xref: /linux/net/ceph/messenger.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <net/tcp.h>
15 
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 
21 /*
22  * Ceph uses the messenger to exchange ceph_msg messages with other
23  * hosts in the system.  The messenger provides ordered and reliable
24  * delivery.  We tolerate TCP disconnects by reconnecting (with
25  * exponential backoff) in the case of a fault (disconnection, bad
26  * crc, protocol error).  Acks allow sent messages to be discarded by
27  * the sender.
28  */
29 
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg = CEPH_MSGR_TAG_MSG;
32 static char tag_ack = CEPH_MSGR_TAG_ACK;
33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
34 
35 #ifdef CONFIG_LOCKDEP
36 static struct lock_class_key socket_class;
37 #endif
38 
39 
40 static void queue_con(struct ceph_connection *con);
41 static void con_work(struct work_struct *);
42 static void ceph_fault(struct ceph_connection *con);
43 
44 /*
45  * nicely render a sockaddr as a string.
46  */
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
50 static DEFINE_SPINLOCK(addr_str_lock);
51 static int last_addr_str;
52 
53 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
54 {
55 	int i;
56 	char *s;
57 	struct sockaddr_in *in4 = (void *)ss;
58 	struct sockaddr_in6 *in6 = (void *)ss;
59 
60 	spin_lock(&addr_str_lock);
61 	i = last_addr_str++;
62 	if (last_addr_str == MAX_ADDR_STR)
63 		last_addr_str = 0;
64 	spin_unlock(&addr_str_lock);
65 	s = addr_str[i];
66 
67 	switch (ss->ss_family) {
68 	case AF_INET:
69 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
70 			 (unsigned int)ntohs(in4->sin_port));
71 		break;
72 
73 	case AF_INET6:
74 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
75 			 (unsigned int)ntohs(in6->sin6_port));
76 		break;
77 
78 	default:
79 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
80 			 (int)ss->ss_family);
81 	}
82 
83 	return s;
84 }
85 EXPORT_SYMBOL(ceph_pr_addr);
86 
87 static void encode_my_addr(struct ceph_messenger *msgr)
88 {
89 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
90 	ceph_encode_addr(&msgr->my_enc_addr);
91 }
92 
93 /*
94  * work queue for all reading and writing to/from the socket.
95  */
96 struct workqueue_struct *ceph_msgr_wq;
97 
98 int ceph_msgr_init(void)
99 {
100 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
101 	if (!ceph_msgr_wq) {
102 		pr_err("msgr_init failed to create workqueue\n");
103 		return -ENOMEM;
104 	}
105 	return 0;
106 }
107 EXPORT_SYMBOL(ceph_msgr_init);
108 
109 void ceph_msgr_exit(void)
110 {
111 	destroy_workqueue(ceph_msgr_wq);
112 }
113 EXPORT_SYMBOL(ceph_msgr_exit);
114 
115 void ceph_msgr_flush(void)
116 {
117 	flush_workqueue(ceph_msgr_wq);
118 }
119 EXPORT_SYMBOL(ceph_msgr_flush);
120 
121 
122 /*
123  * socket callback functions
124  */
125 
126 /* data available on socket, or listen socket received a connect */
127 static void ceph_data_ready(struct sock *sk, int count_unused)
128 {
129 	struct ceph_connection *con =
130 		(struct ceph_connection *)sk->sk_user_data;
131 	if (sk->sk_state != TCP_CLOSE_WAIT) {
132 		dout("ceph_data_ready on %p state = %lu, queueing work\n",
133 		     con, con->state);
134 		queue_con(con);
135 	}
136 }
137 
138 /* socket has buffer space for writing */
139 static void ceph_write_space(struct sock *sk)
140 {
141 	struct ceph_connection *con =
142 		(struct ceph_connection *)sk->sk_user_data;
143 
144 	/* only queue to workqueue if there is data we want to write. */
145 	if (test_bit(WRITE_PENDING, &con->state)) {
146 		dout("ceph_write_space %p queueing write work\n", con);
147 		queue_con(con);
148 	} else {
149 		dout("ceph_write_space %p nothing to write\n", con);
150 	}
151 
152 	/* since we have our own write_space, clear the SOCK_NOSPACE flag */
153 	clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
154 }
155 
156 /* socket's state has changed */
157 static void ceph_state_change(struct sock *sk)
158 {
159 	struct ceph_connection *con =
160 		(struct ceph_connection *)sk->sk_user_data;
161 
162 	dout("ceph_state_change %p state = %lu sk_state = %u\n",
163 	     con, con->state, sk->sk_state);
164 
165 	if (test_bit(CLOSED, &con->state))
166 		return;
167 
168 	switch (sk->sk_state) {
169 	case TCP_CLOSE:
170 		dout("ceph_state_change TCP_CLOSE\n");
171 	case TCP_CLOSE_WAIT:
172 		dout("ceph_state_change TCP_CLOSE_WAIT\n");
173 		if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
174 			if (test_bit(CONNECTING, &con->state))
175 				con->error_msg = "connection failed";
176 			else
177 				con->error_msg = "socket closed";
178 			queue_con(con);
179 		}
180 		break;
181 	case TCP_ESTABLISHED:
182 		dout("ceph_state_change TCP_ESTABLISHED\n");
183 		queue_con(con);
184 		break;
185 	}
186 }
187 
188 /*
189  * set up socket callbacks
190  */
191 static void set_sock_callbacks(struct socket *sock,
192 			       struct ceph_connection *con)
193 {
194 	struct sock *sk = sock->sk;
195 	sk->sk_user_data = (void *)con;
196 	sk->sk_data_ready = ceph_data_ready;
197 	sk->sk_write_space = ceph_write_space;
198 	sk->sk_state_change = ceph_state_change;
199 }
200 
201 
202 /*
203  * socket helpers
204  */
205 
206 /*
207  * initiate connection to a remote socket.
208  */
209 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
210 {
211 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
212 	struct socket *sock;
213 	int ret;
214 
215 	BUG_ON(con->sock);
216 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
217 			       IPPROTO_TCP, &sock);
218 	if (ret)
219 		return ERR_PTR(ret);
220 	con->sock = sock;
221 	sock->sk->sk_allocation = GFP_NOFS;
222 
223 #ifdef CONFIG_LOCKDEP
224 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
225 #endif
226 
227 	set_sock_callbacks(sock, con);
228 
229 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
230 
231 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
232 				 O_NONBLOCK);
233 	if (ret == -EINPROGRESS) {
234 		dout("connect %s EINPROGRESS sk_state = %u\n",
235 		     ceph_pr_addr(&con->peer_addr.in_addr),
236 		     sock->sk->sk_state);
237 		ret = 0;
238 	}
239 	if (ret < 0) {
240 		pr_err("connect %s error %d\n",
241 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
242 		sock_release(sock);
243 		con->sock = NULL;
244 		con->error_msg = "connect error";
245 	}
246 
247 	if (ret < 0)
248 		return ERR_PTR(ret);
249 	return sock;
250 }
251 
252 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
253 {
254 	struct kvec iov = {buf, len};
255 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
256 	int r;
257 
258 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
259 	if (r == -EAGAIN)
260 		r = 0;
261 	return r;
262 }
263 
264 /*
265  * write something.  @more is true if caller will be sending more data
266  * shortly.
267  */
268 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
269 		     size_t kvlen, size_t len, int more)
270 {
271 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
272 	int r;
273 
274 	if (more)
275 		msg.msg_flags |= MSG_MORE;
276 	else
277 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
278 
279 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
280 	if (r == -EAGAIN)
281 		r = 0;
282 	return r;
283 }
284 
285 
286 /*
287  * Shutdown/close the socket for the given connection.
288  */
289 static int con_close_socket(struct ceph_connection *con)
290 {
291 	int rc;
292 
293 	dout("con_close_socket on %p sock %p\n", con, con->sock);
294 	if (!con->sock)
295 		return 0;
296 	set_bit(SOCK_CLOSED, &con->state);
297 	rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
298 	sock_release(con->sock);
299 	con->sock = NULL;
300 	clear_bit(SOCK_CLOSED, &con->state);
301 	return rc;
302 }
303 
304 /*
305  * Reset a connection.  Discard all incoming and outgoing messages
306  * and clear *_seq state.
307  */
308 static void ceph_msg_remove(struct ceph_msg *msg)
309 {
310 	list_del_init(&msg->list_head);
311 	ceph_msg_put(msg);
312 }
313 static void ceph_msg_remove_list(struct list_head *head)
314 {
315 	while (!list_empty(head)) {
316 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
317 							list_head);
318 		ceph_msg_remove(msg);
319 	}
320 }
321 
322 static void reset_connection(struct ceph_connection *con)
323 {
324 	/* reset connection, out_queue, msg_ and connect_seq */
325 	/* discard existing out_queue and msg_seq */
326 	ceph_msg_remove_list(&con->out_queue);
327 	ceph_msg_remove_list(&con->out_sent);
328 
329 	if (con->in_msg) {
330 		ceph_msg_put(con->in_msg);
331 		con->in_msg = NULL;
332 	}
333 
334 	con->connect_seq = 0;
335 	con->out_seq = 0;
336 	if (con->out_msg) {
337 		ceph_msg_put(con->out_msg);
338 		con->out_msg = NULL;
339 	}
340 	con->in_seq = 0;
341 	con->in_seq_acked = 0;
342 }
343 
344 /*
345  * mark a peer down.  drop any open connections.
346  */
347 void ceph_con_close(struct ceph_connection *con)
348 {
349 	dout("con_close %p peer %s\n", con,
350 	     ceph_pr_addr(&con->peer_addr.in_addr));
351 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
352 	clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
353 	clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
354 	clear_bit(KEEPALIVE_PENDING, &con->state);
355 	clear_bit(WRITE_PENDING, &con->state);
356 	mutex_lock(&con->mutex);
357 	reset_connection(con);
358 	con->peer_global_seq = 0;
359 	cancel_delayed_work(&con->work);
360 	mutex_unlock(&con->mutex);
361 	queue_con(con);
362 }
363 EXPORT_SYMBOL(ceph_con_close);
364 
365 /*
366  * Reopen a closed connection, with a new peer address.
367  */
368 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
369 {
370 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
371 	set_bit(OPENING, &con->state);
372 	clear_bit(CLOSED, &con->state);
373 	memcpy(&con->peer_addr, addr, sizeof(*addr));
374 	con->delay = 0;      /* reset backoff memory */
375 	queue_con(con);
376 }
377 EXPORT_SYMBOL(ceph_con_open);
378 
379 /*
380  * return true if this connection ever successfully opened
381  */
382 bool ceph_con_opened(struct ceph_connection *con)
383 {
384 	return con->connect_seq > 0;
385 }
386 
387 /*
388  * generic get/put
389  */
390 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
391 {
392 	dout("con_get %p nref = %d -> %d\n", con,
393 	     atomic_read(&con->nref), atomic_read(&con->nref) + 1);
394 	if (atomic_inc_not_zero(&con->nref))
395 		return con;
396 	return NULL;
397 }
398 
399 void ceph_con_put(struct ceph_connection *con)
400 {
401 	dout("con_put %p nref = %d -> %d\n", con,
402 	     atomic_read(&con->nref), atomic_read(&con->nref) - 1);
403 	BUG_ON(atomic_read(&con->nref) == 0);
404 	if (atomic_dec_and_test(&con->nref)) {
405 		BUG_ON(con->sock);
406 		kfree(con);
407 	}
408 }
409 
410 /*
411  * initialize a new connection.
412  */
413 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
414 {
415 	dout("con_init %p\n", con);
416 	memset(con, 0, sizeof(*con));
417 	atomic_set(&con->nref, 1);
418 	con->msgr = msgr;
419 	mutex_init(&con->mutex);
420 	INIT_LIST_HEAD(&con->out_queue);
421 	INIT_LIST_HEAD(&con->out_sent);
422 	INIT_DELAYED_WORK(&con->work, con_work);
423 }
424 EXPORT_SYMBOL(ceph_con_init);
425 
426 
427 /*
428  * We maintain a global counter to order connection attempts.  Get
429  * a unique seq greater than @gt.
430  */
431 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
432 {
433 	u32 ret;
434 
435 	spin_lock(&msgr->global_seq_lock);
436 	if (msgr->global_seq < gt)
437 		msgr->global_seq = gt;
438 	ret = ++msgr->global_seq;
439 	spin_unlock(&msgr->global_seq_lock);
440 	return ret;
441 }
442 
443 
444 /*
445  * Prepare footer for currently outgoing message, and finish things
446  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
447  */
448 static void prepare_write_message_footer(struct ceph_connection *con, int v)
449 {
450 	struct ceph_msg *m = con->out_msg;
451 
452 	dout("prepare_write_message_footer %p\n", con);
453 	con->out_kvec_is_msg = true;
454 	con->out_kvec[v].iov_base = &m->footer;
455 	con->out_kvec[v].iov_len = sizeof(m->footer);
456 	con->out_kvec_bytes += sizeof(m->footer);
457 	con->out_kvec_left++;
458 	con->out_more = m->more_to_follow;
459 	con->out_msg_done = true;
460 }
461 
462 /*
463  * Prepare headers for the next outgoing message.
464  */
465 static void prepare_write_message(struct ceph_connection *con)
466 {
467 	struct ceph_msg *m;
468 	int v = 0;
469 
470 	con->out_kvec_bytes = 0;
471 	con->out_kvec_is_msg = true;
472 	con->out_msg_done = false;
473 
474 	/* Sneak an ack in there first?  If we can get it into the same
475 	 * TCP packet that's a good thing. */
476 	if (con->in_seq > con->in_seq_acked) {
477 		con->in_seq_acked = con->in_seq;
478 		con->out_kvec[v].iov_base = &tag_ack;
479 		con->out_kvec[v++].iov_len = 1;
480 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
481 		con->out_kvec[v].iov_base = &con->out_temp_ack;
482 		con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
483 		con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
484 	}
485 
486 	m = list_first_entry(&con->out_queue,
487 		       struct ceph_msg, list_head);
488 	con->out_msg = m;
489 	if (test_bit(LOSSYTX, &con->state)) {
490 		list_del_init(&m->list_head);
491 	} else {
492 		/* put message on sent list */
493 		ceph_msg_get(m);
494 		list_move_tail(&m->list_head, &con->out_sent);
495 	}
496 
497 	/*
498 	 * only assign outgoing seq # if we haven't sent this message
499 	 * yet.  if it is requeued, resend with it's original seq.
500 	 */
501 	if (m->needs_out_seq) {
502 		m->hdr.seq = cpu_to_le64(++con->out_seq);
503 		m->needs_out_seq = false;
504 	}
505 
506 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
507 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
508 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
509 	     le32_to_cpu(m->hdr.data_len),
510 	     m->nr_pages);
511 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
512 
513 	/* tag + hdr + front + middle */
514 	con->out_kvec[v].iov_base = &tag_msg;
515 	con->out_kvec[v++].iov_len = 1;
516 	con->out_kvec[v].iov_base = &m->hdr;
517 	con->out_kvec[v++].iov_len = sizeof(m->hdr);
518 	con->out_kvec[v++] = m->front;
519 	if (m->middle)
520 		con->out_kvec[v++] = m->middle->vec;
521 	con->out_kvec_left = v;
522 	con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
523 		(m->middle ? m->middle->vec.iov_len : 0);
524 	con->out_kvec_cur = con->out_kvec;
525 
526 	/* fill in crc (except data pages), footer */
527 	con->out_msg->hdr.crc =
528 		cpu_to_le32(crc32c(0, (void *)&m->hdr,
529 				      sizeof(m->hdr) - sizeof(m->hdr.crc)));
530 	con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
531 	con->out_msg->footer.front_crc =
532 		cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
533 	if (m->middle)
534 		con->out_msg->footer.middle_crc =
535 			cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
536 					   m->middle->vec.iov_len));
537 	else
538 		con->out_msg->footer.middle_crc = 0;
539 	con->out_msg->footer.data_crc = 0;
540 	dout("prepare_write_message front_crc %u data_crc %u\n",
541 	     le32_to_cpu(con->out_msg->footer.front_crc),
542 	     le32_to_cpu(con->out_msg->footer.middle_crc));
543 
544 	/* is there a data payload? */
545 	if (le32_to_cpu(m->hdr.data_len) > 0) {
546 		/* initialize page iterator */
547 		con->out_msg_pos.page = 0;
548 		if (m->pages)
549 			con->out_msg_pos.page_pos = m->page_alignment;
550 		else
551 			con->out_msg_pos.page_pos = 0;
552 		con->out_msg_pos.data_pos = 0;
553 		con->out_msg_pos.did_page_crc = 0;
554 		con->out_more = 1;  /* data + footer will follow */
555 	} else {
556 		/* no, queue up footer too and be done */
557 		prepare_write_message_footer(con, v);
558 	}
559 
560 	set_bit(WRITE_PENDING, &con->state);
561 }
562 
563 /*
564  * Prepare an ack.
565  */
566 static void prepare_write_ack(struct ceph_connection *con)
567 {
568 	dout("prepare_write_ack %p %llu -> %llu\n", con,
569 	     con->in_seq_acked, con->in_seq);
570 	con->in_seq_acked = con->in_seq;
571 
572 	con->out_kvec[0].iov_base = &tag_ack;
573 	con->out_kvec[0].iov_len = 1;
574 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
575 	con->out_kvec[1].iov_base = &con->out_temp_ack;
576 	con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
577 	con->out_kvec_left = 2;
578 	con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
579 	con->out_kvec_cur = con->out_kvec;
580 	con->out_more = 1;  /* more will follow.. eventually.. */
581 	set_bit(WRITE_PENDING, &con->state);
582 }
583 
584 /*
585  * Prepare to write keepalive byte.
586  */
587 static void prepare_write_keepalive(struct ceph_connection *con)
588 {
589 	dout("prepare_write_keepalive %p\n", con);
590 	con->out_kvec[0].iov_base = &tag_keepalive;
591 	con->out_kvec[0].iov_len = 1;
592 	con->out_kvec_left = 1;
593 	con->out_kvec_bytes = 1;
594 	con->out_kvec_cur = con->out_kvec;
595 	set_bit(WRITE_PENDING, &con->state);
596 }
597 
598 /*
599  * Connection negotiation.
600  */
601 
602 static int prepare_connect_authorizer(struct ceph_connection *con)
603 {
604 	void *auth_buf;
605 	int auth_len = 0;
606 	int auth_protocol = 0;
607 
608 	mutex_unlock(&con->mutex);
609 	if (con->ops->get_authorizer)
610 		con->ops->get_authorizer(con, &auth_buf, &auth_len,
611 					 &auth_protocol, &con->auth_reply_buf,
612 					 &con->auth_reply_buf_len,
613 					 con->auth_retry);
614 	mutex_lock(&con->mutex);
615 
616 	if (test_bit(CLOSED, &con->state) ||
617 	    test_bit(OPENING, &con->state))
618 		return -EAGAIN;
619 
620 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
621 	con->out_connect.authorizer_len = cpu_to_le32(auth_len);
622 
623 	if (auth_len) {
624 		con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
625 		con->out_kvec[con->out_kvec_left].iov_len = auth_len;
626 		con->out_kvec_left++;
627 		con->out_kvec_bytes += auth_len;
628 	}
629 	return 0;
630 }
631 
632 /*
633  * We connected to a peer and are saying hello.
634  */
635 static void prepare_write_banner(struct ceph_messenger *msgr,
636 				 struct ceph_connection *con)
637 {
638 	int len = strlen(CEPH_BANNER);
639 
640 	con->out_kvec[0].iov_base = CEPH_BANNER;
641 	con->out_kvec[0].iov_len = len;
642 	con->out_kvec[1].iov_base = &msgr->my_enc_addr;
643 	con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
644 	con->out_kvec_left = 2;
645 	con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
646 	con->out_kvec_cur = con->out_kvec;
647 	con->out_more = 0;
648 	set_bit(WRITE_PENDING, &con->state);
649 }
650 
651 static int prepare_write_connect(struct ceph_messenger *msgr,
652 				 struct ceph_connection *con,
653 				 int after_banner)
654 {
655 	unsigned global_seq = get_global_seq(con->msgr, 0);
656 	int proto;
657 
658 	switch (con->peer_name.type) {
659 	case CEPH_ENTITY_TYPE_MON:
660 		proto = CEPH_MONC_PROTOCOL;
661 		break;
662 	case CEPH_ENTITY_TYPE_OSD:
663 		proto = CEPH_OSDC_PROTOCOL;
664 		break;
665 	case CEPH_ENTITY_TYPE_MDS:
666 		proto = CEPH_MDSC_PROTOCOL;
667 		break;
668 	default:
669 		BUG();
670 	}
671 
672 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
673 	     con->connect_seq, global_seq, proto);
674 
675 	con->out_connect.features = cpu_to_le64(msgr->supported_features);
676 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
677 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
678 	con->out_connect.global_seq = cpu_to_le32(global_seq);
679 	con->out_connect.protocol_version = cpu_to_le32(proto);
680 	con->out_connect.flags = 0;
681 
682 	if (!after_banner) {
683 		con->out_kvec_left = 0;
684 		con->out_kvec_bytes = 0;
685 	}
686 	con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
687 	con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
688 	con->out_kvec_left++;
689 	con->out_kvec_bytes += sizeof(con->out_connect);
690 	con->out_kvec_cur = con->out_kvec;
691 	con->out_more = 0;
692 	set_bit(WRITE_PENDING, &con->state);
693 
694 	return prepare_connect_authorizer(con);
695 }
696 
697 
698 /*
699  * write as much of pending kvecs to the socket as we can.
700  *  1 -> done
701  *  0 -> socket full, but more to do
702  * <0 -> error
703  */
704 static int write_partial_kvec(struct ceph_connection *con)
705 {
706 	int ret;
707 
708 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
709 	while (con->out_kvec_bytes > 0) {
710 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
711 				       con->out_kvec_left, con->out_kvec_bytes,
712 				       con->out_more);
713 		if (ret <= 0)
714 			goto out;
715 		con->out_kvec_bytes -= ret;
716 		if (con->out_kvec_bytes == 0)
717 			break;            /* done */
718 		while (ret > 0) {
719 			if (ret >= con->out_kvec_cur->iov_len) {
720 				ret -= con->out_kvec_cur->iov_len;
721 				con->out_kvec_cur++;
722 				con->out_kvec_left--;
723 			} else {
724 				con->out_kvec_cur->iov_len -= ret;
725 				con->out_kvec_cur->iov_base += ret;
726 				ret = 0;
727 				break;
728 			}
729 		}
730 	}
731 	con->out_kvec_left = 0;
732 	con->out_kvec_is_msg = false;
733 	ret = 1;
734 out:
735 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
736 	     con->out_kvec_bytes, con->out_kvec_left, ret);
737 	return ret;  /* done! */
738 }
739 
740 #ifdef CONFIG_BLOCK
741 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
742 {
743 	if (!bio) {
744 		*iter = NULL;
745 		*seg = 0;
746 		return;
747 	}
748 	*iter = bio;
749 	*seg = bio->bi_idx;
750 }
751 
752 static void iter_bio_next(struct bio **bio_iter, int *seg)
753 {
754 	if (*bio_iter == NULL)
755 		return;
756 
757 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
758 
759 	(*seg)++;
760 	if (*seg == (*bio_iter)->bi_vcnt)
761 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
762 }
763 #endif
764 
765 /*
766  * Write as much message data payload as we can.  If we finish, queue
767  * up the footer.
768  *  1 -> done, footer is now queued in out_kvec[].
769  *  0 -> socket full, but more to do
770  * <0 -> error
771  */
772 static int write_partial_msg_pages(struct ceph_connection *con)
773 {
774 	struct ceph_msg *msg = con->out_msg;
775 	unsigned data_len = le32_to_cpu(msg->hdr.data_len);
776 	size_t len;
777 	int crc = con->msgr->nocrc;
778 	int ret;
779 	int total_max_write;
780 	int in_trail = 0;
781 	size_t trail_len = (msg->trail ? msg->trail->length : 0);
782 
783 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
784 	     con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
785 	     con->out_msg_pos.page_pos);
786 
787 #ifdef CONFIG_BLOCK
788 	if (msg->bio && !msg->bio_iter)
789 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
790 #endif
791 
792 	while (data_len > con->out_msg_pos.data_pos) {
793 		struct page *page = NULL;
794 		void *kaddr = NULL;
795 		int max_write = PAGE_SIZE;
796 		int page_shift = 0;
797 
798 		total_max_write = data_len - trail_len -
799 			con->out_msg_pos.data_pos;
800 
801 		/*
802 		 * if we are calculating the data crc (the default), we need
803 		 * to map the page.  if our pages[] has been revoked, use the
804 		 * zero page.
805 		 */
806 
807 		/* have we reached the trail part of the data? */
808 		if (con->out_msg_pos.data_pos >= data_len - trail_len) {
809 			in_trail = 1;
810 
811 			total_max_write = data_len - con->out_msg_pos.data_pos;
812 
813 			page = list_first_entry(&msg->trail->head,
814 						struct page, lru);
815 			if (crc)
816 				kaddr = kmap(page);
817 			max_write = PAGE_SIZE;
818 		} else if (msg->pages) {
819 			page = msg->pages[con->out_msg_pos.page];
820 			if (crc)
821 				kaddr = kmap(page);
822 		} else if (msg->pagelist) {
823 			page = list_first_entry(&msg->pagelist->head,
824 						struct page, lru);
825 			if (crc)
826 				kaddr = kmap(page);
827 #ifdef CONFIG_BLOCK
828 		} else if (msg->bio) {
829 			struct bio_vec *bv;
830 
831 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
832 			page = bv->bv_page;
833 			page_shift = bv->bv_offset;
834 			if (crc)
835 				kaddr = kmap(page) + page_shift;
836 			max_write = bv->bv_len;
837 #endif
838 		} else {
839 			page = con->msgr->zero_page;
840 			if (crc)
841 				kaddr = page_address(con->msgr->zero_page);
842 		}
843 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
844 			    total_max_write);
845 
846 		if (crc && !con->out_msg_pos.did_page_crc) {
847 			void *base = kaddr + con->out_msg_pos.page_pos;
848 			u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
849 
850 			BUG_ON(kaddr == NULL);
851 			con->out_msg->footer.data_crc =
852 				cpu_to_le32(crc32c(tmpcrc, base, len));
853 			con->out_msg_pos.did_page_crc = 1;
854 		}
855 		ret = kernel_sendpage(con->sock, page,
856 				      con->out_msg_pos.page_pos + page_shift,
857 				      len,
858 				      MSG_DONTWAIT | MSG_NOSIGNAL |
859 				      MSG_MORE);
860 
861 		if (crc &&
862 		    (msg->pages || msg->pagelist || msg->bio || in_trail))
863 			kunmap(page);
864 
865 		if (ret == -EAGAIN)
866 			ret = 0;
867 		if (ret <= 0)
868 			goto out;
869 
870 		con->out_msg_pos.data_pos += ret;
871 		con->out_msg_pos.page_pos += ret;
872 		if (ret == len) {
873 			con->out_msg_pos.page_pos = 0;
874 			con->out_msg_pos.page++;
875 			con->out_msg_pos.did_page_crc = 0;
876 			if (in_trail)
877 				list_move_tail(&page->lru,
878 					       &msg->trail->head);
879 			else if (msg->pagelist)
880 				list_move_tail(&page->lru,
881 					       &msg->pagelist->head);
882 #ifdef CONFIG_BLOCK
883 			else if (msg->bio)
884 				iter_bio_next(&msg->bio_iter, &msg->bio_seg);
885 #endif
886 		}
887 	}
888 
889 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
890 
891 	/* prepare and queue up footer, too */
892 	if (!crc)
893 		con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
894 	con->out_kvec_bytes = 0;
895 	con->out_kvec_left = 0;
896 	con->out_kvec_cur = con->out_kvec;
897 	prepare_write_message_footer(con, 0);
898 	ret = 1;
899 out:
900 	return ret;
901 }
902 
903 /*
904  * write some zeros
905  */
906 static int write_partial_skip(struct ceph_connection *con)
907 {
908 	int ret;
909 
910 	while (con->out_skip > 0) {
911 		struct kvec iov = {
912 			.iov_base = page_address(con->msgr->zero_page),
913 			.iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
914 		};
915 
916 		ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
917 		if (ret <= 0)
918 			goto out;
919 		con->out_skip -= ret;
920 	}
921 	ret = 1;
922 out:
923 	return ret;
924 }
925 
926 /*
927  * Prepare to read connection handshake, or an ack.
928  */
929 static void prepare_read_banner(struct ceph_connection *con)
930 {
931 	dout("prepare_read_banner %p\n", con);
932 	con->in_base_pos = 0;
933 }
934 
935 static void prepare_read_connect(struct ceph_connection *con)
936 {
937 	dout("prepare_read_connect %p\n", con);
938 	con->in_base_pos = 0;
939 }
940 
941 static void prepare_read_ack(struct ceph_connection *con)
942 {
943 	dout("prepare_read_ack %p\n", con);
944 	con->in_base_pos = 0;
945 }
946 
947 static void prepare_read_tag(struct ceph_connection *con)
948 {
949 	dout("prepare_read_tag %p\n", con);
950 	con->in_base_pos = 0;
951 	con->in_tag = CEPH_MSGR_TAG_READY;
952 }
953 
954 /*
955  * Prepare to read a message.
956  */
957 static int prepare_read_message(struct ceph_connection *con)
958 {
959 	dout("prepare_read_message %p\n", con);
960 	BUG_ON(con->in_msg != NULL);
961 	con->in_base_pos = 0;
962 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
963 	return 0;
964 }
965 
966 
967 static int read_partial(struct ceph_connection *con,
968 			int *to, int size, void *object)
969 {
970 	*to += size;
971 	while (con->in_base_pos < *to) {
972 		int left = *to - con->in_base_pos;
973 		int have = size - left;
974 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
975 		if (ret <= 0)
976 			return ret;
977 		con->in_base_pos += ret;
978 	}
979 	return 1;
980 }
981 
982 
983 /*
984  * Read all or part of the connect-side handshake on a new connection
985  */
986 static int read_partial_banner(struct ceph_connection *con)
987 {
988 	int ret, to = 0;
989 
990 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
991 
992 	/* peer's banner */
993 	ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
994 	if (ret <= 0)
995 		goto out;
996 	ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
997 			   &con->actual_peer_addr);
998 	if (ret <= 0)
999 		goto out;
1000 	ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
1001 			   &con->peer_addr_for_me);
1002 	if (ret <= 0)
1003 		goto out;
1004 out:
1005 	return ret;
1006 }
1007 
1008 static int read_partial_connect(struct ceph_connection *con)
1009 {
1010 	int ret, to = 0;
1011 
1012 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1013 
1014 	ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1015 	if (ret <= 0)
1016 		goto out;
1017 	ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1018 			   con->auth_reply_buf);
1019 	if (ret <= 0)
1020 		goto out;
1021 
1022 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1023 	     con, (int)con->in_reply.tag,
1024 	     le32_to_cpu(con->in_reply.connect_seq),
1025 	     le32_to_cpu(con->in_reply.global_seq));
1026 out:
1027 	return ret;
1028 
1029 }
1030 
1031 /*
1032  * Verify the hello banner looks okay.
1033  */
1034 static int verify_hello(struct ceph_connection *con)
1035 {
1036 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1037 		pr_err("connect to %s got bad banner\n",
1038 		       ceph_pr_addr(&con->peer_addr.in_addr));
1039 		con->error_msg = "protocol error, bad banner";
1040 		return -1;
1041 	}
1042 	return 0;
1043 }
1044 
1045 static bool addr_is_blank(struct sockaddr_storage *ss)
1046 {
1047 	switch (ss->ss_family) {
1048 	case AF_INET:
1049 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1050 	case AF_INET6:
1051 		return
1052 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1053 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1054 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1055 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1056 	}
1057 	return false;
1058 }
1059 
1060 static int addr_port(struct sockaddr_storage *ss)
1061 {
1062 	switch (ss->ss_family) {
1063 	case AF_INET:
1064 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1065 	case AF_INET6:
1066 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1067 	}
1068 	return 0;
1069 }
1070 
1071 static void addr_set_port(struct sockaddr_storage *ss, int p)
1072 {
1073 	switch (ss->ss_family) {
1074 	case AF_INET:
1075 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1076 		break;
1077 	case AF_INET6:
1078 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1079 		break;
1080 	}
1081 }
1082 
1083 /*
1084  * Parse an ip[:port] list into an addr array.  Use the default
1085  * monitor port if a port isn't specified.
1086  */
1087 int ceph_parse_ips(const char *c, const char *end,
1088 		   struct ceph_entity_addr *addr,
1089 		   int max_count, int *count)
1090 {
1091 	int i;
1092 	const char *p = c;
1093 
1094 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1095 	for (i = 0; i < max_count; i++) {
1096 		const char *ipend;
1097 		struct sockaddr_storage *ss = &addr[i].in_addr;
1098 		struct sockaddr_in *in4 = (void *)ss;
1099 		struct sockaddr_in6 *in6 = (void *)ss;
1100 		int port;
1101 		char delim = ',';
1102 
1103 		if (*p == '[') {
1104 			delim = ']';
1105 			p++;
1106 		}
1107 
1108 		memset(ss, 0, sizeof(*ss));
1109 		if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1110 			     delim, &ipend))
1111 			ss->ss_family = AF_INET;
1112 		else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1113 				  delim, &ipend))
1114 			ss->ss_family = AF_INET6;
1115 		else
1116 			goto bad;
1117 		p = ipend;
1118 
1119 		if (delim == ']') {
1120 			if (*p != ']') {
1121 				dout("missing matching ']'\n");
1122 				goto bad;
1123 			}
1124 			p++;
1125 		}
1126 
1127 		/* port? */
1128 		if (p < end && *p == ':') {
1129 			port = 0;
1130 			p++;
1131 			while (p < end && *p >= '0' && *p <= '9') {
1132 				port = (port * 10) + (*p - '0');
1133 				p++;
1134 			}
1135 			if (port > 65535 || port == 0)
1136 				goto bad;
1137 		} else {
1138 			port = CEPH_MON_PORT;
1139 		}
1140 
1141 		addr_set_port(ss, port);
1142 
1143 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1144 
1145 		if (p == end)
1146 			break;
1147 		if (*p != ',')
1148 			goto bad;
1149 		p++;
1150 	}
1151 
1152 	if (p != end)
1153 		goto bad;
1154 
1155 	if (count)
1156 		*count = i + 1;
1157 	return 0;
1158 
1159 bad:
1160 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1161 	return -EINVAL;
1162 }
1163 EXPORT_SYMBOL(ceph_parse_ips);
1164 
1165 static int process_banner(struct ceph_connection *con)
1166 {
1167 	dout("process_banner on %p\n", con);
1168 
1169 	if (verify_hello(con) < 0)
1170 		return -1;
1171 
1172 	ceph_decode_addr(&con->actual_peer_addr);
1173 	ceph_decode_addr(&con->peer_addr_for_me);
1174 
1175 	/*
1176 	 * Make sure the other end is who we wanted.  note that the other
1177 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1178 	 * them the benefit of the doubt.
1179 	 */
1180 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1181 		   sizeof(con->peer_addr)) != 0 &&
1182 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1183 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1184 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1185 			   ceph_pr_addr(&con->peer_addr.in_addr),
1186 			   (int)le32_to_cpu(con->peer_addr.nonce),
1187 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1188 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1189 		con->error_msg = "wrong peer at address";
1190 		return -1;
1191 	}
1192 
1193 	/*
1194 	 * did we learn our address?
1195 	 */
1196 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1197 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1198 
1199 		memcpy(&con->msgr->inst.addr.in_addr,
1200 		       &con->peer_addr_for_me.in_addr,
1201 		       sizeof(con->peer_addr_for_me.in_addr));
1202 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1203 		encode_my_addr(con->msgr);
1204 		dout("process_banner learned my addr is %s\n",
1205 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1206 	}
1207 
1208 	set_bit(NEGOTIATING, &con->state);
1209 	prepare_read_connect(con);
1210 	return 0;
1211 }
1212 
1213 static void fail_protocol(struct ceph_connection *con)
1214 {
1215 	reset_connection(con);
1216 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
1217 
1218 	mutex_unlock(&con->mutex);
1219 	if (con->ops->bad_proto)
1220 		con->ops->bad_proto(con);
1221 	mutex_lock(&con->mutex);
1222 }
1223 
1224 static int process_connect(struct ceph_connection *con)
1225 {
1226 	u64 sup_feat = con->msgr->supported_features;
1227 	u64 req_feat = con->msgr->required_features;
1228 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1229 	int ret;
1230 
1231 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1232 
1233 	switch (con->in_reply.tag) {
1234 	case CEPH_MSGR_TAG_FEATURES:
1235 		pr_err("%s%lld %s feature set mismatch,"
1236 		       " my %llx < server's %llx, missing %llx\n",
1237 		       ENTITY_NAME(con->peer_name),
1238 		       ceph_pr_addr(&con->peer_addr.in_addr),
1239 		       sup_feat, server_feat, server_feat & ~sup_feat);
1240 		con->error_msg = "missing required protocol features";
1241 		fail_protocol(con);
1242 		return -1;
1243 
1244 	case CEPH_MSGR_TAG_BADPROTOVER:
1245 		pr_err("%s%lld %s protocol version mismatch,"
1246 		       " my %d != server's %d\n",
1247 		       ENTITY_NAME(con->peer_name),
1248 		       ceph_pr_addr(&con->peer_addr.in_addr),
1249 		       le32_to_cpu(con->out_connect.protocol_version),
1250 		       le32_to_cpu(con->in_reply.protocol_version));
1251 		con->error_msg = "protocol version mismatch";
1252 		fail_protocol(con);
1253 		return -1;
1254 
1255 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1256 		con->auth_retry++;
1257 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1258 		     con->auth_retry);
1259 		if (con->auth_retry == 2) {
1260 			con->error_msg = "connect authorization failure";
1261 			return -1;
1262 		}
1263 		con->auth_retry = 1;
1264 		ret = prepare_write_connect(con->msgr, con, 0);
1265 		if (ret < 0)
1266 			return ret;
1267 		prepare_read_connect(con);
1268 		break;
1269 
1270 	case CEPH_MSGR_TAG_RESETSESSION:
1271 		/*
1272 		 * If we connected with a large connect_seq but the peer
1273 		 * has no record of a session with us (no connection, or
1274 		 * connect_seq == 0), they will send RESETSESION to indicate
1275 		 * that they must have reset their session, and may have
1276 		 * dropped messages.
1277 		 */
1278 		dout("process_connect got RESET peer seq %u\n",
1279 		     le32_to_cpu(con->in_connect.connect_seq));
1280 		pr_err("%s%lld %s connection reset\n",
1281 		       ENTITY_NAME(con->peer_name),
1282 		       ceph_pr_addr(&con->peer_addr.in_addr));
1283 		reset_connection(con);
1284 		prepare_write_connect(con->msgr, con, 0);
1285 		prepare_read_connect(con);
1286 
1287 		/* Tell ceph about it. */
1288 		mutex_unlock(&con->mutex);
1289 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1290 		if (con->ops->peer_reset)
1291 			con->ops->peer_reset(con);
1292 		mutex_lock(&con->mutex);
1293 		if (test_bit(CLOSED, &con->state) ||
1294 		    test_bit(OPENING, &con->state))
1295 			return -EAGAIN;
1296 		break;
1297 
1298 	case CEPH_MSGR_TAG_RETRY_SESSION:
1299 		/*
1300 		 * If we sent a smaller connect_seq than the peer has, try
1301 		 * again with a larger value.
1302 		 */
1303 		dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1304 		     le32_to_cpu(con->out_connect.connect_seq),
1305 		     le32_to_cpu(con->in_connect.connect_seq));
1306 		con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1307 		prepare_write_connect(con->msgr, con, 0);
1308 		prepare_read_connect(con);
1309 		break;
1310 
1311 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1312 		/*
1313 		 * If we sent a smaller global_seq than the peer has, try
1314 		 * again with a larger value.
1315 		 */
1316 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1317 		     con->peer_global_seq,
1318 		     le32_to_cpu(con->in_connect.global_seq));
1319 		get_global_seq(con->msgr,
1320 			       le32_to_cpu(con->in_connect.global_seq));
1321 		prepare_write_connect(con->msgr, con, 0);
1322 		prepare_read_connect(con);
1323 		break;
1324 
1325 	case CEPH_MSGR_TAG_READY:
1326 		if (req_feat & ~server_feat) {
1327 			pr_err("%s%lld %s protocol feature mismatch,"
1328 			       " my required %llx > server's %llx, need %llx\n",
1329 			       ENTITY_NAME(con->peer_name),
1330 			       ceph_pr_addr(&con->peer_addr.in_addr),
1331 			       req_feat, server_feat, req_feat & ~server_feat);
1332 			con->error_msg = "missing required protocol features";
1333 			fail_protocol(con);
1334 			return -1;
1335 		}
1336 		clear_bit(CONNECTING, &con->state);
1337 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1338 		con->connect_seq++;
1339 		con->peer_features = server_feat;
1340 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1341 		     con->peer_global_seq,
1342 		     le32_to_cpu(con->in_reply.connect_seq),
1343 		     con->connect_seq);
1344 		WARN_ON(con->connect_seq !=
1345 			le32_to_cpu(con->in_reply.connect_seq));
1346 
1347 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1348 			set_bit(LOSSYTX, &con->state);
1349 
1350 		prepare_read_tag(con);
1351 		break;
1352 
1353 	case CEPH_MSGR_TAG_WAIT:
1354 		/*
1355 		 * If there is a connection race (we are opening
1356 		 * connections to each other), one of us may just have
1357 		 * to WAIT.  This shouldn't happen if we are the
1358 		 * client.
1359 		 */
1360 		pr_err("process_connect got WAIT as client\n");
1361 		con->error_msg = "protocol error, got WAIT as client";
1362 		return -1;
1363 
1364 	default:
1365 		pr_err("connect protocol error, will retry\n");
1366 		con->error_msg = "protocol error, garbage tag during connect";
1367 		return -1;
1368 	}
1369 	return 0;
1370 }
1371 
1372 
1373 /*
1374  * read (part of) an ack
1375  */
1376 static int read_partial_ack(struct ceph_connection *con)
1377 {
1378 	int to = 0;
1379 
1380 	return read_partial(con, &to, sizeof(con->in_temp_ack),
1381 			    &con->in_temp_ack);
1382 }
1383 
1384 
1385 /*
1386  * We can finally discard anything that's been acked.
1387  */
1388 static void process_ack(struct ceph_connection *con)
1389 {
1390 	struct ceph_msg *m;
1391 	u64 ack = le64_to_cpu(con->in_temp_ack);
1392 	u64 seq;
1393 
1394 	while (!list_empty(&con->out_sent)) {
1395 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1396 				     list_head);
1397 		seq = le64_to_cpu(m->hdr.seq);
1398 		if (seq > ack)
1399 			break;
1400 		dout("got ack for seq %llu type %d at %p\n", seq,
1401 		     le16_to_cpu(m->hdr.type), m);
1402 		ceph_msg_remove(m);
1403 	}
1404 	prepare_read_tag(con);
1405 }
1406 
1407 
1408 
1409 
1410 static int read_partial_message_section(struct ceph_connection *con,
1411 					struct kvec *section,
1412 					unsigned int sec_len, u32 *crc)
1413 {
1414 	int ret, left;
1415 
1416 	BUG_ON(!section);
1417 
1418 	while (section->iov_len < sec_len) {
1419 		BUG_ON(section->iov_base == NULL);
1420 		left = sec_len - section->iov_len;
1421 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1422 				       section->iov_len, left);
1423 		if (ret <= 0)
1424 			return ret;
1425 		section->iov_len += ret;
1426 		if (section->iov_len == sec_len)
1427 			*crc = crc32c(0, section->iov_base,
1428 				      section->iov_len);
1429 	}
1430 
1431 	return 1;
1432 }
1433 
1434 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1435 				struct ceph_msg_header *hdr,
1436 				int *skip);
1437 
1438 
1439 static int read_partial_message_pages(struct ceph_connection *con,
1440 				      struct page **pages,
1441 				      unsigned data_len, int datacrc)
1442 {
1443 	void *p;
1444 	int ret;
1445 	int left;
1446 
1447 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1448 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1449 	/* (page) data */
1450 	BUG_ON(pages == NULL);
1451 	p = kmap(pages[con->in_msg_pos.page]);
1452 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1453 			       left);
1454 	if (ret > 0 && datacrc)
1455 		con->in_data_crc =
1456 			crc32c(con->in_data_crc,
1457 				  p + con->in_msg_pos.page_pos, ret);
1458 	kunmap(pages[con->in_msg_pos.page]);
1459 	if (ret <= 0)
1460 		return ret;
1461 	con->in_msg_pos.data_pos += ret;
1462 	con->in_msg_pos.page_pos += ret;
1463 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1464 		con->in_msg_pos.page_pos = 0;
1465 		con->in_msg_pos.page++;
1466 	}
1467 
1468 	return ret;
1469 }
1470 
1471 #ifdef CONFIG_BLOCK
1472 static int read_partial_message_bio(struct ceph_connection *con,
1473 				    struct bio **bio_iter, int *bio_seg,
1474 				    unsigned data_len, int datacrc)
1475 {
1476 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1477 	void *p;
1478 	int ret, left;
1479 
1480 	if (IS_ERR(bv))
1481 		return PTR_ERR(bv);
1482 
1483 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1484 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1485 
1486 	p = kmap(bv->bv_page) + bv->bv_offset;
1487 
1488 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1489 			       left);
1490 	if (ret > 0 && datacrc)
1491 		con->in_data_crc =
1492 			crc32c(con->in_data_crc,
1493 				  p + con->in_msg_pos.page_pos, ret);
1494 	kunmap(bv->bv_page);
1495 	if (ret <= 0)
1496 		return ret;
1497 	con->in_msg_pos.data_pos += ret;
1498 	con->in_msg_pos.page_pos += ret;
1499 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1500 		con->in_msg_pos.page_pos = 0;
1501 		iter_bio_next(bio_iter, bio_seg);
1502 	}
1503 
1504 	return ret;
1505 }
1506 #endif
1507 
1508 /*
1509  * read (part of) a message.
1510  */
1511 static int read_partial_message(struct ceph_connection *con)
1512 {
1513 	struct ceph_msg *m = con->in_msg;
1514 	int ret;
1515 	int to, left;
1516 	unsigned front_len, middle_len, data_len;
1517 	int datacrc = con->msgr->nocrc;
1518 	int skip;
1519 	u64 seq;
1520 
1521 	dout("read_partial_message con %p msg %p\n", con, m);
1522 
1523 	/* header */
1524 	while (con->in_base_pos < sizeof(con->in_hdr)) {
1525 		left = sizeof(con->in_hdr) - con->in_base_pos;
1526 		ret = ceph_tcp_recvmsg(con->sock,
1527 				       (char *)&con->in_hdr + con->in_base_pos,
1528 				       left);
1529 		if (ret <= 0)
1530 			return ret;
1531 		con->in_base_pos += ret;
1532 		if (con->in_base_pos == sizeof(con->in_hdr)) {
1533 			u32 crc = crc32c(0, (void *)&con->in_hdr,
1534 				 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1535 			if (crc != le32_to_cpu(con->in_hdr.crc)) {
1536 				pr_err("read_partial_message bad hdr "
1537 				       " crc %u != expected %u\n",
1538 				       crc, con->in_hdr.crc);
1539 				return -EBADMSG;
1540 			}
1541 		}
1542 	}
1543 	front_len = le32_to_cpu(con->in_hdr.front_len);
1544 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1545 		return -EIO;
1546 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1547 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1548 		return -EIO;
1549 	data_len = le32_to_cpu(con->in_hdr.data_len);
1550 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1551 		return -EIO;
1552 
1553 	/* verify seq# */
1554 	seq = le64_to_cpu(con->in_hdr.seq);
1555 	if ((s64)seq - (s64)con->in_seq < 1) {
1556 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1557 			ENTITY_NAME(con->peer_name),
1558 			ceph_pr_addr(&con->peer_addr.in_addr),
1559 			seq, con->in_seq + 1);
1560 		con->in_base_pos = -front_len - middle_len - data_len -
1561 			sizeof(m->footer);
1562 		con->in_tag = CEPH_MSGR_TAG_READY;
1563 		return 0;
1564 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1565 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1566 		       seq, con->in_seq + 1);
1567 		con->error_msg = "bad message sequence # for incoming message";
1568 		return -EBADMSG;
1569 	}
1570 
1571 	/* allocate message? */
1572 	if (!con->in_msg) {
1573 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1574 		     con->in_hdr.front_len, con->in_hdr.data_len);
1575 		skip = 0;
1576 		con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1577 		if (skip) {
1578 			/* skip this message */
1579 			dout("alloc_msg said skip message\n");
1580 			BUG_ON(con->in_msg);
1581 			con->in_base_pos = -front_len - middle_len - data_len -
1582 				sizeof(m->footer);
1583 			con->in_tag = CEPH_MSGR_TAG_READY;
1584 			con->in_seq++;
1585 			return 0;
1586 		}
1587 		if (!con->in_msg) {
1588 			con->error_msg =
1589 				"error allocating memory for incoming message";
1590 			return -ENOMEM;
1591 		}
1592 		m = con->in_msg;
1593 		m->front.iov_len = 0;    /* haven't read it yet */
1594 		if (m->middle)
1595 			m->middle->vec.iov_len = 0;
1596 
1597 		con->in_msg_pos.page = 0;
1598 		if (m->pages)
1599 			con->in_msg_pos.page_pos = m->page_alignment;
1600 		else
1601 			con->in_msg_pos.page_pos = 0;
1602 		con->in_msg_pos.data_pos = 0;
1603 	}
1604 
1605 	/* front */
1606 	ret = read_partial_message_section(con, &m->front, front_len,
1607 					   &con->in_front_crc);
1608 	if (ret <= 0)
1609 		return ret;
1610 
1611 	/* middle */
1612 	if (m->middle) {
1613 		ret = read_partial_message_section(con, &m->middle->vec,
1614 						   middle_len,
1615 						   &con->in_middle_crc);
1616 		if (ret <= 0)
1617 			return ret;
1618 	}
1619 #ifdef CONFIG_BLOCK
1620 	if (m->bio && !m->bio_iter)
1621 		init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1622 #endif
1623 
1624 	/* (page) data */
1625 	while (con->in_msg_pos.data_pos < data_len) {
1626 		if (m->pages) {
1627 			ret = read_partial_message_pages(con, m->pages,
1628 						 data_len, datacrc);
1629 			if (ret <= 0)
1630 				return ret;
1631 #ifdef CONFIG_BLOCK
1632 		} else if (m->bio) {
1633 
1634 			ret = read_partial_message_bio(con,
1635 						 &m->bio_iter, &m->bio_seg,
1636 						 data_len, datacrc);
1637 			if (ret <= 0)
1638 				return ret;
1639 #endif
1640 		} else {
1641 			BUG_ON(1);
1642 		}
1643 	}
1644 
1645 	/* footer */
1646 	to = sizeof(m->hdr) + sizeof(m->footer);
1647 	while (con->in_base_pos < to) {
1648 		left = to - con->in_base_pos;
1649 		ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1650 				       (con->in_base_pos - sizeof(m->hdr)),
1651 				       left);
1652 		if (ret <= 0)
1653 			return ret;
1654 		con->in_base_pos += ret;
1655 	}
1656 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1657 	     m, front_len, m->footer.front_crc, middle_len,
1658 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1659 
1660 	/* crc ok? */
1661 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1662 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1663 		       m, con->in_front_crc, m->footer.front_crc);
1664 		return -EBADMSG;
1665 	}
1666 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1667 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1668 		       m, con->in_middle_crc, m->footer.middle_crc);
1669 		return -EBADMSG;
1670 	}
1671 	if (datacrc &&
1672 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1673 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1674 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1675 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1676 		return -EBADMSG;
1677 	}
1678 
1679 	return 1; /* done! */
1680 }
1681 
1682 /*
1683  * Process message.  This happens in the worker thread.  The callback should
1684  * be careful not to do anything that waits on other incoming messages or it
1685  * may deadlock.
1686  */
1687 static void process_message(struct ceph_connection *con)
1688 {
1689 	struct ceph_msg *msg;
1690 
1691 	msg = con->in_msg;
1692 	con->in_msg = NULL;
1693 
1694 	/* if first message, set peer_name */
1695 	if (con->peer_name.type == 0)
1696 		con->peer_name = msg->hdr.src;
1697 
1698 	con->in_seq++;
1699 	mutex_unlock(&con->mutex);
1700 
1701 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1702 	     msg, le64_to_cpu(msg->hdr.seq),
1703 	     ENTITY_NAME(msg->hdr.src),
1704 	     le16_to_cpu(msg->hdr.type),
1705 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1706 	     le32_to_cpu(msg->hdr.front_len),
1707 	     le32_to_cpu(msg->hdr.data_len),
1708 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1709 	con->ops->dispatch(con, msg);
1710 
1711 	mutex_lock(&con->mutex);
1712 	prepare_read_tag(con);
1713 }
1714 
1715 
1716 /*
1717  * Write something to the socket.  Called in a worker thread when the
1718  * socket appears to be writeable and we have something ready to send.
1719  */
1720 static int try_write(struct ceph_connection *con)
1721 {
1722 	struct ceph_messenger *msgr = con->msgr;
1723 	int ret = 1;
1724 
1725 	dout("try_write start %p state %lu nref %d\n", con, con->state,
1726 	     atomic_read(&con->nref));
1727 
1728 more:
1729 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1730 
1731 	/* open the socket first? */
1732 	if (con->sock == NULL) {
1733 		prepare_write_banner(msgr, con);
1734 		prepare_write_connect(msgr, con, 1);
1735 		prepare_read_banner(con);
1736 		set_bit(CONNECTING, &con->state);
1737 		clear_bit(NEGOTIATING, &con->state);
1738 
1739 		BUG_ON(con->in_msg);
1740 		con->in_tag = CEPH_MSGR_TAG_READY;
1741 		dout("try_write initiating connect on %p new state %lu\n",
1742 		     con, con->state);
1743 		con->sock = ceph_tcp_connect(con);
1744 		if (IS_ERR(con->sock)) {
1745 			con->sock = NULL;
1746 			con->error_msg = "connect error";
1747 			ret = -1;
1748 			goto out;
1749 		}
1750 	}
1751 
1752 more_kvec:
1753 	/* kvec data queued? */
1754 	if (con->out_skip) {
1755 		ret = write_partial_skip(con);
1756 		if (ret <= 0)
1757 			goto out;
1758 	}
1759 	if (con->out_kvec_left) {
1760 		ret = write_partial_kvec(con);
1761 		if (ret <= 0)
1762 			goto out;
1763 	}
1764 
1765 	/* msg pages? */
1766 	if (con->out_msg) {
1767 		if (con->out_msg_done) {
1768 			ceph_msg_put(con->out_msg);
1769 			con->out_msg = NULL;   /* we're done with this one */
1770 			goto do_next;
1771 		}
1772 
1773 		ret = write_partial_msg_pages(con);
1774 		if (ret == 1)
1775 			goto more_kvec;  /* we need to send the footer, too! */
1776 		if (ret == 0)
1777 			goto out;
1778 		if (ret < 0) {
1779 			dout("try_write write_partial_msg_pages err %d\n",
1780 			     ret);
1781 			goto out;
1782 		}
1783 	}
1784 
1785 do_next:
1786 	if (!test_bit(CONNECTING, &con->state)) {
1787 		/* is anything else pending? */
1788 		if (!list_empty(&con->out_queue)) {
1789 			prepare_write_message(con);
1790 			goto more;
1791 		}
1792 		if (con->in_seq > con->in_seq_acked) {
1793 			prepare_write_ack(con);
1794 			goto more;
1795 		}
1796 		if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1797 			prepare_write_keepalive(con);
1798 			goto more;
1799 		}
1800 	}
1801 
1802 	/* Nothing to do! */
1803 	clear_bit(WRITE_PENDING, &con->state);
1804 	dout("try_write nothing else to write.\n");
1805 	ret = 0;
1806 out:
1807 	dout("try_write done on %p ret %d\n", con, ret);
1808 	return ret;
1809 }
1810 
1811 
1812 
1813 /*
1814  * Read what we can from the socket.
1815  */
1816 static int try_read(struct ceph_connection *con)
1817 {
1818 	int ret = -1;
1819 
1820 	if (!con->sock)
1821 		return 0;
1822 
1823 	if (test_bit(STANDBY, &con->state))
1824 		return 0;
1825 
1826 	dout("try_read start on %p\n", con);
1827 
1828 more:
1829 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1830 	     con->in_base_pos);
1831 
1832 	/*
1833 	 * process_connect and process_message drop and re-take
1834 	 * con->mutex.  make sure we handle a racing close or reopen.
1835 	 */
1836 	if (test_bit(CLOSED, &con->state) ||
1837 	    test_bit(OPENING, &con->state)) {
1838 		ret = -EAGAIN;
1839 		goto out;
1840 	}
1841 
1842 	if (test_bit(CONNECTING, &con->state)) {
1843 		if (!test_bit(NEGOTIATING, &con->state)) {
1844 			dout("try_read connecting\n");
1845 			ret = read_partial_banner(con);
1846 			if (ret <= 0)
1847 				goto out;
1848 			ret = process_banner(con);
1849 			if (ret < 0)
1850 				goto out;
1851 		}
1852 		ret = read_partial_connect(con);
1853 		if (ret <= 0)
1854 			goto out;
1855 		ret = process_connect(con);
1856 		if (ret < 0)
1857 			goto out;
1858 		goto more;
1859 	}
1860 
1861 	if (con->in_base_pos < 0) {
1862 		/*
1863 		 * skipping + discarding content.
1864 		 *
1865 		 * FIXME: there must be a better way to do this!
1866 		 */
1867 		static char buf[1024];
1868 		int skip = min(1024, -con->in_base_pos);
1869 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1870 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1871 		if (ret <= 0)
1872 			goto out;
1873 		con->in_base_pos += ret;
1874 		if (con->in_base_pos)
1875 			goto more;
1876 	}
1877 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
1878 		/*
1879 		 * what's next?
1880 		 */
1881 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1882 		if (ret <= 0)
1883 			goto out;
1884 		dout("try_read got tag %d\n", (int)con->in_tag);
1885 		switch (con->in_tag) {
1886 		case CEPH_MSGR_TAG_MSG:
1887 			prepare_read_message(con);
1888 			break;
1889 		case CEPH_MSGR_TAG_ACK:
1890 			prepare_read_ack(con);
1891 			break;
1892 		case CEPH_MSGR_TAG_CLOSE:
1893 			set_bit(CLOSED, &con->state);   /* fixme */
1894 			goto out;
1895 		default:
1896 			goto bad_tag;
1897 		}
1898 	}
1899 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1900 		ret = read_partial_message(con);
1901 		if (ret <= 0) {
1902 			switch (ret) {
1903 			case -EBADMSG:
1904 				con->error_msg = "bad crc";
1905 				ret = -EIO;
1906 				break;
1907 			case -EIO:
1908 				con->error_msg = "io error";
1909 				break;
1910 			}
1911 			goto out;
1912 		}
1913 		if (con->in_tag == CEPH_MSGR_TAG_READY)
1914 			goto more;
1915 		process_message(con);
1916 		goto more;
1917 	}
1918 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1919 		ret = read_partial_ack(con);
1920 		if (ret <= 0)
1921 			goto out;
1922 		process_ack(con);
1923 		goto more;
1924 	}
1925 
1926 out:
1927 	dout("try_read done on %p ret %d\n", con, ret);
1928 	return ret;
1929 
1930 bad_tag:
1931 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1932 	con->error_msg = "protocol error, garbage tag";
1933 	ret = -1;
1934 	goto out;
1935 }
1936 
1937 
1938 /*
1939  * Atomically queue work on a connection.  Bump @con reference to
1940  * avoid races with connection teardown.
1941  */
1942 static void queue_con(struct ceph_connection *con)
1943 {
1944 	if (test_bit(DEAD, &con->state)) {
1945 		dout("queue_con %p ignoring: DEAD\n",
1946 		     con);
1947 		return;
1948 	}
1949 
1950 	if (!con->ops->get(con)) {
1951 		dout("queue_con %p ref count 0\n", con);
1952 		return;
1953 	}
1954 
1955 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
1956 		dout("queue_con %p - already queued\n", con);
1957 		con->ops->put(con);
1958 	} else {
1959 		dout("queue_con %p\n", con);
1960 	}
1961 }
1962 
1963 /*
1964  * Do some work on a connection.  Drop a connection ref when we're done.
1965  */
1966 static void con_work(struct work_struct *work)
1967 {
1968 	struct ceph_connection *con = container_of(work, struct ceph_connection,
1969 						   work.work);
1970 	int ret;
1971 
1972 	mutex_lock(&con->mutex);
1973 restart:
1974 	if (test_and_clear_bit(BACKOFF, &con->state)) {
1975 		dout("con_work %p backing off\n", con);
1976 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
1977 				       round_jiffies_relative(con->delay))) {
1978 			dout("con_work %p backoff %lu\n", con, con->delay);
1979 			mutex_unlock(&con->mutex);
1980 			return;
1981 		} else {
1982 			con->ops->put(con);
1983 			dout("con_work %p FAILED to back off %lu\n", con,
1984 			     con->delay);
1985 		}
1986 	}
1987 
1988 	if (test_bit(STANDBY, &con->state)) {
1989 		dout("con_work %p STANDBY\n", con);
1990 		goto done;
1991 	}
1992 	if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1993 		dout("con_work CLOSED\n");
1994 		con_close_socket(con);
1995 		goto done;
1996 	}
1997 	if (test_and_clear_bit(OPENING, &con->state)) {
1998 		/* reopen w/ new peer */
1999 		dout("con_work OPENING\n");
2000 		con_close_socket(con);
2001 	}
2002 
2003 	if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2004 		goto fault;
2005 
2006 	ret = try_read(con);
2007 	if (ret == -EAGAIN)
2008 		goto restart;
2009 	if (ret < 0)
2010 		goto fault;
2011 
2012 	ret = try_write(con);
2013 	if (ret == -EAGAIN)
2014 		goto restart;
2015 	if (ret < 0)
2016 		goto fault;
2017 
2018 done:
2019 	mutex_unlock(&con->mutex);
2020 done_unlocked:
2021 	con->ops->put(con);
2022 	return;
2023 
2024 fault:
2025 	mutex_unlock(&con->mutex);
2026 	ceph_fault(con);     /* error/fault path */
2027 	goto done_unlocked;
2028 }
2029 
2030 
2031 /*
2032  * Generic error/fault handler.  A retry mechanism is used with
2033  * exponential backoff
2034  */
2035 static void ceph_fault(struct ceph_connection *con)
2036 {
2037 	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2038 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2039 	dout("fault %p state %lu to peer %s\n",
2040 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2041 
2042 	if (test_bit(LOSSYTX, &con->state)) {
2043 		dout("fault on LOSSYTX channel\n");
2044 		goto out;
2045 	}
2046 
2047 	mutex_lock(&con->mutex);
2048 	if (test_bit(CLOSED, &con->state))
2049 		goto out_unlock;
2050 
2051 	con_close_socket(con);
2052 
2053 	if (con->in_msg) {
2054 		ceph_msg_put(con->in_msg);
2055 		con->in_msg = NULL;
2056 	}
2057 
2058 	/* Requeue anything that hasn't been acked */
2059 	list_splice_init(&con->out_sent, &con->out_queue);
2060 
2061 	/* If there are no messages queued or keepalive pending, place
2062 	 * the connection in a STANDBY state */
2063 	if (list_empty(&con->out_queue) &&
2064 	    !test_bit(KEEPALIVE_PENDING, &con->state)) {
2065 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2066 		clear_bit(WRITE_PENDING, &con->state);
2067 		set_bit(STANDBY, &con->state);
2068 	} else {
2069 		/* retry after a delay. */
2070 		if (con->delay == 0)
2071 			con->delay = BASE_DELAY_INTERVAL;
2072 		else if (con->delay < MAX_DELAY_INTERVAL)
2073 			con->delay *= 2;
2074 		con->ops->get(con);
2075 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2076 				       round_jiffies_relative(con->delay))) {
2077 			dout("fault queued %p delay %lu\n", con, con->delay);
2078 		} else {
2079 			con->ops->put(con);
2080 			dout("fault failed to queue %p delay %lu, backoff\n",
2081 			     con, con->delay);
2082 			/*
2083 			 * In many cases we see a socket state change
2084 			 * while con_work is running and end up
2085 			 * queuing (non-delayed) work, such that we
2086 			 * can't backoff with a delay.  Set a flag so
2087 			 * that when con_work restarts we schedule the
2088 			 * delay then.
2089 			 */
2090 			set_bit(BACKOFF, &con->state);
2091 		}
2092 	}
2093 
2094 out_unlock:
2095 	mutex_unlock(&con->mutex);
2096 out:
2097 	/*
2098 	 * in case we faulted due to authentication, invalidate our
2099 	 * current tickets so that we can get new ones.
2100 	 */
2101 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2102 		dout("calling invalidate_authorizer()\n");
2103 		con->ops->invalidate_authorizer(con);
2104 	}
2105 
2106 	if (con->ops->fault)
2107 		con->ops->fault(con);
2108 }
2109 
2110 
2111 
2112 /*
2113  * create a new messenger instance
2114  */
2115 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2116 					     u32 supported_features,
2117 					     u32 required_features)
2118 {
2119 	struct ceph_messenger *msgr;
2120 
2121 	msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2122 	if (msgr == NULL)
2123 		return ERR_PTR(-ENOMEM);
2124 
2125 	msgr->supported_features = supported_features;
2126 	msgr->required_features = required_features;
2127 
2128 	spin_lock_init(&msgr->global_seq_lock);
2129 
2130 	/* the zero page is needed if a request is "canceled" while the message
2131 	 * is being written over the socket */
2132 	msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2133 	if (!msgr->zero_page) {
2134 		kfree(msgr);
2135 		return ERR_PTR(-ENOMEM);
2136 	}
2137 	kmap(msgr->zero_page);
2138 
2139 	if (myaddr)
2140 		msgr->inst.addr = *myaddr;
2141 
2142 	/* select a random nonce */
2143 	msgr->inst.addr.type = 0;
2144 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2145 	encode_my_addr(msgr);
2146 
2147 	dout("messenger_create %p\n", msgr);
2148 	return msgr;
2149 }
2150 EXPORT_SYMBOL(ceph_messenger_create);
2151 
2152 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2153 {
2154 	dout("destroy %p\n", msgr);
2155 	kunmap(msgr->zero_page);
2156 	__free_page(msgr->zero_page);
2157 	kfree(msgr);
2158 	dout("destroyed messenger %p\n", msgr);
2159 }
2160 EXPORT_SYMBOL(ceph_messenger_destroy);
2161 
2162 static void clear_standby(struct ceph_connection *con)
2163 {
2164 	/* come back from STANDBY? */
2165 	if (test_and_clear_bit(STANDBY, &con->state)) {
2166 		mutex_lock(&con->mutex);
2167 		dout("clear_standby %p and ++connect_seq\n", con);
2168 		con->connect_seq++;
2169 		WARN_ON(test_bit(WRITE_PENDING, &con->state));
2170 		WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2171 		mutex_unlock(&con->mutex);
2172 	}
2173 }
2174 
2175 /*
2176  * Queue up an outgoing message on the given connection.
2177  */
2178 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2179 {
2180 	if (test_bit(CLOSED, &con->state)) {
2181 		dout("con_send %p closed, dropping %p\n", con, msg);
2182 		ceph_msg_put(msg);
2183 		return;
2184 	}
2185 
2186 	/* set src+dst */
2187 	msg->hdr.src = con->msgr->inst.name;
2188 
2189 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2190 
2191 	msg->needs_out_seq = true;
2192 
2193 	/* queue */
2194 	mutex_lock(&con->mutex);
2195 	BUG_ON(!list_empty(&msg->list_head));
2196 	list_add_tail(&msg->list_head, &con->out_queue);
2197 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2198 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2199 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2200 	     le32_to_cpu(msg->hdr.front_len),
2201 	     le32_to_cpu(msg->hdr.middle_len),
2202 	     le32_to_cpu(msg->hdr.data_len));
2203 	mutex_unlock(&con->mutex);
2204 
2205 	/* if there wasn't anything waiting to send before, queue
2206 	 * new work */
2207 	clear_standby(con);
2208 	if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2209 		queue_con(con);
2210 }
2211 EXPORT_SYMBOL(ceph_con_send);
2212 
2213 /*
2214  * Revoke a message that was previously queued for send
2215  */
2216 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2217 {
2218 	mutex_lock(&con->mutex);
2219 	if (!list_empty(&msg->list_head)) {
2220 		dout("con_revoke %p msg %p - was on queue\n", con, msg);
2221 		list_del_init(&msg->list_head);
2222 		ceph_msg_put(msg);
2223 		msg->hdr.seq = 0;
2224 	}
2225 	if (con->out_msg == msg) {
2226 		dout("con_revoke %p msg %p - was sending\n", con, msg);
2227 		con->out_msg = NULL;
2228 		if (con->out_kvec_is_msg) {
2229 			con->out_skip = con->out_kvec_bytes;
2230 			con->out_kvec_is_msg = false;
2231 		}
2232 		ceph_msg_put(msg);
2233 		msg->hdr.seq = 0;
2234 	}
2235 	mutex_unlock(&con->mutex);
2236 }
2237 
2238 /*
2239  * Revoke a message that we may be reading data into
2240  */
2241 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2242 {
2243 	mutex_lock(&con->mutex);
2244 	if (con->in_msg && con->in_msg == msg) {
2245 		unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2246 		unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2247 		unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2248 
2249 		/* skip rest of message */
2250 		dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2251 			con->in_base_pos = con->in_base_pos -
2252 				sizeof(struct ceph_msg_header) -
2253 				front_len -
2254 				middle_len -
2255 				data_len -
2256 				sizeof(struct ceph_msg_footer);
2257 		ceph_msg_put(con->in_msg);
2258 		con->in_msg = NULL;
2259 		con->in_tag = CEPH_MSGR_TAG_READY;
2260 		con->in_seq++;
2261 	} else {
2262 		dout("con_revoke_pages %p msg %p pages %p no-op\n",
2263 		     con, con->in_msg, msg);
2264 	}
2265 	mutex_unlock(&con->mutex);
2266 }
2267 
2268 /*
2269  * Queue a keepalive byte to ensure the tcp connection is alive.
2270  */
2271 void ceph_con_keepalive(struct ceph_connection *con)
2272 {
2273 	dout("con_keepalive %p\n", con);
2274 	clear_standby(con);
2275 	if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2276 	    test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2277 		queue_con(con);
2278 }
2279 EXPORT_SYMBOL(ceph_con_keepalive);
2280 
2281 
2282 /*
2283  * construct a new message with given type, size
2284  * the new msg has a ref count of 1.
2285  */
2286 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2287 {
2288 	struct ceph_msg *m;
2289 
2290 	m = kmalloc(sizeof(*m), flags);
2291 	if (m == NULL)
2292 		goto out;
2293 	kref_init(&m->kref);
2294 	INIT_LIST_HEAD(&m->list_head);
2295 
2296 	m->hdr.tid = 0;
2297 	m->hdr.type = cpu_to_le16(type);
2298 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2299 	m->hdr.version = 0;
2300 	m->hdr.front_len = cpu_to_le32(front_len);
2301 	m->hdr.middle_len = 0;
2302 	m->hdr.data_len = 0;
2303 	m->hdr.data_off = 0;
2304 	m->hdr.reserved = 0;
2305 	m->footer.front_crc = 0;
2306 	m->footer.middle_crc = 0;
2307 	m->footer.data_crc = 0;
2308 	m->footer.flags = 0;
2309 	m->front_max = front_len;
2310 	m->front_is_vmalloc = false;
2311 	m->more_to_follow = false;
2312 	m->pool = NULL;
2313 
2314 	/* middle */
2315 	m->middle = NULL;
2316 
2317 	/* data */
2318 	m->nr_pages = 0;
2319 	m->page_alignment = 0;
2320 	m->pages = NULL;
2321 	m->pagelist = NULL;
2322 	m->bio = NULL;
2323 	m->bio_iter = NULL;
2324 	m->bio_seg = 0;
2325 	m->trail = NULL;
2326 
2327 	/* front */
2328 	if (front_len) {
2329 		if (front_len > PAGE_CACHE_SIZE) {
2330 			m->front.iov_base = __vmalloc(front_len, flags,
2331 						      PAGE_KERNEL);
2332 			m->front_is_vmalloc = true;
2333 		} else {
2334 			m->front.iov_base = kmalloc(front_len, flags);
2335 		}
2336 		if (m->front.iov_base == NULL) {
2337 			pr_err("msg_new can't allocate %d bytes\n",
2338 			     front_len);
2339 			goto out2;
2340 		}
2341 	} else {
2342 		m->front.iov_base = NULL;
2343 	}
2344 	m->front.iov_len = front_len;
2345 
2346 	dout("ceph_msg_new %p front %d\n", m, front_len);
2347 	return m;
2348 
2349 out2:
2350 	ceph_msg_put(m);
2351 out:
2352 	pr_err("msg_new can't create type %d front %d\n", type, front_len);
2353 	return NULL;
2354 }
2355 EXPORT_SYMBOL(ceph_msg_new);
2356 
2357 /*
2358  * Allocate "middle" portion of a message, if it is needed and wasn't
2359  * allocated by alloc_msg.  This allows us to read a small fixed-size
2360  * per-type header in the front and then gracefully fail (i.e.,
2361  * propagate the error to the caller based on info in the front) when
2362  * the middle is too large.
2363  */
2364 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2365 {
2366 	int type = le16_to_cpu(msg->hdr.type);
2367 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2368 
2369 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2370 	     ceph_msg_type_name(type), middle_len);
2371 	BUG_ON(!middle_len);
2372 	BUG_ON(msg->middle);
2373 
2374 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2375 	if (!msg->middle)
2376 		return -ENOMEM;
2377 	return 0;
2378 }
2379 
2380 /*
2381  * Generic message allocator, for incoming messages.
2382  */
2383 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2384 				struct ceph_msg_header *hdr,
2385 				int *skip)
2386 {
2387 	int type = le16_to_cpu(hdr->type);
2388 	int front_len = le32_to_cpu(hdr->front_len);
2389 	int middle_len = le32_to_cpu(hdr->middle_len);
2390 	struct ceph_msg *msg = NULL;
2391 	int ret;
2392 
2393 	if (con->ops->alloc_msg) {
2394 		mutex_unlock(&con->mutex);
2395 		msg = con->ops->alloc_msg(con, hdr, skip);
2396 		mutex_lock(&con->mutex);
2397 		if (!msg || *skip)
2398 			return NULL;
2399 	}
2400 	if (!msg) {
2401 		*skip = 0;
2402 		msg = ceph_msg_new(type, front_len, GFP_NOFS);
2403 		if (!msg) {
2404 			pr_err("unable to allocate msg type %d len %d\n",
2405 			       type, front_len);
2406 			return NULL;
2407 		}
2408 		msg->page_alignment = le16_to_cpu(hdr->data_off);
2409 	}
2410 	memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2411 
2412 	if (middle_len && !msg->middle) {
2413 		ret = ceph_alloc_middle(con, msg);
2414 		if (ret < 0) {
2415 			ceph_msg_put(msg);
2416 			return NULL;
2417 		}
2418 	}
2419 
2420 	return msg;
2421 }
2422 
2423 
2424 /*
2425  * Free a generically kmalloc'd message.
2426  */
2427 void ceph_msg_kfree(struct ceph_msg *m)
2428 {
2429 	dout("msg_kfree %p\n", m);
2430 	if (m->front_is_vmalloc)
2431 		vfree(m->front.iov_base);
2432 	else
2433 		kfree(m->front.iov_base);
2434 	kfree(m);
2435 }
2436 
2437 /*
2438  * Drop a msg ref.  Destroy as needed.
2439  */
2440 void ceph_msg_last_put(struct kref *kref)
2441 {
2442 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2443 
2444 	dout("ceph_msg_put last one on %p\n", m);
2445 	WARN_ON(!list_empty(&m->list_head));
2446 
2447 	/* drop middle, data, if any */
2448 	if (m->middle) {
2449 		ceph_buffer_put(m->middle);
2450 		m->middle = NULL;
2451 	}
2452 	m->nr_pages = 0;
2453 	m->pages = NULL;
2454 
2455 	if (m->pagelist) {
2456 		ceph_pagelist_release(m->pagelist);
2457 		kfree(m->pagelist);
2458 		m->pagelist = NULL;
2459 	}
2460 
2461 	m->trail = NULL;
2462 
2463 	if (m->pool)
2464 		ceph_msgpool_put(m->pool, m);
2465 	else
2466 		ceph_msg_kfree(m);
2467 }
2468 EXPORT_SYMBOL(ceph_msg_last_put);
2469 
2470 void ceph_msg_dump(struct ceph_msg *msg)
2471 {
2472 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2473 		 msg->front_max, msg->nr_pages);
2474 	print_hex_dump(KERN_DEBUG, "header: ",
2475 		       DUMP_PREFIX_OFFSET, 16, 1,
2476 		       &msg->hdr, sizeof(msg->hdr), true);
2477 	print_hex_dump(KERN_DEBUG, " front: ",
2478 		       DUMP_PREFIX_OFFSET, 16, 1,
2479 		       msg->front.iov_base, msg->front.iov_len, true);
2480 	if (msg->middle)
2481 		print_hex_dump(KERN_DEBUG, "middle: ",
2482 			       DUMP_PREFIX_OFFSET, 16, 1,
2483 			       msg->middle->vec.iov_base,
2484 			       msg->middle->vec.iov_len, true);
2485 	print_hex_dump(KERN_DEBUG, "footer: ",
2486 		       DUMP_PREFIX_OFFSET, 16, 1,
2487 		       &msg->footer, sizeof(msg->footer), true);
2488 }
2489 EXPORT_SYMBOL(ceph_msg_dump);
2490