xref: /linux/net/ceph/messenger.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <net/tcp.h>
15 
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 
21 /*
22  * Ceph uses the messenger to exchange ceph_msg messages with other
23  * hosts in the system.  The messenger provides ordered and reliable
24  * delivery.  We tolerate TCP disconnects by reconnecting (with
25  * exponential backoff) in the case of a fault (disconnection, bad
26  * crc, protocol error).  Acks allow sent messages to be discarded by
27  * the sender.
28  */
29 
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg = CEPH_MSGR_TAG_MSG;
32 static char tag_ack = CEPH_MSGR_TAG_ACK;
33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
34 
35 #ifdef CONFIG_LOCKDEP
36 static struct lock_class_key socket_class;
37 #endif
38 
39 
40 static void queue_con(struct ceph_connection *con);
41 static void con_work(struct work_struct *);
42 static void ceph_fault(struct ceph_connection *con);
43 
44 /*
45  * nicely render a sockaddr as a string.
46  */
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
50 static DEFINE_SPINLOCK(addr_str_lock);
51 static int last_addr_str;
52 
53 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
54 {
55 	int i;
56 	char *s;
57 	struct sockaddr_in *in4 = (void *)ss;
58 	struct sockaddr_in6 *in6 = (void *)ss;
59 
60 	spin_lock(&addr_str_lock);
61 	i = last_addr_str++;
62 	if (last_addr_str == MAX_ADDR_STR)
63 		last_addr_str = 0;
64 	spin_unlock(&addr_str_lock);
65 	s = addr_str[i];
66 
67 	switch (ss->ss_family) {
68 	case AF_INET:
69 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
70 			 (unsigned int)ntohs(in4->sin_port));
71 		break;
72 
73 	case AF_INET6:
74 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
75 			 (unsigned int)ntohs(in6->sin6_port));
76 		break;
77 
78 	default:
79 		sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
80 	}
81 
82 	return s;
83 }
84 EXPORT_SYMBOL(ceph_pr_addr);
85 
86 static void encode_my_addr(struct ceph_messenger *msgr)
87 {
88 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
89 	ceph_encode_addr(&msgr->my_enc_addr);
90 }
91 
92 /*
93  * work queue for all reading and writing to/from the socket.
94  */
95 struct workqueue_struct *ceph_msgr_wq;
96 
97 int ceph_msgr_init(void)
98 {
99 	ceph_msgr_wq = create_workqueue("ceph-msgr");
100 	if (IS_ERR(ceph_msgr_wq)) {
101 		int ret = PTR_ERR(ceph_msgr_wq);
102 		pr_err("msgr_init failed to create workqueue: %d\n", ret);
103 		ceph_msgr_wq = NULL;
104 		return ret;
105 	}
106 	return 0;
107 }
108 EXPORT_SYMBOL(ceph_msgr_init);
109 
110 void ceph_msgr_exit(void)
111 {
112 	destroy_workqueue(ceph_msgr_wq);
113 }
114 EXPORT_SYMBOL(ceph_msgr_exit);
115 
116 void ceph_msgr_flush(void)
117 {
118 	flush_workqueue(ceph_msgr_wq);
119 }
120 EXPORT_SYMBOL(ceph_msgr_flush);
121 
122 
123 /*
124  * socket callback functions
125  */
126 
127 /* data available on socket, or listen socket received a connect */
128 static void ceph_data_ready(struct sock *sk, int count_unused)
129 {
130 	struct ceph_connection *con =
131 		(struct ceph_connection *)sk->sk_user_data;
132 	if (sk->sk_state != TCP_CLOSE_WAIT) {
133 		dout("ceph_data_ready on %p state = %lu, queueing work\n",
134 		     con, con->state);
135 		queue_con(con);
136 	}
137 }
138 
139 /* socket has buffer space for writing */
140 static void ceph_write_space(struct sock *sk)
141 {
142 	struct ceph_connection *con =
143 		(struct ceph_connection *)sk->sk_user_data;
144 
145 	/* only queue to workqueue if there is data we want to write. */
146 	if (test_bit(WRITE_PENDING, &con->state)) {
147 		dout("ceph_write_space %p queueing write work\n", con);
148 		queue_con(con);
149 	} else {
150 		dout("ceph_write_space %p nothing to write\n", con);
151 	}
152 
153 	/* since we have our own write_space, clear the SOCK_NOSPACE flag */
154 	clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
155 }
156 
157 /* socket's state has changed */
158 static void ceph_state_change(struct sock *sk)
159 {
160 	struct ceph_connection *con =
161 		(struct ceph_connection *)sk->sk_user_data;
162 
163 	dout("ceph_state_change %p state = %lu sk_state = %u\n",
164 	     con, con->state, sk->sk_state);
165 
166 	if (test_bit(CLOSED, &con->state))
167 		return;
168 
169 	switch (sk->sk_state) {
170 	case TCP_CLOSE:
171 		dout("ceph_state_change TCP_CLOSE\n");
172 	case TCP_CLOSE_WAIT:
173 		dout("ceph_state_change TCP_CLOSE_WAIT\n");
174 		if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
175 			if (test_bit(CONNECTING, &con->state))
176 				con->error_msg = "connection failed";
177 			else
178 				con->error_msg = "socket closed";
179 			queue_con(con);
180 		}
181 		break;
182 	case TCP_ESTABLISHED:
183 		dout("ceph_state_change TCP_ESTABLISHED\n");
184 		queue_con(con);
185 		break;
186 	}
187 }
188 
189 /*
190  * set up socket callbacks
191  */
192 static void set_sock_callbacks(struct socket *sock,
193 			       struct ceph_connection *con)
194 {
195 	struct sock *sk = sock->sk;
196 	sk->sk_user_data = (void *)con;
197 	sk->sk_data_ready = ceph_data_ready;
198 	sk->sk_write_space = ceph_write_space;
199 	sk->sk_state_change = ceph_state_change;
200 }
201 
202 
203 /*
204  * socket helpers
205  */
206 
207 /*
208  * initiate connection to a remote socket.
209  */
210 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
211 {
212 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
213 	struct socket *sock;
214 	int ret;
215 
216 	BUG_ON(con->sock);
217 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
218 			       IPPROTO_TCP, &sock);
219 	if (ret)
220 		return ERR_PTR(ret);
221 	con->sock = sock;
222 	sock->sk->sk_allocation = GFP_NOFS;
223 
224 #ifdef CONFIG_LOCKDEP
225 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
226 #endif
227 
228 	set_sock_callbacks(sock, con);
229 
230 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
231 
232 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
233 				 O_NONBLOCK);
234 	if (ret == -EINPROGRESS) {
235 		dout("connect %s EINPROGRESS sk_state = %u\n",
236 		     ceph_pr_addr(&con->peer_addr.in_addr),
237 		     sock->sk->sk_state);
238 		ret = 0;
239 	}
240 	if (ret < 0) {
241 		pr_err("connect %s error %d\n",
242 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
243 		sock_release(sock);
244 		con->sock = NULL;
245 		con->error_msg = "connect error";
246 	}
247 
248 	if (ret < 0)
249 		return ERR_PTR(ret);
250 	return sock;
251 }
252 
253 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
254 {
255 	struct kvec iov = {buf, len};
256 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
257 
258 	return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
259 }
260 
261 /*
262  * write something.  @more is true if caller will be sending more data
263  * shortly.
264  */
265 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
266 		     size_t kvlen, size_t len, int more)
267 {
268 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
269 
270 	if (more)
271 		msg.msg_flags |= MSG_MORE;
272 	else
273 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
274 
275 	return kernel_sendmsg(sock, &msg, iov, kvlen, len);
276 }
277 
278 
279 /*
280  * Shutdown/close the socket for the given connection.
281  */
282 static int con_close_socket(struct ceph_connection *con)
283 {
284 	int rc;
285 
286 	dout("con_close_socket on %p sock %p\n", con, con->sock);
287 	if (!con->sock)
288 		return 0;
289 	set_bit(SOCK_CLOSED, &con->state);
290 	rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
291 	sock_release(con->sock);
292 	con->sock = NULL;
293 	clear_bit(SOCK_CLOSED, &con->state);
294 	return rc;
295 }
296 
297 /*
298  * Reset a connection.  Discard all incoming and outgoing messages
299  * and clear *_seq state.
300  */
301 static void ceph_msg_remove(struct ceph_msg *msg)
302 {
303 	list_del_init(&msg->list_head);
304 	ceph_msg_put(msg);
305 }
306 static void ceph_msg_remove_list(struct list_head *head)
307 {
308 	while (!list_empty(head)) {
309 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
310 							list_head);
311 		ceph_msg_remove(msg);
312 	}
313 }
314 
315 static void reset_connection(struct ceph_connection *con)
316 {
317 	/* reset connection, out_queue, msg_ and connect_seq */
318 	/* discard existing out_queue and msg_seq */
319 	ceph_msg_remove_list(&con->out_queue);
320 	ceph_msg_remove_list(&con->out_sent);
321 
322 	if (con->in_msg) {
323 		ceph_msg_put(con->in_msg);
324 		con->in_msg = NULL;
325 	}
326 
327 	con->connect_seq = 0;
328 	con->out_seq = 0;
329 	if (con->out_msg) {
330 		ceph_msg_put(con->out_msg);
331 		con->out_msg = NULL;
332 	}
333 	con->out_keepalive_pending = false;
334 	con->in_seq = 0;
335 	con->in_seq_acked = 0;
336 }
337 
338 /*
339  * mark a peer down.  drop any open connections.
340  */
341 void ceph_con_close(struct ceph_connection *con)
342 {
343 	dout("con_close %p peer %s\n", con,
344 	     ceph_pr_addr(&con->peer_addr.in_addr));
345 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
346 	clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
347 	clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
348 	clear_bit(KEEPALIVE_PENDING, &con->state);
349 	clear_bit(WRITE_PENDING, &con->state);
350 	mutex_lock(&con->mutex);
351 	reset_connection(con);
352 	con->peer_global_seq = 0;
353 	cancel_delayed_work(&con->work);
354 	mutex_unlock(&con->mutex);
355 	queue_con(con);
356 }
357 EXPORT_SYMBOL(ceph_con_close);
358 
359 /*
360  * Reopen a closed connection, with a new peer address.
361  */
362 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
363 {
364 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
365 	set_bit(OPENING, &con->state);
366 	clear_bit(CLOSED, &con->state);
367 	memcpy(&con->peer_addr, addr, sizeof(*addr));
368 	con->delay = 0;      /* reset backoff memory */
369 	queue_con(con);
370 }
371 EXPORT_SYMBOL(ceph_con_open);
372 
373 /*
374  * return true if this connection ever successfully opened
375  */
376 bool ceph_con_opened(struct ceph_connection *con)
377 {
378 	return con->connect_seq > 0;
379 }
380 
381 /*
382  * generic get/put
383  */
384 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
385 {
386 	dout("con_get %p nref = %d -> %d\n", con,
387 	     atomic_read(&con->nref), atomic_read(&con->nref) + 1);
388 	if (atomic_inc_not_zero(&con->nref))
389 		return con;
390 	return NULL;
391 }
392 
393 void ceph_con_put(struct ceph_connection *con)
394 {
395 	dout("con_put %p nref = %d -> %d\n", con,
396 	     atomic_read(&con->nref), atomic_read(&con->nref) - 1);
397 	BUG_ON(atomic_read(&con->nref) == 0);
398 	if (atomic_dec_and_test(&con->nref)) {
399 		BUG_ON(con->sock);
400 		kfree(con);
401 	}
402 }
403 
404 /*
405  * initialize a new connection.
406  */
407 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
408 {
409 	dout("con_init %p\n", con);
410 	memset(con, 0, sizeof(*con));
411 	atomic_set(&con->nref, 1);
412 	con->msgr = msgr;
413 	mutex_init(&con->mutex);
414 	INIT_LIST_HEAD(&con->out_queue);
415 	INIT_LIST_HEAD(&con->out_sent);
416 	INIT_DELAYED_WORK(&con->work, con_work);
417 }
418 EXPORT_SYMBOL(ceph_con_init);
419 
420 
421 /*
422  * We maintain a global counter to order connection attempts.  Get
423  * a unique seq greater than @gt.
424  */
425 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
426 {
427 	u32 ret;
428 
429 	spin_lock(&msgr->global_seq_lock);
430 	if (msgr->global_seq < gt)
431 		msgr->global_seq = gt;
432 	ret = ++msgr->global_seq;
433 	spin_unlock(&msgr->global_seq_lock);
434 	return ret;
435 }
436 
437 
438 /*
439  * Prepare footer for currently outgoing message, and finish things
440  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
441  */
442 static void prepare_write_message_footer(struct ceph_connection *con, int v)
443 {
444 	struct ceph_msg *m = con->out_msg;
445 
446 	dout("prepare_write_message_footer %p\n", con);
447 	con->out_kvec_is_msg = true;
448 	con->out_kvec[v].iov_base = &m->footer;
449 	con->out_kvec[v].iov_len = sizeof(m->footer);
450 	con->out_kvec_bytes += sizeof(m->footer);
451 	con->out_kvec_left++;
452 	con->out_more = m->more_to_follow;
453 	con->out_msg_done = true;
454 }
455 
456 /*
457  * Prepare headers for the next outgoing message.
458  */
459 static void prepare_write_message(struct ceph_connection *con)
460 {
461 	struct ceph_msg *m;
462 	int v = 0;
463 
464 	con->out_kvec_bytes = 0;
465 	con->out_kvec_is_msg = true;
466 	con->out_msg_done = false;
467 
468 	/* Sneak an ack in there first?  If we can get it into the same
469 	 * TCP packet that's a good thing. */
470 	if (con->in_seq > con->in_seq_acked) {
471 		con->in_seq_acked = con->in_seq;
472 		con->out_kvec[v].iov_base = &tag_ack;
473 		con->out_kvec[v++].iov_len = 1;
474 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
475 		con->out_kvec[v].iov_base = &con->out_temp_ack;
476 		con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
477 		con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
478 	}
479 
480 	m = list_first_entry(&con->out_queue,
481 		       struct ceph_msg, list_head);
482 	con->out_msg = m;
483 	if (test_bit(LOSSYTX, &con->state)) {
484 		list_del_init(&m->list_head);
485 	} else {
486 		/* put message on sent list */
487 		ceph_msg_get(m);
488 		list_move_tail(&m->list_head, &con->out_sent);
489 	}
490 
491 	/*
492 	 * only assign outgoing seq # if we haven't sent this message
493 	 * yet.  if it is requeued, resend with it's original seq.
494 	 */
495 	if (m->needs_out_seq) {
496 		m->hdr.seq = cpu_to_le64(++con->out_seq);
497 		m->needs_out_seq = false;
498 	}
499 
500 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
501 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
502 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
503 	     le32_to_cpu(m->hdr.data_len),
504 	     m->nr_pages);
505 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
506 
507 	/* tag + hdr + front + middle */
508 	con->out_kvec[v].iov_base = &tag_msg;
509 	con->out_kvec[v++].iov_len = 1;
510 	con->out_kvec[v].iov_base = &m->hdr;
511 	con->out_kvec[v++].iov_len = sizeof(m->hdr);
512 	con->out_kvec[v++] = m->front;
513 	if (m->middle)
514 		con->out_kvec[v++] = m->middle->vec;
515 	con->out_kvec_left = v;
516 	con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
517 		(m->middle ? m->middle->vec.iov_len : 0);
518 	con->out_kvec_cur = con->out_kvec;
519 
520 	/* fill in crc (except data pages), footer */
521 	con->out_msg->hdr.crc =
522 		cpu_to_le32(crc32c(0, (void *)&m->hdr,
523 				      sizeof(m->hdr) - sizeof(m->hdr.crc)));
524 	con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
525 	con->out_msg->footer.front_crc =
526 		cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
527 	if (m->middle)
528 		con->out_msg->footer.middle_crc =
529 			cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
530 					   m->middle->vec.iov_len));
531 	else
532 		con->out_msg->footer.middle_crc = 0;
533 	con->out_msg->footer.data_crc = 0;
534 	dout("prepare_write_message front_crc %u data_crc %u\n",
535 	     le32_to_cpu(con->out_msg->footer.front_crc),
536 	     le32_to_cpu(con->out_msg->footer.middle_crc));
537 
538 	/* is there a data payload? */
539 	if (le32_to_cpu(m->hdr.data_len) > 0) {
540 		/* initialize page iterator */
541 		con->out_msg_pos.page = 0;
542 		if (m->pages)
543 			con->out_msg_pos.page_pos =
544 				le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
545 		else
546 			con->out_msg_pos.page_pos = 0;
547 		con->out_msg_pos.data_pos = 0;
548 		con->out_msg_pos.did_page_crc = 0;
549 		con->out_more = 1;  /* data + footer will follow */
550 	} else {
551 		/* no, queue up footer too and be done */
552 		prepare_write_message_footer(con, v);
553 	}
554 
555 	set_bit(WRITE_PENDING, &con->state);
556 }
557 
558 /*
559  * Prepare an ack.
560  */
561 static void prepare_write_ack(struct ceph_connection *con)
562 {
563 	dout("prepare_write_ack %p %llu -> %llu\n", con,
564 	     con->in_seq_acked, con->in_seq);
565 	con->in_seq_acked = con->in_seq;
566 
567 	con->out_kvec[0].iov_base = &tag_ack;
568 	con->out_kvec[0].iov_len = 1;
569 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
570 	con->out_kvec[1].iov_base = &con->out_temp_ack;
571 	con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
572 	con->out_kvec_left = 2;
573 	con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
574 	con->out_kvec_cur = con->out_kvec;
575 	con->out_more = 1;  /* more will follow.. eventually.. */
576 	set_bit(WRITE_PENDING, &con->state);
577 }
578 
579 /*
580  * Prepare to write keepalive byte.
581  */
582 static void prepare_write_keepalive(struct ceph_connection *con)
583 {
584 	dout("prepare_write_keepalive %p\n", con);
585 	con->out_kvec[0].iov_base = &tag_keepalive;
586 	con->out_kvec[0].iov_len = 1;
587 	con->out_kvec_left = 1;
588 	con->out_kvec_bytes = 1;
589 	con->out_kvec_cur = con->out_kvec;
590 	set_bit(WRITE_PENDING, &con->state);
591 }
592 
593 /*
594  * Connection negotiation.
595  */
596 
597 static void prepare_connect_authorizer(struct ceph_connection *con)
598 {
599 	void *auth_buf;
600 	int auth_len = 0;
601 	int auth_protocol = 0;
602 
603 	mutex_unlock(&con->mutex);
604 	if (con->ops->get_authorizer)
605 		con->ops->get_authorizer(con, &auth_buf, &auth_len,
606 					 &auth_protocol, &con->auth_reply_buf,
607 					 &con->auth_reply_buf_len,
608 					 con->auth_retry);
609 	mutex_lock(&con->mutex);
610 
611 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
612 	con->out_connect.authorizer_len = cpu_to_le32(auth_len);
613 
614 	con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
615 	con->out_kvec[con->out_kvec_left].iov_len = auth_len;
616 	con->out_kvec_left++;
617 	con->out_kvec_bytes += auth_len;
618 }
619 
620 /*
621  * We connected to a peer and are saying hello.
622  */
623 static void prepare_write_banner(struct ceph_messenger *msgr,
624 				 struct ceph_connection *con)
625 {
626 	int len = strlen(CEPH_BANNER);
627 
628 	con->out_kvec[0].iov_base = CEPH_BANNER;
629 	con->out_kvec[0].iov_len = len;
630 	con->out_kvec[1].iov_base = &msgr->my_enc_addr;
631 	con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
632 	con->out_kvec_left = 2;
633 	con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
634 	con->out_kvec_cur = con->out_kvec;
635 	con->out_more = 0;
636 	set_bit(WRITE_PENDING, &con->state);
637 }
638 
639 static void prepare_write_connect(struct ceph_messenger *msgr,
640 				  struct ceph_connection *con,
641 				  int after_banner)
642 {
643 	unsigned global_seq = get_global_seq(con->msgr, 0);
644 	int proto;
645 
646 	switch (con->peer_name.type) {
647 	case CEPH_ENTITY_TYPE_MON:
648 		proto = CEPH_MONC_PROTOCOL;
649 		break;
650 	case CEPH_ENTITY_TYPE_OSD:
651 		proto = CEPH_OSDC_PROTOCOL;
652 		break;
653 	case CEPH_ENTITY_TYPE_MDS:
654 		proto = CEPH_MDSC_PROTOCOL;
655 		break;
656 	default:
657 		BUG();
658 	}
659 
660 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
661 	     con->connect_seq, global_seq, proto);
662 
663 	con->out_connect.features = cpu_to_le64(msgr->supported_features);
664 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
665 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
666 	con->out_connect.global_seq = cpu_to_le32(global_seq);
667 	con->out_connect.protocol_version = cpu_to_le32(proto);
668 	con->out_connect.flags = 0;
669 
670 	if (!after_banner) {
671 		con->out_kvec_left = 0;
672 		con->out_kvec_bytes = 0;
673 	}
674 	con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
675 	con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
676 	con->out_kvec_left++;
677 	con->out_kvec_bytes += sizeof(con->out_connect);
678 	con->out_kvec_cur = con->out_kvec;
679 	con->out_more = 0;
680 	set_bit(WRITE_PENDING, &con->state);
681 
682 	prepare_connect_authorizer(con);
683 }
684 
685 
686 /*
687  * write as much of pending kvecs to the socket as we can.
688  *  1 -> done
689  *  0 -> socket full, but more to do
690  * <0 -> error
691  */
692 static int write_partial_kvec(struct ceph_connection *con)
693 {
694 	int ret;
695 
696 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
697 	while (con->out_kvec_bytes > 0) {
698 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
699 				       con->out_kvec_left, con->out_kvec_bytes,
700 				       con->out_more);
701 		if (ret <= 0)
702 			goto out;
703 		con->out_kvec_bytes -= ret;
704 		if (con->out_kvec_bytes == 0)
705 			break;            /* done */
706 		while (ret > 0) {
707 			if (ret >= con->out_kvec_cur->iov_len) {
708 				ret -= con->out_kvec_cur->iov_len;
709 				con->out_kvec_cur++;
710 				con->out_kvec_left--;
711 			} else {
712 				con->out_kvec_cur->iov_len -= ret;
713 				con->out_kvec_cur->iov_base += ret;
714 				ret = 0;
715 				break;
716 			}
717 		}
718 	}
719 	con->out_kvec_left = 0;
720 	con->out_kvec_is_msg = false;
721 	ret = 1;
722 out:
723 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
724 	     con->out_kvec_bytes, con->out_kvec_left, ret);
725 	return ret;  /* done! */
726 }
727 
728 #ifdef CONFIG_BLOCK
729 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
730 {
731 	if (!bio) {
732 		*iter = NULL;
733 		*seg = 0;
734 		return;
735 	}
736 	*iter = bio;
737 	*seg = bio->bi_idx;
738 }
739 
740 static void iter_bio_next(struct bio **bio_iter, int *seg)
741 {
742 	if (*bio_iter == NULL)
743 		return;
744 
745 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
746 
747 	(*seg)++;
748 	if (*seg == (*bio_iter)->bi_vcnt)
749 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
750 }
751 #endif
752 
753 /*
754  * Write as much message data payload as we can.  If we finish, queue
755  * up the footer.
756  *  1 -> done, footer is now queued in out_kvec[].
757  *  0 -> socket full, but more to do
758  * <0 -> error
759  */
760 static int write_partial_msg_pages(struct ceph_connection *con)
761 {
762 	struct ceph_msg *msg = con->out_msg;
763 	unsigned data_len = le32_to_cpu(msg->hdr.data_len);
764 	size_t len;
765 	int crc = con->msgr->nocrc;
766 	int ret;
767 	int total_max_write;
768 	int in_trail = 0;
769 	size_t trail_len = (msg->trail ? msg->trail->length : 0);
770 
771 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
772 	     con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
773 	     con->out_msg_pos.page_pos);
774 
775 #ifdef CONFIG_BLOCK
776 	if (msg->bio && !msg->bio_iter)
777 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
778 #endif
779 
780 	while (data_len > con->out_msg_pos.data_pos) {
781 		struct page *page = NULL;
782 		void *kaddr = NULL;
783 		int max_write = PAGE_SIZE;
784 		int page_shift = 0;
785 
786 		total_max_write = data_len - trail_len -
787 			con->out_msg_pos.data_pos;
788 
789 		/*
790 		 * if we are calculating the data crc (the default), we need
791 		 * to map the page.  if our pages[] has been revoked, use the
792 		 * zero page.
793 		 */
794 
795 		/* have we reached the trail part of the data? */
796 		if (con->out_msg_pos.data_pos >= data_len - trail_len) {
797 			in_trail = 1;
798 
799 			total_max_write = data_len - con->out_msg_pos.data_pos;
800 
801 			page = list_first_entry(&msg->trail->head,
802 						struct page, lru);
803 			if (crc)
804 				kaddr = kmap(page);
805 			max_write = PAGE_SIZE;
806 		} else if (msg->pages) {
807 			page = msg->pages[con->out_msg_pos.page];
808 			if (crc)
809 				kaddr = kmap(page);
810 		} else if (msg->pagelist) {
811 			page = list_first_entry(&msg->pagelist->head,
812 						struct page, lru);
813 			if (crc)
814 				kaddr = kmap(page);
815 #ifdef CONFIG_BLOCK
816 		} else if (msg->bio) {
817 			struct bio_vec *bv;
818 
819 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
820 			page = bv->bv_page;
821 			page_shift = bv->bv_offset;
822 			if (crc)
823 				kaddr = kmap(page) + page_shift;
824 			max_write = bv->bv_len;
825 #endif
826 		} else {
827 			page = con->msgr->zero_page;
828 			if (crc)
829 				kaddr = page_address(con->msgr->zero_page);
830 		}
831 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
832 			    total_max_write);
833 
834 		if (crc && !con->out_msg_pos.did_page_crc) {
835 			void *base = kaddr + con->out_msg_pos.page_pos;
836 			u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
837 
838 			BUG_ON(kaddr == NULL);
839 			con->out_msg->footer.data_crc =
840 				cpu_to_le32(crc32c(tmpcrc, base, len));
841 			con->out_msg_pos.did_page_crc = 1;
842 		}
843 		ret = kernel_sendpage(con->sock, page,
844 				      con->out_msg_pos.page_pos + page_shift,
845 				      len,
846 				      MSG_DONTWAIT | MSG_NOSIGNAL |
847 				      MSG_MORE);
848 
849 		if (crc &&
850 		    (msg->pages || msg->pagelist || msg->bio || in_trail))
851 			kunmap(page);
852 
853 		if (ret <= 0)
854 			goto out;
855 
856 		con->out_msg_pos.data_pos += ret;
857 		con->out_msg_pos.page_pos += ret;
858 		if (ret == len) {
859 			con->out_msg_pos.page_pos = 0;
860 			con->out_msg_pos.page++;
861 			con->out_msg_pos.did_page_crc = 0;
862 			if (in_trail)
863 				list_move_tail(&page->lru,
864 					       &msg->trail->head);
865 			else if (msg->pagelist)
866 				list_move_tail(&page->lru,
867 					       &msg->pagelist->head);
868 #ifdef CONFIG_BLOCK
869 			else if (msg->bio)
870 				iter_bio_next(&msg->bio_iter, &msg->bio_seg);
871 #endif
872 		}
873 	}
874 
875 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
876 
877 	/* prepare and queue up footer, too */
878 	if (!crc)
879 		con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
880 	con->out_kvec_bytes = 0;
881 	con->out_kvec_left = 0;
882 	con->out_kvec_cur = con->out_kvec;
883 	prepare_write_message_footer(con, 0);
884 	ret = 1;
885 out:
886 	return ret;
887 }
888 
889 /*
890  * write some zeros
891  */
892 static int write_partial_skip(struct ceph_connection *con)
893 {
894 	int ret;
895 
896 	while (con->out_skip > 0) {
897 		struct kvec iov = {
898 			.iov_base = page_address(con->msgr->zero_page),
899 			.iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
900 		};
901 
902 		ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
903 		if (ret <= 0)
904 			goto out;
905 		con->out_skip -= ret;
906 	}
907 	ret = 1;
908 out:
909 	return ret;
910 }
911 
912 /*
913  * Prepare to read connection handshake, or an ack.
914  */
915 static void prepare_read_banner(struct ceph_connection *con)
916 {
917 	dout("prepare_read_banner %p\n", con);
918 	con->in_base_pos = 0;
919 }
920 
921 static void prepare_read_connect(struct ceph_connection *con)
922 {
923 	dout("prepare_read_connect %p\n", con);
924 	con->in_base_pos = 0;
925 }
926 
927 static void prepare_read_ack(struct ceph_connection *con)
928 {
929 	dout("prepare_read_ack %p\n", con);
930 	con->in_base_pos = 0;
931 }
932 
933 static void prepare_read_tag(struct ceph_connection *con)
934 {
935 	dout("prepare_read_tag %p\n", con);
936 	con->in_base_pos = 0;
937 	con->in_tag = CEPH_MSGR_TAG_READY;
938 }
939 
940 /*
941  * Prepare to read a message.
942  */
943 static int prepare_read_message(struct ceph_connection *con)
944 {
945 	dout("prepare_read_message %p\n", con);
946 	BUG_ON(con->in_msg != NULL);
947 	con->in_base_pos = 0;
948 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
949 	return 0;
950 }
951 
952 
953 static int read_partial(struct ceph_connection *con,
954 			int *to, int size, void *object)
955 {
956 	*to += size;
957 	while (con->in_base_pos < *to) {
958 		int left = *to - con->in_base_pos;
959 		int have = size - left;
960 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
961 		if (ret <= 0)
962 			return ret;
963 		con->in_base_pos += ret;
964 	}
965 	return 1;
966 }
967 
968 
969 /*
970  * Read all or part of the connect-side handshake on a new connection
971  */
972 static int read_partial_banner(struct ceph_connection *con)
973 {
974 	int ret, to = 0;
975 
976 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
977 
978 	/* peer's banner */
979 	ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
980 	if (ret <= 0)
981 		goto out;
982 	ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
983 			   &con->actual_peer_addr);
984 	if (ret <= 0)
985 		goto out;
986 	ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
987 			   &con->peer_addr_for_me);
988 	if (ret <= 0)
989 		goto out;
990 out:
991 	return ret;
992 }
993 
994 static int read_partial_connect(struct ceph_connection *con)
995 {
996 	int ret, to = 0;
997 
998 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
999 
1000 	ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1001 	if (ret <= 0)
1002 		goto out;
1003 	ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1004 			   con->auth_reply_buf);
1005 	if (ret <= 0)
1006 		goto out;
1007 
1008 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1009 	     con, (int)con->in_reply.tag,
1010 	     le32_to_cpu(con->in_reply.connect_seq),
1011 	     le32_to_cpu(con->in_reply.global_seq));
1012 out:
1013 	return ret;
1014 
1015 }
1016 
1017 /*
1018  * Verify the hello banner looks okay.
1019  */
1020 static int verify_hello(struct ceph_connection *con)
1021 {
1022 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1023 		pr_err("connect to %s got bad banner\n",
1024 		       ceph_pr_addr(&con->peer_addr.in_addr));
1025 		con->error_msg = "protocol error, bad banner";
1026 		return -1;
1027 	}
1028 	return 0;
1029 }
1030 
1031 static bool addr_is_blank(struct sockaddr_storage *ss)
1032 {
1033 	switch (ss->ss_family) {
1034 	case AF_INET:
1035 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1036 	case AF_INET6:
1037 		return
1038 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1039 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1040 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1041 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1042 	}
1043 	return false;
1044 }
1045 
1046 static int addr_port(struct sockaddr_storage *ss)
1047 {
1048 	switch (ss->ss_family) {
1049 	case AF_INET:
1050 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1051 	case AF_INET6:
1052 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1053 	}
1054 	return 0;
1055 }
1056 
1057 static void addr_set_port(struct sockaddr_storage *ss, int p)
1058 {
1059 	switch (ss->ss_family) {
1060 	case AF_INET:
1061 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1062 	case AF_INET6:
1063 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1064 	}
1065 }
1066 
1067 /*
1068  * Parse an ip[:port] list into an addr array.  Use the default
1069  * monitor port if a port isn't specified.
1070  */
1071 int ceph_parse_ips(const char *c, const char *end,
1072 		   struct ceph_entity_addr *addr,
1073 		   int max_count, int *count)
1074 {
1075 	int i;
1076 	const char *p = c;
1077 
1078 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1079 	for (i = 0; i < max_count; i++) {
1080 		const char *ipend;
1081 		struct sockaddr_storage *ss = &addr[i].in_addr;
1082 		struct sockaddr_in *in4 = (void *)ss;
1083 		struct sockaddr_in6 *in6 = (void *)ss;
1084 		int port;
1085 		char delim = ',';
1086 
1087 		if (*p == '[') {
1088 			delim = ']';
1089 			p++;
1090 		}
1091 
1092 		memset(ss, 0, sizeof(*ss));
1093 		if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1094 			     delim, &ipend))
1095 			ss->ss_family = AF_INET;
1096 		else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1097 				  delim, &ipend))
1098 			ss->ss_family = AF_INET6;
1099 		else
1100 			goto bad;
1101 		p = ipend;
1102 
1103 		if (delim == ']') {
1104 			if (*p != ']') {
1105 				dout("missing matching ']'\n");
1106 				goto bad;
1107 			}
1108 			p++;
1109 		}
1110 
1111 		/* port? */
1112 		if (p < end && *p == ':') {
1113 			port = 0;
1114 			p++;
1115 			while (p < end && *p >= '0' && *p <= '9') {
1116 				port = (port * 10) + (*p - '0');
1117 				p++;
1118 			}
1119 			if (port > 65535 || port == 0)
1120 				goto bad;
1121 		} else {
1122 			port = CEPH_MON_PORT;
1123 		}
1124 
1125 		addr_set_port(ss, port);
1126 
1127 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1128 
1129 		if (p == end)
1130 			break;
1131 		if (*p != ',')
1132 			goto bad;
1133 		p++;
1134 	}
1135 
1136 	if (p != end)
1137 		goto bad;
1138 
1139 	if (count)
1140 		*count = i + 1;
1141 	return 0;
1142 
1143 bad:
1144 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1145 	return -EINVAL;
1146 }
1147 EXPORT_SYMBOL(ceph_parse_ips);
1148 
1149 static int process_banner(struct ceph_connection *con)
1150 {
1151 	dout("process_banner on %p\n", con);
1152 
1153 	if (verify_hello(con) < 0)
1154 		return -1;
1155 
1156 	ceph_decode_addr(&con->actual_peer_addr);
1157 	ceph_decode_addr(&con->peer_addr_for_me);
1158 
1159 	/*
1160 	 * Make sure the other end is who we wanted.  note that the other
1161 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1162 	 * them the benefit of the doubt.
1163 	 */
1164 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1165 		   sizeof(con->peer_addr)) != 0 &&
1166 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1167 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1168 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1169 			   ceph_pr_addr(&con->peer_addr.in_addr),
1170 			   (int)le32_to_cpu(con->peer_addr.nonce),
1171 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1172 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1173 		con->error_msg = "wrong peer at address";
1174 		return -1;
1175 	}
1176 
1177 	/*
1178 	 * did we learn our address?
1179 	 */
1180 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1181 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1182 
1183 		memcpy(&con->msgr->inst.addr.in_addr,
1184 		       &con->peer_addr_for_me.in_addr,
1185 		       sizeof(con->peer_addr_for_me.in_addr));
1186 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1187 		encode_my_addr(con->msgr);
1188 		dout("process_banner learned my addr is %s\n",
1189 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1190 	}
1191 
1192 	set_bit(NEGOTIATING, &con->state);
1193 	prepare_read_connect(con);
1194 	return 0;
1195 }
1196 
1197 static void fail_protocol(struct ceph_connection *con)
1198 {
1199 	reset_connection(con);
1200 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
1201 
1202 	mutex_unlock(&con->mutex);
1203 	if (con->ops->bad_proto)
1204 		con->ops->bad_proto(con);
1205 	mutex_lock(&con->mutex);
1206 }
1207 
1208 static int process_connect(struct ceph_connection *con)
1209 {
1210 	u64 sup_feat = con->msgr->supported_features;
1211 	u64 req_feat = con->msgr->required_features;
1212 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1213 
1214 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1215 
1216 	switch (con->in_reply.tag) {
1217 	case CEPH_MSGR_TAG_FEATURES:
1218 		pr_err("%s%lld %s feature set mismatch,"
1219 		       " my %llx < server's %llx, missing %llx\n",
1220 		       ENTITY_NAME(con->peer_name),
1221 		       ceph_pr_addr(&con->peer_addr.in_addr),
1222 		       sup_feat, server_feat, server_feat & ~sup_feat);
1223 		con->error_msg = "missing required protocol features";
1224 		fail_protocol(con);
1225 		return -1;
1226 
1227 	case CEPH_MSGR_TAG_BADPROTOVER:
1228 		pr_err("%s%lld %s protocol version mismatch,"
1229 		       " my %d != server's %d\n",
1230 		       ENTITY_NAME(con->peer_name),
1231 		       ceph_pr_addr(&con->peer_addr.in_addr),
1232 		       le32_to_cpu(con->out_connect.protocol_version),
1233 		       le32_to_cpu(con->in_reply.protocol_version));
1234 		con->error_msg = "protocol version mismatch";
1235 		fail_protocol(con);
1236 		return -1;
1237 
1238 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1239 		con->auth_retry++;
1240 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1241 		     con->auth_retry);
1242 		if (con->auth_retry == 2) {
1243 			con->error_msg = "connect authorization failure";
1244 			reset_connection(con);
1245 			set_bit(CLOSED, &con->state);
1246 			return -1;
1247 		}
1248 		con->auth_retry = 1;
1249 		prepare_write_connect(con->msgr, con, 0);
1250 		prepare_read_connect(con);
1251 		break;
1252 
1253 	case CEPH_MSGR_TAG_RESETSESSION:
1254 		/*
1255 		 * If we connected with a large connect_seq but the peer
1256 		 * has no record of a session with us (no connection, or
1257 		 * connect_seq == 0), they will send RESETSESION to indicate
1258 		 * that they must have reset their session, and may have
1259 		 * dropped messages.
1260 		 */
1261 		dout("process_connect got RESET peer seq %u\n",
1262 		     le32_to_cpu(con->in_connect.connect_seq));
1263 		pr_err("%s%lld %s connection reset\n",
1264 		       ENTITY_NAME(con->peer_name),
1265 		       ceph_pr_addr(&con->peer_addr.in_addr));
1266 		reset_connection(con);
1267 		prepare_write_connect(con->msgr, con, 0);
1268 		prepare_read_connect(con);
1269 
1270 		/* Tell ceph about it. */
1271 		mutex_unlock(&con->mutex);
1272 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1273 		if (con->ops->peer_reset)
1274 			con->ops->peer_reset(con);
1275 		mutex_lock(&con->mutex);
1276 		break;
1277 
1278 	case CEPH_MSGR_TAG_RETRY_SESSION:
1279 		/*
1280 		 * If we sent a smaller connect_seq than the peer has, try
1281 		 * again with a larger value.
1282 		 */
1283 		dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1284 		     le32_to_cpu(con->out_connect.connect_seq),
1285 		     le32_to_cpu(con->in_connect.connect_seq));
1286 		con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1287 		prepare_write_connect(con->msgr, con, 0);
1288 		prepare_read_connect(con);
1289 		break;
1290 
1291 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1292 		/*
1293 		 * If we sent a smaller global_seq than the peer has, try
1294 		 * again with a larger value.
1295 		 */
1296 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1297 		     con->peer_global_seq,
1298 		     le32_to_cpu(con->in_connect.global_seq));
1299 		get_global_seq(con->msgr,
1300 			       le32_to_cpu(con->in_connect.global_seq));
1301 		prepare_write_connect(con->msgr, con, 0);
1302 		prepare_read_connect(con);
1303 		break;
1304 
1305 	case CEPH_MSGR_TAG_READY:
1306 		if (req_feat & ~server_feat) {
1307 			pr_err("%s%lld %s protocol feature mismatch,"
1308 			       " my required %llx > server's %llx, need %llx\n",
1309 			       ENTITY_NAME(con->peer_name),
1310 			       ceph_pr_addr(&con->peer_addr.in_addr),
1311 			       req_feat, server_feat, req_feat & ~server_feat);
1312 			con->error_msg = "missing required protocol features";
1313 			fail_protocol(con);
1314 			return -1;
1315 		}
1316 		clear_bit(CONNECTING, &con->state);
1317 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1318 		con->connect_seq++;
1319 		con->peer_features = server_feat;
1320 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1321 		     con->peer_global_seq,
1322 		     le32_to_cpu(con->in_reply.connect_seq),
1323 		     con->connect_seq);
1324 		WARN_ON(con->connect_seq !=
1325 			le32_to_cpu(con->in_reply.connect_seq));
1326 
1327 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1328 			set_bit(LOSSYTX, &con->state);
1329 
1330 		prepare_read_tag(con);
1331 		break;
1332 
1333 	case CEPH_MSGR_TAG_WAIT:
1334 		/*
1335 		 * If there is a connection race (we are opening
1336 		 * connections to each other), one of us may just have
1337 		 * to WAIT.  This shouldn't happen if we are the
1338 		 * client.
1339 		 */
1340 		pr_err("process_connect peer connecting WAIT\n");
1341 
1342 	default:
1343 		pr_err("connect protocol error, will retry\n");
1344 		con->error_msg = "protocol error, garbage tag during connect";
1345 		return -1;
1346 	}
1347 	return 0;
1348 }
1349 
1350 
1351 /*
1352  * read (part of) an ack
1353  */
1354 static int read_partial_ack(struct ceph_connection *con)
1355 {
1356 	int to = 0;
1357 
1358 	return read_partial(con, &to, sizeof(con->in_temp_ack),
1359 			    &con->in_temp_ack);
1360 }
1361 
1362 
1363 /*
1364  * We can finally discard anything that's been acked.
1365  */
1366 static void process_ack(struct ceph_connection *con)
1367 {
1368 	struct ceph_msg *m;
1369 	u64 ack = le64_to_cpu(con->in_temp_ack);
1370 	u64 seq;
1371 
1372 	while (!list_empty(&con->out_sent)) {
1373 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1374 				     list_head);
1375 		seq = le64_to_cpu(m->hdr.seq);
1376 		if (seq > ack)
1377 			break;
1378 		dout("got ack for seq %llu type %d at %p\n", seq,
1379 		     le16_to_cpu(m->hdr.type), m);
1380 		ceph_msg_remove(m);
1381 	}
1382 	prepare_read_tag(con);
1383 }
1384 
1385 
1386 
1387 
1388 static int read_partial_message_section(struct ceph_connection *con,
1389 					struct kvec *section,
1390 					unsigned int sec_len, u32 *crc)
1391 {
1392 	int ret, left;
1393 
1394 	BUG_ON(!section);
1395 
1396 	while (section->iov_len < sec_len) {
1397 		BUG_ON(section->iov_base == NULL);
1398 		left = sec_len - section->iov_len;
1399 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1400 				       section->iov_len, left);
1401 		if (ret <= 0)
1402 			return ret;
1403 		section->iov_len += ret;
1404 		if (section->iov_len == sec_len)
1405 			*crc = crc32c(0, section->iov_base,
1406 				      section->iov_len);
1407 	}
1408 
1409 	return 1;
1410 }
1411 
1412 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1413 				struct ceph_msg_header *hdr,
1414 				int *skip);
1415 
1416 
1417 static int read_partial_message_pages(struct ceph_connection *con,
1418 				      struct page **pages,
1419 				      unsigned data_len, int datacrc)
1420 {
1421 	void *p;
1422 	int ret;
1423 	int left;
1424 
1425 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1426 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1427 	/* (page) data */
1428 	BUG_ON(pages == NULL);
1429 	p = kmap(pages[con->in_msg_pos.page]);
1430 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1431 			       left);
1432 	if (ret > 0 && datacrc)
1433 		con->in_data_crc =
1434 			crc32c(con->in_data_crc,
1435 				  p + con->in_msg_pos.page_pos, ret);
1436 	kunmap(pages[con->in_msg_pos.page]);
1437 	if (ret <= 0)
1438 		return ret;
1439 	con->in_msg_pos.data_pos += ret;
1440 	con->in_msg_pos.page_pos += ret;
1441 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1442 		con->in_msg_pos.page_pos = 0;
1443 		con->in_msg_pos.page++;
1444 	}
1445 
1446 	return ret;
1447 }
1448 
1449 #ifdef CONFIG_BLOCK
1450 static int read_partial_message_bio(struct ceph_connection *con,
1451 				    struct bio **bio_iter, int *bio_seg,
1452 				    unsigned data_len, int datacrc)
1453 {
1454 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1455 	void *p;
1456 	int ret, left;
1457 
1458 	if (IS_ERR(bv))
1459 		return PTR_ERR(bv);
1460 
1461 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1462 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1463 
1464 	p = kmap(bv->bv_page) + bv->bv_offset;
1465 
1466 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1467 			       left);
1468 	if (ret > 0 && datacrc)
1469 		con->in_data_crc =
1470 			crc32c(con->in_data_crc,
1471 				  p + con->in_msg_pos.page_pos, ret);
1472 	kunmap(bv->bv_page);
1473 	if (ret <= 0)
1474 		return ret;
1475 	con->in_msg_pos.data_pos += ret;
1476 	con->in_msg_pos.page_pos += ret;
1477 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1478 		con->in_msg_pos.page_pos = 0;
1479 		iter_bio_next(bio_iter, bio_seg);
1480 	}
1481 
1482 	return ret;
1483 }
1484 #endif
1485 
1486 /*
1487  * read (part of) a message.
1488  */
1489 static int read_partial_message(struct ceph_connection *con)
1490 {
1491 	struct ceph_msg *m = con->in_msg;
1492 	int ret;
1493 	int to, left;
1494 	unsigned front_len, middle_len, data_len, data_off;
1495 	int datacrc = con->msgr->nocrc;
1496 	int skip;
1497 	u64 seq;
1498 
1499 	dout("read_partial_message con %p msg %p\n", con, m);
1500 
1501 	/* header */
1502 	while (con->in_base_pos < sizeof(con->in_hdr)) {
1503 		left = sizeof(con->in_hdr) - con->in_base_pos;
1504 		ret = ceph_tcp_recvmsg(con->sock,
1505 				       (char *)&con->in_hdr + con->in_base_pos,
1506 				       left);
1507 		if (ret <= 0)
1508 			return ret;
1509 		con->in_base_pos += ret;
1510 		if (con->in_base_pos == sizeof(con->in_hdr)) {
1511 			u32 crc = crc32c(0, (void *)&con->in_hdr,
1512 				 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1513 			if (crc != le32_to_cpu(con->in_hdr.crc)) {
1514 				pr_err("read_partial_message bad hdr "
1515 				       " crc %u != expected %u\n",
1516 				       crc, con->in_hdr.crc);
1517 				return -EBADMSG;
1518 			}
1519 		}
1520 	}
1521 	front_len = le32_to_cpu(con->in_hdr.front_len);
1522 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1523 		return -EIO;
1524 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1525 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1526 		return -EIO;
1527 	data_len = le32_to_cpu(con->in_hdr.data_len);
1528 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1529 		return -EIO;
1530 	data_off = le16_to_cpu(con->in_hdr.data_off);
1531 
1532 	/* verify seq# */
1533 	seq = le64_to_cpu(con->in_hdr.seq);
1534 	if ((s64)seq - (s64)con->in_seq < 1) {
1535 		pr_info("skipping %s%lld %s seq %lld, expected %lld\n",
1536 			ENTITY_NAME(con->peer_name),
1537 			ceph_pr_addr(&con->peer_addr.in_addr),
1538 			seq, con->in_seq + 1);
1539 		con->in_base_pos = -front_len - middle_len - data_len -
1540 			sizeof(m->footer);
1541 		con->in_tag = CEPH_MSGR_TAG_READY;
1542 		con->in_seq++;
1543 		return 0;
1544 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1545 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1546 		       seq, con->in_seq + 1);
1547 		con->error_msg = "bad message sequence # for incoming message";
1548 		return -EBADMSG;
1549 	}
1550 
1551 	/* allocate message? */
1552 	if (!con->in_msg) {
1553 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1554 		     con->in_hdr.front_len, con->in_hdr.data_len);
1555 		skip = 0;
1556 		con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1557 		if (skip) {
1558 			/* skip this message */
1559 			dout("alloc_msg said skip message\n");
1560 			BUG_ON(con->in_msg);
1561 			con->in_base_pos = -front_len - middle_len - data_len -
1562 				sizeof(m->footer);
1563 			con->in_tag = CEPH_MSGR_TAG_READY;
1564 			con->in_seq++;
1565 			return 0;
1566 		}
1567 		if (!con->in_msg) {
1568 			con->error_msg =
1569 				"error allocating memory for incoming message";
1570 			return -ENOMEM;
1571 		}
1572 		m = con->in_msg;
1573 		m->front.iov_len = 0;    /* haven't read it yet */
1574 		if (m->middle)
1575 			m->middle->vec.iov_len = 0;
1576 
1577 		con->in_msg_pos.page = 0;
1578 		if (m->pages)
1579 			con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1580 		else
1581 			con->in_msg_pos.page_pos = 0;
1582 		con->in_msg_pos.data_pos = 0;
1583 	}
1584 
1585 	/* front */
1586 	ret = read_partial_message_section(con, &m->front, front_len,
1587 					   &con->in_front_crc);
1588 	if (ret <= 0)
1589 		return ret;
1590 
1591 	/* middle */
1592 	if (m->middle) {
1593 		ret = read_partial_message_section(con, &m->middle->vec,
1594 						   middle_len,
1595 						   &con->in_middle_crc);
1596 		if (ret <= 0)
1597 			return ret;
1598 	}
1599 #ifdef CONFIG_BLOCK
1600 	if (m->bio && !m->bio_iter)
1601 		init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1602 #endif
1603 
1604 	/* (page) data */
1605 	while (con->in_msg_pos.data_pos < data_len) {
1606 		if (m->pages) {
1607 			ret = read_partial_message_pages(con, m->pages,
1608 						 data_len, datacrc);
1609 			if (ret <= 0)
1610 				return ret;
1611 #ifdef CONFIG_BLOCK
1612 		} else if (m->bio) {
1613 
1614 			ret = read_partial_message_bio(con,
1615 						 &m->bio_iter, &m->bio_seg,
1616 						 data_len, datacrc);
1617 			if (ret <= 0)
1618 				return ret;
1619 #endif
1620 		} else {
1621 			BUG_ON(1);
1622 		}
1623 	}
1624 
1625 	/* footer */
1626 	to = sizeof(m->hdr) + sizeof(m->footer);
1627 	while (con->in_base_pos < to) {
1628 		left = to - con->in_base_pos;
1629 		ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1630 				       (con->in_base_pos - sizeof(m->hdr)),
1631 				       left);
1632 		if (ret <= 0)
1633 			return ret;
1634 		con->in_base_pos += ret;
1635 	}
1636 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1637 	     m, front_len, m->footer.front_crc, middle_len,
1638 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1639 
1640 	/* crc ok? */
1641 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1642 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1643 		       m, con->in_front_crc, m->footer.front_crc);
1644 		return -EBADMSG;
1645 	}
1646 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1647 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1648 		       m, con->in_middle_crc, m->footer.middle_crc);
1649 		return -EBADMSG;
1650 	}
1651 	if (datacrc &&
1652 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1653 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1654 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1655 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1656 		return -EBADMSG;
1657 	}
1658 
1659 	return 1; /* done! */
1660 }
1661 
1662 /*
1663  * Process message.  This happens in the worker thread.  The callback should
1664  * be careful not to do anything that waits on other incoming messages or it
1665  * may deadlock.
1666  */
1667 static void process_message(struct ceph_connection *con)
1668 {
1669 	struct ceph_msg *msg;
1670 
1671 	msg = con->in_msg;
1672 	con->in_msg = NULL;
1673 
1674 	/* if first message, set peer_name */
1675 	if (con->peer_name.type == 0)
1676 		con->peer_name = msg->hdr.src;
1677 
1678 	con->in_seq++;
1679 	mutex_unlock(&con->mutex);
1680 
1681 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1682 	     msg, le64_to_cpu(msg->hdr.seq),
1683 	     ENTITY_NAME(msg->hdr.src),
1684 	     le16_to_cpu(msg->hdr.type),
1685 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1686 	     le32_to_cpu(msg->hdr.front_len),
1687 	     le32_to_cpu(msg->hdr.data_len),
1688 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1689 	con->ops->dispatch(con, msg);
1690 
1691 	mutex_lock(&con->mutex);
1692 	prepare_read_tag(con);
1693 }
1694 
1695 
1696 /*
1697  * Write something to the socket.  Called in a worker thread when the
1698  * socket appears to be writeable and we have something ready to send.
1699  */
1700 static int try_write(struct ceph_connection *con)
1701 {
1702 	struct ceph_messenger *msgr = con->msgr;
1703 	int ret = 1;
1704 
1705 	dout("try_write start %p state %lu nref %d\n", con, con->state,
1706 	     atomic_read(&con->nref));
1707 
1708 more:
1709 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1710 
1711 	/* open the socket first? */
1712 	if (con->sock == NULL) {
1713 		/*
1714 		 * if we were STANDBY and are reconnecting _this_
1715 		 * connection, bump connect_seq now.  Always bump
1716 		 * global_seq.
1717 		 */
1718 		if (test_and_clear_bit(STANDBY, &con->state))
1719 			con->connect_seq++;
1720 
1721 		prepare_write_banner(msgr, con);
1722 		prepare_write_connect(msgr, con, 1);
1723 		prepare_read_banner(con);
1724 		set_bit(CONNECTING, &con->state);
1725 		clear_bit(NEGOTIATING, &con->state);
1726 
1727 		BUG_ON(con->in_msg);
1728 		con->in_tag = CEPH_MSGR_TAG_READY;
1729 		dout("try_write initiating connect on %p new state %lu\n",
1730 		     con, con->state);
1731 		con->sock = ceph_tcp_connect(con);
1732 		if (IS_ERR(con->sock)) {
1733 			con->sock = NULL;
1734 			con->error_msg = "connect error";
1735 			ret = -1;
1736 			goto out;
1737 		}
1738 	}
1739 
1740 more_kvec:
1741 	/* kvec data queued? */
1742 	if (con->out_skip) {
1743 		ret = write_partial_skip(con);
1744 		if (ret <= 0)
1745 			goto done;
1746 		if (ret < 0) {
1747 			dout("try_write write_partial_skip err %d\n", ret);
1748 			goto done;
1749 		}
1750 	}
1751 	if (con->out_kvec_left) {
1752 		ret = write_partial_kvec(con);
1753 		if (ret <= 0)
1754 			goto done;
1755 	}
1756 
1757 	/* msg pages? */
1758 	if (con->out_msg) {
1759 		if (con->out_msg_done) {
1760 			ceph_msg_put(con->out_msg);
1761 			con->out_msg = NULL;   /* we're done with this one */
1762 			goto do_next;
1763 		}
1764 
1765 		ret = write_partial_msg_pages(con);
1766 		if (ret == 1)
1767 			goto more_kvec;  /* we need to send the footer, too! */
1768 		if (ret == 0)
1769 			goto done;
1770 		if (ret < 0) {
1771 			dout("try_write write_partial_msg_pages err %d\n",
1772 			     ret);
1773 			goto done;
1774 		}
1775 	}
1776 
1777 do_next:
1778 	if (!test_bit(CONNECTING, &con->state)) {
1779 		/* is anything else pending? */
1780 		if (!list_empty(&con->out_queue)) {
1781 			prepare_write_message(con);
1782 			goto more;
1783 		}
1784 		if (con->in_seq > con->in_seq_acked) {
1785 			prepare_write_ack(con);
1786 			goto more;
1787 		}
1788 		if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1789 			prepare_write_keepalive(con);
1790 			goto more;
1791 		}
1792 	}
1793 
1794 	/* Nothing to do! */
1795 	clear_bit(WRITE_PENDING, &con->state);
1796 	dout("try_write nothing else to write.\n");
1797 done:
1798 	ret = 0;
1799 out:
1800 	dout("try_write done on %p\n", con);
1801 	return ret;
1802 }
1803 
1804 
1805 
1806 /*
1807  * Read what we can from the socket.
1808  */
1809 static int try_read(struct ceph_connection *con)
1810 {
1811 	int ret = -1;
1812 
1813 	if (!con->sock)
1814 		return 0;
1815 
1816 	if (test_bit(STANDBY, &con->state))
1817 		return 0;
1818 
1819 	dout("try_read start on %p\n", con);
1820 
1821 more:
1822 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1823 	     con->in_base_pos);
1824 	if (test_bit(CONNECTING, &con->state)) {
1825 		if (!test_bit(NEGOTIATING, &con->state)) {
1826 			dout("try_read connecting\n");
1827 			ret = read_partial_banner(con);
1828 			if (ret <= 0)
1829 				goto done;
1830 			if (process_banner(con) < 0) {
1831 				ret = -1;
1832 				goto out;
1833 			}
1834 		}
1835 		ret = read_partial_connect(con);
1836 		if (ret <= 0)
1837 			goto done;
1838 		if (process_connect(con) < 0) {
1839 			ret = -1;
1840 			goto out;
1841 		}
1842 		goto more;
1843 	}
1844 
1845 	if (con->in_base_pos < 0) {
1846 		/*
1847 		 * skipping + discarding content.
1848 		 *
1849 		 * FIXME: there must be a better way to do this!
1850 		 */
1851 		static char buf[1024];
1852 		int skip = min(1024, -con->in_base_pos);
1853 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1854 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1855 		if (ret <= 0)
1856 			goto done;
1857 		con->in_base_pos += ret;
1858 		if (con->in_base_pos)
1859 			goto more;
1860 	}
1861 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
1862 		/*
1863 		 * what's next?
1864 		 */
1865 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1866 		if (ret <= 0)
1867 			goto done;
1868 		dout("try_read got tag %d\n", (int)con->in_tag);
1869 		switch (con->in_tag) {
1870 		case CEPH_MSGR_TAG_MSG:
1871 			prepare_read_message(con);
1872 			break;
1873 		case CEPH_MSGR_TAG_ACK:
1874 			prepare_read_ack(con);
1875 			break;
1876 		case CEPH_MSGR_TAG_CLOSE:
1877 			set_bit(CLOSED, &con->state);   /* fixme */
1878 			goto done;
1879 		default:
1880 			goto bad_tag;
1881 		}
1882 	}
1883 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1884 		ret = read_partial_message(con);
1885 		if (ret <= 0) {
1886 			switch (ret) {
1887 			case -EBADMSG:
1888 				con->error_msg = "bad crc";
1889 				ret = -EIO;
1890 				goto out;
1891 			case -EIO:
1892 				con->error_msg = "io error";
1893 				goto out;
1894 			default:
1895 				goto done;
1896 			}
1897 		}
1898 		if (con->in_tag == CEPH_MSGR_TAG_READY)
1899 			goto more;
1900 		process_message(con);
1901 		goto more;
1902 	}
1903 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1904 		ret = read_partial_ack(con);
1905 		if (ret <= 0)
1906 			goto done;
1907 		process_ack(con);
1908 		goto more;
1909 	}
1910 
1911 done:
1912 	ret = 0;
1913 out:
1914 	dout("try_read done on %p\n", con);
1915 	return ret;
1916 
1917 bad_tag:
1918 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1919 	con->error_msg = "protocol error, garbage tag";
1920 	ret = -1;
1921 	goto out;
1922 }
1923 
1924 
1925 /*
1926  * Atomically queue work on a connection.  Bump @con reference to
1927  * avoid races with connection teardown.
1928  *
1929  * There is some trickery going on with QUEUED and BUSY because we
1930  * only want a _single_ thread operating on each connection at any
1931  * point in time, but we want to use all available CPUs.
1932  *
1933  * The worker thread only proceeds if it can atomically set BUSY.  It
1934  * clears QUEUED and does it's thing.  When it thinks it's done, it
1935  * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1936  * (tries again to set BUSY).
1937  *
1938  * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1939  * try to queue work.  If that fails (work is already queued, or BUSY)
1940  * we give up (work also already being done or is queued) but leave QUEUED
1941  * set so that the worker thread will loop if necessary.
1942  */
1943 static void queue_con(struct ceph_connection *con)
1944 {
1945 	if (test_bit(DEAD, &con->state)) {
1946 		dout("queue_con %p ignoring: DEAD\n",
1947 		     con);
1948 		return;
1949 	}
1950 
1951 	if (!con->ops->get(con)) {
1952 		dout("queue_con %p ref count 0\n", con);
1953 		return;
1954 	}
1955 
1956 	set_bit(QUEUED, &con->state);
1957 	if (test_bit(BUSY, &con->state)) {
1958 		dout("queue_con %p - already BUSY\n", con);
1959 		con->ops->put(con);
1960 	} else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1961 		dout("queue_con %p - already queued\n", con);
1962 		con->ops->put(con);
1963 	} else {
1964 		dout("queue_con %p\n", con);
1965 	}
1966 }
1967 
1968 /*
1969  * Do some work on a connection.  Drop a connection ref when we're done.
1970  */
1971 static void con_work(struct work_struct *work)
1972 {
1973 	struct ceph_connection *con = container_of(work, struct ceph_connection,
1974 						   work.work);
1975 	int backoff = 0;
1976 
1977 more:
1978 	if (test_and_set_bit(BUSY, &con->state) != 0) {
1979 		dout("con_work %p BUSY already set\n", con);
1980 		goto out;
1981 	}
1982 	dout("con_work %p start, clearing QUEUED\n", con);
1983 	clear_bit(QUEUED, &con->state);
1984 
1985 	mutex_lock(&con->mutex);
1986 
1987 	if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1988 		dout("con_work CLOSED\n");
1989 		con_close_socket(con);
1990 		goto done;
1991 	}
1992 	if (test_and_clear_bit(OPENING, &con->state)) {
1993 		/* reopen w/ new peer */
1994 		dout("con_work OPENING\n");
1995 		con_close_socket(con);
1996 	}
1997 
1998 	if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1999 	    try_read(con) < 0 ||
2000 	    try_write(con) < 0) {
2001 		mutex_unlock(&con->mutex);
2002 		backoff = 1;
2003 		ceph_fault(con);     /* error/fault path */
2004 		goto done_unlocked;
2005 	}
2006 
2007 done:
2008 	mutex_unlock(&con->mutex);
2009 
2010 done_unlocked:
2011 	clear_bit(BUSY, &con->state);
2012 	dout("con->state=%lu\n", con->state);
2013 	if (test_bit(QUEUED, &con->state)) {
2014 		if (!backoff || test_bit(OPENING, &con->state)) {
2015 			dout("con_work %p QUEUED reset, looping\n", con);
2016 			goto more;
2017 		}
2018 		dout("con_work %p QUEUED reset, but just faulted\n", con);
2019 		clear_bit(QUEUED, &con->state);
2020 	}
2021 	dout("con_work %p done\n", con);
2022 
2023 out:
2024 	con->ops->put(con);
2025 }
2026 
2027 
2028 /*
2029  * Generic error/fault handler.  A retry mechanism is used with
2030  * exponential backoff
2031  */
2032 static void ceph_fault(struct ceph_connection *con)
2033 {
2034 	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2035 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2036 	dout("fault %p state %lu to peer %s\n",
2037 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2038 
2039 	if (test_bit(LOSSYTX, &con->state)) {
2040 		dout("fault on LOSSYTX channel\n");
2041 		goto out;
2042 	}
2043 
2044 	mutex_lock(&con->mutex);
2045 	if (test_bit(CLOSED, &con->state))
2046 		goto out_unlock;
2047 
2048 	con_close_socket(con);
2049 
2050 	if (con->in_msg) {
2051 		ceph_msg_put(con->in_msg);
2052 		con->in_msg = NULL;
2053 	}
2054 
2055 	/* Requeue anything that hasn't been acked */
2056 	list_splice_init(&con->out_sent, &con->out_queue);
2057 
2058 	/* If there are no messages in the queue, place the connection
2059 	 * in a STANDBY state (i.e., don't try to reconnect just yet). */
2060 	if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
2061 		dout("fault setting STANDBY\n");
2062 		set_bit(STANDBY, &con->state);
2063 	} else {
2064 		/* retry after a delay. */
2065 		if (con->delay == 0)
2066 			con->delay = BASE_DELAY_INTERVAL;
2067 		else if (con->delay < MAX_DELAY_INTERVAL)
2068 			con->delay *= 2;
2069 		dout("fault queueing %p delay %lu\n", con, con->delay);
2070 		con->ops->get(con);
2071 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2072 				       round_jiffies_relative(con->delay)) == 0)
2073 			con->ops->put(con);
2074 	}
2075 
2076 out_unlock:
2077 	mutex_unlock(&con->mutex);
2078 out:
2079 	/*
2080 	 * in case we faulted due to authentication, invalidate our
2081 	 * current tickets so that we can get new ones.
2082 	 */
2083 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2084 		dout("calling invalidate_authorizer()\n");
2085 		con->ops->invalidate_authorizer(con);
2086 	}
2087 
2088 	if (con->ops->fault)
2089 		con->ops->fault(con);
2090 }
2091 
2092 
2093 
2094 /*
2095  * create a new messenger instance
2096  */
2097 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2098 					     u32 supported_features,
2099 					     u32 required_features)
2100 {
2101 	struct ceph_messenger *msgr;
2102 
2103 	msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2104 	if (msgr == NULL)
2105 		return ERR_PTR(-ENOMEM);
2106 
2107 	msgr->supported_features = supported_features;
2108 	msgr->required_features = required_features;
2109 
2110 	spin_lock_init(&msgr->global_seq_lock);
2111 
2112 	/* the zero page is needed if a request is "canceled" while the message
2113 	 * is being written over the socket */
2114 	msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2115 	if (!msgr->zero_page) {
2116 		kfree(msgr);
2117 		return ERR_PTR(-ENOMEM);
2118 	}
2119 	kmap(msgr->zero_page);
2120 
2121 	if (myaddr)
2122 		msgr->inst.addr = *myaddr;
2123 
2124 	/* select a random nonce */
2125 	msgr->inst.addr.type = 0;
2126 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2127 	encode_my_addr(msgr);
2128 
2129 	dout("messenger_create %p\n", msgr);
2130 	return msgr;
2131 }
2132 EXPORT_SYMBOL(ceph_messenger_create);
2133 
2134 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2135 {
2136 	dout("destroy %p\n", msgr);
2137 	kunmap(msgr->zero_page);
2138 	__free_page(msgr->zero_page);
2139 	kfree(msgr);
2140 	dout("destroyed messenger %p\n", msgr);
2141 }
2142 EXPORT_SYMBOL(ceph_messenger_destroy);
2143 
2144 /*
2145  * Queue up an outgoing message on the given connection.
2146  */
2147 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2148 {
2149 	if (test_bit(CLOSED, &con->state)) {
2150 		dout("con_send %p closed, dropping %p\n", con, msg);
2151 		ceph_msg_put(msg);
2152 		return;
2153 	}
2154 
2155 	/* set src+dst */
2156 	msg->hdr.src = con->msgr->inst.name;
2157 
2158 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2159 
2160 	msg->needs_out_seq = true;
2161 
2162 	/* queue */
2163 	mutex_lock(&con->mutex);
2164 	BUG_ON(!list_empty(&msg->list_head));
2165 	list_add_tail(&msg->list_head, &con->out_queue);
2166 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2167 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2168 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2169 	     le32_to_cpu(msg->hdr.front_len),
2170 	     le32_to_cpu(msg->hdr.middle_len),
2171 	     le32_to_cpu(msg->hdr.data_len));
2172 	mutex_unlock(&con->mutex);
2173 
2174 	/* if there wasn't anything waiting to send before, queue
2175 	 * new work */
2176 	if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2177 		queue_con(con);
2178 }
2179 EXPORT_SYMBOL(ceph_con_send);
2180 
2181 /*
2182  * Revoke a message that was previously queued for send
2183  */
2184 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2185 {
2186 	mutex_lock(&con->mutex);
2187 	if (!list_empty(&msg->list_head)) {
2188 		dout("con_revoke %p msg %p - was on queue\n", con, msg);
2189 		list_del_init(&msg->list_head);
2190 		ceph_msg_put(msg);
2191 		msg->hdr.seq = 0;
2192 	}
2193 	if (con->out_msg == msg) {
2194 		dout("con_revoke %p msg %p - was sending\n", con, msg);
2195 		con->out_msg = NULL;
2196 		if (con->out_kvec_is_msg) {
2197 			con->out_skip = con->out_kvec_bytes;
2198 			con->out_kvec_is_msg = false;
2199 		}
2200 		ceph_msg_put(msg);
2201 		msg->hdr.seq = 0;
2202 	}
2203 	mutex_unlock(&con->mutex);
2204 }
2205 
2206 /*
2207  * Revoke a message that we may be reading data into
2208  */
2209 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2210 {
2211 	mutex_lock(&con->mutex);
2212 	if (con->in_msg && con->in_msg == msg) {
2213 		unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2214 		unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2215 		unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2216 
2217 		/* skip rest of message */
2218 		dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2219 			con->in_base_pos = con->in_base_pos -
2220 				sizeof(struct ceph_msg_header) -
2221 				front_len -
2222 				middle_len -
2223 				data_len -
2224 				sizeof(struct ceph_msg_footer);
2225 		ceph_msg_put(con->in_msg);
2226 		con->in_msg = NULL;
2227 		con->in_tag = CEPH_MSGR_TAG_READY;
2228 		con->in_seq++;
2229 	} else {
2230 		dout("con_revoke_pages %p msg %p pages %p no-op\n",
2231 		     con, con->in_msg, msg);
2232 	}
2233 	mutex_unlock(&con->mutex);
2234 }
2235 
2236 /*
2237  * Queue a keepalive byte to ensure the tcp connection is alive.
2238  */
2239 void ceph_con_keepalive(struct ceph_connection *con)
2240 {
2241 	if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2242 	    test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2243 		queue_con(con);
2244 }
2245 EXPORT_SYMBOL(ceph_con_keepalive);
2246 
2247 
2248 /*
2249  * construct a new message with given type, size
2250  * the new msg has a ref count of 1.
2251  */
2252 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2253 {
2254 	struct ceph_msg *m;
2255 
2256 	m = kmalloc(sizeof(*m), flags);
2257 	if (m == NULL)
2258 		goto out;
2259 	kref_init(&m->kref);
2260 	INIT_LIST_HEAD(&m->list_head);
2261 
2262 	m->hdr.tid = 0;
2263 	m->hdr.type = cpu_to_le16(type);
2264 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2265 	m->hdr.version = 0;
2266 	m->hdr.front_len = cpu_to_le32(front_len);
2267 	m->hdr.middle_len = 0;
2268 	m->hdr.data_len = 0;
2269 	m->hdr.data_off = 0;
2270 	m->hdr.reserved = 0;
2271 	m->footer.front_crc = 0;
2272 	m->footer.middle_crc = 0;
2273 	m->footer.data_crc = 0;
2274 	m->footer.flags = 0;
2275 	m->front_max = front_len;
2276 	m->front_is_vmalloc = false;
2277 	m->more_to_follow = false;
2278 	m->pool = NULL;
2279 
2280 	/* front */
2281 	if (front_len) {
2282 		if (front_len > PAGE_CACHE_SIZE) {
2283 			m->front.iov_base = __vmalloc(front_len, flags,
2284 						      PAGE_KERNEL);
2285 			m->front_is_vmalloc = true;
2286 		} else {
2287 			m->front.iov_base = kmalloc(front_len, flags);
2288 		}
2289 		if (m->front.iov_base == NULL) {
2290 			pr_err("msg_new can't allocate %d bytes\n",
2291 			     front_len);
2292 			goto out2;
2293 		}
2294 	} else {
2295 		m->front.iov_base = NULL;
2296 	}
2297 	m->front.iov_len = front_len;
2298 
2299 	/* middle */
2300 	m->middle = NULL;
2301 
2302 	/* data */
2303 	m->nr_pages = 0;
2304 	m->pages = NULL;
2305 	m->pagelist = NULL;
2306 	m->bio = NULL;
2307 	m->bio_iter = NULL;
2308 	m->bio_seg = 0;
2309 	m->trail = NULL;
2310 
2311 	dout("ceph_msg_new %p front %d\n", m, front_len);
2312 	return m;
2313 
2314 out2:
2315 	ceph_msg_put(m);
2316 out:
2317 	pr_err("msg_new can't create type %d front %d\n", type, front_len);
2318 	return NULL;
2319 }
2320 EXPORT_SYMBOL(ceph_msg_new);
2321 
2322 /*
2323  * Allocate "middle" portion of a message, if it is needed and wasn't
2324  * allocated by alloc_msg.  This allows us to read a small fixed-size
2325  * per-type header in the front and then gracefully fail (i.e.,
2326  * propagate the error to the caller based on info in the front) when
2327  * the middle is too large.
2328  */
2329 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2330 {
2331 	int type = le16_to_cpu(msg->hdr.type);
2332 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2333 
2334 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2335 	     ceph_msg_type_name(type), middle_len);
2336 	BUG_ON(!middle_len);
2337 	BUG_ON(msg->middle);
2338 
2339 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2340 	if (!msg->middle)
2341 		return -ENOMEM;
2342 	return 0;
2343 }
2344 
2345 /*
2346  * Generic message allocator, for incoming messages.
2347  */
2348 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2349 				struct ceph_msg_header *hdr,
2350 				int *skip)
2351 {
2352 	int type = le16_to_cpu(hdr->type);
2353 	int front_len = le32_to_cpu(hdr->front_len);
2354 	int middle_len = le32_to_cpu(hdr->middle_len);
2355 	struct ceph_msg *msg = NULL;
2356 	int ret;
2357 
2358 	if (con->ops->alloc_msg) {
2359 		mutex_unlock(&con->mutex);
2360 		msg = con->ops->alloc_msg(con, hdr, skip);
2361 		mutex_lock(&con->mutex);
2362 		if (!msg || *skip)
2363 			return NULL;
2364 	}
2365 	if (!msg) {
2366 		*skip = 0;
2367 		msg = ceph_msg_new(type, front_len, GFP_NOFS);
2368 		if (!msg) {
2369 			pr_err("unable to allocate msg type %d len %d\n",
2370 			       type, front_len);
2371 			return NULL;
2372 		}
2373 	}
2374 	memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2375 
2376 	if (middle_len && !msg->middle) {
2377 		ret = ceph_alloc_middle(con, msg);
2378 		if (ret < 0) {
2379 			ceph_msg_put(msg);
2380 			return NULL;
2381 		}
2382 	}
2383 
2384 	return msg;
2385 }
2386 
2387 
2388 /*
2389  * Free a generically kmalloc'd message.
2390  */
2391 void ceph_msg_kfree(struct ceph_msg *m)
2392 {
2393 	dout("msg_kfree %p\n", m);
2394 	if (m->front_is_vmalloc)
2395 		vfree(m->front.iov_base);
2396 	else
2397 		kfree(m->front.iov_base);
2398 	kfree(m);
2399 }
2400 
2401 /*
2402  * Drop a msg ref.  Destroy as needed.
2403  */
2404 void ceph_msg_last_put(struct kref *kref)
2405 {
2406 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2407 
2408 	dout("ceph_msg_put last one on %p\n", m);
2409 	WARN_ON(!list_empty(&m->list_head));
2410 
2411 	/* drop middle, data, if any */
2412 	if (m->middle) {
2413 		ceph_buffer_put(m->middle);
2414 		m->middle = NULL;
2415 	}
2416 	m->nr_pages = 0;
2417 	m->pages = NULL;
2418 
2419 	if (m->pagelist) {
2420 		ceph_pagelist_release(m->pagelist);
2421 		kfree(m->pagelist);
2422 		m->pagelist = NULL;
2423 	}
2424 
2425 	m->trail = NULL;
2426 
2427 	if (m->pool)
2428 		ceph_msgpool_put(m->pool, m);
2429 	else
2430 		ceph_msg_kfree(m);
2431 }
2432 EXPORT_SYMBOL(ceph_msg_last_put);
2433 
2434 void ceph_msg_dump(struct ceph_msg *msg)
2435 {
2436 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2437 		 msg->front_max, msg->nr_pages);
2438 	print_hex_dump(KERN_DEBUG, "header: ",
2439 		       DUMP_PREFIX_OFFSET, 16, 1,
2440 		       &msg->hdr, sizeof(msg->hdr), true);
2441 	print_hex_dump(KERN_DEBUG, " front: ",
2442 		       DUMP_PREFIX_OFFSET, 16, 1,
2443 		       msg->front.iov_base, msg->front.iov_len, true);
2444 	if (msg->middle)
2445 		print_hex_dump(KERN_DEBUG, "middle: ",
2446 			       DUMP_PREFIX_OFFSET, 16, 1,
2447 			       msg->middle->vec.iov_base,
2448 			       msg->middle->vec.iov_len, true);
2449 	print_hex_dump(KERN_DEBUG, "footer: ",
2450 		       DUMP_PREFIX_OFFSET, 16, 1,
2451 		       &msg->footer, sizeof(msg->footer), true);
2452 }
2453 EXPORT_SYMBOL(ceph_msg_dump);
2454