1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #include <linux/bio.h> 13 #include <linux/blkdev.h> 14 #include <net/tcp.h> 15 16 #include <linux/ceph/libceph.h> 17 #include <linux/ceph/messenger.h> 18 #include <linux/ceph/decode.h> 19 #include <linux/ceph/pagelist.h> 20 21 /* 22 * Ceph uses the messenger to exchange ceph_msg messages with other 23 * hosts in the system. The messenger provides ordered and reliable 24 * delivery. We tolerate TCP disconnects by reconnecting (with 25 * exponential backoff) in the case of a fault (disconnection, bad 26 * crc, protocol error). Acks allow sent messages to be discarded by 27 * the sender. 28 */ 29 30 /* static tag bytes (protocol control messages) */ 31 static char tag_msg = CEPH_MSGR_TAG_MSG; 32 static char tag_ack = CEPH_MSGR_TAG_ACK; 33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 34 35 #ifdef CONFIG_LOCKDEP 36 static struct lock_class_key socket_class; 37 #endif 38 39 40 static void queue_con(struct ceph_connection *con); 41 static void con_work(struct work_struct *); 42 static void ceph_fault(struct ceph_connection *con); 43 44 /* 45 * nicely render a sockaddr as a string. 46 */ 47 #define MAX_ADDR_STR 20 48 #define MAX_ADDR_STR_LEN 60 49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN]; 50 static DEFINE_SPINLOCK(addr_str_lock); 51 static int last_addr_str; 52 53 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 54 { 55 int i; 56 char *s; 57 struct sockaddr_in *in4 = (void *)ss; 58 struct sockaddr_in6 *in6 = (void *)ss; 59 60 spin_lock(&addr_str_lock); 61 i = last_addr_str++; 62 if (last_addr_str == MAX_ADDR_STR) 63 last_addr_str = 0; 64 spin_unlock(&addr_str_lock); 65 s = addr_str[i]; 66 67 switch (ss->ss_family) { 68 case AF_INET: 69 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr, 70 (unsigned int)ntohs(in4->sin_port)); 71 break; 72 73 case AF_INET6: 74 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr, 75 (unsigned int)ntohs(in6->sin6_port)); 76 break; 77 78 default: 79 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family); 80 } 81 82 return s; 83 } 84 EXPORT_SYMBOL(ceph_pr_addr); 85 86 static void encode_my_addr(struct ceph_messenger *msgr) 87 { 88 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 89 ceph_encode_addr(&msgr->my_enc_addr); 90 } 91 92 /* 93 * work queue for all reading and writing to/from the socket. 94 */ 95 struct workqueue_struct *ceph_msgr_wq; 96 97 int ceph_msgr_init(void) 98 { 99 ceph_msgr_wq = create_workqueue("ceph-msgr"); 100 if (IS_ERR(ceph_msgr_wq)) { 101 int ret = PTR_ERR(ceph_msgr_wq); 102 pr_err("msgr_init failed to create workqueue: %d\n", ret); 103 ceph_msgr_wq = NULL; 104 return ret; 105 } 106 return 0; 107 } 108 EXPORT_SYMBOL(ceph_msgr_init); 109 110 void ceph_msgr_exit(void) 111 { 112 destroy_workqueue(ceph_msgr_wq); 113 } 114 EXPORT_SYMBOL(ceph_msgr_exit); 115 116 void ceph_msgr_flush(void) 117 { 118 flush_workqueue(ceph_msgr_wq); 119 } 120 EXPORT_SYMBOL(ceph_msgr_flush); 121 122 123 /* 124 * socket callback functions 125 */ 126 127 /* data available on socket, or listen socket received a connect */ 128 static void ceph_data_ready(struct sock *sk, int count_unused) 129 { 130 struct ceph_connection *con = 131 (struct ceph_connection *)sk->sk_user_data; 132 if (sk->sk_state != TCP_CLOSE_WAIT) { 133 dout("ceph_data_ready on %p state = %lu, queueing work\n", 134 con, con->state); 135 queue_con(con); 136 } 137 } 138 139 /* socket has buffer space for writing */ 140 static void ceph_write_space(struct sock *sk) 141 { 142 struct ceph_connection *con = 143 (struct ceph_connection *)sk->sk_user_data; 144 145 /* only queue to workqueue if there is data we want to write. */ 146 if (test_bit(WRITE_PENDING, &con->state)) { 147 dout("ceph_write_space %p queueing write work\n", con); 148 queue_con(con); 149 } else { 150 dout("ceph_write_space %p nothing to write\n", con); 151 } 152 153 /* since we have our own write_space, clear the SOCK_NOSPACE flag */ 154 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 155 } 156 157 /* socket's state has changed */ 158 static void ceph_state_change(struct sock *sk) 159 { 160 struct ceph_connection *con = 161 (struct ceph_connection *)sk->sk_user_data; 162 163 dout("ceph_state_change %p state = %lu sk_state = %u\n", 164 con, con->state, sk->sk_state); 165 166 if (test_bit(CLOSED, &con->state)) 167 return; 168 169 switch (sk->sk_state) { 170 case TCP_CLOSE: 171 dout("ceph_state_change TCP_CLOSE\n"); 172 case TCP_CLOSE_WAIT: 173 dout("ceph_state_change TCP_CLOSE_WAIT\n"); 174 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) { 175 if (test_bit(CONNECTING, &con->state)) 176 con->error_msg = "connection failed"; 177 else 178 con->error_msg = "socket closed"; 179 queue_con(con); 180 } 181 break; 182 case TCP_ESTABLISHED: 183 dout("ceph_state_change TCP_ESTABLISHED\n"); 184 queue_con(con); 185 break; 186 } 187 } 188 189 /* 190 * set up socket callbacks 191 */ 192 static void set_sock_callbacks(struct socket *sock, 193 struct ceph_connection *con) 194 { 195 struct sock *sk = sock->sk; 196 sk->sk_user_data = (void *)con; 197 sk->sk_data_ready = ceph_data_ready; 198 sk->sk_write_space = ceph_write_space; 199 sk->sk_state_change = ceph_state_change; 200 } 201 202 203 /* 204 * socket helpers 205 */ 206 207 /* 208 * initiate connection to a remote socket. 209 */ 210 static struct socket *ceph_tcp_connect(struct ceph_connection *con) 211 { 212 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 213 struct socket *sock; 214 int ret; 215 216 BUG_ON(con->sock); 217 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 218 IPPROTO_TCP, &sock); 219 if (ret) 220 return ERR_PTR(ret); 221 con->sock = sock; 222 sock->sk->sk_allocation = GFP_NOFS; 223 224 #ifdef CONFIG_LOCKDEP 225 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 226 #endif 227 228 set_sock_callbacks(sock, con); 229 230 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 231 232 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 233 O_NONBLOCK); 234 if (ret == -EINPROGRESS) { 235 dout("connect %s EINPROGRESS sk_state = %u\n", 236 ceph_pr_addr(&con->peer_addr.in_addr), 237 sock->sk->sk_state); 238 ret = 0; 239 } 240 if (ret < 0) { 241 pr_err("connect %s error %d\n", 242 ceph_pr_addr(&con->peer_addr.in_addr), ret); 243 sock_release(sock); 244 con->sock = NULL; 245 con->error_msg = "connect error"; 246 } 247 248 if (ret < 0) 249 return ERR_PTR(ret); 250 return sock; 251 } 252 253 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 254 { 255 struct kvec iov = {buf, len}; 256 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 257 258 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 259 } 260 261 /* 262 * write something. @more is true if caller will be sending more data 263 * shortly. 264 */ 265 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 266 size_t kvlen, size_t len, int more) 267 { 268 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 269 270 if (more) 271 msg.msg_flags |= MSG_MORE; 272 else 273 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 274 275 return kernel_sendmsg(sock, &msg, iov, kvlen, len); 276 } 277 278 279 /* 280 * Shutdown/close the socket for the given connection. 281 */ 282 static int con_close_socket(struct ceph_connection *con) 283 { 284 int rc; 285 286 dout("con_close_socket on %p sock %p\n", con, con->sock); 287 if (!con->sock) 288 return 0; 289 set_bit(SOCK_CLOSED, &con->state); 290 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 291 sock_release(con->sock); 292 con->sock = NULL; 293 clear_bit(SOCK_CLOSED, &con->state); 294 return rc; 295 } 296 297 /* 298 * Reset a connection. Discard all incoming and outgoing messages 299 * and clear *_seq state. 300 */ 301 static void ceph_msg_remove(struct ceph_msg *msg) 302 { 303 list_del_init(&msg->list_head); 304 ceph_msg_put(msg); 305 } 306 static void ceph_msg_remove_list(struct list_head *head) 307 { 308 while (!list_empty(head)) { 309 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 310 list_head); 311 ceph_msg_remove(msg); 312 } 313 } 314 315 static void reset_connection(struct ceph_connection *con) 316 { 317 /* reset connection, out_queue, msg_ and connect_seq */ 318 /* discard existing out_queue and msg_seq */ 319 ceph_msg_remove_list(&con->out_queue); 320 ceph_msg_remove_list(&con->out_sent); 321 322 if (con->in_msg) { 323 ceph_msg_put(con->in_msg); 324 con->in_msg = NULL; 325 } 326 327 con->connect_seq = 0; 328 con->out_seq = 0; 329 if (con->out_msg) { 330 ceph_msg_put(con->out_msg); 331 con->out_msg = NULL; 332 } 333 con->out_keepalive_pending = false; 334 con->in_seq = 0; 335 con->in_seq_acked = 0; 336 } 337 338 /* 339 * mark a peer down. drop any open connections. 340 */ 341 void ceph_con_close(struct ceph_connection *con) 342 { 343 dout("con_close %p peer %s\n", con, 344 ceph_pr_addr(&con->peer_addr.in_addr)); 345 set_bit(CLOSED, &con->state); /* in case there's queued work */ 346 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */ 347 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */ 348 clear_bit(KEEPALIVE_PENDING, &con->state); 349 clear_bit(WRITE_PENDING, &con->state); 350 mutex_lock(&con->mutex); 351 reset_connection(con); 352 con->peer_global_seq = 0; 353 cancel_delayed_work(&con->work); 354 mutex_unlock(&con->mutex); 355 queue_con(con); 356 } 357 EXPORT_SYMBOL(ceph_con_close); 358 359 /* 360 * Reopen a closed connection, with a new peer address. 361 */ 362 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr) 363 { 364 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 365 set_bit(OPENING, &con->state); 366 clear_bit(CLOSED, &con->state); 367 memcpy(&con->peer_addr, addr, sizeof(*addr)); 368 con->delay = 0; /* reset backoff memory */ 369 queue_con(con); 370 } 371 EXPORT_SYMBOL(ceph_con_open); 372 373 /* 374 * return true if this connection ever successfully opened 375 */ 376 bool ceph_con_opened(struct ceph_connection *con) 377 { 378 return con->connect_seq > 0; 379 } 380 381 /* 382 * generic get/put 383 */ 384 struct ceph_connection *ceph_con_get(struct ceph_connection *con) 385 { 386 dout("con_get %p nref = %d -> %d\n", con, 387 atomic_read(&con->nref), atomic_read(&con->nref) + 1); 388 if (atomic_inc_not_zero(&con->nref)) 389 return con; 390 return NULL; 391 } 392 393 void ceph_con_put(struct ceph_connection *con) 394 { 395 dout("con_put %p nref = %d -> %d\n", con, 396 atomic_read(&con->nref), atomic_read(&con->nref) - 1); 397 BUG_ON(atomic_read(&con->nref) == 0); 398 if (atomic_dec_and_test(&con->nref)) { 399 BUG_ON(con->sock); 400 kfree(con); 401 } 402 } 403 404 /* 405 * initialize a new connection. 406 */ 407 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con) 408 { 409 dout("con_init %p\n", con); 410 memset(con, 0, sizeof(*con)); 411 atomic_set(&con->nref, 1); 412 con->msgr = msgr; 413 mutex_init(&con->mutex); 414 INIT_LIST_HEAD(&con->out_queue); 415 INIT_LIST_HEAD(&con->out_sent); 416 INIT_DELAYED_WORK(&con->work, con_work); 417 } 418 EXPORT_SYMBOL(ceph_con_init); 419 420 421 /* 422 * We maintain a global counter to order connection attempts. Get 423 * a unique seq greater than @gt. 424 */ 425 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 426 { 427 u32 ret; 428 429 spin_lock(&msgr->global_seq_lock); 430 if (msgr->global_seq < gt) 431 msgr->global_seq = gt; 432 ret = ++msgr->global_seq; 433 spin_unlock(&msgr->global_seq_lock); 434 return ret; 435 } 436 437 438 /* 439 * Prepare footer for currently outgoing message, and finish things 440 * off. Assumes out_kvec* are already valid.. we just add on to the end. 441 */ 442 static void prepare_write_message_footer(struct ceph_connection *con, int v) 443 { 444 struct ceph_msg *m = con->out_msg; 445 446 dout("prepare_write_message_footer %p\n", con); 447 con->out_kvec_is_msg = true; 448 con->out_kvec[v].iov_base = &m->footer; 449 con->out_kvec[v].iov_len = sizeof(m->footer); 450 con->out_kvec_bytes += sizeof(m->footer); 451 con->out_kvec_left++; 452 con->out_more = m->more_to_follow; 453 con->out_msg_done = true; 454 } 455 456 /* 457 * Prepare headers for the next outgoing message. 458 */ 459 static void prepare_write_message(struct ceph_connection *con) 460 { 461 struct ceph_msg *m; 462 int v = 0; 463 464 con->out_kvec_bytes = 0; 465 con->out_kvec_is_msg = true; 466 con->out_msg_done = false; 467 468 /* Sneak an ack in there first? If we can get it into the same 469 * TCP packet that's a good thing. */ 470 if (con->in_seq > con->in_seq_acked) { 471 con->in_seq_acked = con->in_seq; 472 con->out_kvec[v].iov_base = &tag_ack; 473 con->out_kvec[v++].iov_len = 1; 474 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 475 con->out_kvec[v].iov_base = &con->out_temp_ack; 476 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack); 477 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack); 478 } 479 480 m = list_first_entry(&con->out_queue, 481 struct ceph_msg, list_head); 482 con->out_msg = m; 483 if (test_bit(LOSSYTX, &con->state)) { 484 list_del_init(&m->list_head); 485 } else { 486 /* put message on sent list */ 487 ceph_msg_get(m); 488 list_move_tail(&m->list_head, &con->out_sent); 489 } 490 491 /* 492 * only assign outgoing seq # if we haven't sent this message 493 * yet. if it is requeued, resend with it's original seq. 494 */ 495 if (m->needs_out_seq) { 496 m->hdr.seq = cpu_to_le64(++con->out_seq); 497 m->needs_out_seq = false; 498 } 499 500 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n", 501 m, con->out_seq, le16_to_cpu(m->hdr.type), 502 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 503 le32_to_cpu(m->hdr.data_len), 504 m->nr_pages); 505 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 506 507 /* tag + hdr + front + middle */ 508 con->out_kvec[v].iov_base = &tag_msg; 509 con->out_kvec[v++].iov_len = 1; 510 con->out_kvec[v].iov_base = &m->hdr; 511 con->out_kvec[v++].iov_len = sizeof(m->hdr); 512 con->out_kvec[v++] = m->front; 513 if (m->middle) 514 con->out_kvec[v++] = m->middle->vec; 515 con->out_kvec_left = v; 516 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len + 517 (m->middle ? m->middle->vec.iov_len : 0); 518 con->out_kvec_cur = con->out_kvec; 519 520 /* fill in crc (except data pages), footer */ 521 con->out_msg->hdr.crc = 522 cpu_to_le32(crc32c(0, (void *)&m->hdr, 523 sizeof(m->hdr) - sizeof(m->hdr.crc))); 524 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE; 525 con->out_msg->footer.front_crc = 526 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len)); 527 if (m->middle) 528 con->out_msg->footer.middle_crc = 529 cpu_to_le32(crc32c(0, m->middle->vec.iov_base, 530 m->middle->vec.iov_len)); 531 else 532 con->out_msg->footer.middle_crc = 0; 533 con->out_msg->footer.data_crc = 0; 534 dout("prepare_write_message front_crc %u data_crc %u\n", 535 le32_to_cpu(con->out_msg->footer.front_crc), 536 le32_to_cpu(con->out_msg->footer.middle_crc)); 537 538 /* is there a data payload? */ 539 if (le32_to_cpu(m->hdr.data_len) > 0) { 540 /* initialize page iterator */ 541 con->out_msg_pos.page = 0; 542 if (m->pages) 543 con->out_msg_pos.page_pos = 544 le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK; 545 else 546 con->out_msg_pos.page_pos = 0; 547 con->out_msg_pos.data_pos = 0; 548 con->out_msg_pos.did_page_crc = 0; 549 con->out_more = 1; /* data + footer will follow */ 550 } else { 551 /* no, queue up footer too and be done */ 552 prepare_write_message_footer(con, v); 553 } 554 555 set_bit(WRITE_PENDING, &con->state); 556 } 557 558 /* 559 * Prepare an ack. 560 */ 561 static void prepare_write_ack(struct ceph_connection *con) 562 { 563 dout("prepare_write_ack %p %llu -> %llu\n", con, 564 con->in_seq_acked, con->in_seq); 565 con->in_seq_acked = con->in_seq; 566 567 con->out_kvec[0].iov_base = &tag_ack; 568 con->out_kvec[0].iov_len = 1; 569 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 570 con->out_kvec[1].iov_base = &con->out_temp_ack; 571 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack); 572 con->out_kvec_left = 2; 573 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack); 574 con->out_kvec_cur = con->out_kvec; 575 con->out_more = 1; /* more will follow.. eventually.. */ 576 set_bit(WRITE_PENDING, &con->state); 577 } 578 579 /* 580 * Prepare to write keepalive byte. 581 */ 582 static void prepare_write_keepalive(struct ceph_connection *con) 583 { 584 dout("prepare_write_keepalive %p\n", con); 585 con->out_kvec[0].iov_base = &tag_keepalive; 586 con->out_kvec[0].iov_len = 1; 587 con->out_kvec_left = 1; 588 con->out_kvec_bytes = 1; 589 con->out_kvec_cur = con->out_kvec; 590 set_bit(WRITE_PENDING, &con->state); 591 } 592 593 /* 594 * Connection negotiation. 595 */ 596 597 static void prepare_connect_authorizer(struct ceph_connection *con) 598 { 599 void *auth_buf; 600 int auth_len = 0; 601 int auth_protocol = 0; 602 603 mutex_unlock(&con->mutex); 604 if (con->ops->get_authorizer) 605 con->ops->get_authorizer(con, &auth_buf, &auth_len, 606 &auth_protocol, &con->auth_reply_buf, 607 &con->auth_reply_buf_len, 608 con->auth_retry); 609 mutex_lock(&con->mutex); 610 611 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol); 612 con->out_connect.authorizer_len = cpu_to_le32(auth_len); 613 614 con->out_kvec[con->out_kvec_left].iov_base = auth_buf; 615 con->out_kvec[con->out_kvec_left].iov_len = auth_len; 616 con->out_kvec_left++; 617 con->out_kvec_bytes += auth_len; 618 } 619 620 /* 621 * We connected to a peer and are saying hello. 622 */ 623 static void prepare_write_banner(struct ceph_messenger *msgr, 624 struct ceph_connection *con) 625 { 626 int len = strlen(CEPH_BANNER); 627 628 con->out_kvec[0].iov_base = CEPH_BANNER; 629 con->out_kvec[0].iov_len = len; 630 con->out_kvec[1].iov_base = &msgr->my_enc_addr; 631 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr); 632 con->out_kvec_left = 2; 633 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr); 634 con->out_kvec_cur = con->out_kvec; 635 con->out_more = 0; 636 set_bit(WRITE_PENDING, &con->state); 637 } 638 639 static void prepare_write_connect(struct ceph_messenger *msgr, 640 struct ceph_connection *con, 641 int after_banner) 642 { 643 unsigned global_seq = get_global_seq(con->msgr, 0); 644 int proto; 645 646 switch (con->peer_name.type) { 647 case CEPH_ENTITY_TYPE_MON: 648 proto = CEPH_MONC_PROTOCOL; 649 break; 650 case CEPH_ENTITY_TYPE_OSD: 651 proto = CEPH_OSDC_PROTOCOL; 652 break; 653 case CEPH_ENTITY_TYPE_MDS: 654 proto = CEPH_MDSC_PROTOCOL; 655 break; 656 default: 657 BUG(); 658 } 659 660 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 661 con->connect_seq, global_seq, proto); 662 663 con->out_connect.features = cpu_to_le64(msgr->supported_features); 664 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 665 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 666 con->out_connect.global_seq = cpu_to_le32(global_seq); 667 con->out_connect.protocol_version = cpu_to_le32(proto); 668 con->out_connect.flags = 0; 669 670 if (!after_banner) { 671 con->out_kvec_left = 0; 672 con->out_kvec_bytes = 0; 673 } 674 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect; 675 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect); 676 con->out_kvec_left++; 677 con->out_kvec_bytes += sizeof(con->out_connect); 678 con->out_kvec_cur = con->out_kvec; 679 con->out_more = 0; 680 set_bit(WRITE_PENDING, &con->state); 681 682 prepare_connect_authorizer(con); 683 } 684 685 686 /* 687 * write as much of pending kvecs to the socket as we can. 688 * 1 -> done 689 * 0 -> socket full, but more to do 690 * <0 -> error 691 */ 692 static int write_partial_kvec(struct ceph_connection *con) 693 { 694 int ret; 695 696 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 697 while (con->out_kvec_bytes > 0) { 698 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 699 con->out_kvec_left, con->out_kvec_bytes, 700 con->out_more); 701 if (ret <= 0) 702 goto out; 703 con->out_kvec_bytes -= ret; 704 if (con->out_kvec_bytes == 0) 705 break; /* done */ 706 while (ret > 0) { 707 if (ret >= con->out_kvec_cur->iov_len) { 708 ret -= con->out_kvec_cur->iov_len; 709 con->out_kvec_cur++; 710 con->out_kvec_left--; 711 } else { 712 con->out_kvec_cur->iov_len -= ret; 713 con->out_kvec_cur->iov_base += ret; 714 ret = 0; 715 break; 716 } 717 } 718 } 719 con->out_kvec_left = 0; 720 con->out_kvec_is_msg = false; 721 ret = 1; 722 out: 723 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 724 con->out_kvec_bytes, con->out_kvec_left, ret); 725 return ret; /* done! */ 726 } 727 728 #ifdef CONFIG_BLOCK 729 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg) 730 { 731 if (!bio) { 732 *iter = NULL; 733 *seg = 0; 734 return; 735 } 736 *iter = bio; 737 *seg = bio->bi_idx; 738 } 739 740 static void iter_bio_next(struct bio **bio_iter, int *seg) 741 { 742 if (*bio_iter == NULL) 743 return; 744 745 BUG_ON(*seg >= (*bio_iter)->bi_vcnt); 746 747 (*seg)++; 748 if (*seg == (*bio_iter)->bi_vcnt) 749 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg); 750 } 751 #endif 752 753 /* 754 * Write as much message data payload as we can. If we finish, queue 755 * up the footer. 756 * 1 -> done, footer is now queued in out_kvec[]. 757 * 0 -> socket full, but more to do 758 * <0 -> error 759 */ 760 static int write_partial_msg_pages(struct ceph_connection *con) 761 { 762 struct ceph_msg *msg = con->out_msg; 763 unsigned data_len = le32_to_cpu(msg->hdr.data_len); 764 size_t len; 765 int crc = con->msgr->nocrc; 766 int ret; 767 int total_max_write; 768 int in_trail = 0; 769 size_t trail_len = (msg->trail ? msg->trail->length : 0); 770 771 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n", 772 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages, 773 con->out_msg_pos.page_pos); 774 775 #ifdef CONFIG_BLOCK 776 if (msg->bio && !msg->bio_iter) 777 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg); 778 #endif 779 780 while (data_len > con->out_msg_pos.data_pos) { 781 struct page *page = NULL; 782 void *kaddr = NULL; 783 int max_write = PAGE_SIZE; 784 int page_shift = 0; 785 786 total_max_write = data_len - trail_len - 787 con->out_msg_pos.data_pos; 788 789 /* 790 * if we are calculating the data crc (the default), we need 791 * to map the page. if our pages[] has been revoked, use the 792 * zero page. 793 */ 794 795 /* have we reached the trail part of the data? */ 796 if (con->out_msg_pos.data_pos >= data_len - trail_len) { 797 in_trail = 1; 798 799 total_max_write = data_len - con->out_msg_pos.data_pos; 800 801 page = list_first_entry(&msg->trail->head, 802 struct page, lru); 803 if (crc) 804 kaddr = kmap(page); 805 max_write = PAGE_SIZE; 806 } else if (msg->pages) { 807 page = msg->pages[con->out_msg_pos.page]; 808 if (crc) 809 kaddr = kmap(page); 810 } else if (msg->pagelist) { 811 page = list_first_entry(&msg->pagelist->head, 812 struct page, lru); 813 if (crc) 814 kaddr = kmap(page); 815 #ifdef CONFIG_BLOCK 816 } else if (msg->bio) { 817 struct bio_vec *bv; 818 819 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg); 820 page = bv->bv_page; 821 page_shift = bv->bv_offset; 822 if (crc) 823 kaddr = kmap(page) + page_shift; 824 max_write = bv->bv_len; 825 #endif 826 } else { 827 page = con->msgr->zero_page; 828 if (crc) 829 kaddr = page_address(con->msgr->zero_page); 830 } 831 len = min_t(int, max_write - con->out_msg_pos.page_pos, 832 total_max_write); 833 834 if (crc && !con->out_msg_pos.did_page_crc) { 835 void *base = kaddr + con->out_msg_pos.page_pos; 836 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc); 837 838 BUG_ON(kaddr == NULL); 839 con->out_msg->footer.data_crc = 840 cpu_to_le32(crc32c(tmpcrc, base, len)); 841 con->out_msg_pos.did_page_crc = 1; 842 } 843 ret = kernel_sendpage(con->sock, page, 844 con->out_msg_pos.page_pos + page_shift, 845 len, 846 MSG_DONTWAIT | MSG_NOSIGNAL | 847 MSG_MORE); 848 849 if (crc && 850 (msg->pages || msg->pagelist || msg->bio || in_trail)) 851 kunmap(page); 852 853 if (ret <= 0) 854 goto out; 855 856 con->out_msg_pos.data_pos += ret; 857 con->out_msg_pos.page_pos += ret; 858 if (ret == len) { 859 con->out_msg_pos.page_pos = 0; 860 con->out_msg_pos.page++; 861 con->out_msg_pos.did_page_crc = 0; 862 if (in_trail) 863 list_move_tail(&page->lru, 864 &msg->trail->head); 865 else if (msg->pagelist) 866 list_move_tail(&page->lru, 867 &msg->pagelist->head); 868 #ifdef CONFIG_BLOCK 869 else if (msg->bio) 870 iter_bio_next(&msg->bio_iter, &msg->bio_seg); 871 #endif 872 } 873 } 874 875 dout("write_partial_msg_pages %p msg %p done\n", con, msg); 876 877 /* prepare and queue up footer, too */ 878 if (!crc) 879 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 880 con->out_kvec_bytes = 0; 881 con->out_kvec_left = 0; 882 con->out_kvec_cur = con->out_kvec; 883 prepare_write_message_footer(con, 0); 884 ret = 1; 885 out: 886 return ret; 887 } 888 889 /* 890 * write some zeros 891 */ 892 static int write_partial_skip(struct ceph_connection *con) 893 { 894 int ret; 895 896 while (con->out_skip > 0) { 897 struct kvec iov = { 898 .iov_base = page_address(con->msgr->zero_page), 899 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE) 900 }; 901 902 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1); 903 if (ret <= 0) 904 goto out; 905 con->out_skip -= ret; 906 } 907 ret = 1; 908 out: 909 return ret; 910 } 911 912 /* 913 * Prepare to read connection handshake, or an ack. 914 */ 915 static void prepare_read_banner(struct ceph_connection *con) 916 { 917 dout("prepare_read_banner %p\n", con); 918 con->in_base_pos = 0; 919 } 920 921 static void prepare_read_connect(struct ceph_connection *con) 922 { 923 dout("prepare_read_connect %p\n", con); 924 con->in_base_pos = 0; 925 } 926 927 static void prepare_read_ack(struct ceph_connection *con) 928 { 929 dout("prepare_read_ack %p\n", con); 930 con->in_base_pos = 0; 931 } 932 933 static void prepare_read_tag(struct ceph_connection *con) 934 { 935 dout("prepare_read_tag %p\n", con); 936 con->in_base_pos = 0; 937 con->in_tag = CEPH_MSGR_TAG_READY; 938 } 939 940 /* 941 * Prepare to read a message. 942 */ 943 static int prepare_read_message(struct ceph_connection *con) 944 { 945 dout("prepare_read_message %p\n", con); 946 BUG_ON(con->in_msg != NULL); 947 con->in_base_pos = 0; 948 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 949 return 0; 950 } 951 952 953 static int read_partial(struct ceph_connection *con, 954 int *to, int size, void *object) 955 { 956 *to += size; 957 while (con->in_base_pos < *to) { 958 int left = *to - con->in_base_pos; 959 int have = size - left; 960 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 961 if (ret <= 0) 962 return ret; 963 con->in_base_pos += ret; 964 } 965 return 1; 966 } 967 968 969 /* 970 * Read all or part of the connect-side handshake on a new connection 971 */ 972 static int read_partial_banner(struct ceph_connection *con) 973 { 974 int ret, to = 0; 975 976 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 977 978 /* peer's banner */ 979 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner); 980 if (ret <= 0) 981 goto out; 982 ret = read_partial(con, &to, sizeof(con->actual_peer_addr), 983 &con->actual_peer_addr); 984 if (ret <= 0) 985 goto out; 986 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me), 987 &con->peer_addr_for_me); 988 if (ret <= 0) 989 goto out; 990 out: 991 return ret; 992 } 993 994 static int read_partial_connect(struct ceph_connection *con) 995 { 996 int ret, to = 0; 997 998 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 999 1000 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply); 1001 if (ret <= 0) 1002 goto out; 1003 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len), 1004 con->auth_reply_buf); 1005 if (ret <= 0) 1006 goto out; 1007 1008 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1009 con, (int)con->in_reply.tag, 1010 le32_to_cpu(con->in_reply.connect_seq), 1011 le32_to_cpu(con->in_reply.global_seq)); 1012 out: 1013 return ret; 1014 1015 } 1016 1017 /* 1018 * Verify the hello banner looks okay. 1019 */ 1020 static int verify_hello(struct ceph_connection *con) 1021 { 1022 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1023 pr_err("connect to %s got bad banner\n", 1024 ceph_pr_addr(&con->peer_addr.in_addr)); 1025 con->error_msg = "protocol error, bad banner"; 1026 return -1; 1027 } 1028 return 0; 1029 } 1030 1031 static bool addr_is_blank(struct sockaddr_storage *ss) 1032 { 1033 switch (ss->ss_family) { 1034 case AF_INET: 1035 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1036 case AF_INET6: 1037 return 1038 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1039 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1040 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1041 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1042 } 1043 return false; 1044 } 1045 1046 static int addr_port(struct sockaddr_storage *ss) 1047 { 1048 switch (ss->ss_family) { 1049 case AF_INET: 1050 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1051 case AF_INET6: 1052 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1053 } 1054 return 0; 1055 } 1056 1057 static void addr_set_port(struct sockaddr_storage *ss, int p) 1058 { 1059 switch (ss->ss_family) { 1060 case AF_INET: 1061 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1062 case AF_INET6: 1063 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1064 } 1065 } 1066 1067 /* 1068 * Parse an ip[:port] list into an addr array. Use the default 1069 * monitor port if a port isn't specified. 1070 */ 1071 int ceph_parse_ips(const char *c, const char *end, 1072 struct ceph_entity_addr *addr, 1073 int max_count, int *count) 1074 { 1075 int i; 1076 const char *p = c; 1077 1078 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1079 for (i = 0; i < max_count; i++) { 1080 const char *ipend; 1081 struct sockaddr_storage *ss = &addr[i].in_addr; 1082 struct sockaddr_in *in4 = (void *)ss; 1083 struct sockaddr_in6 *in6 = (void *)ss; 1084 int port; 1085 char delim = ','; 1086 1087 if (*p == '[') { 1088 delim = ']'; 1089 p++; 1090 } 1091 1092 memset(ss, 0, sizeof(*ss)); 1093 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr, 1094 delim, &ipend)) 1095 ss->ss_family = AF_INET; 1096 else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr, 1097 delim, &ipend)) 1098 ss->ss_family = AF_INET6; 1099 else 1100 goto bad; 1101 p = ipend; 1102 1103 if (delim == ']') { 1104 if (*p != ']') { 1105 dout("missing matching ']'\n"); 1106 goto bad; 1107 } 1108 p++; 1109 } 1110 1111 /* port? */ 1112 if (p < end && *p == ':') { 1113 port = 0; 1114 p++; 1115 while (p < end && *p >= '0' && *p <= '9') { 1116 port = (port * 10) + (*p - '0'); 1117 p++; 1118 } 1119 if (port > 65535 || port == 0) 1120 goto bad; 1121 } else { 1122 port = CEPH_MON_PORT; 1123 } 1124 1125 addr_set_port(ss, port); 1126 1127 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1128 1129 if (p == end) 1130 break; 1131 if (*p != ',') 1132 goto bad; 1133 p++; 1134 } 1135 1136 if (p != end) 1137 goto bad; 1138 1139 if (count) 1140 *count = i + 1; 1141 return 0; 1142 1143 bad: 1144 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1145 return -EINVAL; 1146 } 1147 EXPORT_SYMBOL(ceph_parse_ips); 1148 1149 static int process_banner(struct ceph_connection *con) 1150 { 1151 dout("process_banner on %p\n", con); 1152 1153 if (verify_hello(con) < 0) 1154 return -1; 1155 1156 ceph_decode_addr(&con->actual_peer_addr); 1157 ceph_decode_addr(&con->peer_addr_for_me); 1158 1159 /* 1160 * Make sure the other end is who we wanted. note that the other 1161 * end may not yet know their ip address, so if it's 0.0.0.0, give 1162 * them the benefit of the doubt. 1163 */ 1164 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1165 sizeof(con->peer_addr)) != 0 && 1166 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1167 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1168 pr_warning("wrong peer, want %s/%d, got %s/%d\n", 1169 ceph_pr_addr(&con->peer_addr.in_addr), 1170 (int)le32_to_cpu(con->peer_addr.nonce), 1171 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1172 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1173 con->error_msg = "wrong peer at address"; 1174 return -1; 1175 } 1176 1177 /* 1178 * did we learn our address? 1179 */ 1180 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1181 int port = addr_port(&con->msgr->inst.addr.in_addr); 1182 1183 memcpy(&con->msgr->inst.addr.in_addr, 1184 &con->peer_addr_for_me.in_addr, 1185 sizeof(con->peer_addr_for_me.in_addr)); 1186 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1187 encode_my_addr(con->msgr); 1188 dout("process_banner learned my addr is %s\n", 1189 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1190 } 1191 1192 set_bit(NEGOTIATING, &con->state); 1193 prepare_read_connect(con); 1194 return 0; 1195 } 1196 1197 static void fail_protocol(struct ceph_connection *con) 1198 { 1199 reset_connection(con); 1200 set_bit(CLOSED, &con->state); /* in case there's queued work */ 1201 1202 mutex_unlock(&con->mutex); 1203 if (con->ops->bad_proto) 1204 con->ops->bad_proto(con); 1205 mutex_lock(&con->mutex); 1206 } 1207 1208 static int process_connect(struct ceph_connection *con) 1209 { 1210 u64 sup_feat = con->msgr->supported_features; 1211 u64 req_feat = con->msgr->required_features; 1212 u64 server_feat = le64_to_cpu(con->in_reply.features); 1213 1214 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1215 1216 switch (con->in_reply.tag) { 1217 case CEPH_MSGR_TAG_FEATURES: 1218 pr_err("%s%lld %s feature set mismatch," 1219 " my %llx < server's %llx, missing %llx\n", 1220 ENTITY_NAME(con->peer_name), 1221 ceph_pr_addr(&con->peer_addr.in_addr), 1222 sup_feat, server_feat, server_feat & ~sup_feat); 1223 con->error_msg = "missing required protocol features"; 1224 fail_protocol(con); 1225 return -1; 1226 1227 case CEPH_MSGR_TAG_BADPROTOVER: 1228 pr_err("%s%lld %s protocol version mismatch," 1229 " my %d != server's %d\n", 1230 ENTITY_NAME(con->peer_name), 1231 ceph_pr_addr(&con->peer_addr.in_addr), 1232 le32_to_cpu(con->out_connect.protocol_version), 1233 le32_to_cpu(con->in_reply.protocol_version)); 1234 con->error_msg = "protocol version mismatch"; 1235 fail_protocol(con); 1236 return -1; 1237 1238 case CEPH_MSGR_TAG_BADAUTHORIZER: 1239 con->auth_retry++; 1240 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 1241 con->auth_retry); 1242 if (con->auth_retry == 2) { 1243 con->error_msg = "connect authorization failure"; 1244 reset_connection(con); 1245 set_bit(CLOSED, &con->state); 1246 return -1; 1247 } 1248 con->auth_retry = 1; 1249 prepare_write_connect(con->msgr, con, 0); 1250 prepare_read_connect(con); 1251 break; 1252 1253 case CEPH_MSGR_TAG_RESETSESSION: 1254 /* 1255 * If we connected with a large connect_seq but the peer 1256 * has no record of a session with us (no connection, or 1257 * connect_seq == 0), they will send RESETSESION to indicate 1258 * that they must have reset their session, and may have 1259 * dropped messages. 1260 */ 1261 dout("process_connect got RESET peer seq %u\n", 1262 le32_to_cpu(con->in_connect.connect_seq)); 1263 pr_err("%s%lld %s connection reset\n", 1264 ENTITY_NAME(con->peer_name), 1265 ceph_pr_addr(&con->peer_addr.in_addr)); 1266 reset_connection(con); 1267 prepare_write_connect(con->msgr, con, 0); 1268 prepare_read_connect(con); 1269 1270 /* Tell ceph about it. */ 1271 mutex_unlock(&con->mutex); 1272 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 1273 if (con->ops->peer_reset) 1274 con->ops->peer_reset(con); 1275 mutex_lock(&con->mutex); 1276 break; 1277 1278 case CEPH_MSGR_TAG_RETRY_SESSION: 1279 /* 1280 * If we sent a smaller connect_seq than the peer has, try 1281 * again with a larger value. 1282 */ 1283 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n", 1284 le32_to_cpu(con->out_connect.connect_seq), 1285 le32_to_cpu(con->in_connect.connect_seq)); 1286 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq); 1287 prepare_write_connect(con->msgr, con, 0); 1288 prepare_read_connect(con); 1289 break; 1290 1291 case CEPH_MSGR_TAG_RETRY_GLOBAL: 1292 /* 1293 * If we sent a smaller global_seq than the peer has, try 1294 * again with a larger value. 1295 */ 1296 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 1297 con->peer_global_seq, 1298 le32_to_cpu(con->in_connect.global_seq)); 1299 get_global_seq(con->msgr, 1300 le32_to_cpu(con->in_connect.global_seq)); 1301 prepare_write_connect(con->msgr, con, 0); 1302 prepare_read_connect(con); 1303 break; 1304 1305 case CEPH_MSGR_TAG_READY: 1306 if (req_feat & ~server_feat) { 1307 pr_err("%s%lld %s protocol feature mismatch," 1308 " my required %llx > server's %llx, need %llx\n", 1309 ENTITY_NAME(con->peer_name), 1310 ceph_pr_addr(&con->peer_addr.in_addr), 1311 req_feat, server_feat, req_feat & ~server_feat); 1312 con->error_msg = "missing required protocol features"; 1313 fail_protocol(con); 1314 return -1; 1315 } 1316 clear_bit(CONNECTING, &con->state); 1317 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 1318 con->connect_seq++; 1319 con->peer_features = server_feat; 1320 dout("process_connect got READY gseq %d cseq %d (%d)\n", 1321 con->peer_global_seq, 1322 le32_to_cpu(con->in_reply.connect_seq), 1323 con->connect_seq); 1324 WARN_ON(con->connect_seq != 1325 le32_to_cpu(con->in_reply.connect_seq)); 1326 1327 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 1328 set_bit(LOSSYTX, &con->state); 1329 1330 prepare_read_tag(con); 1331 break; 1332 1333 case CEPH_MSGR_TAG_WAIT: 1334 /* 1335 * If there is a connection race (we are opening 1336 * connections to each other), one of us may just have 1337 * to WAIT. This shouldn't happen if we are the 1338 * client. 1339 */ 1340 pr_err("process_connect peer connecting WAIT\n"); 1341 1342 default: 1343 pr_err("connect protocol error, will retry\n"); 1344 con->error_msg = "protocol error, garbage tag during connect"; 1345 return -1; 1346 } 1347 return 0; 1348 } 1349 1350 1351 /* 1352 * read (part of) an ack 1353 */ 1354 static int read_partial_ack(struct ceph_connection *con) 1355 { 1356 int to = 0; 1357 1358 return read_partial(con, &to, sizeof(con->in_temp_ack), 1359 &con->in_temp_ack); 1360 } 1361 1362 1363 /* 1364 * We can finally discard anything that's been acked. 1365 */ 1366 static void process_ack(struct ceph_connection *con) 1367 { 1368 struct ceph_msg *m; 1369 u64 ack = le64_to_cpu(con->in_temp_ack); 1370 u64 seq; 1371 1372 while (!list_empty(&con->out_sent)) { 1373 m = list_first_entry(&con->out_sent, struct ceph_msg, 1374 list_head); 1375 seq = le64_to_cpu(m->hdr.seq); 1376 if (seq > ack) 1377 break; 1378 dout("got ack for seq %llu type %d at %p\n", seq, 1379 le16_to_cpu(m->hdr.type), m); 1380 ceph_msg_remove(m); 1381 } 1382 prepare_read_tag(con); 1383 } 1384 1385 1386 1387 1388 static int read_partial_message_section(struct ceph_connection *con, 1389 struct kvec *section, 1390 unsigned int sec_len, u32 *crc) 1391 { 1392 int ret, left; 1393 1394 BUG_ON(!section); 1395 1396 while (section->iov_len < sec_len) { 1397 BUG_ON(section->iov_base == NULL); 1398 left = sec_len - section->iov_len; 1399 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 1400 section->iov_len, left); 1401 if (ret <= 0) 1402 return ret; 1403 section->iov_len += ret; 1404 if (section->iov_len == sec_len) 1405 *crc = crc32c(0, section->iov_base, 1406 section->iov_len); 1407 } 1408 1409 return 1; 1410 } 1411 1412 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con, 1413 struct ceph_msg_header *hdr, 1414 int *skip); 1415 1416 1417 static int read_partial_message_pages(struct ceph_connection *con, 1418 struct page **pages, 1419 unsigned data_len, int datacrc) 1420 { 1421 void *p; 1422 int ret; 1423 int left; 1424 1425 left = min((int)(data_len - con->in_msg_pos.data_pos), 1426 (int)(PAGE_SIZE - con->in_msg_pos.page_pos)); 1427 /* (page) data */ 1428 BUG_ON(pages == NULL); 1429 p = kmap(pages[con->in_msg_pos.page]); 1430 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, 1431 left); 1432 if (ret > 0 && datacrc) 1433 con->in_data_crc = 1434 crc32c(con->in_data_crc, 1435 p + con->in_msg_pos.page_pos, ret); 1436 kunmap(pages[con->in_msg_pos.page]); 1437 if (ret <= 0) 1438 return ret; 1439 con->in_msg_pos.data_pos += ret; 1440 con->in_msg_pos.page_pos += ret; 1441 if (con->in_msg_pos.page_pos == PAGE_SIZE) { 1442 con->in_msg_pos.page_pos = 0; 1443 con->in_msg_pos.page++; 1444 } 1445 1446 return ret; 1447 } 1448 1449 #ifdef CONFIG_BLOCK 1450 static int read_partial_message_bio(struct ceph_connection *con, 1451 struct bio **bio_iter, int *bio_seg, 1452 unsigned data_len, int datacrc) 1453 { 1454 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg); 1455 void *p; 1456 int ret, left; 1457 1458 if (IS_ERR(bv)) 1459 return PTR_ERR(bv); 1460 1461 left = min((int)(data_len - con->in_msg_pos.data_pos), 1462 (int)(bv->bv_len - con->in_msg_pos.page_pos)); 1463 1464 p = kmap(bv->bv_page) + bv->bv_offset; 1465 1466 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, 1467 left); 1468 if (ret > 0 && datacrc) 1469 con->in_data_crc = 1470 crc32c(con->in_data_crc, 1471 p + con->in_msg_pos.page_pos, ret); 1472 kunmap(bv->bv_page); 1473 if (ret <= 0) 1474 return ret; 1475 con->in_msg_pos.data_pos += ret; 1476 con->in_msg_pos.page_pos += ret; 1477 if (con->in_msg_pos.page_pos == bv->bv_len) { 1478 con->in_msg_pos.page_pos = 0; 1479 iter_bio_next(bio_iter, bio_seg); 1480 } 1481 1482 return ret; 1483 } 1484 #endif 1485 1486 /* 1487 * read (part of) a message. 1488 */ 1489 static int read_partial_message(struct ceph_connection *con) 1490 { 1491 struct ceph_msg *m = con->in_msg; 1492 int ret; 1493 int to, left; 1494 unsigned front_len, middle_len, data_len, data_off; 1495 int datacrc = con->msgr->nocrc; 1496 int skip; 1497 u64 seq; 1498 1499 dout("read_partial_message con %p msg %p\n", con, m); 1500 1501 /* header */ 1502 while (con->in_base_pos < sizeof(con->in_hdr)) { 1503 left = sizeof(con->in_hdr) - con->in_base_pos; 1504 ret = ceph_tcp_recvmsg(con->sock, 1505 (char *)&con->in_hdr + con->in_base_pos, 1506 left); 1507 if (ret <= 0) 1508 return ret; 1509 con->in_base_pos += ret; 1510 if (con->in_base_pos == sizeof(con->in_hdr)) { 1511 u32 crc = crc32c(0, (void *)&con->in_hdr, 1512 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc)); 1513 if (crc != le32_to_cpu(con->in_hdr.crc)) { 1514 pr_err("read_partial_message bad hdr " 1515 " crc %u != expected %u\n", 1516 crc, con->in_hdr.crc); 1517 return -EBADMSG; 1518 } 1519 } 1520 } 1521 front_len = le32_to_cpu(con->in_hdr.front_len); 1522 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 1523 return -EIO; 1524 middle_len = le32_to_cpu(con->in_hdr.middle_len); 1525 if (middle_len > CEPH_MSG_MAX_DATA_LEN) 1526 return -EIO; 1527 data_len = le32_to_cpu(con->in_hdr.data_len); 1528 if (data_len > CEPH_MSG_MAX_DATA_LEN) 1529 return -EIO; 1530 data_off = le16_to_cpu(con->in_hdr.data_off); 1531 1532 /* verify seq# */ 1533 seq = le64_to_cpu(con->in_hdr.seq); 1534 if ((s64)seq - (s64)con->in_seq < 1) { 1535 pr_info("skipping %s%lld %s seq %lld, expected %lld\n", 1536 ENTITY_NAME(con->peer_name), 1537 ceph_pr_addr(&con->peer_addr.in_addr), 1538 seq, con->in_seq + 1); 1539 con->in_base_pos = -front_len - middle_len - data_len - 1540 sizeof(m->footer); 1541 con->in_tag = CEPH_MSGR_TAG_READY; 1542 con->in_seq++; 1543 return 0; 1544 } else if ((s64)seq - (s64)con->in_seq > 1) { 1545 pr_err("read_partial_message bad seq %lld expected %lld\n", 1546 seq, con->in_seq + 1); 1547 con->error_msg = "bad message sequence # for incoming message"; 1548 return -EBADMSG; 1549 } 1550 1551 /* allocate message? */ 1552 if (!con->in_msg) { 1553 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 1554 con->in_hdr.front_len, con->in_hdr.data_len); 1555 skip = 0; 1556 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip); 1557 if (skip) { 1558 /* skip this message */ 1559 dout("alloc_msg said skip message\n"); 1560 BUG_ON(con->in_msg); 1561 con->in_base_pos = -front_len - middle_len - data_len - 1562 sizeof(m->footer); 1563 con->in_tag = CEPH_MSGR_TAG_READY; 1564 con->in_seq++; 1565 return 0; 1566 } 1567 if (!con->in_msg) { 1568 con->error_msg = 1569 "error allocating memory for incoming message"; 1570 return -ENOMEM; 1571 } 1572 m = con->in_msg; 1573 m->front.iov_len = 0; /* haven't read it yet */ 1574 if (m->middle) 1575 m->middle->vec.iov_len = 0; 1576 1577 con->in_msg_pos.page = 0; 1578 if (m->pages) 1579 con->in_msg_pos.page_pos = data_off & ~PAGE_MASK; 1580 else 1581 con->in_msg_pos.page_pos = 0; 1582 con->in_msg_pos.data_pos = 0; 1583 } 1584 1585 /* front */ 1586 ret = read_partial_message_section(con, &m->front, front_len, 1587 &con->in_front_crc); 1588 if (ret <= 0) 1589 return ret; 1590 1591 /* middle */ 1592 if (m->middle) { 1593 ret = read_partial_message_section(con, &m->middle->vec, 1594 middle_len, 1595 &con->in_middle_crc); 1596 if (ret <= 0) 1597 return ret; 1598 } 1599 #ifdef CONFIG_BLOCK 1600 if (m->bio && !m->bio_iter) 1601 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg); 1602 #endif 1603 1604 /* (page) data */ 1605 while (con->in_msg_pos.data_pos < data_len) { 1606 if (m->pages) { 1607 ret = read_partial_message_pages(con, m->pages, 1608 data_len, datacrc); 1609 if (ret <= 0) 1610 return ret; 1611 #ifdef CONFIG_BLOCK 1612 } else if (m->bio) { 1613 1614 ret = read_partial_message_bio(con, 1615 &m->bio_iter, &m->bio_seg, 1616 data_len, datacrc); 1617 if (ret <= 0) 1618 return ret; 1619 #endif 1620 } else { 1621 BUG_ON(1); 1622 } 1623 } 1624 1625 /* footer */ 1626 to = sizeof(m->hdr) + sizeof(m->footer); 1627 while (con->in_base_pos < to) { 1628 left = to - con->in_base_pos; 1629 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer + 1630 (con->in_base_pos - sizeof(m->hdr)), 1631 left); 1632 if (ret <= 0) 1633 return ret; 1634 con->in_base_pos += ret; 1635 } 1636 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 1637 m, front_len, m->footer.front_crc, middle_len, 1638 m->footer.middle_crc, data_len, m->footer.data_crc); 1639 1640 /* crc ok? */ 1641 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 1642 pr_err("read_partial_message %p front crc %u != exp. %u\n", 1643 m, con->in_front_crc, m->footer.front_crc); 1644 return -EBADMSG; 1645 } 1646 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 1647 pr_err("read_partial_message %p middle crc %u != exp %u\n", 1648 m, con->in_middle_crc, m->footer.middle_crc); 1649 return -EBADMSG; 1650 } 1651 if (datacrc && 1652 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 1653 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 1654 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 1655 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 1656 return -EBADMSG; 1657 } 1658 1659 return 1; /* done! */ 1660 } 1661 1662 /* 1663 * Process message. This happens in the worker thread. The callback should 1664 * be careful not to do anything that waits on other incoming messages or it 1665 * may deadlock. 1666 */ 1667 static void process_message(struct ceph_connection *con) 1668 { 1669 struct ceph_msg *msg; 1670 1671 msg = con->in_msg; 1672 con->in_msg = NULL; 1673 1674 /* if first message, set peer_name */ 1675 if (con->peer_name.type == 0) 1676 con->peer_name = msg->hdr.src; 1677 1678 con->in_seq++; 1679 mutex_unlock(&con->mutex); 1680 1681 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 1682 msg, le64_to_cpu(msg->hdr.seq), 1683 ENTITY_NAME(msg->hdr.src), 1684 le16_to_cpu(msg->hdr.type), 1685 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 1686 le32_to_cpu(msg->hdr.front_len), 1687 le32_to_cpu(msg->hdr.data_len), 1688 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 1689 con->ops->dispatch(con, msg); 1690 1691 mutex_lock(&con->mutex); 1692 prepare_read_tag(con); 1693 } 1694 1695 1696 /* 1697 * Write something to the socket. Called in a worker thread when the 1698 * socket appears to be writeable and we have something ready to send. 1699 */ 1700 static int try_write(struct ceph_connection *con) 1701 { 1702 struct ceph_messenger *msgr = con->msgr; 1703 int ret = 1; 1704 1705 dout("try_write start %p state %lu nref %d\n", con, con->state, 1706 atomic_read(&con->nref)); 1707 1708 more: 1709 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 1710 1711 /* open the socket first? */ 1712 if (con->sock == NULL) { 1713 /* 1714 * if we were STANDBY and are reconnecting _this_ 1715 * connection, bump connect_seq now. Always bump 1716 * global_seq. 1717 */ 1718 if (test_and_clear_bit(STANDBY, &con->state)) 1719 con->connect_seq++; 1720 1721 prepare_write_banner(msgr, con); 1722 prepare_write_connect(msgr, con, 1); 1723 prepare_read_banner(con); 1724 set_bit(CONNECTING, &con->state); 1725 clear_bit(NEGOTIATING, &con->state); 1726 1727 BUG_ON(con->in_msg); 1728 con->in_tag = CEPH_MSGR_TAG_READY; 1729 dout("try_write initiating connect on %p new state %lu\n", 1730 con, con->state); 1731 con->sock = ceph_tcp_connect(con); 1732 if (IS_ERR(con->sock)) { 1733 con->sock = NULL; 1734 con->error_msg = "connect error"; 1735 ret = -1; 1736 goto out; 1737 } 1738 } 1739 1740 more_kvec: 1741 /* kvec data queued? */ 1742 if (con->out_skip) { 1743 ret = write_partial_skip(con); 1744 if (ret <= 0) 1745 goto done; 1746 if (ret < 0) { 1747 dout("try_write write_partial_skip err %d\n", ret); 1748 goto done; 1749 } 1750 } 1751 if (con->out_kvec_left) { 1752 ret = write_partial_kvec(con); 1753 if (ret <= 0) 1754 goto done; 1755 } 1756 1757 /* msg pages? */ 1758 if (con->out_msg) { 1759 if (con->out_msg_done) { 1760 ceph_msg_put(con->out_msg); 1761 con->out_msg = NULL; /* we're done with this one */ 1762 goto do_next; 1763 } 1764 1765 ret = write_partial_msg_pages(con); 1766 if (ret == 1) 1767 goto more_kvec; /* we need to send the footer, too! */ 1768 if (ret == 0) 1769 goto done; 1770 if (ret < 0) { 1771 dout("try_write write_partial_msg_pages err %d\n", 1772 ret); 1773 goto done; 1774 } 1775 } 1776 1777 do_next: 1778 if (!test_bit(CONNECTING, &con->state)) { 1779 /* is anything else pending? */ 1780 if (!list_empty(&con->out_queue)) { 1781 prepare_write_message(con); 1782 goto more; 1783 } 1784 if (con->in_seq > con->in_seq_acked) { 1785 prepare_write_ack(con); 1786 goto more; 1787 } 1788 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) { 1789 prepare_write_keepalive(con); 1790 goto more; 1791 } 1792 } 1793 1794 /* Nothing to do! */ 1795 clear_bit(WRITE_PENDING, &con->state); 1796 dout("try_write nothing else to write.\n"); 1797 done: 1798 ret = 0; 1799 out: 1800 dout("try_write done on %p\n", con); 1801 return ret; 1802 } 1803 1804 1805 1806 /* 1807 * Read what we can from the socket. 1808 */ 1809 static int try_read(struct ceph_connection *con) 1810 { 1811 int ret = -1; 1812 1813 if (!con->sock) 1814 return 0; 1815 1816 if (test_bit(STANDBY, &con->state)) 1817 return 0; 1818 1819 dout("try_read start on %p\n", con); 1820 1821 more: 1822 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 1823 con->in_base_pos); 1824 if (test_bit(CONNECTING, &con->state)) { 1825 if (!test_bit(NEGOTIATING, &con->state)) { 1826 dout("try_read connecting\n"); 1827 ret = read_partial_banner(con); 1828 if (ret <= 0) 1829 goto done; 1830 if (process_banner(con) < 0) { 1831 ret = -1; 1832 goto out; 1833 } 1834 } 1835 ret = read_partial_connect(con); 1836 if (ret <= 0) 1837 goto done; 1838 if (process_connect(con) < 0) { 1839 ret = -1; 1840 goto out; 1841 } 1842 goto more; 1843 } 1844 1845 if (con->in_base_pos < 0) { 1846 /* 1847 * skipping + discarding content. 1848 * 1849 * FIXME: there must be a better way to do this! 1850 */ 1851 static char buf[1024]; 1852 int skip = min(1024, -con->in_base_pos); 1853 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 1854 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 1855 if (ret <= 0) 1856 goto done; 1857 con->in_base_pos += ret; 1858 if (con->in_base_pos) 1859 goto more; 1860 } 1861 if (con->in_tag == CEPH_MSGR_TAG_READY) { 1862 /* 1863 * what's next? 1864 */ 1865 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 1866 if (ret <= 0) 1867 goto done; 1868 dout("try_read got tag %d\n", (int)con->in_tag); 1869 switch (con->in_tag) { 1870 case CEPH_MSGR_TAG_MSG: 1871 prepare_read_message(con); 1872 break; 1873 case CEPH_MSGR_TAG_ACK: 1874 prepare_read_ack(con); 1875 break; 1876 case CEPH_MSGR_TAG_CLOSE: 1877 set_bit(CLOSED, &con->state); /* fixme */ 1878 goto done; 1879 default: 1880 goto bad_tag; 1881 } 1882 } 1883 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 1884 ret = read_partial_message(con); 1885 if (ret <= 0) { 1886 switch (ret) { 1887 case -EBADMSG: 1888 con->error_msg = "bad crc"; 1889 ret = -EIO; 1890 goto out; 1891 case -EIO: 1892 con->error_msg = "io error"; 1893 goto out; 1894 default: 1895 goto done; 1896 } 1897 } 1898 if (con->in_tag == CEPH_MSGR_TAG_READY) 1899 goto more; 1900 process_message(con); 1901 goto more; 1902 } 1903 if (con->in_tag == CEPH_MSGR_TAG_ACK) { 1904 ret = read_partial_ack(con); 1905 if (ret <= 0) 1906 goto done; 1907 process_ack(con); 1908 goto more; 1909 } 1910 1911 done: 1912 ret = 0; 1913 out: 1914 dout("try_read done on %p\n", con); 1915 return ret; 1916 1917 bad_tag: 1918 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 1919 con->error_msg = "protocol error, garbage tag"; 1920 ret = -1; 1921 goto out; 1922 } 1923 1924 1925 /* 1926 * Atomically queue work on a connection. Bump @con reference to 1927 * avoid races with connection teardown. 1928 * 1929 * There is some trickery going on with QUEUED and BUSY because we 1930 * only want a _single_ thread operating on each connection at any 1931 * point in time, but we want to use all available CPUs. 1932 * 1933 * The worker thread only proceeds if it can atomically set BUSY. It 1934 * clears QUEUED and does it's thing. When it thinks it's done, it 1935 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops 1936 * (tries again to set BUSY). 1937 * 1938 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we 1939 * try to queue work. If that fails (work is already queued, or BUSY) 1940 * we give up (work also already being done or is queued) but leave QUEUED 1941 * set so that the worker thread will loop if necessary. 1942 */ 1943 static void queue_con(struct ceph_connection *con) 1944 { 1945 if (test_bit(DEAD, &con->state)) { 1946 dout("queue_con %p ignoring: DEAD\n", 1947 con); 1948 return; 1949 } 1950 1951 if (!con->ops->get(con)) { 1952 dout("queue_con %p ref count 0\n", con); 1953 return; 1954 } 1955 1956 set_bit(QUEUED, &con->state); 1957 if (test_bit(BUSY, &con->state)) { 1958 dout("queue_con %p - already BUSY\n", con); 1959 con->ops->put(con); 1960 } else if (!queue_work(ceph_msgr_wq, &con->work.work)) { 1961 dout("queue_con %p - already queued\n", con); 1962 con->ops->put(con); 1963 } else { 1964 dout("queue_con %p\n", con); 1965 } 1966 } 1967 1968 /* 1969 * Do some work on a connection. Drop a connection ref when we're done. 1970 */ 1971 static void con_work(struct work_struct *work) 1972 { 1973 struct ceph_connection *con = container_of(work, struct ceph_connection, 1974 work.work); 1975 int backoff = 0; 1976 1977 more: 1978 if (test_and_set_bit(BUSY, &con->state) != 0) { 1979 dout("con_work %p BUSY already set\n", con); 1980 goto out; 1981 } 1982 dout("con_work %p start, clearing QUEUED\n", con); 1983 clear_bit(QUEUED, &con->state); 1984 1985 mutex_lock(&con->mutex); 1986 1987 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */ 1988 dout("con_work CLOSED\n"); 1989 con_close_socket(con); 1990 goto done; 1991 } 1992 if (test_and_clear_bit(OPENING, &con->state)) { 1993 /* reopen w/ new peer */ 1994 dout("con_work OPENING\n"); 1995 con_close_socket(con); 1996 } 1997 1998 if (test_and_clear_bit(SOCK_CLOSED, &con->state) || 1999 try_read(con) < 0 || 2000 try_write(con) < 0) { 2001 mutex_unlock(&con->mutex); 2002 backoff = 1; 2003 ceph_fault(con); /* error/fault path */ 2004 goto done_unlocked; 2005 } 2006 2007 done: 2008 mutex_unlock(&con->mutex); 2009 2010 done_unlocked: 2011 clear_bit(BUSY, &con->state); 2012 dout("con->state=%lu\n", con->state); 2013 if (test_bit(QUEUED, &con->state)) { 2014 if (!backoff || test_bit(OPENING, &con->state)) { 2015 dout("con_work %p QUEUED reset, looping\n", con); 2016 goto more; 2017 } 2018 dout("con_work %p QUEUED reset, but just faulted\n", con); 2019 clear_bit(QUEUED, &con->state); 2020 } 2021 dout("con_work %p done\n", con); 2022 2023 out: 2024 con->ops->put(con); 2025 } 2026 2027 2028 /* 2029 * Generic error/fault handler. A retry mechanism is used with 2030 * exponential backoff 2031 */ 2032 static void ceph_fault(struct ceph_connection *con) 2033 { 2034 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2035 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2036 dout("fault %p state %lu to peer %s\n", 2037 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2038 2039 if (test_bit(LOSSYTX, &con->state)) { 2040 dout("fault on LOSSYTX channel\n"); 2041 goto out; 2042 } 2043 2044 mutex_lock(&con->mutex); 2045 if (test_bit(CLOSED, &con->state)) 2046 goto out_unlock; 2047 2048 con_close_socket(con); 2049 2050 if (con->in_msg) { 2051 ceph_msg_put(con->in_msg); 2052 con->in_msg = NULL; 2053 } 2054 2055 /* Requeue anything that hasn't been acked */ 2056 list_splice_init(&con->out_sent, &con->out_queue); 2057 2058 /* If there are no messages in the queue, place the connection 2059 * in a STANDBY state (i.e., don't try to reconnect just yet). */ 2060 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) { 2061 dout("fault setting STANDBY\n"); 2062 set_bit(STANDBY, &con->state); 2063 } else { 2064 /* retry after a delay. */ 2065 if (con->delay == 0) 2066 con->delay = BASE_DELAY_INTERVAL; 2067 else if (con->delay < MAX_DELAY_INTERVAL) 2068 con->delay *= 2; 2069 dout("fault queueing %p delay %lu\n", con, con->delay); 2070 con->ops->get(con); 2071 if (queue_delayed_work(ceph_msgr_wq, &con->work, 2072 round_jiffies_relative(con->delay)) == 0) 2073 con->ops->put(con); 2074 } 2075 2076 out_unlock: 2077 mutex_unlock(&con->mutex); 2078 out: 2079 /* 2080 * in case we faulted due to authentication, invalidate our 2081 * current tickets so that we can get new ones. 2082 */ 2083 if (con->auth_retry && con->ops->invalidate_authorizer) { 2084 dout("calling invalidate_authorizer()\n"); 2085 con->ops->invalidate_authorizer(con); 2086 } 2087 2088 if (con->ops->fault) 2089 con->ops->fault(con); 2090 } 2091 2092 2093 2094 /* 2095 * create a new messenger instance 2096 */ 2097 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr, 2098 u32 supported_features, 2099 u32 required_features) 2100 { 2101 struct ceph_messenger *msgr; 2102 2103 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL); 2104 if (msgr == NULL) 2105 return ERR_PTR(-ENOMEM); 2106 2107 msgr->supported_features = supported_features; 2108 msgr->required_features = required_features; 2109 2110 spin_lock_init(&msgr->global_seq_lock); 2111 2112 /* the zero page is needed if a request is "canceled" while the message 2113 * is being written over the socket */ 2114 msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO); 2115 if (!msgr->zero_page) { 2116 kfree(msgr); 2117 return ERR_PTR(-ENOMEM); 2118 } 2119 kmap(msgr->zero_page); 2120 2121 if (myaddr) 2122 msgr->inst.addr = *myaddr; 2123 2124 /* select a random nonce */ 2125 msgr->inst.addr.type = 0; 2126 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2127 encode_my_addr(msgr); 2128 2129 dout("messenger_create %p\n", msgr); 2130 return msgr; 2131 } 2132 EXPORT_SYMBOL(ceph_messenger_create); 2133 2134 void ceph_messenger_destroy(struct ceph_messenger *msgr) 2135 { 2136 dout("destroy %p\n", msgr); 2137 kunmap(msgr->zero_page); 2138 __free_page(msgr->zero_page); 2139 kfree(msgr); 2140 dout("destroyed messenger %p\n", msgr); 2141 } 2142 EXPORT_SYMBOL(ceph_messenger_destroy); 2143 2144 /* 2145 * Queue up an outgoing message on the given connection. 2146 */ 2147 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2148 { 2149 if (test_bit(CLOSED, &con->state)) { 2150 dout("con_send %p closed, dropping %p\n", con, msg); 2151 ceph_msg_put(msg); 2152 return; 2153 } 2154 2155 /* set src+dst */ 2156 msg->hdr.src = con->msgr->inst.name; 2157 2158 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2159 2160 msg->needs_out_seq = true; 2161 2162 /* queue */ 2163 mutex_lock(&con->mutex); 2164 BUG_ON(!list_empty(&msg->list_head)); 2165 list_add_tail(&msg->list_head, &con->out_queue); 2166 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2167 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2168 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2169 le32_to_cpu(msg->hdr.front_len), 2170 le32_to_cpu(msg->hdr.middle_len), 2171 le32_to_cpu(msg->hdr.data_len)); 2172 mutex_unlock(&con->mutex); 2173 2174 /* if there wasn't anything waiting to send before, queue 2175 * new work */ 2176 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0) 2177 queue_con(con); 2178 } 2179 EXPORT_SYMBOL(ceph_con_send); 2180 2181 /* 2182 * Revoke a message that was previously queued for send 2183 */ 2184 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg) 2185 { 2186 mutex_lock(&con->mutex); 2187 if (!list_empty(&msg->list_head)) { 2188 dout("con_revoke %p msg %p - was on queue\n", con, msg); 2189 list_del_init(&msg->list_head); 2190 ceph_msg_put(msg); 2191 msg->hdr.seq = 0; 2192 } 2193 if (con->out_msg == msg) { 2194 dout("con_revoke %p msg %p - was sending\n", con, msg); 2195 con->out_msg = NULL; 2196 if (con->out_kvec_is_msg) { 2197 con->out_skip = con->out_kvec_bytes; 2198 con->out_kvec_is_msg = false; 2199 } 2200 ceph_msg_put(msg); 2201 msg->hdr.seq = 0; 2202 } 2203 mutex_unlock(&con->mutex); 2204 } 2205 2206 /* 2207 * Revoke a message that we may be reading data into 2208 */ 2209 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg) 2210 { 2211 mutex_lock(&con->mutex); 2212 if (con->in_msg && con->in_msg == msg) { 2213 unsigned front_len = le32_to_cpu(con->in_hdr.front_len); 2214 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len); 2215 unsigned data_len = le32_to_cpu(con->in_hdr.data_len); 2216 2217 /* skip rest of message */ 2218 dout("con_revoke_pages %p msg %p revoked\n", con, msg); 2219 con->in_base_pos = con->in_base_pos - 2220 sizeof(struct ceph_msg_header) - 2221 front_len - 2222 middle_len - 2223 data_len - 2224 sizeof(struct ceph_msg_footer); 2225 ceph_msg_put(con->in_msg); 2226 con->in_msg = NULL; 2227 con->in_tag = CEPH_MSGR_TAG_READY; 2228 con->in_seq++; 2229 } else { 2230 dout("con_revoke_pages %p msg %p pages %p no-op\n", 2231 con, con->in_msg, msg); 2232 } 2233 mutex_unlock(&con->mutex); 2234 } 2235 2236 /* 2237 * Queue a keepalive byte to ensure the tcp connection is alive. 2238 */ 2239 void ceph_con_keepalive(struct ceph_connection *con) 2240 { 2241 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 && 2242 test_and_set_bit(WRITE_PENDING, &con->state) == 0) 2243 queue_con(con); 2244 } 2245 EXPORT_SYMBOL(ceph_con_keepalive); 2246 2247 2248 /* 2249 * construct a new message with given type, size 2250 * the new msg has a ref count of 1. 2251 */ 2252 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags) 2253 { 2254 struct ceph_msg *m; 2255 2256 m = kmalloc(sizeof(*m), flags); 2257 if (m == NULL) 2258 goto out; 2259 kref_init(&m->kref); 2260 INIT_LIST_HEAD(&m->list_head); 2261 2262 m->hdr.tid = 0; 2263 m->hdr.type = cpu_to_le16(type); 2264 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 2265 m->hdr.version = 0; 2266 m->hdr.front_len = cpu_to_le32(front_len); 2267 m->hdr.middle_len = 0; 2268 m->hdr.data_len = 0; 2269 m->hdr.data_off = 0; 2270 m->hdr.reserved = 0; 2271 m->footer.front_crc = 0; 2272 m->footer.middle_crc = 0; 2273 m->footer.data_crc = 0; 2274 m->footer.flags = 0; 2275 m->front_max = front_len; 2276 m->front_is_vmalloc = false; 2277 m->more_to_follow = false; 2278 m->pool = NULL; 2279 2280 /* front */ 2281 if (front_len) { 2282 if (front_len > PAGE_CACHE_SIZE) { 2283 m->front.iov_base = __vmalloc(front_len, flags, 2284 PAGE_KERNEL); 2285 m->front_is_vmalloc = true; 2286 } else { 2287 m->front.iov_base = kmalloc(front_len, flags); 2288 } 2289 if (m->front.iov_base == NULL) { 2290 pr_err("msg_new can't allocate %d bytes\n", 2291 front_len); 2292 goto out2; 2293 } 2294 } else { 2295 m->front.iov_base = NULL; 2296 } 2297 m->front.iov_len = front_len; 2298 2299 /* middle */ 2300 m->middle = NULL; 2301 2302 /* data */ 2303 m->nr_pages = 0; 2304 m->pages = NULL; 2305 m->pagelist = NULL; 2306 m->bio = NULL; 2307 m->bio_iter = NULL; 2308 m->bio_seg = 0; 2309 m->trail = NULL; 2310 2311 dout("ceph_msg_new %p front %d\n", m, front_len); 2312 return m; 2313 2314 out2: 2315 ceph_msg_put(m); 2316 out: 2317 pr_err("msg_new can't create type %d front %d\n", type, front_len); 2318 return NULL; 2319 } 2320 EXPORT_SYMBOL(ceph_msg_new); 2321 2322 /* 2323 * Allocate "middle" portion of a message, if it is needed and wasn't 2324 * allocated by alloc_msg. This allows us to read a small fixed-size 2325 * per-type header in the front and then gracefully fail (i.e., 2326 * propagate the error to the caller based on info in the front) when 2327 * the middle is too large. 2328 */ 2329 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 2330 { 2331 int type = le16_to_cpu(msg->hdr.type); 2332 int middle_len = le32_to_cpu(msg->hdr.middle_len); 2333 2334 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 2335 ceph_msg_type_name(type), middle_len); 2336 BUG_ON(!middle_len); 2337 BUG_ON(msg->middle); 2338 2339 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 2340 if (!msg->middle) 2341 return -ENOMEM; 2342 return 0; 2343 } 2344 2345 /* 2346 * Generic message allocator, for incoming messages. 2347 */ 2348 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con, 2349 struct ceph_msg_header *hdr, 2350 int *skip) 2351 { 2352 int type = le16_to_cpu(hdr->type); 2353 int front_len = le32_to_cpu(hdr->front_len); 2354 int middle_len = le32_to_cpu(hdr->middle_len); 2355 struct ceph_msg *msg = NULL; 2356 int ret; 2357 2358 if (con->ops->alloc_msg) { 2359 mutex_unlock(&con->mutex); 2360 msg = con->ops->alloc_msg(con, hdr, skip); 2361 mutex_lock(&con->mutex); 2362 if (!msg || *skip) 2363 return NULL; 2364 } 2365 if (!msg) { 2366 *skip = 0; 2367 msg = ceph_msg_new(type, front_len, GFP_NOFS); 2368 if (!msg) { 2369 pr_err("unable to allocate msg type %d len %d\n", 2370 type, front_len); 2371 return NULL; 2372 } 2373 } 2374 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 2375 2376 if (middle_len && !msg->middle) { 2377 ret = ceph_alloc_middle(con, msg); 2378 if (ret < 0) { 2379 ceph_msg_put(msg); 2380 return NULL; 2381 } 2382 } 2383 2384 return msg; 2385 } 2386 2387 2388 /* 2389 * Free a generically kmalloc'd message. 2390 */ 2391 void ceph_msg_kfree(struct ceph_msg *m) 2392 { 2393 dout("msg_kfree %p\n", m); 2394 if (m->front_is_vmalloc) 2395 vfree(m->front.iov_base); 2396 else 2397 kfree(m->front.iov_base); 2398 kfree(m); 2399 } 2400 2401 /* 2402 * Drop a msg ref. Destroy as needed. 2403 */ 2404 void ceph_msg_last_put(struct kref *kref) 2405 { 2406 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 2407 2408 dout("ceph_msg_put last one on %p\n", m); 2409 WARN_ON(!list_empty(&m->list_head)); 2410 2411 /* drop middle, data, if any */ 2412 if (m->middle) { 2413 ceph_buffer_put(m->middle); 2414 m->middle = NULL; 2415 } 2416 m->nr_pages = 0; 2417 m->pages = NULL; 2418 2419 if (m->pagelist) { 2420 ceph_pagelist_release(m->pagelist); 2421 kfree(m->pagelist); 2422 m->pagelist = NULL; 2423 } 2424 2425 m->trail = NULL; 2426 2427 if (m->pool) 2428 ceph_msgpool_put(m->pool, m); 2429 else 2430 ceph_msg_kfree(m); 2431 } 2432 EXPORT_SYMBOL(ceph_msg_last_put); 2433 2434 void ceph_msg_dump(struct ceph_msg *msg) 2435 { 2436 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg, 2437 msg->front_max, msg->nr_pages); 2438 print_hex_dump(KERN_DEBUG, "header: ", 2439 DUMP_PREFIX_OFFSET, 16, 1, 2440 &msg->hdr, sizeof(msg->hdr), true); 2441 print_hex_dump(KERN_DEBUG, " front: ", 2442 DUMP_PREFIX_OFFSET, 16, 1, 2443 msg->front.iov_base, msg->front.iov_len, true); 2444 if (msg->middle) 2445 print_hex_dump(KERN_DEBUG, "middle: ", 2446 DUMP_PREFIX_OFFSET, 16, 1, 2447 msg->middle->vec.iov_base, 2448 msg->middle->vec.iov_len, true); 2449 print_hex_dump(KERN_DEBUG, "footer: ", 2450 DUMP_PREFIX_OFFSET, 16, 1, 2451 &msg->footer, sizeof(msg->footer), true); 2452 } 2453 EXPORT_SYMBOL(ceph_msg_dump); 2454