xref: /linux/net/ceph/messenger.c (revision 165f2d2858013253042809df082b8df7e34e86d7)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 static void queue_con(struct ceph_connection *con);
171 static void cancel_con(struct ceph_connection *con);
172 static void ceph_con_workfn(struct work_struct *);
173 static void con_fault(struct ceph_connection *con);
174 
175 /*
176  * Nicely render a sockaddr as a string.  An array of formatted
177  * strings is used, to approximate reentrancy.
178  */
179 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
180 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
181 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
182 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
183 
184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
185 static atomic_t addr_str_seq = ATOMIC_INIT(0);
186 
187 static struct page *zero_page;		/* used in certain error cases */
188 
189 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
190 {
191 	int i;
192 	char *s;
193 	struct sockaddr_storage ss = addr->in_addr; /* align */
194 	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
195 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
196 
197 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
198 	s = addr_str[i];
199 
200 	switch (ss.ss_family) {
201 	case AF_INET:
202 		snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
203 			 le32_to_cpu(addr->type), &in4->sin_addr,
204 			 ntohs(in4->sin_port));
205 		break;
206 
207 	case AF_INET6:
208 		snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
209 			 le32_to_cpu(addr->type), &in6->sin6_addr,
210 			 ntohs(in6->sin6_port));
211 		break;
212 
213 	default:
214 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
215 			 ss.ss_family);
216 	}
217 
218 	return s;
219 }
220 EXPORT_SYMBOL(ceph_pr_addr);
221 
222 static void encode_my_addr(struct ceph_messenger *msgr)
223 {
224 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
225 	ceph_encode_banner_addr(&msgr->my_enc_addr);
226 }
227 
228 /*
229  * work queue for all reading and writing to/from the socket.
230  */
231 static struct workqueue_struct *ceph_msgr_wq;
232 
233 static int ceph_msgr_slab_init(void)
234 {
235 	BUG_ON(ceph_msg_cache);
236 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
237 	if (!ceph_msg_cache)
238 		return -ENOMEM;
239 
240 	return 0;
241 }
242 
243 static void ceph_msgr_slab_exit(void)
244 {
245 	BUG_ON(!ceph_msg_cache);
246 	kmem_cache_destroy(ceph_msg_cache);
247 	ceph_msg_cache = NULL;
248 }
249 
250 static void _ceph_msgr_exit(void)
251 {
252 	if (ceph_msgr_wq) {
253 		destroy_workqueue(ceph_msgr_wq);
254 		ceph_msgr_wq = NULL;
255 	}
256 
257 	BUG_ON(zero_page == NULL);
258 	put_page(zero_page);
259 	zero_page = NULL;
260 
261 	ceph_msgr_slab_exit();
262 }
263 
264 int __init ceph_msgr_init(void)
265 {
266 	if (ceph_msgr_slab_init())
267 		return -ENOMEM;
268 
269 	BUG_ON(zero_page != NULL);
270 	zero_page = ZERO_PAGE(0);
271 	get_page(zero_page);
272 
273 	/*
274 	 * The number of active work items is limited by the number of
275 	 * connections, so leave @max_active at default.
276 	 */
277 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
278 	if (ceph_msgr_wq)
279 		return 0;
280 
281 	pr_err("msgr_init failed to create workqueue\n");
282 	_ceph_msgr_exit();
283 
284 	return -ENOMEM;
285 }
286 
287 void ceph_msgr_exit(void)
288 {
289 	BUG_ON(ceph_msgr_wq == NULL);
290 
291 	_ceph_msgr_exit();
292 }
293 
294 void ceph_msgr_flush(void)
295 {
296 	flush_workqueue(ceph_msgr_wq);
297 }
298 EXPORT_SYMBOL(ceph_msgr_flush);
299 
300 /* Connection socket state transition functions */
301 
302 static void con_sock_state_init(struct ceph_connection *con)
303 {
304 	int old_state;
305 
306 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
307 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
308 		printk("%s: unexpected old state %d\n", __func__, old_state);
309 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310 	     CON_SOCK_STATE_CLOSED);
311 }
312 
313 static void con_sock_state_connecting(struct ceph_connection *con)
314 {
315 	int old_state;
316 
317 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
318 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
319 		printk("%s: unexpected old state %d\n", __func__, old_state);
320 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
321 	     CON_SOCK_STATE_CONNECTING);
322 }
323 
324 static void con_sock_state_connected(struct ceph_connection *con)
325 {
326 	int old_state;
327 
328 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
329 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
330 		printk("%s: unexpected old state %d\n", __func__, old_state);
331 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332 	     CON_SOCK_STATE_CONNECTED);
333 }
334 
335 static void con_sock_state_closing(struct ceph_connection *con)
336 {
337 	int old_state;
338 
339 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
340 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
341 			old_state != CON_SOCK_STATE_CONNECTED &&
342 			old_state != CON_SOCK_STATE_CLOSING))
343 		printk("%s: unexpected old state %d\n", __func__, old_state);
344 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 	     CON_SOCK_STATE_CLOSING);
346 }
347 
348 static void con_sock_state_closed(struct ceph_connection *con)
349 {
350 	int old_state;
351 
352 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
353 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
354 		    old_state != CON_SOCK_STATE_CLOSING &&
355 		    old_state != CON_SOCK_STATE_CONNECTING &&
356 		    old_state != CON_SOCK_STATE_CLOSED))
357 		printk("%s: unexpected old state %d\n", __func__, old_state);
358 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
359 	     CON_SOCK_STATE_CLOSED);
360 }
361 
362 /*
363  * socket callback functions
364  */
365 
366 /* data available on socket, or listen socket received a connect */
367 static void ceph_sock_data_ready(struct sock *sk)
368 {
369 	struct ceph_connection *con = sk->sk_user_data;
370 	if (atomic_read(&con->msgr->stopping)) {
371 		return;
372 	}
373 
374 	if (sk->sk_state != TCP_CLOSE_WAIT) {
375 		dout("%s on %p state = %lu, queueing work\n", __func__,
376 		     con, con->state);
377 		queue_con(con);
378 	}
379 }
380 
381 /* socket has buffer space for writing */
382 static void ceph_sock_write_space(struct sock *sk)
383 {
384 	struct ceph_connection *con = sk->sk_user_data;
385 
386 	/* only queue to workqueue if there is data we want to write,
387 	 * and there is sufficient space in the socket buffer to accept
388 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
389 	 * doesn't get called again until try_write() fills the socket
390 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
391 	 * and net/core/stream.c:sk_stream_write_space().
392 	 */
393 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
394 		if (sk_stream_is_writeable(sk)) {
395 			dout("%s %p queueing write work\n", __func__, con);
396 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
397 			queue_con(con);
398 		}
399 	} else {
400 		dout("%s %p nothing to write\n", __func__, con);
401 	}
402 }
403 
404 /* socket's state has changed */
405 static void ceph_sock_state_change(struct sock *sk)
406 {
407 	struct ceph_connection *con = sk->sk_user_data;
408 
409 	dout("%s %p state = %lu sk_state = %u\n", __func__,
410 	     con, con->state, sk->sk_state);
411 
412 	switch (sk->sk_state) {
413 	case TCP_CLOSE:
414 		dout("%s TCP_CLOSE\n", __func__);
415 		/* fall through */
416 	case TCP_CLOSE_WAIT:
417 		dout("%s TCP_CLOSE_WAIT\n", __func__);
418 		con_sock_state_closing(con);
419 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
420 		queue_con(con);
421 		break;
422 	case TCP_ESTABLISHED:
423 		dout("%s TCP_ESTABLISHED\n", __func__);
424 		con_sock_state_connected(con);
425 		queue_con(con);
426 		break;
427 	default:	/* Everything else is uninteresting */
428 		break;
429 	}
430 }
431 
432 /*
433  * set up socket callbacks
434  */
435 static void set_sock_callbacks(struct socket *sock,
436 			       struct ceph_connection *con)
437 {
438 	struct sock *sk = sock->sk;
439 	sk->sk_user_data = con;
440 	sk->sk_data_ready = ceph_sock_data_ready;
441 	sk->sk_write_space = ceph_sock_write_space;
442 	sk->sk_state_change = ceph_sock_state_change;
443 }
444 
445 
446 /*
447  * socket helpers
448  */
449 
450 /*
451  * initiate connection to a remote socket.
452  */
453 static int ceph_tcp_connect(struct ceph_connection *con)
454 {
455 	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
456 	struct socket *sock;
457 	unsigned int noio_flag;
458 	int ret;
459 
460 	BUG_ON(con->sock);
461 
462 	/* sock_create_kern() allocates with GFP_KERNEL */
463 	noio_flag = memalloc_noio_save();
464 	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
465 			       SOCK_STREAM, IPPROTO_TCP, &sock);
466 	memalloc_noio_restore(noio_flag);
467 	if (ret)
468 		return ret;
469 	sock->sk->sk_allocation = GFP_NOFS;
470 
471 #ifdef CONFIG_LOCKDEP
472 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
473 #endif
474 
475 	set_sock_callbacks(sock, con);
476 
477 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr));
478 
479 	con_sock_state_connecting(con);
480 	ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
481 				 O_NONBLOCK);
482 	if (ret == -EINPROGRESS) {
483 		dout("connect %s EINPROGRESS sk_state = %u\n",
484 		     ceph_pr_addr(&con->peer_addr),
485 		     sock->sk->sk_state);
486 	} else if (ret < 0) {
487 		pr_err("connect %s error %d\n",
488 		       ceph_pr_addr(&con->peer_addr), ret);
489 		sock_release(sock);
490 		return ret;
491 	}
492 
493 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
494 		int optval = 1;
495 
496 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
497 					(char *)&optval, sizeof(optval));
498 		if (ret)
499 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
500 			       ret);
501 	}
502 
503 	con->sock = sock;
504 	return 0;
505 }
506 
507 /*
508  * If @buf is NULL, discard up to @len bytes.
509  */
510 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
511 {
512 	struct kvec iov = {buf, len};
513 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
514 	int r;
515 
516 	if (!buf)
517 		msg.msg_flags |= MSG_TRUNC;
518 
519 	iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
520 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
521 	if (r == -EAGAIN)
522 		r = 0;
523 	return r;
524 }
525 
526 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
527 		     int page_offset, size_t length)
528 {
529 	struct bio_vec bvec = {
530 		.bv_page = page,
531 		.bv_offset = page_offset,
532 		.bv_len = length
533 	};
534 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
535 	int r;
536 
537 	BUG_ON(page_offset + length > PAGE_SIZE);
538 	iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
539 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
540 	if (r == -EAGAIN)
541 		r = 0;
542 	return r;
543 }
544 
545 /*
546  * write something.  @more is true if caller will be sending more data
547  * shortly.
548  */
549 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
550 			    size_t kvlen, size_t len, bool more)
551 {
552 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
553 	int r;
554 
555 	if (more)
556 		msg.msg_flags |= MSG_MORE;
557 	else
558 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
559 
560 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
561 	if (r == -EAGAIN)
562 		r = 0;
563 	return r;
564 }
565 
566 /*
567  * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
568  */
569 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
570 			     int offset, size_t size, int more)
571 {
572 	ssize_t (*sendpage)(struct socket *sock, struct page *page,
573 			    int offset, size_t size, int flags);
574 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more;
575 	int ret;
576 
577 	/*
578 	 * sendpage cannot properly handle pages with page_count == 0,
579 	 * we need to fall back to sendmsg if that's the case.
580 	 *
581 	 * Same goes for slab pages: skb_can_coalesce() allows
582 	 * coalescing neighboring slab objects into a single frag which
583 	 * triggers one of hardened usercopy checks.
584 	 */
585 	if (page_count(page) >= 1 && !PageSlab(page))
586 		sendpage = sock->ops->sendpage;
587 	else
588 		sendpage = sock_no_sendpage;
589 
590 	ret = sendpage(sock, page, offset, size, flags);
591 	if (ret == -EAGAIN)
592 		ret = 0;
593 
594 	return ret;
595 }
596 
597 /*
598  * Shutdown/close the socket for the given connection.
599  */
600 static int con_close_socket(struct ceph_connection *con)
601 {
602 	int rc = 0;
603 
604 	dout("con_close_socket on %p sock %p\n", con, con->sock);
605 	if (con->sock) {
606 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
607 		sock_release(con->sock);
608 		con->sock = NULL;
609 	}
610 
611 	/*
612 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
613 	 * independent of the connection mutex, and we could have
614 	 * received a socket close event before we had the chance to
615 	 * shut the socket down.
616 	 */
617 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
618 
619 	con_sock_state_closed(con);
620 	return rc;
621 }
622 
623 /*
624  * Reset a connection.  Discard all incoming and outgoing messages
625  * and clear *_seq state.
626  */
627 static void ceph_msg_remove(struct ceph_msg *msg)
628 {
629 	list_del_init(&msg->list_head);
630 
631 	ceph_msg_put(msg);
632 }
633 static void ceph_msg_remove_list(struct list_head *head)
634 {
635 	while (!list_empty(head)) {
636 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
637 							list_head);
638 		ceph_msg_remove(msg);
639 	}
640 }
641 
642 static void reset_connection(struct ceph_connection *con)
643 {
644 	/* reset connection, out_queue, msg_ and connect_seq */
645 	/* discard existing out_queue and msg_seq */
646 	dout("reset_connection %p\n", con);
647 	ceph_msg_remove_list(&con->out_queue);
648 	ceph_msg_remove_list(&con->out_sent);
649 
650 	if (con->in_msg) {
651 		BUG_ON(con->in_msg->con != con);
652 		ceph_msg_put(con->in_msg);
653 		con->in_msg = NULL;
654 	}
655 
656 	con->connect_seq = 0;
657 	con->out_seq = 0;
658 	if (con->out_msg) {
659 		BUG_ON(con->out_msg->con != con);
660 		ceph_msg_put(con->out_msg);
661 		con->out_msg = NULL;
662 	}
663 	con->in_seq = 0;
664 	con->in_seq_acked = 0;
665 
666 	con->out_skip = 0;
667 }
668 
669 /*
670  * mark a peer down.  drop any open connections.
671  */
672 void ceph_con_close(struct ceph_connection *con)
673 {
674 	mutex_lock(&con->mutex);
675 	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
676 	con->state = CON_STATE_CLOSED;
677 
678 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
679 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
680 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
681 	con_flag_clear(con, CON_FLAG_BACKOFF);
682 
683 	reset_connection(con);
684 	con->peer_global_seq = 0;
685 	cancel_con(con);
686 	con_close_socket(con);
687 	mutex_unlock(&con->mutex);
688 }
689 EXPORT_SYMBOL(ceph_con_close);
690 
691 /*
692  * Reopen a closed connection, with a new peer address.
693  */
694 void ceph_con_open(struct ceph_connection *con,
695 		   __u8 entity_type, __u64 entity_num,
696 		   struct ceph_entity_addr *addr)
697 {
698 	mutex_lock(&con->mutex);
699 	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
700 
701 	WARN_ON(con->state != CON_STATE_CLOSED);
702 	con->state = CON_STATE_PREOPEN;
703 
704 	con->peer_name.type = (__u8) entity_type;
705 	con->peer_name.num = cpu_to_le64(entity_num);
706 
707 	memcpy(&con->peer_addr, addr, sizeof(*addr));
708 	con->delay = 0;      /* reset backoff memory */
709 	mutex_unlock(&con->mutex);
710 	queue_con(con);
711 }
712 EXPORT_SYMBOL(ceph_con_open);
713 
714 /*
715  * return true if this connection ever successfully opened
716  */
717 bool ceph_con_opened(struct ceph_connection *con)
718 {
719 	return con->connect_seq > 0;
720 }
721 
722 /*
723  * initialize a new connection.
724  */
725 void ceph_con_init(struct ceph_connection *con, void *private,
726 	const struct ceph_connection_operations *ops,
727 	struct ceph_messenger *msgr)
728 {
729 	dout("con_init %p\n", con);
730 	memset(con, 0, sizeof(*con));
731 	con->private = private;
732 	con->ops = ops;
733 	con->msgr = msgr;
734 
735 	con_sock_state_init(con);
736 
737 	mutex_init(&con->mutex);
738 	INIT_LIST_HEAD(&con->out_queue);
739 	INIT_LIST_HEAD(&con->out_sent);
740 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
741 
742 	con->state = CON_STATE_CLOSED;
743 }
744 EXPORT_SYMBOL(ceph_con_init);
745 
746 
747 /*
748  * We maintain a global counter to order connection attempts.  Get
749  * a unique seq greater than @gt.
750  */
751 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
752 {
753 	u32 ret;
754 
755 	spin_lock(&msgr->global_seq_lock);
756 	if (msgr->global_seq < gt)
757 		msgr->global_seq = gt;
758 	ret = ++msgr->global_seq;
759 	spin_unlock(&msgr->global_seq_lock);
760 	return ret;
761 }
762 
763 static void con_out_kvec_reset(struct ceph_connection *con)
764 {
765 	BUG_ON(con->out_skip);
766 
767 	con->out_kvec_left = 0;
768 	con->out_kvec_bytes = 0;
769 	con->out_kvec_cur = &con->out_kvec[0];
770 }
771 
772 static void con_out_kvec_add(struct ceph_connection *con,
773 				size_t size, void *data)
774 {
775 	int index = con->out_kvec_left;
776 
777 	BUG_ON(con->out_skip);
778 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
779 
780 	con->out_kvec[index].iov_len = size;
781 	con->out_kvec[index].iov_base = data;
782 	con->out_kvec_left++;
783 	con->out_kvec_bytes += size;
784 }
785 
786 /*
787  * Chop off a kvec from the end.  Return residual number of bytes for
788  * that kvec, i.e. how many bytes would have been written if the kvec
789  * hadn't been nuked.
790  */
791 static int con_out_kvec_skip(struct ceph_connection *con)
792 {
793 	int off = con->out_kvec_cur - con->out_kvec;
794 	int skip = 0;
795 
796 	if (con->out_kvec_bytes > 0) {
797 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
798 		BUG_ON(con->out_kvec_bytes < skip);
799 		BUG_ON(!con->out_kvec_left);
800 		con->out_kvec_bytes -= skip;
801 		con->out_kvec_left--;
802 	}
803 
804 	return skip;
805 }
806 
807 #ifdef CONFIG_BLOCK
808 
809 /*
810  * For a bio data item, a piece is whatever remains of the next
811  * entry in the current bio iovec, or the first entry in the next
812  * bio in the list.
813  */
814 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
815 					size_t length)
816 {
817 	struct ceph_msg_data *data = cursor->data;
818 	struct ceph_bio_iter *it = &cursor->bio_iter;
819 
820 	cursor->resid = min_t(size_t, length, data->bio_length);
821 	*it = data->bio_pos;
822 	if (cursor->resid < it->iter.bi_size)
823 		it->iter.bi_size = cursor->resid;
824 
825 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
826 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
827 }
828 
829 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
830 						size_t *page_offset,
831 						size_t *length)
832 {
833 	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
834 					   cursor->bio_iter.iter);
835 
836 	*page_offset = bv.bv_offset;
837 	*length = bv.bv_len;
838 	return bv.bv_page;
839 }
840 
841 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
842 					size_t bytes)
843 {
844 	struct ceph_bio_iter *it = &cursor->bio_iter;
845 	struct page *page = bio_iter_page(it->bio, it->iter);
846 
847 	BUG_ON(bytes > cursor->resid);
848 	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
849 	cursor->resid -= bytes;
850 	bio_advance_iter(it->bio, &it->iter, bytes);
851 
852 	if (!cursor->resid) {
853 		BUG_ON(!cursor->last_piece);
854 		return false;   /* no more data */
855 	}
856 
857 	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
858 		       page == bio_iter_page(it->bio, it->iter)))
859 		return false;	/* more bytes to process in this segment */
860 
861 	if (!it->iter.bi_size) {
862 		it->bio = it->bio->bi_next;
863 		it->iter = it->bio->bi_iter;
864 		if (cursor->resid < it->iter.bi_size)
865 			it->iter.bi_size = cursor->resid;
866 	}
867 
868 	BUG_ON(cursor->last_piece);
869 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
870 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
871 	return true;
872 }
873 #endif /* CONFIG_BLOCK */
874 
875 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
876 					size_t length)
877 {
878 	struct ceph_msg_data *data = cursor->data;
879 	struct bio_vec *bvecs = data->bvec_pos.bvecs;
880 
881 	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
882 	cursor->bvec_iter = data->bvec_pos.iter;
883 	cursor->bvec_iter.bi_size = cursor->resid;
884 
885 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
886 	cursor->last_piece =
887 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
888 }
889 
890 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
891 						size_t *page_offset,
892 						size_t *length)
893 {
894 	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
895 					   cursor->bvec_iter);
896 
897 	*page_offset = bv.bv_offset;
898 	*length = bv.bv_len;
899 	return bv.bv_page;
900 }
901 
902 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
903 					size_t bytes)
904 {
905 	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
906 	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
907 
908 	BUG_ON(bytes > cursor->resid);
909 	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
910 	cursor->resid -= bytes;
911 	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
912 
913 	if (!cursor->resid) {
914 		BUG_ON(!cursor->last_piece);
915 		return false;   /* no more data */
916 	}
917 
918 	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
919 		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
920 		return false;	/* more bytes to process in this segment */
921 
922 	BUG_ON(cursor->last_piece);
923 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
924 	cursor->last_piece =
925 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
926 	return true;
927 }
928 
929 /*
930  * For a page array, a piece comes from the first page in the array
931  * that has not already been fully consumed.
932  */
933 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
934 					size_t length)
935 {
936 	struct ceph_msg_data *data = cursor->data;
937 	int page_count;
938 
939 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
940 
941 	BUG_ON(!data->pages);
942 	BUG_ON(!data->length);
943 
944 	cursor->resid = min(length, data->length);
945 	page_count = calc_pages_for(data->alignment, (u64)data->length);
946 	cursor->page_offset = data->alignment & ~PAGE_MASK;
947 	cursor->page_index = 0;
948 	BUG_ON(page_count > (int)USHRT_MAX);
949 	cursor->page_count = (unsigned short)page_count;
950 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
951 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
952 }
953 
954 static struct page *
955 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
956 					size_t *page_offset, size_t *length)
957 {
958 	struct ceph_msg_data *data = cursor->data;
959 
960 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
961 
962 	BUG_ON(cursor->page_index >= cursor->page_count);
963 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
964 
965 	*page_offset = cursor->page_offset;
966 	if (cursor->last_piece)
967 		*length = cursor->resid;
968 	else
969 		*length = PAGE_SIZE - *page_offset;
970 
971 	return data->pages[cursor->page_index];
972 }
973 
974 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
975 						size_t bytes)
976 {
977 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
978 
979 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
980 
981 	/* Advance the cursor page offset */
982 
983 	cursor->resid -= bytes;
984 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
985 	if (!bytes || cursor->page_offset)
986 		return false;	/* more bytes to process in the current page */
987 
988 	if (!cursor->resid)
989 		return false;   /* no more data */
990 
991 	/* Move on to the next page; offset is already at 0 */
992 
993 	BUG_ON(cursor->page_index >= cursor->page_count);
994 	cursor->page_index++;
995 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
996 
997 	return true;
998 }
999 
1000 /*
1001  * For a pagelist, a piece is whatever remains to be consumed in the
1002  * first page in the list, or the front of the next page.
1003  */
1004 static void
1005 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1006 					size_t length)
1007 {
1008 	struct ceph_msg_data *data = cursor->data;
1009 	struct ceph_pagelist *pagelist;
1010 	struct page *page;
1011 
1012 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1013 
1014 	pagelist = data->pagelist;
1015 	BUG_ON(!pagelist);
1016 
1017 	if (!length)
1018 		return;		/* pagelist can be assigned but empty */
1019 
1020 	BUG_ON(list_empty(&pagelist->head));
1021 	page = list_first_entry(&pagelist->head, struct page, lru);
1022 
1023 	cursor->resid = min(length, pagelist->length);
1024 	cursor->page = page;
1025 	cursor->offset = 0;
1026 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1027 }
1028 
1029 static struct page *
1030 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1031 				size_t *page_offset, size_t *length)
1032 {
1033 	struct ceph_msg_data *data = cursor->data;
1034 	struct ceph_pagelist *pagelist;
1035 
1036 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1037 
1038 	pagelist = data->pagelist;
1039 	BUG_ON(!pagelist);
1040 
1041 	BUG_ON(!cursor->page);
1042 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1043 
1044 	/* offset of first page in pagelist is always 0 */
1045 	*page_offset = cursor->offset & ~PAGE_MASK;
1046 	if (cursor->last_piece)
1047 		*length = cursor->resid;
1048 	else
1049 		*length = PAGE_SIZE - *page_offset;
1050 
1051 	return cursor->page;
1052 }
1053 
1054 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1055 						size_t bytes)
1056 {
1057 	struct ceph_msg_data *data = cursor->data;
1058 	struct ceph_pagelist *pagelist;
1059 
1060 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1061 
1062 	pagelist = data->pagelist;
1063 	BUG_ON(!pagelist);
1064 
1065 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1066 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1067 
1068 	/* Advance the cursor offset */
1069 
1070 	cursor->resid -= bytes;
1071 	cursor->offset += bytes;
1072 	/* offset of first page in pagelist is always 0 */
1073 	if (!bytes || cursor->offset & ~PAGE_MASK)
1074 		return false;	/* more bytes to process in the current page */
1075 
1076 	if (!cursor->resid)
1077 		return false;   /* no more data */
1078 
1079 	/* Move on to the next page */
1080 
1081 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1082 	cursor->page = list_next_entry(cursor->page, lru);
1083 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1084 
1085 	return true;
1086 }
1087 
1088 /*
1089  * Message data is handled (sent or received) in pieces, where each
1090  * piece resides on a single page.  The network layer might not
1091  * consume an entire piece at once.  A data item's cursor keeps
1092  * track of which piece is next to process and how much remains to
1093  * be processed in that piece.  It also tracks whether the current
1094  * piece is the last one in the data item.
1095  */
1096 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1097 {
1098 	size_t length = cursor->total_resid;
1099 
1100 	switch (cursor->data->type) {
1101 	case CEPH_MSG_DATA_PAGELIST:
1102 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1103 		break;
1104 	case CEPH_MSG_DATA_PAGES:
1105 		ceph_msg_data_pages_cursor_init(cursor, length);
1106 		break;
1107 #ifdef CONFIG_BLOCK
1108 	case CEPH_MSG_DATA_BIO:
1109 		ceph_msg_data_bio_cursor_init(cursor, length);
1110 		break;
1111 #endif /* CONFIG_BLOCK */
1112 	case CEPH_MSG_DATA_BVECS:
1113 		ceph_msg_data_bvecs_cursor_init(cursor, length);
1114 		break;
1115 	case CEPH_MSG_DATA_NONE:
1116 	default:
1117 		/* BUG(); */
1118 		break;
1119 	}
1120 	cursor->need_crc = true;
1121 }
1122 
1123 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1124 {
1125 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1126 
1127 	BUG_ON(!length);
1128 	BUG_ON(length > msg->data_length);
1129 	BUG_ON(!msg->num_data_items);
1130 
1131 	cursor->total_resid = length;
1132 	cursor->data = msg->data;
1133 
1134 	__ceph_msg_data_cursor_init(cursor);
1135 }
1136 
1137 /*
1138  * Return the page containing the next piece to process for a given
1139  * data item, and supply the page offset and length of that piece.
1140  * Indicate whether this is the last piece in this data item.
1141  */
1142 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1143 					size_t *page_offset, size_t *length,
1144 					bool *last_piece)
1145 {
1146 	struct page *page;
1147 
1148 	switch (cursor->data->type) {
1149 	case CEPH_MSG_DATA_PAGELIST:
1150 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1151 		break;
1152 	case CEPH_MSG_DATA_PAGES:
1153 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1154 		break;
1155 #ifdef CONFIG_BLOCK
1156 	case CEPH_MSG_DATA_BIO:
1157 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1158 		break;
1159 #endif /* CONFIG_BLOCK */
1160 	case CEPH_MSG_DATA_BVECS:
1161 		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1162 		break;
1163 	case CEPH_MSG_DATA_NONE:
1164 	default:
1165 		page = NULL;
1166 		break;
1167 	}
1168 
1169 	BUG_ON(!page);
1170 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1171 	BUG_ON(!*length);
1172 	BUG_ON(*length > cursor->resid);
1173 	if (last_piece)
1174 		*last_piece = cursor->last_piece;
1175 
1176 	return page;
1177 }
1178 
1179 /*
1180  * Returns true if the result moves the cursor on to the next piece
1181  * of the data item.
1182  */
1183 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1184 				  size_t bytes)
1185 {
1186 	bool new_piece;
1187 
1188 	BUG_ON(bytes > cursor->resid);
1189 	switch (cursor->data->type) {
1190 	case CEPH_MSG_DATA_PAGELIST:
1191 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1192 		break;
1193 	case CEPH_MSG_DATA_PAGES:
1194 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1195 		break;
1196 #ifdef CONFIG_BLOCK
1197 	case CEPH_MSG_DATA_BIO:
1198 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1199 		break;
1200 #endif /* CONFIG_BLOCK */
1201 	case CEPH_MSG_DATA_BVECS:
1202 		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1203 		break;
1204 	case CEPH_MSG_DATA_NONE:
1205 	default:
1206 		BUG();
1207 		break;
1208 	}
1209 	cursor->total_resid -= bytes;
1210 
1211 	if (!cursor->resid && cursor->total_resid) {
1212 		WARN_ON(!cursor->last_piece);
1213 		cursor->data++;
1214 		__ceph_msg_data_cursor_init(cursor);
1215 		new_piece = true;
1216 	}
1217 	cursor->need_crc = new_piece;
1218 }
1219 
1220 static size_t sizeof_footer(struct ceph_connection *con)
1221 {
1222 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1223 	    sizeof(struct ceph_msg_footer) :
1224 	    sizeof(struct ceph_msg_footer_old);
1225 }
1226 
1227 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1228 {
1229 	/* Initialize data cursor */
1230 
1231 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1232 }
1233 
1234 /*
1235  * Prepare footer for currently outgoing message, and finish things
1236  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1237  */
1238 static void prepare_write_message_footer(struct ceph_connection *con)
1239 {
1240 	struct ceph_msg *m = con->out_msg;
1241 
1242 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1243 
1244 	dout("prepare_write_message_footer %p\n", con);
1245 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1246 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1247 		if (con->ops->sign_message)
1248 			con->ops->sign_message(m);
1249 		else
1250 			m->footer.sig = 0;
1251 	} else {
1252 		m->old_footer.flags = m->footer.flags;
1253 	}
1254 	con->out_more = m->more_to_follow;
1255 	con->out_msg_done = true;
1256 }
1257 
1258 /*
1259  * Prepare headers for the next outgoing message.
1260  */
1261 static void prepare_write_message(struct ceph_connection *con)
1262 {
1263 	struct ceph_msg *m;
1264 	u32 crc;
1265 
1266 	con_out_kvec_reset(con);
1267 	con->out_msg_done = false;
1268 
1269 	/* Sneak an ack in there first?  If we can get it into the same
1270 	 * TCP packet that's a good thing. */
1271 	if (con->in_seq > con->in_seq_acked) {
1272 		con->in_seq_acked = con->in_seq;
1273 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1274 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1275 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1276 			&con->out_temp_ack);
1277 	}
1278 
1279 	BUG_ON(list_empty(&con->out_queue));
1280 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1281 	con->out_msg = m;
1282 	BUG_ON(m->con != con);
1283 
1284 	/* put message on sent list */
1285 	ceph_msg_get(m);
1286 	list_move_tail(&m->list_head, &con->out_sent);
1287 
1288 	/*
1289 	 * only assign outgoing seq # if we haven't sent this message
1290 	 * yet.  if it is requeued, resend with it's original seq.
1291 	 */
1292 	if (m->needs_out_seq) {
1293 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1294 		m->needs_out_seq = false;
1295 
1296 		if (con->ops->reencode_message)
1297 			con->ops->reencode_message(m);
1298 	}
1299 
1300 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1301 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1302 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1303 	     m->data_length);
1304 	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1305 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1306 
1307 	/* tag + hdr + front + middle */
1308 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1309 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1310 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1311 
1312 	if (m->middle)
1313 		con_out_kvec_add(con, m->middle->vec.iov_len,
1314 			m->middle->vec.iov_base);
1315 
1316 	/* fill in hdr crc and finalize hdr */
1317 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1318 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1319 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1320 
1321 	/* fill in front and middle crc, footer */
1322 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1323 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1324 	if (m->middle) {
1325 		crc = crc32c(0, m->middle->vec.iov_base,
1326 				m->middle->vec.iov_len);
1327 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1328 	} else
1329 		con->out_msg->footer.middle_crc = 0;
1330 	dout("%s front_crc %u middle_crc %u\n", __func__,
1331 	     le32_to_cpu(con->out_msg->footer.front_crc),
1332 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1333 	con->out_msg->footer.flags = 0;
1334 
1335 	/* is there a data payload? */
1336 	con->out_msg->footer.data_crc = 0;
1337 	if (m->data_length) {
1338 		prepare_message_data(con->out_msg, m->data_length);
1339 		con->out_more = 1;  /* data + footer will follow */
1340 	} else {
1341 		/* no, queue up footer too and be done */
1342 		prepare_write_message_footer(con);
1343 	}
1344 
1345 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1346 }
1347 
1348 /*
1349  * Prepare an ack.
1350  */
1351 static void prepare_write_ack(struct ceph_connection *con)
1352 {
1353 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1354 	     con->in_seq_acked, con->in_seq);
1355 	con->in_seq_acked = con->in_seq;
1356 
1357 	con_out_kvec_reset(con);
1358 
1359 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1360 
1361 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1362 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1363 				&con->out_temp_ack);
1364 
1365 	con->out_more = 1;  /* more will follow.. eventually.. */
1366 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1367 }
1368 
1369 /*
1370  * Prepare to share the seq during handshake
1371  */
1372 static void prepare_write_seq(struct ceph_connection *con)
1373 {
1374 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1375 	     con->in_seq_acked, con->in_seq);
1376 	con->in_seq_acked = con->in_seq;
1377 
1378 	con_out_kvec_reset(con);
1379 
1380 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1381 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1382 			 &con->out_temp_ack);
1383 
1384 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1385 }
1386 
1387 /*
1388  * Prepare to write keepalive byte.
1389  */
1390 static void prepare_write_keepalive(struct ceph_connection *con)
1391 {
1392 	dout("prepare_write_keepalive %p\n", con);
1393 	con_out_kvec_reset(con);
1394 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1395 		struct timespec64 now;
1396 
1397 		ktime_get_real_ts64(&now);
1398 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1399 		ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1400 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1401 				 &con->out_temp_keepalive2);
1402 	} else {
1403 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1404 	}
1405 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1406 }
1407 
1408 /*
1409  * Connection negotiation.
1410  */
1411 
1412 static int get_connect_authorizer(struct ceph_connection *con)
1413 {
1414 	struct ceph_auth_handshake *auth;
1415 	int auth_proto;
1416 
1417 	if (!con->ops->get_authorizer) {
1418 		con->auth = NULL;
1419 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1420 		con->out_connect.authorizer_len = 0;
1421 		return 0;
1422 	}
1423 
1424 	auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1425 	if (IS_ERR(auth))
1426 		return PTR_ERR(auth);
1427 
1428 	con->auth = auth;
1429 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1430 	con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1431 	return 0;
1432 }
1433 
1434 /*
1435  * We connected to a peer and are saying hello.
1436  */
1437 static void prepare_write_banner(struct ceph_connection *con)
1438 {
1439 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1440 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1441 					&con->msgr->my_enc_addr);
1442 
1443 	con->out_more = 0;
1444 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1445 }
1446 
1447 static void __prepare_write_connect(struct ceph_connection *con)
1448 {
1449 	con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1450 	if (con->auth)
1451 		con_out_kvec_add(con, con->auth->authorizer_buf_len,
1452 				 con->auth->authorizer_buf);
1453 
1454 	con->out_more = 0;
1455 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1456 }
1457 
1458 static int prepare_write_connect(struct ceph_connection *con)
1459 {
1460 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1461 	int proto;
1462 	int ret;
1463 
1464 	switch (con->peer_name.type) {
1465 	case CEPH_ENTITY_TYPE_MON:
1466 		proto = CEPH_MONC_PROTOCOL;
1467 		break;
1468 	case CEPH_ENTITY_TYPE_OSD:
1469 		proto = CEPH_OSDC_PROTOCOL;
1470 		break;
1471 	case CEPH_ENTITY_TYPE_MDS:
1472 		proto = CEPH_MDSC_PROTOCOL;
1473 		break;
1474 	default:
1475 		BUG();
1476 	}
1477 
1478 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1479 	     con->connect_seq, global_seq, proto);
1480 
1481 	con->out_connect.features =
1482 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1483 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1484 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1485 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1486 	con->out_connect.protocol_version = cpu_to_le32(proto);
1487 	con->out_connect.flags = 0;
1488 
1489 	ret = get_connect_authorizer(con);
1490 	if (ret)
1491 		return ret;
1492 
1493 	__prepare_write_connect(con);
1494 	return 0;
1495 }
1496 
1497 /*
1498  * write as much of pending kvecs to the socket as we can.
1499  *  1 -> done
1500  *  0 -> socket full, but more to do
1501  * <0 -> error
1502  */
1503 static int write_partial_kvec(struct ceph_connection *con)
1504 {
1505 	int ret;
1506 
1507 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1508 	while (con->out_kvec_bytes > 0) {
1509 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1510 				       con->out_kvec_left, con->out_kvec_bytes,
1511 				       con->out_more);
1512 		if (ret <= 0)
1513 			goto out;
1514 		con->out_kvec_bytes -= ret;
1515 		if (con->out_kvec_bytes == 0)
1516 			break;            /* done */
1517 
1518 		/* account for full iov entries consumed */
1519 		while (ret >= con->out_kvec_cur->iov_len) {
1520 			BUG_ON(!con->out_kvec_left);
1521 			ret -= con->out_kvec_cur->iov_len;
1522 			con->out_kvec_cur++;
1523 			con->out_kvec_left--;
1524 		}
1525 		/* and for a partially-consumed entry */
1526 		if (ret) {
1527 			con->out_kvec_cur->iov_len -= ret;
1528 			con->out_kvec_cur->iov_base += ret;
1529 		}
1530 	}
1531 	con->out_kvec_left = 0;
1532 	ret = 1;
1533 out:
1534 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1535 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1536 	return ret;  /* done! */
1537 }
1538 
1539 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1540 				unsigned int page_offset,
1541 				unsigned int length)
1542 {
1543 	char *kaddr;
1544 
1545 	kaddr = kmap(page);
1546 	BUG_ON(kaddr == NULL);
1547 	crc = crc32c(crc, kaddr + page_offset, length);
1548 	kunmap(page);
1549 
1550 	return crc;
1551 }
1552 /*
1553  * Write as much message data payload as we can.  If we finish, queue
1554  * up the footer.
1555  *  1 -> done, footer is now queued in out_kvec[].
1556  *  0 -> socket full, but more to do
1557  * <0 -> error
1558  */
1559 static int write_partial_message_data(struct ceph_connection *con)
1560 {
1561 	struct ceph_msg *msg = con->out_msg;
1562 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1563 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1564 	int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1565 	u32 crc;
1566 
1567 	dout("%s %p msg %p\n", __func__, con, msg);
1568 
1569 	if (!msg->num_data_items)
1570 		return -EINVAL;
1571 
1572 	/*
1573 	 * Iterate through each page that contains data to be
1574 	 * written, and send as much as possible for each.
1575 	 *
1576 	 * If we are calculating the data crc (the default), we will
1577 	 * need to map the page.  If we have no pages, they have
1578 	 * been revoked, so use the zero page.
1579 	 */
1580 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1581 	while (cursor->total_resid) {
1582 		struct page *page;
1583 		size_t page_offset;
1584 		size_t length;
1585 		int ret;
1586 
1587 		if (!cursor->resid) {
1588 			ceph_msg_data_advance(cursor, 0);
1589 			continue;
1590 		}
1591 
1592 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
1593 		if (length == cursor->total_resid)
1594 			more = MSG_MORE;
1595 		ret = ceph_tcp_sendpage(con->sock, page, page_offset, length,
1596 					more);
1597 		if (ret <= 0) {
1598 			if (do_datacrc)
1599 				msg->footer.data_crc = cpu_to_le32(crc);
1600 
1601 			return ret;
1602 		}
1603 		if (do_datacrc && cursor->need_crc)
1604 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1605 		ceph_msg_data_advance(cursor, (size_t)ret);
1606 	}
1607 
1608 	dout("%s %p msg %p done\n", __func__, con, msg);
1609 
1610 	/* prepare and queue up footer, too */
1611 	if (do_datacrc)
1612 		msg->footer.data_crc = cpu_to_le32(crc);
1613 	else
1614 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1615 	con_out_kvec_reset(con);
1616 	prepare_write_message_footer(con);
1617 
1618 	return 1;	/* must return > 0 to indicate success */
1619 }
1620 
1621 /*
1622  * write some zeros
1623  */
1624 static int write_partial_skip(struct ceph_connection *con)
1625 {
1626 	int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1627 	int ret;
1628 
1629 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1630 	while (con->out_skip > 0) {
1631 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1632 
1633 		if (size == con->out_skip)
1634 			more = MSG_MORE;
1635 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more);
1636 		if (ret <= 0)
1637 			goto out;
1638 		con->out_skip -= ret;
1639 	}
1640 	ret = 1;
1641 out:
1642 	return ret;
1643 }
1644 
1645 /*
1646  * Prepare to read connection handshake, or an ack.
1647  */
1648 static void prepare_read_banner(struct ceph_connection *con)
1649 {
1650 	dout("prepare_read_banner %p\n", con);
1651 	con->in_base_pos = 0;
1652 }
1653 
1654 static void prepare_read_connect(struct ceph_connection *con)
1655 {
1656 	dout("prepare_read_connect %p\n", con);
1657 	con->in_base_pos = 0;
1658 }
1659 
1660 static void prepare_read_ack(struct ceph_connection *con)
1661 {
1662 	dout("prepare_read_ack %p\n", con);
1663 	con->in_base_pos = 0;
1664 }
1665 
1666 static void prepare_read_seq(struct ceph_connection *con)
1667 {
1668 	dout("prepare_read_seq %p\n", con);
1669 	con->in_base_pos = 0;
1670 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1671 }
1672 
1673 static void prepare_read_tag(struct ceph_connection *con)
1674 {
1675 	dout("prepare_read_tag %p\n", con);
1676 	con->in_base_pos = 0;
1677 	con->in_tag = CEPH_MSGR_TAG_READY;
1678 }
1679 
1680 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1681 {
1682 	dout("prepare_read_keepalive_ack %p\n", con);
1683 	con->in_base_pos = 0;
1684 }
1685 
1686 /*
1687  * Prepare to read a message.
1688  */
1689 static int prepare_read_message(struct ceph_connection *con)
1690 {
1691 	dout("prepare_read_message %p\n", con);
1692 	BUG_ON(con->in_msg != NULL);
1693 	con->in_base_pos = 0;
1694 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1695 	return 0;
1696 }
1697 
1698 
1699 static int read_partial(struct ceph_connection *con,
1700 			int end, int size, void *object)
1701 {
1702 	while (con->in_base_pos < end) {
1703 		int left = end - con->in_base_pos;
1704 		int have = size - left;
1705 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1706 		if (ret <= 0)
1707 			return ret;
1708 		con->in_base_pos += ret;
1709 	}
1710 	return 1;
1711 }
1712 
1713 
1714 /*
1715  * Read all or part of the connect-side handshake on a new connection
1716  */
1717 static int read_partial_banner(struct ceph_connection *con)
1718 {
1719 	int size;
1720 	int end;
1721 	int ret;
1722 
1723 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1724 
1725 	/* peer's banner */
1726 	size = strlen(CEPH_BANNER);
1727 	end = size;
1728 	ret = read_partial(con, end, size, con->in_banner);
1729 	if (ret <= 0)
1730 		goto out;
1731 
1732 	size = sizeof (con->actual_peer_addr);
1733 	end += size;
1734 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1735 	if (ret <= 0)
1736 		goto out;
1737 	ceph_decode_banner_addr(&con->actual_peer_addr);
1738 
1739 	size = sizeof (con->peer_addr_for_me);
1740 	end += size;
1741 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1742 	if (ret <= 0)
1743 		goto out;
1744 	ceph_decode_banner_addr(&con->peer_addr_for_me);
1745 
1746 out:
1747 	return ret;
1748 }
1749 
1750 static int read_partial_connect(struct ceph_connection *con)
1751 {
1752 	int size;
1753 	int end;
1754 	int ret;
1755 
1756 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1757 
1758 	size = sizeof (con->in_reply);
1759 	end = size;
1760 	ret = read_partial(con, end, size, &con->in_reply);
1761 	if (ret <= 0)
1762 		goto out;
1763 
1764 	if (con->auth) {
1765 		size = le32_to_cpu(con->in_reply.authorizer_len);
1766 		if (size > con->auth->authorizer_reply_buf_len) {
1767 			pr_err("authorizer reply too big: %d > %zu\n", size,
1768 			       con->auth->authorizer_reply_buf_len);
1769 			ret = -EINVAL;
1770 			goto out;
1771 		}
1772 
1773 		end += size;
1774 		ret = read_partial(con, end, size,
1775 				   con->auth->authorizer_reply_buf);
1776 		if (ret <= 0)
1777 			goto out;
1778 	}
1779 
1780 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1781 	     con, (int)con->in_reply.tag,
1782 	     le32_to_cpu(con->in_reply.connect_seq),
1783 	     le32_to_cpu(con->in_reply.global_seq));
1784 out:
1785 	return ret;
1786 }
1787 
1788 /*
1789  * Verify the hello banner looks okay.
1790  */
1791 static int verify_hello(struct ceph_connection *con)
1792 {
1793 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1794 		pr_err("connect to %s got bad banner\n",
1795 		       ceph_pr_addr(&con->peer_addr));
1796 		con->error_msg = "protocol error, bad banner";
1797 		return -1;
1798 	}
1799 	return 0;
1800 }
1801 
1802 static bool addr_is_blank(struct ceph_entity_addr *addr)
1803 {
1804 	struct sockaddr_storage ss = addr->in_addr; /* align */
1805 	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1806 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1807 
1808 	switch (ss.ss_family) {
1809 	case AF_INET:
1810 		return addr4->s_addr == htonl(INADDR_ANY);
1811 	case AF_INET6:
1812 		return ipv6_addr_any(addr6);
1813 	default:
1814 		return true;
1815 	}
1816 }
1817 
1818 static int addr_port(struct ceph_entity_addr *addr)
1819 {
1820 	switch (get_unaligned(&addr->in_addr.ss_family)) {
1821 	case AF_INET:
1822 		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1823 	case AF_INET6:
1824 		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1825 	}
1826 	return 0;
1827 }
1828 
1829 static void addr_set_port(struct ceph_entity_addr *addr, int p)
1830 {
1831 	switch (get_unaligned(&addr->in_addr.ss_family)) {
1832 	case AF_INET:
1833 		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1834 		break;
1835 	case AF_INET6:
1836 		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1837 		break;
1838 	}
1839 }
1840 
1841 /*
1842  * Unlike other *_pton function semantics, zero indicates success.
1843  */
1844 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1845 		char delim, const char **ipend)
1846 {
1847 	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1848 
1849 	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1850 		put_unaligned(AF_INET, &addr->in_addr.ss_family);
1851 		return 0;
1852 	}
1853 
1854 	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1855 		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1856 		return 0;
1857 	}
1858 
1859 	return -EINVAL;
1860 }
1861 
1862 /*
1863  * Extract hostname string and resolve using kernel DNS facility.
1864  */
1865 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1866 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1867 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1868 {
1869 	const char *end, *delim_p;
1870 	char *colon_p, *ip_addr = NULL;
1871 	int ip_len, ret;
1872 
1873 	/*
1874 	 * The end of the hostname occurs immediately preceding the delimiter or
1875 	 * the port marker (':') where the delimiter takes precedence.
1876 	 */
1877 	delim_p = memchr(name, delim, namelen);
1878 	colon_p = memchr(name, ':', namelen);
1879 
1880 	if (delim_p && colon_p)
1881 		end = delim_p < colon_p ? delim_p : colon_p;
1882 	else if (!delim_p && colon_p)
1883 		end = colon_p;
1884 	else {
1885 		end = delim_p;
1886 		if (!end) /* case: hostname:/ */
1887 			end = name + namelen;
1888 	}
1889 
1890 	if (end <= name)
1891 		return -EINVAL;
1892 
1893 	/* do dns_resolve upcall */
1894 	ip_len = dns_query(current->nsproxy->net_ns,
1895 			   NULL, name, end - name, NULL, &ip_addr, NULL, false);
1896 	if (ip_len > 0)
1897 		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1898 	else
1899 		ret = -ESRCH;
1900 
1901 	kfree(ip_addr);
1902 
1903 	*ipend = end;
1904 
1905 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1906 			ret, ret ? "failed" : ceph_pr_addr(addr));
1907 
1908 	return ret;
1909 }
1910 #else
1911 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1912 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1913 {
1914 	return -EINVAL;
1915 }
1916 #endif
1917 
1918 /*
1919  * Parse a server name (IP or hostname). If a valid IP address is not found
1920  * then try to extract a hostname to resolve using userspace DNS upcall.
1921  */
1922 static int ceph_parse_server_name(const char *name, size_t namelen,
1923 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1924 {
1925 	int ret;
1926 
1927 	ret = ceph_pton(name, namelen, addr, delim, ipend);
1928 	if (ret)
1929 		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1930 
1931 	return ret;
1932 }
1933 
1934 /*
1935  * Parse an ip[:port] list into an addr array.  Use the default
1936  * monitor port if a port isn't specified.
1937  */
1938 int ceph_parse_ips(const char *c, const char *end,
1939 		   struct ceph_entity_addr *addr,
1940 		   int max_count, int *count)
1941 {
1942 	int i, ret = -EINVAL;
1943 	const char *p = c;
1944 
1945 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1946 	for (i = 0; i < max_count; i++) {
1947 		const char *ipend;
1948 		int port;
1949 		char delim = ',';
1950 
1951 		if (*p == '[') {
1952 			delim = ']';
1953 			p++;
1954 		}
1955 
1956 		ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend);
1957 		if (ret)
1958 			goto bad;
1959 		ret = -EINVAL;
1960 
1961 		p = ipend;
1962 
1963 		if (delim == ']') {
1964 			if (*p != ']') {
1965 				dout("missing matching ']'\n");
1966 				goto bad;
1967 			}
1968 			p++;
1969 		}
1970 
1971 		/* port? */
1972 		if (p < end && *p == ':') {
1973 			port = 0;
1974 			p++;
1975 			while (p < end && *p >= '0' && *p <= '9') {
1976 				port = (port * 10) + (*p - '0');
1977 				p++;
1978 			}
1979 			if (port == 0)
1980 				port = CEPH_MON_PORT;
1981 			else if (port > 65535)
1982 				goto bad;
1983 		} else {
1984 			port = CEPH_MON_PORT;
1985 		}
1986 
1987 		addr_set_port(&addr[i], port);
1988 		addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1989 
1990 		dout("parse_ips got %s\n", ceph_pr_addr(&addr[i]));
1991 
1992 		if (p == end)
1993 			break;
1994 		if (*p != ',')
1995 			goto bad;
1996 		p++;
1997 	}
1998 
1999 	if (p != end)
2000 		goto bad;
2001 
2002 	if (count)
2003 		*count = i + 1;
2004 	return 0;
2005 
2006 bad:
2007 	return ret;
2008 }
2009 
2010 static int process_banner(struct ceph_connection *con)
2011 {
2012 	dout("process_banner on %p\n", con);
2013 
2014 	if (verify_hello(con) < 0)
2015 		return -1;
2016 
2017 	/*
2018 	 * Make sure the other end is who we wanted.  note that the other
2019 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2020 	 * them the benefit of the doubt.
2021 	 */
2022 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2023 		   sizeof(con->peer_addr)) != 0 &&
2024 	    !(addr_is_blank(&con->actual_peer_addr) &&
2025 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2026 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2027 			ceph_pr_addr(&con->peer_addr),
2028 			(int)le32_to_cpu(con->peer_addr.nonce),
2029 			ceph_pr_addr(&con->actual_peer_addr),
2030 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2031 		con->error_msg = "wrong peer at address";
2032 		return -1;
2033 	}
2034 
2035 	/*
2036 	 * did we learn our address?
2037 	 */
2038 	if (addr_is_blank(&con->msgr->inst.addr)) {
2039 		int port = addr_port(&con->msgr->inst.addr);
2040 
2041 		memcpy(&con->msgr->inst.addr.in_addr,
2042 		       &con->peer_addr_for_me.in_addr,
2043 		       sizeof(con->peer_addr_for_me.in_addr));
2044 		addr_set_port(&con->msgr->inst.addr, port);
2045 		encode_my_addr(con->msgr);
2046 		dout("process_banner learned my addr is %s\n",
2047 		     ceph_pr_addr(&con->msgr->inst.addr));
2048 	}
2049 
2050 	return 0;
2051 }
2052 
2053 static int process_connect(struct ceph_connection *con)
2054 {
2055 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2056 	u64 req_feat = from_msgr(con->msgr)->required_features;
2057 	u64 server_feat = le64_to_cpu(con->in_reply.features);
2058 	int ret;
2059 
2060 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2061 
2062 	if (con->auth) {
2063 		int len = le32_to_cpu(con->in_reply.authorizer_len);
2064 
2065 		/*
2066 		 * Any connection that defines ->get_authorizer()
2067 		 * should also define ->add_authorizer_challenge() and
2068 		 * ->verify_authorizer_reply().
2069 		 *
2070 		 * See get_connect_authorizer().
2071 		 */
2072 		if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2073 			ret = con->ops->add_authorizer_challenge(
2074 				    con, con->auth->authorizer_reply_buf, len);
2075 			if (ret < 0)
2076 				return ret;
2077 
2078 			con_out_kvec_reset(con);
2079 			__prepare_write_connect(con);
2080 			prepare_read_connect(con);
2081 			return 0;
2082 		}
2083 
2084 		if (len) {
2085 			ret = con->ops->verify_authorizer_reply(con);
2086 			if (ret < 0) {
2087 				con->error_msg = "bad authorize reply";
2088 				return ret;
2089 			}
2090 		}
2091 	}
2092 
2093 	switch (con->in_reply.tag) {
2094 	case CEPH_MSGR_TAG_FEATURES:
2095 		pr_err("%s%lld %s feature set mismatch,"
2096 		       " my %llx < server's %llx, missing %llx\n",
2097 		       ENTITY_NAME(con->peer_name),
2098 		       ceph_pr_addr(&con->peer_addr),
2099 		       sup_feat, server_feat, server_feat & ~sup_feat);
2100 		con->error_msg = "missing required protocol features";
2101 		reset_connection(con);
2102 		return -1;
2103 
2104 	case CEPH_MSGR_TAG_BADPROTOVER:
2105 		pr_err("%s%lld %s protocol version mismatch,"
2106 		       " my %d != server's %d\n",
2107 		       ENTITY_NAME(con->peer_name),
2108 		       ceph_pr_addr(&con->peer_addr),
2109 		       le32_to_cpu(con->out_connect.protocol_version),
2110 		       le32_to_cpu(con->in_reply.protocol_version));
2111 		con->error_msg = "protocol version mismatch";
2112 		reset_connection(con);
2113 		return -1;
2114 
2115 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2116 		con->auth_retry++;
2117 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2118 		     con->auth_retry);
2119 		if (con->auth_retry == 2) {
2120 			con->error_msg = "connect authorization failure";
2121 			return -1;
2122 		}
2123 		con_out_kvec_reset(con);
2124 		ret = prepare_write_connect(con);
2125 		if (ret < 0)
2126 			return ret;
2127 		prepare_read_connect(con);
2128 		break;
2129 
2130 	case CEPH_MSGR_TAG_RESETSESSION:
2131 		/*
2132 		 * If we connected with a large connect_seq but the peer
2133 		 * has no record of a session with us (no connection, or
2134 		 * connect_seq == 0), they will send RESETSESION to indicate
2135 		 * that they must have reset their session, and may have
2136 		 * dropped messages.
2137 		 */
2138 		dout("process_connect got RESET peer seq %u\n",
2139 		     le32_to_cpu(con->in_reply.connect_seq));
2140 		pr_err("%s%lld %s connection reset\n",
2141 		       ENTITY_NAME(con->peer_name),
2142 		       ceph_pr_addr(&con->peer_addr));
2143 		reset_connection(con);
2144 		con_out_kvec_reset(con);
2145 		ret = prepare_write_connect(con);
2146 		if (ret < 0)
2147 			return ret;
2148 		prepare_read_connect(con);
2149 
2150 		/* Tell ceph about it. */
2151 		mutex_unlock(&con->mutex);
2152 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2153 		if (con->ops->peer_reset)
2154 			con->ops->peer_reset(con);
2155 		mutex_lock(&con->mutex);
2156 		if (con->state != CON_STATE_NEGOTIATING)
2157 			return -EAGAIN;
2158 		break;
2159 
2160 	case CEPH_MSGR_TAG_RETRY_SESSION:
2161 		/*
2162 		 * If we sent a smaller connect_seq than the peer has, try
2163 		 * again with a larger value.
2164 		 */
2165 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2166 		     le32_to_cpu(con->out_connect.connect_seq),
2167 		     le32_to_cpu(con->in_reply.connect_seq));
2168 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2169 		con_out_kvec_reset(con);
2170 		ret = prepare_write_connect(con);
2171 		if (ret < 0)
2172 			return ret;
2173 		prepare_read_connect(con);
2174 		break;
2175 
2176 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2177 		/*
2178 		 * If we sent a smaller global_seq than the peer has, try
2179 		 * again with a larger value.
2180 		 */
2181 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2182 		     con->peer_global_seq,
2183 		     le32_to_cpu(con->in_reply.global_seq));
2184 		get_global_seq(con->msgr,
2185 			       le32_to_cpu(con->in_reply.global_seq));
2186 		con_out_kvec_reset(con);
2187 		ret = prepare_write_connect(con);
2188 		if (ret < 0)
2189 			return ret;
2190 		prepare_read_connect(con);
2191 		break;
2192 
2193 	case CEPH_MSGR_TAG_SEQ:
2194 	case CEPH_MSGR_TAG_READY:
2195 		if (req_feat & ~server_feat) {
2196 			pr_err("%s%lld %s protocol feature mismatch,"
2197 			       " my required %llx > server's %llx, need %llx\n",
2198 			       ENTITY_NAME(con->peer_name),
2199 			       ceph_pr_addr(&con->peer_addr),
2200 			       req_feat, server_feat, req_feat & ~server_feat);
2201 			con->error_msg = "missing required protocol features";
2202 			reset_connection(con);
2203 			return -1;
2204 		}
2205 
2206 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2207 		con->state = CON_STATE_OPEN;
2208 		con->auth_retry = 0;    /* we authenticated; clear flag */
2209 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2210 		con->connect_seq++;
2211 		con->peer_features = server_feat;
2212 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2213 		     con->peer_global_seq,
2214 		     le32_to_cpu(con->in_reply.connect_seq),
2215 		     con->connect_seq);
2216 		WARN_ON(con->connect_seq !=
2217 			le32_to_cpu(con->in_reply.connect_seq));
2218 
2219 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2220 			con_flag_set(con, CON_FLAG_LOSSYTX);
2221 
2222 		con->delay = 0;      /* reset backoff memory */
2223 
2224 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2225 			prepare_write_seq(con);
2226 			prepare_read_seq(con);
2227 		} else {
2228 			prepare_read_tag(con);
2229 		}
2230 		break;
2231 
2232 	case CEPH_MSGR_TAG_WAIT:
2233 		/*
2234 		 * If there is a connection race (we are opening
2235 		 * connections to each other), one of us may just have
2236 		 * to WAIT.  This shouldn't happen if we are the
2237 		 * client.
2238 		 */
2239 		con->error_msg = "protocol error, got WAIT as client";
2240 		return -1;
2241 
2242 	default:
2243 		con->error_msg = "protocol error, garbage tag during connect";
2244 		return -1;
2245 	}
2246 	return 0;
2247 }
2248 
2249 
2250 /*
2251  * read (part of) an ack
2252  */
2253 static int read_partial_ack(struct ceph_connection *con)
2254 {
2255 	int size = sizeof (con->in_temp_ack);
2256 	int end = size;
2257 
2258 	return read_partial(con, end, size, &con->in_temp_ack);
2259 }
2260 
2261 /*
2262  * We can finally discard anything that's been acked.
2263  */
2264 static void process_ack(struct ceph_connection *con)
2265 {
2266 	struct ceph_msg *m;
2267 	u64 ack = le64_to_cpu(con->in_temp_ack);
2268 	u64 seq;
2269 	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2270 	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2271 
2272 	/*
2273 	 * In the reconnect case, con_fault() has requeued messages
2274 	 * in out_sent. We should cleanup old messages according to
2275 	 * the reconnect seq.
2276 	 */
2277 	while (!list_empty(list)) {
2278 		m = list_first_entry(list, struct ceph_msg, list_head);
2279 		if (reconnect && m->needs_out_seq)
2280 			break;
2281 		seq = le64_to_cpu(m->hdr.seq);
2282 		if (seq > ack)
2283 			break;
2284 		dout("got ack for seq %llu type %d at %p\n", seq,
2285 		     le16_to_cpu(m->hdr.type), m);
2286 		m->ack_stamp = jiffies;
2287 		ceph_msg_remove(m);
2288 	}
2289 
2290 	prepare_read_tag(con);
2291 }
2292 
2293 
2294 static int read_partial_message_section(struct ceph_connection *con,
2295 					struct kvec *section,
2296 					unsigned int sec_len, u32 *crc)
2297 {
2298 	int ret, left;
2299 
2300 	BUG_ON(!section);
2301 
2302 	while (section->iov_len < sec_len) {
2303 		BUG_ON(section->iov_base == NULL);
2304 		left = sec_len - section->iov_len;
2305 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2306 				       section->iov_len, left);
2307 		if (ret <= 0)
2308 			return ret;
2309 		section->iov_len += ret;
2310 	}
2311 	if (section->iov_len == sec_len)
2312 		*crc = crc32c(0, section->iov_base, section->iov_len);
2313 
2314 	return 1;
2315 }
2316 
2317 static int read_partial_msg_data(struct ceph_connection *con)
2318 {
2319 	struct ceph_msg *msg = con->in_msg;
2320 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2321 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2322 	struct page *page;
2323 	size_t page_offset;
2324 	size_t length;
2325 	u32 crc = 0;
2326 	int ret;
2327 
2328 	if (!msg->num_data_items)
2329 		return -EIO;
2330 
2331 	if (do_datacrc)
2332 		crc = con->in_data_crc;
2333 	while (cursor->total_resid) {
2334 		if (!cursor->resid) {
2335 			ceph_msg_data_advance(cursor, 0);
2336 			continue;
2337 		}
2338 
2339 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2340 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2341 		if (ret <= 0) {
2342 			if (do_datacrc)
2343 				con->in_data_crc = crc;
2344 
2345 			return ret;
2346 		}
2347 
2348 		if (do_datacrc)
2349 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2350 		ceph_msg_data_advance(cursor, (size_t)ret);
2351 	}
2352 	if (do_datacrc)
2353 		con->in_data_crc = crc;
2354 
2355 	return 1;	/* must return > 0 to indicate success */
2356 }
2357 
2358 /*
2359  * read (part of) a message.
2360  */
2361 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2362 
2363 static int read_partial_message(struct ceph_connection *con)
2364 {
2365 	struct ceph_msg *m = con->in_msg;
2366 	int size;
2367 	int end;
2368 	int ret;
2369 	unsigned int front_len, middle_len, data_len;
2370 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2371 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2372 	u64 seq;
2373 	u32 crc;
2374 
2375 	dout("read_partial_message con %p msg %p\n", con, m);
2376 
2377 	/* header */
2378 	size = sizeof (con->in_hdr);
2379 	end = size;
2380 	ret = read_partial(con, end, size, &con->in_hdr);
2381 	if (ret <= 0)
2382 		return ret;
2383 
2384 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2385 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2386 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2387 		       crc, con->in_hdr.crc);
2388 		return -EBADMSG;
2389 	}
2390 
2391 	front_len = le32_to_cpu(con->in_hdr.front_len);
2392 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2393 		return -EIO;
2394 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2395 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2396 		return -EIO;
2397 	data_len = le32_to_cpu(con->in_hdr.data_len);
2398 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2399 		return -EIO;
2400 
2401 	/* verify seq# */
2402 	seq = le64_to_cpu(con->in_hdr.seq);
2403 	if ((s64)seq - (s64)con->in_seq < 1) {
2404 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2405 			ENTITY_NAME(con->peer_name),
2406 			ceph_pr_addr(&con->peer_addr),
2407 			seq, con->in_seq + 1);
2408 		con->in_base_pos = -front_len - middle_len - data_len -
2409 			sizeof_footer(con);
2410 		con->in_tag = CEPH_MSGR_TAG_READY;
2411 		return 1;
2412 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2413 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2414 		       seq, con->in_seq + 1);
2415 		con->error_msg = "bad message sequence # for incoming message";
2416 		return -EBADE;
2417 	}
2418 
2419 	/* allocate message? */
2420 	if (!con->in_msg) {
2421 		int skip = 0;
2422 
2423 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2424 		     front_len, data_len);
2425 		ret = ceph_con_in_msg_alloc(con, &skip);
2426 		if (ret < 0)
2427 			return ret;
2428 
2429 		BUG_ON(!con->in_msg ^ skip);
2430 		if (skip) {
2431 			/* skip this message */
2432 			dout("alloc_msg said skip message\n");
2433 			con->in_base_pos = -front_len - middle_len - data_len -
2434 				sizeof_footer(con);
2435 			con->in_tag = CEPH_MSGR_TAG_READY;
2436 			con->in_seq++;
2437 			return 1;
2438 		}
2439 
2440 		BUG_ON(!con->in_msg);
2441 		BUG_ON(con->in_msg->con != con);
2442 		m = con->in_msg;
2443 		m->front.iov_len = 0;    /* haven't read it yet */
2444 		if (m->middle)
2445 			m->middle->vec.iov_len = 0;
2446 
2447 		/* prepare for data payload, if any */
2448 
2449 		if (data_len)
2450 			prepare_message_data(con->in_msg, data_len);
2451 	}
2452 
2453 	/* front */
2454 	ret = read_partial_message_section(con, &m->front, front_len,
2455 					   &con->in_front_crc);
2456 	if (ret <= 0)
2457 		return ret;
2458 
2459 	/* middle */
2460 	if (m->middle) {
2461 		ret = read_partial_message_section(con, &m->middle->vec,
2462 						   middle_len,
2463 						   &con->in_middle_crc);
2464 		if (ret <= 0)
2465 			return ret;
2466 	}
2467 
2468 	/* (page) data */
2469 	if (data_len) {
2470 		ret = read_partial_msg_data(con);
2471 		if (ret <= 0)
2472 			return ret;
2473 	}
2474 
2475 	/* footer */
2476 	size = sizeof_footer(con);
2477 	end += size;
2478 	ret = read_partial(con, end, size, &m->footer);
2479 	if (ret <= 0)
2480 		return ret;
2481 
2482 	if (!need_sign) {
2483 		m->footer.flags = m->old_footer.flags;
2484 		m->footer.sig = 0;
2485 	}
2486 
2487 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2488 	     m, front_len, m->footer.front_crc, middle_len,
2489 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2490 
2491 	/* crc ok? */
2492 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2493 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2494 		       m, con->in_front_crc, m->footer.front_crc);
2495 		return -EBADMSG;
2496 	}
2497 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2498 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2499 		       m, con->in_middle_crc, m->footer.middle_crc);
2500 		return -EBADMSG;
2501 	}
2502 	if (do_datacrc &&
2503 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2504 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2505 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2506 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2507 		return -EBADMSG;
2508 	}
2509 
2510 	if (need_sign && con->ops->check_message_signature &&
2511 	    con->ops->check_message_signature(m)) {
2512 		pr_err("read_partial_message %p signature check failed\n", m);
2513 		return -EBADMSG;
2514 	}
2515 
2516 	return 1; /* done! */
2517 }
2518 
2519 /*
2520  * Process message.  This happens in the worker thread.  The callback should
2521  * be careful not to do anything that waits on other incoming messages or it
2522  * may deadlock.
2523  */
2524 static void process_message(struct ceph_connection *con)
2525 {
2526 	struct ceph_msg *msg = con->in_msg;
2527 
2528 	BUG_ON(con->in_msg->con != con);
2529 	con->in_msg = NULL;
2530 
2531 	/* if first message, set peer_name */
2532 	if (con->peer_name.type == 0)
2533 		con->peer_name = msg->hdr.src;
2534 
2535 	con->in_seq++;
2536 	mutex_unlock(&con->mutex);
2537 
2538 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2539 	     msg, le64_to_cpu(msg->hdr.seq),
2540 	     ENTITY_NAME(msg->hdr.src),
2541 	     le16_to_cpu(msg->hdr.type),
2542 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2543 	     le32_to_cpu(msg->hdr.front_len),
2544 	     le32_to_cpu(msg->hdr.data_len),
2545 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2546 	con->ops->dispatch(con, msg);
2547 
2548 	mutex_lock(&con->mutex);
2549 }
2550 
2551 static int read_keepalive_ack(struct ceph_connection *con)
2552 {
2553 	struct ceph_timespec ceph_ts;
2554 	size_t size = sizeof(ceph_ts);
2555 	int ret = read_partial(con, size, size, &ceph_ts);
2556 	if (ret <= 0)
2557 		return ret;
2558 	ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2559 	prepare_read_tag(con);
2560 	return 1;
2561 }
2562 
2563 /*
2564  * Write something to the socket.  Called in a worker thread when the
2565  * socket appears to be writeable and we have something ready to send.
2566  */
2567 static int try_write(struct ceph_connection *con)
2568 {
2569 	int ret = 1;
2570 
2571 	dout("try_write start %p state %lu\n", con, con->state);
2572 	if (con->state != CON_STATE_PREOPEN &&
2573 	    con->state != CON_STATE_CONNECTING &&
2574 	    con->state != CON_STATE_NEGOTIATING &&
2575 	    con->state != CON_STATE_OPEN)
2576 		return 0;
2577 
2578 	/* open the socket first? */
2579 	if (con->state == CON_STATE_PREOPEN) {
2580 		BUG_ON(con->sock);
2581 		con->state = CON_STATE_CONNECTING;
2582 
2583 		con_out_kvec_reset(con);
2584 		prepare_write_banner(con);
2585 		prepare_read_banner(con);
2586 
2587 		BUG_ON(con->in_msg);
2588 		con->in_tag = CEPH_MSGR_TAG_READY;
2589 		dout("try_write initiating connect on %p new state %lu\n",
2590 		     con, con->state);
2591 		ret = ceph_tcp_connect(con);
2592 		if (ret < 0) {
2593 			con->error_msg = "connect error";
2594 			goto out;
2595 		}
2596 	}
2597 
2598 more:
2599 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2600 	BUG_ON(!con->sock);
2601 
2602 	/* kvec data queued? */
2603 	if (con->out_kvec_left) {
2604 		ret = write_partial_kvec(con);
2605 		if (ret <= 0)
2606 			goto out;
2607 	}
2608 	if (con->out_skip) {
2609 		ret = write_partial_skip(con);
2610 		if (ret <= 0)
2611 			goto out;
2612 	}
2613 
2614 	/* msg pages? */
2615 	if (con->out_msg) {
2616 		if (con->out_msg_done) {
2617 			ceph_msg_put(con->out_msg);
2618 			con->out_msg = NULL;   /* we're done with this one */
2619 			goto do_next;
2620 		}
2621 
2622 		ret = write_partial_message_data(con);
2623 		if (ret == 1)
2624 			goto more;  /* we need to send the footer, too! */
2625 		if (ret == 0)
2626 			goto out;
2627 		if (ret < 0) {
2628 			dout("try_write write_partial_message_data err %d\n",
2629 			     ret);
2630 			goto out;
2631 		}
2632 	}
2633 
2634 do_next:
2635 	if (con->state == CON_STATE_OPEN) {
2636 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2637 			prepare_write_keepalive(con);
2638 			goto more;
2639 		}
2640 		/* is anything else pending? */
2641 		if (!list_empty(&con->out_queue)) {
2642 			prepare_write_message(con);
2643 			goto more;
2644 		}
2645 		if (con->in_seq > con->in_seq_acked) {
2646 			prepare_write_ack(con);
2647 			goto more;
2648 		}
2649 	}
2650 
2651 	/* Nothing to do! */
2652 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2653 	dout("try_write nothing else to write.\n");
2654 	ret = 0;
2655 out:
2656 	dout("try_write done on %p ret %d\n", con, ret);
2657 	return ret;
2658 }
2659 
2660 /*
2661  * Read what we can from the socket.
2662  */
2663 static int try_read(struct ceph_connection *con)
2664 {
2665 	int ret = -1;
2666 
2667 more:
2668 	dout("try_read start on %p state %lu\n", con, con->state);
2669 	if (con->state != CON_STATE_CONNECTING &&
2670 	    con->state != CON_STATE_NEGOTIATING &&
2671 	    con->state != CON_STATE_OPEN)
2672 		return 0;
2673 
2674 	BUG_ON(!con->sock);
2675 
2676 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2677 	     con->in_base_pos);
2678 
2679 	if (con->state == CON_STATE_CONNECTING) {
2680 		dout("try_read connecting\n");
2681 		ret = read_partial_banner(con);
2682 		if (ret <= 0)
2683 			goto out;
2684 		ret = process_banner(con);
2685 		if (ret < 0)
2686 			goto out;
2687 
2688 		con->state = CON_STATE_NEGOTIATING;
2689 
2690 		/*
2691 		 * Received banner is good, exchange connection info.
2692 		 * Do not reset out_kvec, as sending our banner raced
2693 		 * with receiving peer banner after connect completed.
2694 		 */
2695 		ret = prepare_write_connect(con);
2696 		if (ret < 0)
2697 			goto out;
2698 		prepare_read_connect(con);
2699 
2700 		/* Send connection info before awaiting response */
2701 		goto out;
2702 	}
2703 
2704 	if (con->state == CON_STATE_NEGOTIATING) {
2705 		dout("try_read negotiating\n");
2706 		ret = read_partial_connect(con);
2707 		if (ret <= 0)
2708 			goto out;
2709 		ret = process_connect(con);
2710 		if (ret < 0)
2711 			goto out;
2712 		goto more;
2713 	}
2714 
2715 	WARN_ON(con->state != CON_STATE_OPEN);
2716 
2717 	if (con->in_base_pos < 0) {
2718 		/*
2719 		 * skipping + discarding content.
2720 		 */
2721 		ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2722 		if (ret <= 0)
2723 			goto out;
2724 		dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2725 		con->in_base_pos += ret;
2726 		if (con->in_base_pos)
2727 			goto more;
2728 	}
2729 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2730 		/*
2731 		 * what's next?
2732 		 */
2733 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2734 		if (ret <= 0)
2735 			goto out;
2736 		dout("try_read got tag %d\n", (int)con->in_tag);
2737 		switch (con->in_tag) {
2738 		case CEPH_MSGR_TAG_MSG:
2739 			prepare_read_message(con);
2740 			break;
2741 		case CEPH_MSGR_TAG_ACK:
2742 			prepare_read_ack(con);
2743 			break;
2744 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2745 			prepare_read_keepalive_ack(con);
2746 			break;
2747 		case CEPH_MSGR_TAG_CLOSE:
2748 			con_close_socket(con);
2749 			con->state = CON_STATE_CLOSED;
2750 			goto out;
2751 		default:
2752 			goto bad_tag;
2753 		}
2754 	}
2755 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2756 		ret = read_partial_message(con);
2757 		if (ret <= 0) {
2758 			switch (ret) {
2759 			case -EBADMSG:
2760 				con->error_msg = "bad crc/signature";
2761 				/* fall through */
2762 			case -EBADE:
2763 				ret = -EIO;
2764 				break;
2765 			case -EIO:
2766 				con->error_msg = "io error";
2767 				break;
2768 			}
2769 			goto out;
2770 		}
2771 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2772 			goto more;
2773 		process_message(con);
2774 		if (con->state == CON_STATE_OPEN)
2775 			prepare_read_tag(con);
2776 		goto more;
2777 	}
2778 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2779 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2780 		/*
2781 		 * the final handshake seq exchange is semantically
2782 		 * equivalent to an ACK
2783 		 */
2784 		ret = read_partial_ack(con);
2785 		if (ret <= 0)
2786 			goto out;
2787 		process_ack(con);
2788 		goto more;
2789 	}
2790 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2791 		ret = read_keepalive_ack(con);
2792 		if (ret <= 0)
2793 			goto out;
2794 		goto more;
2795 	}
2796 
2797 out:
2798 	dout("try_read done on %p ret %d\n", con, ret);
2799 	return ret;
2800 
2801 bad_tag:
2802 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2803 	con->error_msg = "protocol error, garbage tag";
2804 	ret = -1;
2805 	goto out;
2806 }
2807 
2808 
2809 /*
2810  * Atomically queue work on a connection after the specified delay.
2811  * Bump @con reference to avoid races with connection teardown.
2812  * Returns 0 if work was queued, or an error code otherwise.
2813  */
2814 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2815 {
2816 	if (!con->ops->get(con)) {
2817 		dout("%s %p ref count 0\n", __func__, con);
2818 		return -ENOENT;
2819 	}
2820 
2821 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2822 		dout("%s %p - already queued\n", __func__, con);
2823 		con->ops->put(con);
2824 		return -EBUSY;
2825 	}
2826 
2827 	dout("%s %p %lu\n", __func__, con, delay);
2828 	return 0;
2829 }
2830 
2831 static void queue_con(struct ceph_connection *con)
2832 {
2833 	(void) queue_con_delay(con, 0);
2834 }
2835 
2836 static void cancel_con(struct ceph_connection *con)
2837 {
2838 	if (cancel_delayed_work(&con->work)) {
2839 		dout("%s %p\n", __func__, con);
2840 		con->ops->put(con);
2841 	}
2842 }
2843 
2844 static bool con_sock_closed(struct ceph_connection *con)
2845 {
2846 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2847 		return false;
2848 
2849 #define CASE(x)								\
2850 	case CON_STATE_ ## x:						\
2851 		con->error_msg = "socket closed (con state " #x ")";	\
2852 		break;
2853 
2854 	switch (con->state) {
2855 	CASE(CLOSED);
2856 	CASE(PREOPEN);
2857 	CASE(CONNECTING);
2858 	CASE(NEGOTIATING);
2859 	CASE(OPEN);
2860 	CASE(STANDBY);
2861 	default:
2862 		pr_warn("%s con %p unrecognized state %lu\n",
2863 			__func__, con, con->state);
2864 		con->error_msg = "unrecognized con state";
2865 		BUG();
2866 		break;
2867 	}
2868 #undef CASE
2869 
2870 	return true;
2871 }
2872 
2873 static bool con_backoff(struct ceph_connection *con)
2874 {
2875 	int ret;
2876 
2877 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2878 		return false;
2879 
2880 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2881 	if (ret) {
2882 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2883 			con, con->delay);
2884 		BUG_ON(ret == -ENOENT);
2885 		con_flag_set(con, CON_FLAG_BACKOFF);
2886 	}
2887 
2888 	return true;
2889 }
2890 
2891 /* Finish fault handling; con->mutex must *not* be held here */
2892 
2893 static void con_fault_finish(struct ceph_connection *con)
2894 {
2895 	dout("%s %p\n", __func__, con);
2896 
2897 	/*
2898 	 * in case we faulted due to authentication, invalidate our
2899 	 * current tickets so that we can get new ones.
2900 	 */
2901 	if (con->auth_retry) {
2902 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2903 		if (con->ops->invalidate_authorizer)
2904 			con->ops->invalidate_authorizer(con);
2905 		con->auth_retry = 0;
2906 	}
2907 
2908 	if (con->ops->fault)
2909 		con->ops->fault(con);
2910 }
2911 
2912 /*
2913  * Do some work on a connection.  Drop a connection ref when we're done.
2914  */
2915 static void ceph_con_workfn(struct work_struct *work)
2916 {
2917 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2918 						   work.work);
2919 	bool fault;
2920 
2921 	mutex_lock(&con->mutex);
2922 	while (true) {
2923 		int ret;
2924 
2925 		if ((fault = con_sock_closed(con))) {
2926 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2927 			break;
2928 		}
2929 		if (con_backoff(con)) {
2930 			dout("%s: con %p BACKOFF\n", __func__, con);
2931 			break;
2932 		}
2933 		if (con->state == CON_STATE_STANDBY) {
2934 			dout("%s: con %p STANDBY\n", __func__, con);
2935 			break;
2936 		}
2937 		if (con->state == CON_STATE_CLOSED) {
2938 			dout("%s: con %p CLOSED\n", __func__, con);
2939 			BUG_ON(con->sock);
2940 			break;
2941 		}
2942 		if (con->state == CON_STATE_PREOPEN) {
2943 			dout("%s: con %p PREOPEN\n", __func__, con);
2944 			BUG_ON(con->sock);
2945 		}
2946 
2947 		ret = try_read(con);
2948 		if (ret < 0) {
2949 			if (ret == -EAGAIN)
2950 				continue;
2951 			if (!con->error_msg)
2952 				con->error_msg = "socket error on read";
2953 			fault = true;
2954 			break;
2955 		}
2956 
2957 		ret = try_write(con);
2958 		if (ret < 0) {
2959 			if (ret == -EAGAIN)
2960 				continue;
2961 			if (!con->error_msg)
2962 				con->error_msg = "socket error on write";
2963 			fault = true;
2964 		}
2965 
2966 		break;	/* If we make it to here, we're done */
2967 	}
2968 	if (fault)
2969 		con_fault(con);
2970 	mutex_unlock(&con->mutex);
2971 
2972 	if (fault)
2973 		con_fault_finish(con);
2974 
2975 	con->ops->put(con);
2976 }
2977 
2978 /*
2979  * Generic error/fault handler.  A retry mechanism is used with
2980  * exponential backoff
2981  */
2982 static void con_fault(struct ceph_connection *con)
2983 {
2984 	dout("fault %p state %lu to peer %s\n",
2985 	     con, con->state, ceph_pr_addr(&con->peer_addr));
2986 
2987 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2988 		ceph_pr_addr(&con->peer_addr), con->error_msg);
2989 	con->error_msg = NULL;
2990 
2991 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2992 	       con->state != CON_STATE_NEGOTIATING &&
2993 	       con->state != CON_STATE_OPEN);
2994 
2995 	con_close_socket(con);
2996 
2997 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2998 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2999 		con->state = CON_STATE_CLOSED;
3000 		return;
3001 	}
3002 
3003 	if (con->in_msg) {
3004 		BUG_ON(con->in_msg->con != con);
3005 		ceph_msg_put(con->in_msg);
3006 		con->in_msg = NULL;
3007 	}
3008 
3009 	/* Requeue anything that hasn't been acked */
3010 	list_splice_init(&con->out_sent, &con->out_queue);
3011 
3012 	/* If there are no messages queued or keepalive pending, place
3013 	 * the connection in a STANDBY state */
3014 	if (list_empty(&con->out_queue) &&
3015 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3016 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3017 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3018 		con->state = CON_STATE_STANDBY;
3019 	} else {
3020 		/* retry after a delay. */
3021 		con->state = CON_STATE_PREOPEN;
3022 		if (con->delay == 0)
3023 			con->delay = BASE_DELAY_INTERVAL;
3024 		else if (con->delay < MAX_DELAY_INTERVAL)
3025 			con->delay *= 2;
3026 		con_flag_set(con, CON_FLAG_BACKOFF);
3027 		queue_con(con);
3028 	}
3029 }
3030 
3031 
3032 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
3033 {
3034 	u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
3035 	msgr->inst.addr.nonce = cpu_to_le32(nonce);
3036 	encode_my_addr(msgr);
3037 }
3038 
3039 /*
3040  * initialize a new messenger instance
3041  */
3042 void ceph_messenger_init(struct ceph_messenger *msgr,
3043 			 struct ceph_entity_addr *myaddr)
3044 {
3045 	spin_lock_init(&msgr->global_seq_lock);
3046 
3047 	if (myaddr)
3048 		msgr->inst.addr = *myaddr;
3049 
3050 	/* select a random nonce */
3051 	msgr->inst.addr.type = 0;
3052 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3053 	encode_my_addr(msgr);
3054 
3055 	atomic_set(&msgr->stopping, 0);
3056 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3057 
3058 	dout("%s %p\n", __func__, msgr);
3059 }
3060 EXPORT_SYMBOL(ceph_messenger_init);
3061 
3062 void ceph_messenger_fini(struct ceph_messenger *msgr)
3063 {
3064 	put_net(read_pnet(&msgr->net));
3065 }
3066 EXPORT_SYMBOL(ceph_messenger_fini);
3067 
3068 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3069 {
3070 	if (msg->con)
3071 		msg->con->ops->put(msg->con);
3072 
3073 	msg->con = con ? con->ops->get(con) : NULL;
3074 	BUG_ON(msg->con != con);
3075 }
3076 
3077 static void clear_standby(struct ceph_connection *con)
3078 {
3079 	/* come back from STANDBY? */
3080 	if (con->state == CON_STATE_STANDBY) {
3081 		dout("clear_standby %p and ++connect_seq\n", con);
3082 		con->state = CON_STATE_PREOPEN;
3083 		con->connect_seq++;
3084 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3085 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3086 	}
3087 }
3088 
3089 /*
3090  * Queue up an outgoing message on the given connection.
3091  */
3092 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3093 {
3094 	/* set src+dst */
3095 	msg->hdr.src = con->msgr->inst.name;
3096 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3097 	msg->needs_out_seq = true;
3098 
3099 	mutex_lock(&con->mutex);
3100 
3101 	if (con->state == CON_STATE_CLOSED) {
3102 		dout("con_send %p closed, dropping %p\n", con, msg);
3103 		ceph_msg_put(msg);
3104 		mutex_unlock(&con->mutex);
3105 		return;
3106 	}
3107 
3108 	msg_con_set(msg, con);
3109 
3110 	BUG_ON(!list_empty(&msg->list_head));
3111 	list_add_tail(&msg->list_head, &con->out_queue);
3112 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3113 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3114 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3115 	     le32_to_cpu(msg->hdr.front_len),
3116 	     le32_to_cpu(msg->hdr.middle_len),
3117 	     le32_to_cpu(msg->hdr.data_len));
3118 
3119 	clear_standby(con);
3120 	mutex_unlock(&con->mutex);
3121 
3122 	/* if there wasn't anything waiting to send before, queue
3123 	 * new work */
3124 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3125 		queue_con(con);
3126 }
3127 EXPORT_SYMBOL(ceph_con_send);
3128 
3129 /*
3130  * Revoke a message that was previously queued for send
3131  */
3132 void ceph_msg_revoke(struct ceph_msg *msg)
3133 {
3134 	struct ceph_connection *con = msg->con;
3135 
3136 	if (!con) {
3137 		dout("%s msg %p null con\n", __func__, msg);
3138 		return;		/* Message not in our possession */
3139 	}
3140 
3141 	mutex_lock(&con->mutex);
3142 	if (!list_empty(&msg->list_head)) {
3143 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3144 		list_del_init(&msg->list_head);
3145 		msg->hdr.seq = 0;
3146 
3147 		ceph_msg_put(msg);
3148 	}
3149 	if (con->out_msg == msg) {
3150 		BUG_ON(con->out_skip);
3151 		/* footer */
3152 		if (con->out_msg_done) {
3153 			con->out_skip += con_out_kvec_skip(con);
3154 		} else {
3155 			BUG_ON(!msg->data_length);
3156 			con->out_skip += sizeof_footer(con);
3157 		}
3158 		/* data, middle, front */
3159 		if (msg->data_length)
3160 			con->out_skip += msg->cursor.total_resid;
3161 		if (msg->middle)
3162 			con->out_skip += con_out_kvec_skip(con);
3163 		con->out_skip += con_out_kvec_skip(con);
3164 
3165 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3166 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3167 		msg->hdr.seq = 0;
3168 		con->out_msg = NULL;
3169 		ceph_msg_put(msg);
3170 	}
3171 
3172 	mutex_unlock(&con->mutex);
3173 }
3174 
3175 /*
3176  * Revoke a message that we may be reading data into
3177  */
3178 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3179 {
3180 	struct ceph_connection *con = msg->con;
3181 
3182 	if (!con) {
3183 		dout("%s msg %p null con\n", __func__, msg);
3184 		return;		/* Message not in our possession */
3185 	}
3186 
3187 	mutex_lock(&con->mutex);
3188 	if (con->in_msg == msg) {
3189 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3190 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3191 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3192 
3193 		/* skip rest of message */
3194 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3195 		con->in_base_pos = con->in_base_pos -
3196 				sizeof(struct ceph_msg_header) -
3197 				front_len -
3198 				middle_len -
3199 				data_len -
3200 				sizeof(struct ceph_msg_footer);
3201 		ceph_msg_put(con->in_msg);
3202 		con->in_msg = NULL;
3203 		con->in_tag = CEPH_MSGR_TAG_READY;
3204 		con->in_seq++;
3205 	} else {
3206 		dout("%s %p in_msg %p msg %p no-op\n",
3207 		     __func__, con, con->in_msg, msg);
3208 	}
3209 	mutex_unlock(&con->mutex);
3210 }
3211 
3212 /*
3213  * Queue a keepalive byte to ensure the tcp connection is alive.
3214  */
3215 void ceph_con_keepalive(struct ceph_connection *con)
3216 {
3217 	dout("con_keepalive %p\n", con);
3218 	mutex_lock(&con->mutex);
3219 	clear_standby(con);
3220 	con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3221 	mutex_unlock(&con->mutex);
3222 
3223 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3224 		queue_con(con);
3225 }
3226 EXPORT_SYMBOL(ceph_con_keepalive);
3227 
3228 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3229 			       unsigned long interval)
3230 {
3231 	if (interval > 0 &&
3232 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3233 		struct timespec64 now;
3234 		struct timespec64 ts;
3235 		ktime_get_real_ts64(&now);
3236 		jiffies_to_timespec64(interval, &ts);
3237 		ts = timespec64_add(con->last_keepalive_ack, ts);
3238 		return timespec64_compare(&now, &ts) >= 0;
3239 	}
3240 	return false;
3241 }
3242 
3243 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3244 {
3245 	BUG_ON(msg->num_data_items >= msg->max_data_items);
3246 	return &msg->data[msg->num_data_items++];
3247 }
3248 
3249 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3250 {
3251 	if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
3252 		int num_pages = calc_pages_for(data->alignment, data->length);
3253 		ceph_release_page_vector(data->pages, num_pages);
3254 	} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
3255 		ceph_pagelist_release(data->pagelist);
3256 	}
3257 }
3258 
3259 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3260 			     size_t length, size_t alignment, bool own_pages)
3261 {
3262 	struct ceph_msg_data *data;
3263 
3264 	BUG_ON(!pages);
3265 	BUG_ON(!length);
3266 
3267 	data = ceph_msg_data_add(msg);
3268 	data->type = CEPH_MSG_DATA_PAGES;
3269 	data->pages = pages;
3270 	data->length = length;
3271 	data->alignment = alignment & ~PAGE_MASK;
3272 	data->own_pages = own_pages;
3273 
3274 	msg->data_length += length;
3275 }
3276 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3277 
3278 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3279 				struct ceph_pagelist *pagelist)
3280 {
3281 	struct ceph_msg_data *data;
3282 
3283 	BUG_ON(!pagelist);
3284 	BUG_ON(!pagelist->length);
3285 
3286 	data = ceph_msg_data_add(msg);
3287 	data->type = CEPH_MSG_DATA_PAGELIST;
3288 	refcount_inc(&pagelist->refcnt);
3289 	data->pagelist = pagelist;
3290 
3291 	msg->data_length += pagelist->length;
3292 }
3293 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3294 
3295 #ifdef	CONFIG_BLOCK
3296 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3297 			   u32 length)
3298 {
3299 	struct ceph_msg_data *data;
3300 
3301 	data = ceph_msg_data_add(msg);
3302 	data->type = CEPH_MSG_DATA_BIO;
3303 	data->bio_pos = *bio_pos;
3304 	data->bio_length = length;
3305 
3306 	msg->data_length += length;
3307 }
3308 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3309 #endif	/* CONFIG_BLOCK */
3310 
3311 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3312 			     struct ceph_bvec_iter *bvec_pos)
3313 {
3314 	struct ceph_msg_data *data;
3315 
3316 	data = ceph_msg_data_add(msg);
3317 	data->type = CEPH_MSG_DATA_BVECS;
3318 	data->bvec_pos = *bvec_pos;
3319 
3320 	msg->data_length += bvec_pos->iter.bi_size;
3321 }
3322 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3323 
3324 /*
3325  * construct a new message with given type, size
3326  * the new msg has a ref count of 1.
3327  */
3328 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3329 			       gfp_t flags, bool can_fail)
3330 {
3331 	struct ceph_msg *m;
3332 
3333 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3334 	if (m == NULL)
3335 		goto out;
3336 
3337 	m->hdr.type = cpu_to_le16(type);
3338 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3339 	m->hdr.front_len = cpu_to_le32(front_len);
3340 
3341 	INIT_LIST_HEAD(&m->list_head);
3342 	kref_init(&m->kref);
3343 
3344 	/* front */
3345 	if (front_len) {
3346 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3347 		if (m->front.iov_base == NULL) {
3348 			dout("ceph_msg_new can't allocate %d bytes\n",
3349 			     front_len);
3350 			goto out2;
3351 		}
3352 	} else {
3353 		m->front.iov_base = NULL;
3354 	}
3355 	m->front_alloc_len = m->front.iov_len = front_len;
3356 
3357 	if (max_data_items) {
3358 		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3359 					flags);
3360 		if (!m->data)
3361 			goto out2;
3362 
3363 		m->max_data_items = max_data_items;
3364 	}
3365 
3366 	dout("ceph_msg_new %p front %d\n", m, front_len);
3367 	return m;
3368 
3369 out2:
3370 	ceph_msg_put(m);
3371 out:
3372 	if (!can_fail) {
3373 		pr_err("msg_new can't create type %d front %d\n", type,
3374 		       front_len);
3375 		WARN_ON(1);
3376 	} else {
3377 		dout("msg_new can't create type %d front %d\n", type,
3378 		     front_len);
3379 	}
3380 	return NULL;
3381 }
3382 EXPORT_SYMBOL(ceph_msg_new2);
3383 
3384 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3385 			      bool can_fail)
3386 {
3387 	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3388 }
3389 EXPORT_SYMBOL(ceph_msg_new);
3390 
3391 /*
3392  * Allocate "middle" portion of a message, if it is needed and wasn't
3393  * allocated by alloc_msg.  This allows us to read a small fixed-size
3394  * per-type header in the front and then gracefully fail (i.e.,
3395  * propagate the error to the caller based on info in the front) when
3396  * the middle is too large.
3397  */
3398 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3399 {
3400 	int type = le16_to_cpu(msg->hdr.type);
3401 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3402 
3403 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3404 	     ceph_msg_type_name(type), middle_len);
3405 	BUG_ON(!middle_len);
3406 	BUG_ON(msg->middle);
3407 
3408 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3409 	if (!msg->middle)
3410 		return -ENOMEM;
3411 	return 0;
3412 }
3413 
3414 /*
3415  * Allocate a message for receiving an incoming message on a
3416  * connection, and save the result in con->in_msg.  Uses the
3417  * connection's private alloc_msg op if available.
3418  *
3419  * Returns 0 on success, or a negative error code.
3420  *
3421  * On success, if we set *skip = 1:
3422  *  - the next message should be skipped and ignored.
3423  *  - con->in_msg == NULL
3424  * or if we set *skip = 0:
3425  *  - con->in_msg is non-null.
3426  * On error (ENOMEM, EAGAIN, ...),
3427  *  - con->in_msg == NULL
3428  */
3429 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3430 {
3431 	struct ceph_msg_header *hdr = &con->in_hdr;
3432 	int middle_len = le32_to_cpu(hdr->middle_len);
3433 	struct ceph_msg *msg;
3434 	int ret = 0;
3435 
3436 	BUG_ON(con->in_msg != NULL);
3437 	BUG_ON(!con->ops->alloc_msg);
3438 
3439 	mutex_unlock(&con->mutex);
3440 	msg = con->ops->alloc_msg(con, hdr, skip);
3441 	mutex_lock(&con->mutex);
3442 	if (con->state != CON_STATE_OPEN) {
3443 		if (msg)
3444 			ceph_msg_put(msg);
3445 		return -EAGAIN;
3446 	}
3447 	if (msg) {
3448 		BUG_ON(*skip);
3449 		msg_con_set(msg, con);
3450 		con->in_msg = msg;
3451 	} else {
3452 		/*
3453 		 * Null message pointer means either we should skip
3454 		 * this message or we couldn't allocate memory.  The
3455 		 * former is not an error.
3456 		 */
3457 		if (*skip)
3458 			return 0;
3459 
3460 		con->error_msg = "error allocating memory for incoming message";
3461 		return -ENOMEM;
3462 	}
3463 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3464 
3465 	if (middle_len && !con->in_msg->middle) {
3466 		ret = ceph_alloc_middle(con, con->in_msg);
3467 		if (ret < 0) {
3468 			ceph_msg_put(con->in_msg);
3469 			con->in_msg = NULL;
3470 		}
3471 	}
3472 
3473 	return ret;
3474 }
3475 
3476 
3477 /*
3478  * Free a generically kmalloc'd message.
3479  */
3480 static void ceph_msg_free(struct ceph_msg *m)
3481 {
3482 	dout("%s %p\n", __func__, m);
3483 	kvfree(m->front.iov_base);
3484 	kfree(m->data);
3485 	kmem_cache_free(ceph_msg_cache, m);
3486 }
3487 
3488 static void ceph_msg_release(struct kref *kref)
3489 {
3490 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3491 	int i;
3492 
3493 	dout("%s %p\n", __func__, m);
3494 	WARN_ON(!list_empty(&m->list_head));
3495 
3496 	msg_con_set(m, NULL);
3497 
3498 	/* drop middle, data, if any */
3499 	if (m->middle) {
3500 		ceph_buffer_put(m->middle);
3501 		m->middle = NULL;
3502 	}
3503 
3504 	for (i = 0; i < m->num_data_items; i++)
3505 		ceph_msg_data_destroy(&m->data[i]);
3506 
3507 	if (m->pool)
3508 		ceph_msgpool_put(m->pool, m);
3509 	else
3510 		ceph_msg_free(m);
3511 }
3512 
3513 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3514 {
3515 	dout("%s %p (was %d)\n", __func__, msg,
3516 	     kref_read(&msg->kref));
3517 	kref_get(&msg->kref);
3518 	return msg;
3519 }
3520 EXPORT_SYMBOL(ceph_msg_get);
3521 
3522 void ceph_msg_put(struct ceph_msg *msg)
3523 {
3524 	dout("%s %p (was %d)\n", __func__, msg,
3525 	     kref_read(&msg->kref));
3526 	kref_put(&msg->kref, ceph_msg_release);
3527 }
3528 EXPORT_SYMBOL(ceph_msg_put);
3529 
3530 void ceph_msg_dump(struct ceph_msg *msg)
3531 {
3532 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3533 		 msg->front_alloc_len, msg->data_length);
3534 	print_hex_dump(KERN_DEBUG, "header: ",
3535 		       DUMP_PREFIX_OFFSET, 16, 1,
3536 		       &msg->hdr, sizeof(msg->hdr), true);
3537 	print_hex_dump(KERN_DEBUG, " front: ",
3538 		       DUMP_PREFIX_OFFSET, 16, 1,
3539 		       msg->front.iov_base, msg->front.iov_len, true);
3540 	if (msg->middle)
3541 		print_hex_dump(KERN_DEBUG, "middle: ",
3542 			       DUMP_PREFIX_OFFSET, 16, 1,
3543 			       msg->middle->vec.iov_base,
3544 			       msg->middle->vec.iov_len, true);
3545 	print_hex_dump(KERN_DEBUG, "footer: ",
3546 		       DUMP_PREFIX_OFFSET, 16, 1,
3547 		       &msg->footer, sizeof(msg->footer), true);
3548 }
3549 EXPORT_SYMBOL(ceph_msg_dump);
3550