursor->data;
852 
853 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
854 
855 	BUG_ON(cursor->page_index >= cursor->page_count);
856 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
857 
858 	*page_offset = cursor->page_offset;
859 	*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
860 	return data->pages[cursor->page_index];
861 }
862 
863 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
864 						size_t bytes)
865 {
866 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
867 
868 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
869 
870 	/* Advance the cursor page offset */
871 
872 	cursor->resid -= bytes;
873 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
874 	if (!bytes || cursor->page_offset)
875 		return false;	/* more bytes to process in the current page */
876 
877 	if (!cursor->resid)
878 		return false;   /* no more data */
879 
880 	/* Move on to the next page; offset is already at 0 */
881 
882 	BUG_ON(cursor->page_index >= cursor->page_count);
883 	cursor->page_index++;
884 	return true;
885 }
886 
887 /*
888  * For a pagelist, a piece is whatever remains to be consumed in the
889  * first page in the list, or the front of the next page.
890  */
891 static void
892 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
893 					size_t length)
894 {
895 	struct ceph_msg_data *data = cursor->data;
896 	struct ceph_pagelist *pagelist;
897 	struct page *page;
898 
899 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
900 
901 	pagelist = data->pagelist;
902 	BUG_ON(!pagelist);
903 
904 	if (!length)
905 		return;		/* pagelist can be assigned but empty */
906 
907 	BUG_ON(list_empty(&pagelist->head));
908 	page = list_first_entry(&pagelist->head, struct page, lru);
909 
910 	cursor->resid = min(length, pagelist->length);
911 	cursor->page = page;
912 	cursor->offset = 0;
913 }
914 
915 static struct page *
916 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
917 				size_t *page_offset, size_t *length)
918 {
919 	struct ceph_msg_data *data = cursor->data;
920 	struct ceph_pagelist *pagelist;
921 
922 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
923 
924 	pagelist = data->pagelist;
925 	BUG_ON(!pagelist);
926 
927 	BUG_ON(!cursor->page);
928 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
929 
930 	/* offset of first page in pagelist is always 0 */
931 	*page_offset = cursor->offset & ~PAGE_MASK;
932 	*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
933 	return cursor->page;
934 }
935 
936 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
937 						size_t bytes)
938 {
939 	struct ceph_msg_data *data = cursor->data;
940 	struct ceph_pagelist *pagelist;
941 
942 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
943 
944 	pagelist = data->pagelist;
945 	BUG_ON(!pagelist);
946 
947 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
948 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
949 
950 	/* Advance the cursor offset */
951 
952 	cursor->resid -= bytes;
953 	cursor->offset += bytes;
954 	/* offset of first page in pagelist is always 0 */
955 	if (!bytes || cursor->offset & ~PAGE_MASK)
956 		return false;	/* more bytes to process in the current page */
957 
958 	if (!cursor->resid)
959 		return false;   /* no more data */
960 
961 	/* Move on to the next page */
962 
963 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
964 	cursor->page = list_next_entry(cursor->page, lru);
965 	return true;
966 }
967 
968 /*
969  * Message data is handled (sent or received) in pieces, where each
970  * piece resides on a single page.  The network layer might not
971  * consume an entire piece at once.  A data item's cursor keeps
972  * track of which piece is next to process and how much remains to
973  * be processed in that piece.  It also tracks whether the current
974  * piece is the last one in the data item.
975  */
976 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
977 {
978 	size_t length = cursor->total_resid;
979 
980 	switch (cursor->data->type) {
981 	case CEPH_MSG_DATA_PAGELIST:
982 		ceph_msg_data_pagelist_cursor_init(cursor, length);
983 		break;
984 	case CEPH_MSG_DATA_PAGES:
985 		ceph_msg_data_pages_cursor_init(cursor, length);
986 		break;
987 #ifdef CONFIG_BLOCK
988 	case CEPH_MSG_DATA_BIO:
989 		ceph_msg_data_bio_cursor_init(cursor, length);
990 		break;
991 #endif /* CONFIG_BLOCK */
992 	case CEPH_MSG_DATA_BVECS:
993 		ceph_msg_data_bvecs_cursor_init(cursor, length);
994 		break;
995 	case CEPH_MSG_DATA_NONE:
996 	default:
997 		/* BUG(); */
998 		break;
999 	}
1000 	cursor->need_crc = true;
1001 }
1002 
1003 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1004 			       struct ceph_msg *msg, size_t length)
1005 {
1006 	BUG_ON(!length);
1007 	BUG_ON(length > msg->data_length);
1008 	BUG_ON(!msg->num_data_items);
1009 
1010 	cursor->total_resid = length;
1011 	cursor->data = msg->data;
1012 
1013 	__ceph_msg_data_cursor_init(cursor);
1014 }
1015 
1016 /*
1017  * Return the page containing the next piece to process for a given
1018  * data item, and supply the page offset and length of that piece.
1019  * Indicate whether this is the last piece in this data item.
1020  */
1021 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1022 				size_t *page_offset, size_t *length)
1023 {
1024 	struct page *page;
1025 
1026 	switch (cursor->data->type) {
1027 	case CEPH_MSG_DATA_PAGELIST:
1028 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1029 		break;
1030 	case CEPH_MSG_DATA_PAGES:
1031 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1032 		break;
1033 #ifdef CONFIG_BLOCK
1034 	case CEPH_MSG_DATA_BIO:
1035 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1036 		break;
1037 #endif /* CONFIG_BLOCK */
1038 	case CEPH_MSG_DATA_BVECS:
1039 		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1040 		break;
1041 	case CEPH_MSG_DATA_NONE:
1042 	default:
1043 		page = NULL;
1044 		break;
1045 	}
1046 
1047 	BUG_ON(!page);
1048 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1049 	BUG_ON(!*length);
1050 	BUG_ON(*length > cursor->resid);
1051 
1052 	return page;
1053 }
1054 
1055 /*
1056  * Returns true if the result moves the cursor on to the next piece
1057  * of the data item.
1058  */
1059 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1060 {
1061 	bool new_piece;
1062 
1063 	BUG_ON(bytes > cursor->resid);
1064 	switch (cursor->data->type) {
1065 	case CEPH_MSG_DATA_PAGELIST:
1066 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1067 		break;
1068 	case CEPH_MSG_DATA_PAGES:
1069 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1070 		break;
1071 #ifdef CONFIG_BLOCK
1072 	case CEPH_MSG_DATA_BIO:
1073 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1074 		break;
1075 #endif /* CONFIG_BLOCK */
1076 	case CEPH_MSG_DATA_BVECS:
1077 		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1078 		break;
1079 	case CEPH_MSG_DATA_NONE:
1080 	default:
1081 		BUG();
1082 		break;
1083 	}
1084 	cursor->total_resid -= bytes;
1085 
1086 	if (!cursor->resid && cursor->total_resid) {
1087 		cursor->data++;
1088 		__ceph_msg_data_cursor_init(cursor);
1089 		new_piece = true;
1090 	}
1091 	cursor->need_crc = new_piece;
1092 }
1093 
1094 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1095 		     unsigned int length)
1096 {
1097 	char *kaddr;
1098 
1099 	kaddr = kmap(page);
1100 	BUG_ON(kaddr == NULL);
1101 	crc = crc32c(crc, kaddr + page_offset, length);
1102 	kunmap(page);
1103 
1104 	return crc;
1105 }
1106 
1107 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1108 {
1109 	struct sockaddr_storage ss = addr->in_addr; /* align */
1110 	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1111 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1112 
1113 	switch (ss.ss_family) {
1114 	case AF_INET:
1115 		return addr4->s_addr == htonl(INADDR_ANY);
1116 	case AF_INET6:
1117 		return ipv6_addr_any(addr6);
1118 	default:
1119 		return true;
1120 	}
1121 }
1122 
1123 int ceph_addr_port(const struct ceph_entity_addr *addr)
1124 {
1125 	switch (get_unaligned(&addr->in_addr.ss_family)) {
1126 	case AF_INET:
1127 		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1128 	case AF_INET6:
1129 		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1130 	}
1131 	return 0;
1132 }
1133 
1134 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1135 {
1136 	switch (get_unaligned(&addr->in_addr.ss_family)) {
1137 	case AF_INET:
1138 		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1139 		break;
1140 	case AF_INET6:
1141 		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1142 		break;
1143 	}
1144 }
1145 
1146 /*
1147  * Unlike other *_pton function semantics, zero indicates success.
1148  */
1149 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1150 		char delim, const char **ipend)
1151 {
1152 	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1153 
1154 	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1155 		put_unaligned(AF_INET, &addr->in_addr.ss_family);
1156 		return 0;
1157 	}
1158 
1159 	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1160 		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1161 		return 0;
1162 	}
1163 
1164 	return -EINVAL;
1165 }
1166 
1167 /*
1168  * Extract hostname string and resolve using kernel DNS facility.
1169  */
1170 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1171 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1172 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1173 {
1174 	const char *end, *delim_p;
1175 	char *colon_p, *ip_addr = NULL;
1176 	int ip_len, ret;
1177 
1178 	/*
1179 	 * The end of the hostname occurs immediately preceding the delimiter or
1180 	 * the port marker (':') where the delimiter takes precedence.
1181 	 */
1182 	delim_p = memchr(name, delim, namelen);
1183 	colon_p = memchr(name, ':', namelen);
1184 
1185 	if (delim_p && colon_p)
1186 		end = delim_p < colon_p ? delim_p : colon_p;
1187 	else if (!delim_p && colon_p)
1188 		end = colon_p;
1189 	else {
1190 		end = delim_p;
1191 		if (!end) /* case: hostname:/ */
1192 			end = name + namelen;
1193 	}
1194 
1195 	if (end <= name)
1196 		return -EINVAL;
1197 
1198 	/* do dns_resolve upcall */
1199 	ip_len = dns_query(current->nsproxy->net_ns,
1200 			   NULL, name, end - name, NULL, &ip_addr, NULL, false);
1201 	if (ip_len > 0)
1202 		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1203 	else
1204 		ret = -ESRCH;
1205 
1206 	kfree(ip_addr);
1207 
1208 	*ipend = end;
1209 
1210 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1211 			ret, ret ? "failed" : ceph_pr_addr(addr));
1212 
1213 	return ret;
1214 }
1215 #else
1216 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1217 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1218 {
1219 	return -EINVAL;
1220 }
1221 #endif
1222 
1223 /*
1224  * Parse a server name (IP or hostname). If a valid IP address is not found
1225  * then try to extract a hostname to resolve using userspace DNS upcall.
1226  */
1227 static int ceph_parse_server_name(const char *name, size_t namelen,
1228 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1229 {
1230 	int ret;
1231 
1232 	ret = ceph_pton(name, namelen, addr, delim, ipend);
1233 	if (ret)
1234 		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1235 
1236 	return ret;
1237 }
1238 
1239 /*
1240  * Parse an ip[:port] list into an addr array.  Use the default
1241  * monitor port if a port isn't specified.
1242  */
1243 int ceph_parse_ips(const char *c, const char *end,
1244 		   struct ceph_entity_addr *addr,
1245 		   int max_count, int *count, char delim)
1246 {
1247 	int i, ret = -EINVAL;
1248 	const char *p = c;
1249 
1250 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1251 	for (i = 0; i < max_count; i++) {
1252 		char cur_delim = delim;
1253 		const char *ipend;
1254 		int port;
1255 
1256 		if (*p == '[') {
1257 			cur_delim = ']';
1258 			p++;
1259 		}
1260 
1261 		ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1262 					     &ipend);
1263 		if (ret)
1264 			goto bad;
1265 		ret = -EINVAL;
1266 
1267 		p = ipend;
1268 
1269 		if (cur_delim == ']') {
1270 			if (*p != ']') {
1271 				dout("missing matching ']'\n");
1272 				goto bad;
1273 			}
1274 			p++;
1275 		}
1276 
1277 		/* port? */
1278 		if (p < end && *p == ':') {
1279 			port = 0;
1280 			p++;
1281 			while (p < end && *p >= '0' && *p <= '9') {
1282 				port = (port * 10) + (*p - '0');
1283 				p++;
1284 			}
1285 			if (port == 0)
1286 				port = CEPH_MON_PORT;
1287 			else if (port > 65535)
1288 				goto bad;
1289 		} else {
1290 			port = CEPH_MON_PORT;
1291 		}
1292 
1293 		ceph_addr_set_port(&addr[i], port);
1294 		/*
1295 		 * We want the type to be set according to ms_mode
1296 		 * option, but options are normally parsed after mon
1297 		 * addresses.  Rather than complicating parsing, set
1298 		 * to LEGACY and override in build_initial_monmap()
1299 		 * for mon addresses and ceph_messenger_init() for
1300 		 * ip option.
1301 		 */
1302 		addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1303 		addr[i].nonce = 0;
1304 
1305 		dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1306 
1307 		if (p == end)
1308 			break;
1309 		if (*p != delim)
1310 			goto bad;
1311 		p++;
1312 	}
1313 
1314 	if (p != end)
1315 		goto bad;
1316 
1317 	if (count)
1318 		*count = i + 1;
1319 	return 0;
1320 
1321 bad:
1322 	return ret;
1323 }
1324 
1325 /*
1326  * Process message.  This happens in the worker thread.  The callback should
1327  * be careful not to do anything that waits on other incoming messages or it
1328  * may deadlock.
1329  */
1330 void ceph_con_process_message(struct ceph_connection *con)
1331 {
1332 	struct ceph_msg *msg = con->in_msg;
1333 
1334 	BUG_ON(con->in_msg->con != con);
1335 	con->in_msg = NULL;
1336 
1337 	/* if first message, set peer_name */
1338 	if (con->peer_name.type == 0)
1339 		con->peer_name = msg->hdr.src;
1340 
1341 	con->in_seq++;
1342 	mutex_unlock(&con->mutex);
1343 
1344 	dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1345 	     msg, le64_to_cpu(msg->hdr.seq),
1346 	     ENTITY_NAME(msg->hdr.src),
1347 	     le16_to_cpu(msg->hdr.type),
1348 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1349 	     le32_to_cpu(msg->hdr.front_len),
1350 	     le32_to_cpu(msg->hdr.middle_len),
1351 	     le32_to_cpu(msg->hdr.data_len),
1352 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1353 	con->ops->dispatch(con, msg);
1354 
1355 	mutex_lock(&con->mutex);
1356 }
1357 
1358 /*
1359  * Atomically queue work on a connection after the specified delay.
1360  * Bump @con reference to avoid races with connection teardown.
1361  * Returns 0 if work was queued, or an error code otherwise.
1362  */
1363 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1364 {
1365 	if (!con->ops->get(con)) {
1366 		dout("%s %p ref count 0\n", __func__, con);
1367 		return -ENOENT;
1368 	}
1369 
1370 	if (delay >= HZ)
1371 		delay = round_jiffies_relative(delay);
1372 
1373 	dout("%s %p %lu\n", __func__, con, delay);
1374 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1375 		dout("%s %p - already queued\n", __func__, con);
1376 		con->ops->put(con);
1377 		return -EBUSY;
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 static void queue_con(struct ceph_connection *con)
1384 {
1385 	(void) queue_con_delay(con, 0);
1386 }
1387 
1388 static void cancel_con(struct ceph_connection *con)
1389 {
1390 	if (cancel_delayed_work(&con->work)) {
1391 		dout("%s %p\n", __func__, con);
1392 		con->ops->put(con);
1393 	}
1394 }
1395 
1396 static bool con_sock_closed(struct ceph_connection *con)
1397 {
1398 	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1399 		return false;
1400 
1401 #define CASE(x)								\
1402 	case CEPH_CON_S_ ## x:						\
1403 		con->error_msg = "socket closed (con state " #x ")";	\
1404 		break;
1405 
1406 	switch (con->state) {
1407 	CASE(CLOSED);
1408 	CASE(PREOPEN);
1409 	CASE(V1_BANNER);
1410 	CASE(V1_CONNECT_MSG);
1411 	CASE(V2_BANNER_PREFIX);
1412 	CASE(V2_BANNER_PAYLOAD);
1413 	CASE(V2_HELLO);
1414 	CASE(V2_AUTH);
1415 	CASE(V2_AUTH_SIGNATURE);
1416 	CASE(V2_SESSION_CONNECT);
1417 	CASE(V2_SESSION_RECONNECT);
1418 	CASE(OPEN);
1419 	CASE(STANDBY);
1420 	default:
1421 		BUG();
1422 	}
1423 #undef CASE
1424 
1425 	return true;
1426 }
1427 
1428 static bool con_backoff(struct ceph_connection *con)
1429 {
1430 	int ret;
1431 
1432 	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1433 		return false;
1434 
1435 	ret = queue_con_delay(con, con->delay);
1436 	if (ret) {
1437 		dout("%s: con %p FAILED to back off %lu\n", __func__,
1438 			con, con->delay);
1439 		BUG_ON(ret == -ENOENT);
1440 		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1441 	}
1442 
1443 	return true;
1444 }
1445 
1446 /* Finish fault handling; con->mutex must *not* be held here */
1447 
1448 static void con_fault_finish(struct ceph_connection *con)
1449 {
1450 	dout("%s %p\n", __func__, con);
1451 
1452 	/*
1453 	 * in case we faulted due to authentication, invalidate our
1454 	 * current tickets so that we can get new ones.
1455 	 */
1456 	if (con->v1.auth_retry) {
1457 		dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1458 		if (con->ops->invalidate_authorizer)
1459 			con->ops->invalidate_authorizer(con);
1460 		con->v1.auth_retry = 0;
1461 	}
1462 
1463 	if (con->ops->fault)
1464 		con->ops->fault(con);
1465 }
1466 
1467 /*
1468  * Do some work on a connection.  Drop a connection ref when we're done.
1469  */
1470 static void ceph_con_workfn(struct work_struct *work)
1471 {
1472 	struct ceph_connection *con = container_of(work, struct ceph_connection,
1473 						   work.work);
1474 	bool fault;
1475 
1476 	mutex_lock(&con->mutex);
1477 	while (true) {
1478 		int ret;
1479 
1480 		if ((fault = con_sock_closed(con))) {
1481 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1482 			break;
1483 		}
1484 		if (con_backoff(con)) {
1485 			dout("%s: con %p BACKOFF\n", __func__, con);
1486 			break;
1487 		}
1488 		if (con->state == CEPH_CON_S_STANDBY) {
1489 			dout("%s: con %p STANDBY\n", __func__, con);
1490 			break;
1491 		}
1492 		if (con->state == CEPH_CON_S_CLOSED) {
1493 			dout("%s: con %p CLOSED\n", __func__, con);
1494 			BUG_ON(con->sock);
1495 			break;
1496 		}
1497 		if (con->state == CEPH_CON_S_PREOPEN) {
1498 			dout("%s: con %p PREOPEN\n", __func__, con);
1499 			BUG_ON(con->sock);
1500 		}
1501 
1502 		if (ceph_msgr2(from_msgr(con->msgr)))
1503 			ret = ceph_con_v2_try_read(con);
1504 		else
1505 			ret = ceph_con_v1_try_read(con);
1506 		if (ret < 0) {
1507 			if (ret == -EAGAIN)
1508 				continue;
1509 			if (!con->error_msg)
1510 				con->error_msg = "socket error on read";
1511 			fault = true;
1512 			break;
1513 		}
1514 
1515 		if (ceph_msgr2(from_msgr(con->msgr)))
1516 			ret = ceph_con_v2_try_write(con);
1517 		else
1518 			ret = ceph_con_v1_try_write(con);
1519 		if (ret < 0) {
1520 			if (ret == -EAGAIN)
1521 				continue;
1522 			if (!con->error_msg)
1523 				con->error_msg = "socket error on write";
1524 			fault = true;
1525 		}
1526 
1527 		break;	/* If we make it to here, we're done */
1528 	}
1529 	if (fault)
1530 		con_fault(con);
1531 	mutex_unlock(&con->mutex);
1532 
1533 	if (fault)
1534 		con_fault_finish(con);
1535 
1536 	con->ops->put(con);
1537 }
1538 
1539 /*
1540  * Generic error/fault handler.  A retry mechanism is used with
1541  * exponential backoff
1542  */
1543 static void con_fault(struct ceph_connection *con)
1544 {
1545 	dout("fault %p state %d to peer %s\n",
1546 	     con, con->state, ceph_pr_addr(&con->peer_addr));
1547 
1548 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1549 		ceph_pr_addr(&con->peer_addr), con->error_msg);
1550 	con->error_msg = NULL;
1551 
1552 	WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1553 		con->state == CEPH_CON_S_CLOSED);
1554 
1555 	ceph_con_reset_protocol(con);
1556 
1557 	if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1558 		dout("fault on LOSSYTX channel, marking CLOSED\n");
1559 		con->state = CEPH_CON_S_CLOSED;
1560 		return;
1561 	}
1562 
1563 	/* Requeue anything that hasn't been acked */
1564 	list_splice_init(&con->out_sent, &con->out_queue);
1565 
1566 	/* If there are no messages queued or keepalive pending, place
1567 	 * the connection in a STANDBY state */
1568 	if (list_empty(&con->out_queue) &&
1569 	    !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1570 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1571 		ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1572 		con->state = CEPH_CON_S_STANDBY;
1573 	} else {
1574 		/* retry after a delay. */
1575 		con->state = CEPH_CON_S_PREOPEN;
1576 		if (!con->delay) {
1577 			con->delay = BASE_DELAY_INTERVAL;
1578 		} else if (con->delay < MAX_DELAY_INTERVAL) {
1579 			con->delay *= 2;
1580 			if (con->delay > MAX_DELAY_INTERVAL)
1581 				con->delay = MAX_DELAY_INTERVAL;
1582 		}
1583 		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1584 		queue_con(con);
1585 	}
1586 }
1587 
1588 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1589 {
1590 	u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1591 	msgr->inst.addr.nonce = cpu_to_le32(nonce);
1592 	ceph_encode_my_addr(msgr);
1593 }
1594 
1595 /*
1596  * initialize a new messenger instance
1597  */
1598 void ceph_messenger_init(struct ceph_messenger *msgr,
1599 			 struct ceph_entity_addr *myaddr)
1600 {
1601 	spin_lock_init(&msgr->global_seq_lock);
1602 
1603 	if (myaddr) {
1604 		memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1605 		       sizeof(msgr->inst.addr.in_addr));
1606 		ceph_addr_set_port(&msgr->inst.addr, 0);
1607 	}
1608 
1609 	/*
1610 	 * Since nautilus, clients are identified using type ANY.
1611 	 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1612 	 */
1613 	msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1614 
1615 	/* generate a random non-zero nonce */
1616 	do {
1617 		get_random_bytes(&msgr->inst.addr.nonce,
1618 				 sizeof(msgr->inst.addr.nonce));
1619 	} while (!msgr->inst.addr.nonce);
1620 	ceph_encode_my_addr(msgr);
1621 
1622 	atomic_set(&msgr->stopping, 0);
1623 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1624 
1625 	dout("%s %p\n", __func__, msgr);
1626 }
1627 
1628 void ceph_messenger_fini(struct ceph_messenger *msgr)
1629 {
1630 	put_net(read_pnet(&msgr->net));
1631 }
1632 
1633 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1634 {
1635 	if (msg->con)
1636 		msg->con->ops->put(msg->con);
1637 
1638 	msg->con = con ? con->ops->get(con) : NULL;
1639 	BUG_ON(msg->con != con);
1640 }
1641 
1642 static void clear_standby(struct ceph_connection *con)
1643 {
1644 	/* come back from STANDBY? */
1645 	if (con->state == CEPH_CON_S_STANDBY) {
1646 		dout("clear_standby %p and ++connect_seq\n", con);
1647 		con->state = CEPH_CON_S_PREOPEN;
1648 		con->v1.connect_seq++;
1649 		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1650 		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1651 	}
1652 }
1653 
1654 /*
1655  * Queue up an outgoing message on the given connection.
1656  *
1657  * Consumes a ref on @msg.
1658  */
1659 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1660 {
1661 	/* set src+dst */
1662 	msg->hdr.src = con->msgr->inst.name;
1663 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1664 	msg->needs_out_seq = true;
1665 
1666 	mutex_lock(&con->mutex);
1667 
1668 	if (con->state == CEPH_CON_S_CLOSED) {
1669 		dout("con_send %p closed, dropping %p\n", con, msg);
1670 		ceph_msg_put(msg);
1671 		mutex_unlock(&con->mutex);
1672 		return;
1673 	}
1674 
1675 	msg_con_set(msg, con);
1676 
1677 	BUG_ON(!list_empty(&msg->list_head));
1678 	list_add_tail(&msg->list_head, &con->out_queue);
1679 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1680 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1681 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1682 	     le32_to_cpu(msg->hdr.front_len),
1683 	     le32_to_cpu(msg->hdr.middle_len),
1684 	     le32_to_cpu(msg->hdr.data_len));
1685 
1686 	clear_standby(con);
1687 	mutex_unlock(&con->mutex);
1688 
1689 	/* if there wasn't anything waiting to send before, queue
1690 	 * new work */
1691 	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1692 		queue_con(con);
1693 }
1694 EXPORT_SYMBOL(ceph_con_send);
1695 
1696 /*
1697  * Revoke a message that was previously queued for send
1698  */
1699 void ceph_msg_revoke(struct ceph_msg *msg)
1700 {
1701 	struct ceph_connection *con = msg->con;
1702 
1703 	if (!con) {
1704 		dout("%s msg %p null con\n", __func__, msg);
1705 		return;		/* Message not in our possession */
1706 	}
1707 
1708 	mutex_lock(&con->mutex);
1709 	if (list_empty(&msg->list_head)) {
1710 		WARN_ON(con->out_msg == msg);
1711 		dout("%s con %p msg %p not linked\n", __func__, con, msg);
1712 		mutex_unlock(&con->mutex);
1713 		return;
1714 	}
1715 
1716 	dout("%s con %p msg %p was linked\n", __func__, con, msg);
1717 	msg->hdr.seq = 0;
1718 	ceph_msg_remove(msg);
1719 
1720 	if (con->out_msg == msg) {
1721 		WARN_ON(con->state != CEPH_CON_S_OPEN);
1722 		dout("%s con %p msg %p was sending\n", __func__, con, msg);
1723 		if (ceph_msgr2(from_msgr(con->msgr)))
1724 			ceph_con_v2_revoke(con);
1725 		else
1726 			ceph_con_v1_revoke(con);
1727 		ceph_msg_put(con->out_msg);
1728 		con->out_msg = NULL;
1729 	} else {
1730 		dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1731 		     con, msg, con->out_msg);
1732 	}
1733 	mutex_unlock(&con->mutex);
1734 }
1735 
1736 /*
1737  * Revoke a message that we may be reading data into
1738  */
1739 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1740 {
1741 	struct ceph_connection *con = msg->con;
1742 
1743 	if (!con) {
1744 		dout("%s msg %p null con\n", __func__, msg);
1745 		return;		/* Message not in our possession */
1746 	}
1747 
1748 	mutex_lock(&con->mutex);
1749 	if (con->in_msg == msg) {
1750 		WARN_ON(con->state != CEPH_CON_S_OPEN);
1751 		dout("%s con %p msg %p was recving\n", __func__, con, msg);
1752 		if (ceph_msgr2(from_msgr(con->msgr)))
1753 			ceph_con_v2_revoke_incoming(con);
1754 		else
1755 			ceph_con_v1_revoke_incoming(con);
1756 		ceph_msg_put(con->in_msg);
1757 		con->in_msg = NULL;
1758 	} else {
1759 		dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1760 		     con, msg, con->in_msg);
1761 	}
1762 	mutex_unlock(&con->mutex);
1763 }
1764 
1765 /*
1766  * Queue a keepalive byte to ensure the tcp connection is alive.
1767  */
1768 void ceph_con_keepalive(struct ceph_connection *con)
1769 {
1770 	dout("con_keepalive %p\n", con);
1771 	mutex_lock(&con->mutex);
1772 	clear_standby(con);
1773 	ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1774 	mutex_unlock(&con->mutex);
1775 
1776 	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1777 		queue_con(con);
1778 }
1779 EXPORT_SYMBOL(ceph_con_keepalive);
1780 
1781 bool ceph_con_keepalive_expired(struct ceph_connection *con,
1782 			       unsigned long interval)
1783 {
1784 	if (interval > 0 &&
1785 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1786 		struct timespec64 now;
1787 		struct timespec64 ts;
1788 		ktime_get_real_ts64(&now);
1789 		jiffies_to_timespec64(interval, &ts);
1790 		ts = timespec64_add(con->last_keepalive_ack, ts);
1791 		return timespec64_compare(&now, &ts) >= 0;
1792 	}
1793 	return false;
1794 }
1795 
1796 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1797 {
1798 	BUG_ON(msg->num_data_items >= msg->max_data_items);
1799 	return &msg->data[msg->num_data_items++];
1800 }
1801 
1802 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1803 {
1804 	if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1805 		int num_pages = calc_pages_for(data->alignment, data->length);
1806 		ceph_release_page_vector(data->pages, num_pages);
1807 	} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1808 		ceph_pagelist_release(data->pagelist);
1809 	}
1810 }
1811 
1812 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1813 			     size_t length, size_t alignment, bool own_pages)
1814 {
1815 	struct ceph_msg_data *data;
1816 
1817 	BUG_ON(!pages);
1818 	BUG_ON(!length);
1819 
1820 	data = ceph_msg_data_add(msg);
1821 	data->type = CEPH_MSG_DATA_PAGES;
1822 	data->pages = pages;
1823 	data->length = length;
1824 	data->alignment = alignment & ~PAGE_MASK;
1825 	data->own_pages = own_pages;
1826 
1827 	msg->data_length += length;
1828 }
1829 EXPORT_SYMBOL(ceph_msg_data_add_pages);
1830 
1831 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1832 				struct ceph_pagelist *pagelist)
1833 {
1834 	struct ceph_msg_data *data;
1835 
1836 	BUG_ON(!pagelist);
1837 	BUG_ON(!pagelist->length);
1838 
1839 	data = ceph_msg_data_add(msg);
1840 	data->type = CEPH_MSG_DATA_PAGELIST;
1841 	refcount_inc(&pagelist->refcnt);
1842 	data->pagelist = pagelist;
1843 
1844 	msg->data_length += pagelist->length;
1845 }
1846 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1847 
1848 #ifdef	CONFIG_BLOCK
1849 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1850 			   u32 length)
1851 {
1852 	struct ceph_msg_data *data;
1853 
1854 	data = ceph_msg_data_add(msg);
1855 	data->type = CEPH_MSG_DATA_BIO;
1856 	data->bio_pos = *bio_pos;
1857 	data->bio_length = length;
1858 
1859 	msg->data_length += length;
1860 }
1861 EXPORT_SYMBOL(ceph_msg_data_add_bio);
1862 #endif	/* CONFIG_BLOCK */
1863 
1864 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1865 			     struct ceph_bvec_iter *bvec_pos)
1866 {
1867 	struct ceph_msg_data *data;
1868 
1869 	data = ceph_msg_data_add(msg);
1870 	data->type = CEPH_MSG_DATA_BVECS;
1871 	data->bvec_pos = *bvec_pos;
1872 
1873 	msg->data_length += bvec_pos->iter.bi_size;
1874 }
1875 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1876 
1877 /*
1878  * construct a new message with given type, size
1879  * the new msg has a ref count of 1.
1880  */
1881 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1882 			       gfp_t flags, bool can_fail)
1883 {
1884 	struct ceph_msg *m;
1885 
1886 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
1887 	if (m == NULL)
1888 		goto out;
1889 
1890 	m->hdr.type = cpu_to_le16(type);
1891 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1892 	m->hdr.front_len = cpu_to_le32(front_len);
1893 
1894 	INIT_LIST_HEAD(&m->list_head);
1895 	kref_init(&m->kref);
1896 
1897 	/* front */
1898 	if (front_len) {
1899 		m->front.iov_base = kvmalloc(front_len, flags);
1900 		if (m->front.iov_base == NULL) {
1901 			dout("ceph_msg_new can't allocate %d bytes\n",
1902 			     front_len);
1903 			goto out2;
1904 		}
1905 	} else {
1906 		m->front.iov_base = NULL;
1907 	}
1908 	m->front_alloc_len = m->front.iov_len = front_len;
1909 
1910 	if (max_data_items) {
1911 		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1912 					flags);
1913 		if (!m->data)
1914 			goto out2;
1915 
1916 		m->max_data_items = max_data_items;
1917 	}
1918 
1919 	dout("ceph_msg_new %p front %d\n", m, front_len);
1920 	return m;
1921 
1922 out2:
1923 	ceph_msg_put(m);
1924 out:
1925 	if (!can_fail) {
1926 		pr_err("msg_new can't create type %d front %d\n", type,
1927 		       front_len);
1928 		WARN_ON(1);
1929 	} else {
1930 		dout("msg_new can't create type %d front %d\n", type,
1931 		     front_len);
1932 	}
1933 	return NULL;
1934 }
1935 EXPORT_SYMBOL(ceph_msg_new2);
1936 
1937 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1938 			      bool can_fail)
1939 {
1940 	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1941 }
1942 EXPORT_SYMBOL(ceph_msg_new);
1943 
1944 /*
1945  * Allocate "middle" portion of a message, if it is needed and wasn't
1946  * allocated by alloc_msg.  This allows us to read a small fixed-size
1947  * per-type header in the front and then gracefully fail (i.e.,
1948  * propagate the error to the caller based on info in the front) when
1949  * the middle is too large.
1950  */
1951 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1952 {
1953 	int type = le16_to_cpu(msg->hdr.type);
1954 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
1955 
1956 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1957 	     ceph_msg_type_name(type), middle_len);
1958 	BUG_ON(!middle_len);
1959 	BUG_ON(msg->middle);
1960 
1961 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1962 	if (!msg->middle)
1963 		return -ENOMEM;
1964 	return 0;
1965 }
1966 
1967 /*
1968  * Allocate a message for receiving an incoming message on a
1969  * connection, and save the result in con->in_msg.  Uses the
1970  * connection's private alloc_msg op if available.
1971  *
1972  * Returns 0 on success, or a negative error code.
1973  *
1974  * On success, if we set *skip = 1:
1975  *  - the next message should be skipped and ignored.
1976  *  - con->in_msg == NULL
1977  * or if we set *skip = 0:
1978  *  - con->in_msg is non-null.
1979  * On error (ENOMEM, EAGAIN, ...),
1980  *  - con->in_msg == NULL
1981  */
1982 int ceph_con_in_msg_alloc(struct ceph_connection *con,
1983 			  struct ceph_msg_header *hdr, int *skip)
1984 {
1985 	int middle_len = le32_to_cpu(hdr->middle_len);
1986 	struct ceph_msg *msg;
1987 	int ret = 0;
1988 
1989 	BUG_ON(con->in_msg != NULL);
1990 	BUG_ON(!con->ops->alloc_msg);
1991 
1992 	mutex_unlock(&con->mutex);
1993 	msg = con->ops->alloc_msg(con, hdr, skip);
1994 	mutex_lock(&con->mutex);
1995 	if (con->state != CEPH_CON_S_OPEN) {
1996 		if (msg)
1997 			ceph_msg_put(msg);
1998 		return -EAGAIN;
1999 	}
2000 	if (msg) {
2001 		BUG_ON(*skip);
2002 		msg_con_set(msg, con);
2003 		con->in_msg = msg;
2004 	} else {
2005 		/*
2006 		 * Null message pointer means either we should skip
2007 		 * this message or we couldn't allocate memory.  The
2008 		 * former is not an error.
2009 		 */
2010 		if (*skip)
2011 			return 0;
2012 
2013 		con->error_msg = "error allocating memory for incoming message";
2014 		return -ENOMEM;
2015 	}
2016 	memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2017 
2018 	if (middle_len && !con->in_msg->middle) {
2019 		ret = ceph_alloc_middle(con, con->in_msg);
2020 		if (ret < 0) {
2021 			ceph_msg_put(con->in_msg);
2022 			con->in_msg = NULL;
2023 		}
2024 	}
2025 
2026 	return ret;
2027 }
2028 
2029 void ceph_con_get_out_msg(struct ceph_connection *con)
2030 {
2031 	struct ceph_msg *msg;
2032 
2033 	BUG_ON(list_empty(&con->out_queue));
2034 	msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2035 	WARN_ON(msg->con != con);
2036 
2037 	/*
2038 	 * Put the message on "sent" list using a ref from ceph_con_send().
2039 	 * It is put when the message is acked or revoked.
2040 	 */
2041 	list_move_tail(&msg->list_head, &con->out_sent);
2042 
2043 	/*
2044 	 * Only assign outgoing seq # if we haven't sent this message
2045 	 * yet.  If it is requeued, resend with it's original seq.
2046 	 */
2047 	if (msg->needs_out_seq) {
2048 		msg->hdr.seq = cpu_to_le64(++con->out_seq);
2049 		msg->needs_out_seq = false;
2050 
2051 		if (con->ops->reencode_message)
2052 			con->ops->reencode_message(msg);
2053 	}
2054 
2055 	/*
2056 	 * Get a ref for out_msg.  It is put when we are done sending the
2057 	 * message or in case of a fault.
2058 	 */
2059 	WARN_ON(con->out_msg);
2060 	con->out_msg = ceph_msg_get(msg);
2061 }
2062 
2063 /*
2064  * Free a generically kmalloc'd message.
2065  */
2066 static void ceph_msg_free(struct ceph_msg *m)
2067 {
2068 	dout("%s %p\n", __func__, m);
2069 	kvfree(m->front.iov_base);
2070 	kfree(m->data);
2071 	kmem_cache_free(ceph_msg_cache, m);
2072 }
2073 
2074 static void ceph_msg_release(struct kref *kref)
2075 {
2076 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2077 	int i;
2078 
2079 	dout("%s %p\n", __func__, m);
2080 	WARN_ON(!list_empty(&m->list_head));
2081 
2082 	msg_con_set(m, NULL);
2083 
2084 	/* drop middle, data, if any */
2085 	if (m->middle) {
2086 		ceph_buffer_put(m->middle);
2087 		m->middle = NULL;
2088 	}
2089 
2090 	for (i = 0; i < m->num_data_items; i++)
2091 		ceph_msg_data_destroy(&m->data[i]);
2092 
2093 	if (m->pool)
2094 		ceph_msgpool_put(m->pool, m);
2095 	else
2096 		ceph_msg_free(m);
2097 }
2098 
2099 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2100 {
2101 	dout("%s %p (was %d)\n", __func__, msg,
2102 	     kref_read(&msg->kref));
2103 	kref_get(&msg->kref);
2104 	return msg;
2105 }
2106 EXPORT_SYMBOL(ceph_msg_get);
2107 
2108 void ceph_msg_put(struct ceph_msg *msg)
2109 {
2110 	dout("%s %p (was %d)\n", __func__, msg,
2111 	     kref_read(&msg->kref));
2112 	kref_put(&msg->kref, ceph_msg_release);
2113 }
2114 EXPORT_SYMBOL(ceph_msg_put);
2115 
2116 void ceph_msg_dump(struct ceph_msg *msg)
2117 {
2118 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2119 		 msg->front_alloc_len, msg->data_length);
2120 	print_hex_dump(KERN_DEBUG, "header: ",
2121 		       DUMP_PREFIX_OFFSET, 16, 1,
2122 		       &msg->hdr, sizeof(msg->hdr), true);
2123 	print_hex_dump(KERN_DEBUG, " front: ",
2124 		       DUMP_PREFIX_OFFSET, 16, 1,
2125 		       msg->front.iov_base, msg->front.iov_len, true);
2126 	if (msg->middle)
2127 		print_hex_dump(KERN_DEBUG, "middle: ",
2128 			       DUMP_PREFIX_OFFSET, 16, 1,
2129 			       msg->middle->vec.iov_base,
2130 			       msg->middle->vec.iov_len, true);
2131 	print_hex_dump(KERN_DEBUG, "footer: ",
2132 		       DUMP_PREFIX_OFFSET, 16, 1,
2133 		       &msg->footer, sizeof(msg->footer), true);
2134 }
2135 EXPORT_SYMBOL(ceph_msg_dump);
2136