xref: /linux/net/ceph/crypto.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/ceph/ceph_debug.h>
4 
5 #include <linux/err.h>
6 #include <linux/scatterlist.h>
7 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <crypto/aes.h>
10 #include <crypto/skcipher.h>
11 #include <linux/key-type.h>
12 #include <linux/sched/mm.h>
13 
14 #include <keys/ceph-type.h>
15 #include <keys/user-type.h>
16 #include <linux/ceph/decode.h>
17 #include "crypto.h"
18 
19 /*
20  * Set ->key and ->tfm.  The rest of the key should be filled in before
21  * this function is called.
22  */
23 static int set_secret(struct ceph_crypto_key *key, void *buf)
24 {
25 	unsigned int noio_flag;
26 	int ret;
27 
28 	key->key = NULL;
29 	key->tfm = NULL;
30 
31 	switch (key->type) {
32 	case CEPH_CRYPTO_NONE:
33 		return 0; /* nothing to do */
34 	case CEPH_CRYPTO_AES:
35 		break;
36 	default:
37 		return -ENOTSUPP;
38 	}
39 
40 	if (!key->len)
41 		return -EINVAL;
42 
43 	key->key = kmemdup(buf, key->len, GFP_NOIO);
44 	if (!key->key) {
45 		ret = -ENOMEM;
46 		goto fail;
47 	}
48 
49 	/* crypto_alloc_sync_skcipher() allocates with GFP_KERNEL */
50 	noio_flag = memalloc_noio_save();
51 	key->tfm = crypto_alloc_sync_skcipher("cbc(aes)", 0, 0);
52 	memalloc_noio_restore(noio_flag);
53 	if (IS_ERR(key->tfm)) {
54 		ret = PTR_ERR(key->tfm);
55 		key->tfm = NULL;
56 		goto fail;
57 	}
58 
59 	ret = crypto_sync_skcipher_setkey(key->tfm, key->key, key->len);
60 	if (ret)
61 		goto fail;
62 
63 	return 0;
64 
65 fail:
66 	ceph_crypto_key_destroy(key);
67 	return ret;
68 }
69 
70 int ceph_crypto_key_clone(struct ceph_crypto_key *dst,
71 			  const struct ceph_crypto_key *src)
72 {
73 	memcpy(dst, src, sizeof(struct ceph_crypto_key));
74 	return set_secret(dst, src->key);
75 }
76 
77 int ceph_crypto_key_encode(struct ceph_crypto_key *key, void **p, void *end)
78 {
79 	if (*p + sizeof(u16) + sizeof(key->created) +
80 	    sizeof(u16) + key->len > end)
81 		return -ERANGE;
82 	ceph_encode_16(p, key->type);
83 	ceph_encode_copy(p, &key->created, sizeof(key->created));
84 	ceph_encode_16(p, key->len);
85 	ceph_encode_copy(p, key->key, key->len);
86 	return 0;
87 }
88 
89 int ceph_crypto_key_decode(struct ceph_crypto_key *key, void **p, void *end)
90 {
91 	int ret;
92 
93 	ceph_decode_need(p, end, 2*sizeof(u16) + sizeof(key->created), bad);
94 	key->type = ceph_decode_16(p);
95 	ceph_decode_copy(p, &key->created, sizeof(key->created));
96 	key->len = ceph_decode_16(p);
97 	ceph_decode_need(p, end, key->len, bad);
98 	ret = set_secret(key, *p);
99 	*p += key->len;
100 	return ret;
101 
102 bad:
103 	dout("failed to decode crypto key\n");
104 	return -EINVAL;
105 }
106 
107 int ceph_crypto_key_unarmor(struct ceph_crypto_key *key, const char *inkey)
108 {
109 	int inlen = strlen(inkey);
110 	int blen = inlen * 3 / 4;
111 	void *buf, *p;
112 	int ret;
113 
114 	dout("crypto_key_unarmor %s\n", inkey);
115 	buf = kmalloc(blen, GFP_NOFS);
116 	if (!buf)
117 		return -ENOMEM;
118 	blen = ceph_unarmor(buf, inkey, inkey+inlen);
119 	if (blen < 0) {
120 		kfree(buf);
121 		return blen;
122 	}
123 
124 	p = buf;
125 	ret = ceph_crypto_key_decode(key, &p, p + blen);
126 	kfree(buf);
127 	if (ret)
128 		return ret;
129 	dout("crypto_key_unarmor key %p type %d len %d\n", key,
130 	     key->type, key->len);
131 	return 0;
132 }
133 
134 void ceph_crypto_key_destroy(struct ceph_crypto_key *key)
135 {
136 	if (key) {
137 		kfree(key->key);
138 		key->key = NULL;
139 		if (key->tfm) {
140 			crypto_free_sync_skcipher(key->tfm);
141 			key->tfm = NULL;
142 		}
143 	}
144 }
145 
146 static const u8 *aes_iv = (u8 *)CEPH_AES_IV;
147 
148 /*
149  * Should be used for buffers allocated with ceph_kvmalloc().
150  * Currently these are encrypt out-buffer (ceph_buffer) and decrypt
151  * in-buffer (msg front).
152  *
153  * Dispose of @sgt with teardown_sgtable().
154  *
155  * @prealloc_sg is to avoid memory allocation inside sg_alloc_table()
156  * in cases where a single sg is sufficient.  No attempt to reduce the
157  * number of sgs by squeezing physically contiguous pages together is
158  * made though, for simplicity.
159  */
160 static int setup_sgtable(struct sg_table *sgt, struct scatterlist *prealloc_sg,
161 			 const void *buf, unsigned int buf_len)
162 {
163 	struct scatterlist *sg;
164 	const bool is_vmalloc = is_vmalloc_addr(buf);
165 	unsigned int off = offset_in_page(buf);
166 	unsigned int chunk_cnt = 1;
167 	unsigned int chunk_len = PAGE_ALIGN(off + buf_len);
168 	int i;
169 	int ret;
170 
171 	if (buf_len == 0) {
172 		memset(sgt, 0, sizeof(*sgt));
173 		return -EINVAL;
174 	}
175 
176 	if (is_vmalloc) {
177 		chunk_cnt = chunk_len >> PAGE_SHIFT;
178 		chunk_len = PAGE_SIZE;
179 	}
180 
181 	if (chunk_cnt > 1) {
182 		ret = sg_alloc_table(sgt, chunk_cnt, GFP_NOFS);
183 		if (ret)
184 			return ret;
185 	} else {
186 		WARN_ON(chunk_cnt != 1);
187 		sg_init_table(prealloc_sg, 1);
188 		sgt->sgl = prealloc_sg;
189 		sgt->nents = sgt->orig_nents = 1;
190 	}
191 
192 	for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) {
193 		struct page *page;
194 		unsigned int len = min(chunk_len - off, buf_len);
195 
196 		if (is_vmalloc)
197 			page = vmalloc_to_page(buf);
198 		else
199 			page = virt_to_page(buf);
200 
201 		sg_set_page(sg, page, len, off);
202 
203 		off = 0;
204 		buf += len;
205 		buf_len -= len;
206 	}
207 	WARN_ON(buf_len != 0);
208 
209 	return 0;
210 }
211 
212 static void teardown_sgtable(struct sg_table *sgt)
213 {
214 	if (sgt->orig_nents > 1)
215 		sg_free_table(sgt);
216 }
217 
218 static int ceph_aes_crypt(const struct ceph_crypto_key *key, bool encrypt,
219 			  void *buf, int buf_len, int in_len, int *pout_len)
220 {
221 	SYNC_SKCIPHER_REQUEST_ON_STACK(req, key->tfm);
222 	struct sg_table sgt;
223 	struct scatterlist prealloc_sg;
224 	char iv[AES_BLOCK_SIZE] __aligned(8);
225 	int pad_byte = AES_BLOCK_SIZE - (in_len & (AES_BLOCK_SIZE - 1));
226 	int crypt_len = encrypt ? in_len + pad_byte : in_len;
227 	int ret;
228 
229 	WARN_ON(crypt_len > buf_len);
230 	if (encrypt)
231 		memset(buf + in_len, pad_byte, pad_byte);
232 	ret = setup_sgtable(&sgt, &prealloc_sg, buf, crypt_len);
233 	if (ret)
234 		return ret;
235 
236 	memcpy(iv, aes_iv, AES_BLOCK_SIZE);
237 	skcipher_request_set_sync_tfm(req, key->tfm);
238 	skcipher_request_set_callback(req, 0, NULL, NULL);
239 	skcipher_request_set_crypt(req, sgt.sgl, sgt.sgl, crypt_len, iv);
240 
241 	/*
242 	print_hex_dump(KERN_ERR, "key: ", DUMP_PREFIX_NONE, 16, 1,
243 		       key->key, key->len, 1);
244 	print_hex_dump(KERN_ERR, " in: ", DUMP_PREFIX_NONE, 16, 1,
245 		       buf, crypt_len, 1);
246 	*/
247 	if (encrypt)
248 		ret = crypto_skcipher_encrypt(req);
249 	else
250 		ret = crypto_skcipher_decrypt(req);
251 	skcipher_request_zero(req);
252 	if (ret) {
253 		pr_err("%s %scrypt failed: %d\n", __func__,
254 		       encrypt ? "en" : "de", ret);
255 		goto out_sgt;
256 	}
257 	/*
258 	print_hex_dump(KERN_ERR, "out: ", DUMP_PREFIX_NONE, 16, 1,
259 		       buf, crypt_len, 1);
260 	*/
261 
262 	if (encrypt) {
263 		*pout_len = crypt_len;
264 	} else {
265 		pad_byte = *(char *)(buf + in_len - 1);
266 		if (pad_byte > 0 && pad_byte <= AES_BLOCK_SIZE &&
267 		    in_len >= pad_byte) {
268 			*pout_len = in_len - pad_byte;
269 		} else {
270 			pr_err("%s got bad padding %d on in_len %d\n",
271 			       __func__, pad_byte, in_len);
272 			ret = -EPERM;
273 			goto out_sgt;
274 		}
275 	}
276 
277 out_sgt:
278 	teardown_sgtable(&sgt);
279 	return ret;
280 }
281 
282 int ceph_crypt(const struct ceph_crypto_key *key, bool encrypt,
283 	       void *buf, int buf_len, int in_len, int *pout_len)
284 {
285 	switch (key->type) {
286 	case CEPH_CRYPTO_NONE:
287 		*pout_len = in_len;
288 		return 0;
289 	case CEPH_CRYPTO_AES:
290 		return ceph_aes_crypt(key, encrypt, buf, buf_len, in_len,
291 				      pout_len);
292 	default:
293 		return -ENOTSUPP;
294 	}
295 }
296 
297 static int ceph_key_preparse(struct key_preparsed_payload *prep)
298 {
299 	struct ceph_crypto_key *ckey;
300 	size_t datalen = prep->datalen;
301 	int ret;
302 	void *p;
303 
304 	ret = -EINVAL;
305 	if (datalen <= 0 || datalen > 32767 || !prep->data)
306 		goto err;
307 
308 	ret = -ENOMEM;
309 	ckey = kmalloc(sizeof(*ckey), GFP_KERNEL);
310 	if (!ckey)
311 		goto err;
312 
313 	/* TODO ceph_crypto_key_decode should really take const input */
314 	p = (void *)prep->data;
315 	ret = ceph_crypto_key_decode(ckey, &p, (char*)prep->data+datalen);
316 	if (ret < 0)
317 		goto err_ckey;
318 
319 	prep->payload.data[0] = ckey;
320 	prep->quotalen = datalen;
321 	return 0;
322 
323 err_ckey:
324 	kfree(ckey);
325 err:
326 	return ret;
327 }
328 
329 static void ceph_key_free_preparse(struct key_preparsed_payload *prep)
330 {
331 	struct ceph_crypto_key *ckey = prep->payload.data[0];
332 	ceph_crypto_key_destroy(ckey);
333 	kfree(ckey);
334 }
335 
336 static void ceph_key_destroy(struct key *key)
337 {
338 	struct ceph_crypto_key *ckey = key->payload.data[0];
339 
340 	ceph_crypto_key_destroy(ckey);
341 	kfree(ckey);
342 }
343 
344 struct key_type key_type_ceph = {
345 	.name		= "ceph",
346 	.preparse	= ceph_key_preparse,
347 	.free_preparse	= ceph_key_free_preparse,
348 	.instantiate	= generic_key_instantiate,
349 	.destroy	= ceph_key_destroy,
350 };
351 
352 int __init ceph_crypto_init(void)
353 {
354 	return register_key_type(&key_type_ceph);
355 }
356 
357 void ceph_crypto_shutdown(void)
358 {
359 	unregister_key_type(&key_type_ceph);
360 }
361