xref: /linux/net/can/raw.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* raw.c - Raw sockets for protocol family CAN
3  *
4  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of Volkswagen nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * Alternatively, provided that this notice is retained in full, this
20  * software may be distributed under the terms of the GNU General
21  * Public License ("GPL") version 2, in which case the provisions of the
22  * GPL apply INSTEAD OF those given above.
23  *
24  * The provided data structures and external interfaces from this code
25  * are not restricted to be used by modules with a GPL compatible license.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
38  * DAMAGE.
39  *
40  */
41 
42 #include <linux/module.h>
43 #include <linux/init.h>
44 #include <linux/uio.h>
45 #include <linux/net.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #include <linux/socket.h>
49 #include <linux/if_arp.h>
50 #include <linux/skbuff.h>
51 #include <linux/can.h>
52 #include <linux/can/core.h>
53 #include <linux/can/dev.h> /* for can_is_canxl_dev_mtu() */
54 #include <linux/can/skb.h>
55 #include <linux/can/raw.h>
56 #include <net/sock.h>
57 #include <net/net_namespace.h>
58 
59 MODULE_DESCRIPTION("PF_CAN raw protocol");
60 MODULE_LICENSE("Dual BSD/GPL");
61 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>");
62 MODULE_ALIAS("can-proto-1");
63 
64 #define RAW_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_ifindex)
65 
66 #define MASK_ALL 0
67 
68 /* A raw socket has a list of can_filters attached to it, each receiving
69  * the CAN frames matching that filter.  If the filter list is empty,
70  * no CAN frames will be received by the socket.  The default after
71  * opening the socket, is to have one filter which receives all frames.
72  * The filter list is allocated dynamically with the exception of the
73  * list containing only one item.  This common case is optimized by
74  * storing the single filter in dfilter, to avoid using dynamic memory.
75  */
76 
77 struct uniqframe {
78 	const struct sk_buff *skb;
79 	int skbcnt;
80 	unsigned int join_rx_count;
81 };
82 
83 struct raw_sock {
84 	struct sock sk;
85 	struct net_device *dev;
86 	netdevice_tracker dev_tracker;
87 	struct list_head notifier;
88 	int ifindex;
89 	unsigned int bound:1;
90 	unsigned int loopback:1;
91 	unsigned int recv_own_msgs:1;
92 	unsigned int fd_frames:1;
93 	unsigned int xl_frames:1;
94 	unsigned int join_filters:1;
95 	struct can_raw_vcid_options raw_vcid_opts;
96 	canid_t tx_vcid_shifted;
97 	canid_t rx_vcid_shifted;
98 	canid_t rx_vcid_mask_shifted;
99 	can_err_mask_t err_mask;
100 	int count;                 /* number of active filters */
101 	struct can_filter dfilter; /* default/single filter */
102 	struct can_filter *filter; /* pointer to filter(s) */
103 	struct uniqframe __percpu *uniq;
104 };
105 
106 static LIST_HEAD(raw_notifier_list);
107 static DEFINE_SPINLOCK(raw_notifier_lock);
108 static struct raw_sock *raw_busy_notifier;
109 
110 /* Return pointer to store the extra msg flags for raw_recvmsg().
111  * We use the space of one unsigned int beyond the 'struct sockaddr_can'
112  * in skb->cb.
113  */
114 static inline unsigned int *raw_flags(struct sk_buff *skb)
115 {
116 	sock_skb_cb_check_size(sizeof(struct sockaddr_can) +
117 			       sizeof(unsigned int));
118 
119 	/* return pointer after struct sockaddr_can */
120 	return (unsigned int *)(&((struct sockaddr_can *)skb->cb)[1]);
121 }
122 
123 static inline struct raw_sock *raw_sk(const struct sock *sk)
124 {
125 	return (struct raw_sock *)sk;
126 }
127 
128 static void raw_rcv(struct sk_buff *oskb, void *data)
129 {
130 	struct sock *sk = (struct sock *)data;
131 	struct raw_sock *ro = raw_sk(sk);
132 	enum skb_drop_reason reason;
133 	struct sockaddr_can *addr;
134 	struct sk_buff *skb;
135 	unsigned int *pflags;
136 
137 	/* check the received tx sock reference */
138 	if (!ro->recv_own_msgs && oskb->sk == sk)
139 		return;
140 
141 	/* make sure to not pass oversized frames to the socket */
142 	if (!ro->fd_frames && can_is_canfd_skb(oskb))
143 		return;
144 
145 	if (can_is_canxl_skb(oskb)) {
146 		struct canxl_frame *cxl = (struct canxl_frame *)oskb->data;
147 
148 		/* make sure to not pass oversized frames to the socket */
149 		if (!ro->xl_frames)
150 			return;
151 
152 		/* filter CAN XL VCID content */
153 		if (ro->raw_vcid_opts.flags & CAN_RAW_XL_VCID_RX_FILTER) {
154 			/* apply VCID filter if user enabled the filter */
155 			if ((cxl->prio & ro->rx_vcid_mask_shifted) !=
156 			    (ro->rx_vcid_shifted & ro->rx_vcid_mask_shifted))
157 				return;
158 		} else {
159 			/* no filter => do not forward VCID tagged frames */
160 			if (cxl->prio & CANXL_VCID_MASK)
161 				return;
162 		}
163 	}
164 
165 	/* eliminate multiple filter matches for the same skb */
166 	if (this_cpu_ptr(ro->uniq)->skb == oskb &&
167 	    this_cpu_ptr(ro->uniq)->skbcnt == can_skb_prv(oskb)->skbcnt) {
168 		if (!ro->join_filters)
169 			return;
170 
171 		this_cpu_inc(ro->uniq->join_rx_count);
172 		/* drop frame until all enabled filters matched */
173 		if (this_cpu_ptr(ro->uniq)->join_rx_count < ro->count)
174 			return;
175 	} else {
176 		this_cpu_ptr(ro->uniq)->skb = oskb;
177 		this_cpu_ptr(ro->uniq)->skbcnt = can_skb_prv(oskb)->skbcnt;
178 		this_cpu_ptr(ro->uniq)->join_rx_count = 1;
179 		/* drop first frame to check all enabled filters? */
180 		if (ro->join_filters && ro->count > 1)
181 			return;
182 	}
183 
184 	/* clone the given skb to be able to enqueue it into the rcv queue */
185 	skb = skb_clone(oskb, GFP_ATOMIC);
186 	if (!skb)
187 		return;
188 
189 	/* Put the datagram to the queue so that raw_recvmsg() can get
190 	 * it from there. We need to pass the interface index to
191 	 * raw_recvmsg(). We pass a whole struct sockaddr_can in
192 	 * skb->cb containing the interface index.
193 	 */
194 
195 	sock_skb_cb_check_size(sizeof(struct sockaddr_can));
196 	addr = (struct sockaddr_can *)skb->cb;
197 	memset(addr, 0, sizeof(*addr));
198 	addr->can_family = AF_CAN;
199 	addr->can_ifindex = skb->dev->ifindex;
200 
201 	/* add CAN specific message flags for raw_recvmsg() */
202 	pflags = raw_flags(skb);
203 	*pflags = 0;
204 	if (oskb->sk)
205 		*pflags |= MSG_DONTROUTE;
206 	if (oskb->sk == sk)
207 		*pflags |= MSG_CONFIRM;
208 
209 	if (sock_queue_rcv_skb_reason(sk, skb, &reason) < 0)
210 		sk_skb_reason_drop(sk, skb, reason);
211 }
212 
213 static int raw_enable_filters(struct net *net, struct net_device *dev,
214 			      struct sock *sk, struct can_filter *filter,
215 			      int count)
216 {
217 	int err = 0;
218 	int i;
219 
220 	for (i = 0; i < count; i++) {
221 		err = can_rx_register(net, dev, filter[i].can_id,
222 				      filter[i].can_mask,
223 				      raw_rcv, sk, "raw", sk);
224 		if (err) {
225 			/* clean up successfully registered filters */
226 			while (--i >= 0)
227 				can_rx_unregister(net, dev, filter[i].can_id,
228 						  filter[i].can_mask,
229 						  raw_rcv, sk);
230 			break;
231 		}
232 	}
233 
234 	return err;
235 }
236 
237 static int raw_enable_errfilter(struct net *net, struct net_device *dev,
238 				struct sock *sk, can_err_mask_t err_mask)
239 {
240 	int err = 0;
241 
242 	if (err_mask)
243 		err = can_rx_register(net, dev, 0, err_mask | CAN_ERR_FLAG,
244 				      raw_rcv, sk, "raw", sk);
245 
246 	return err;
247 }
248 
249 static void raw_disable_filters(struct net *net, struct net_device *dev,
250 				struct sock *sk, struct can_filter *filter,
251 				int count)
252 {
253 	int i;
254 
255 	for (i = 0; i < count; i++)
256 		can_rx_unregister(net, dev, filter[i].can_id,
257 				  filter[i].can_mask, raw_rcv, sk);
258 }
259 
260 static inline void raw_disable_errfilter(struct net *net,
261 					 struct net_device *dev,
262 					 struct sock *sk,
263 					 can_err_mask_t err_mask)
264 
265 {
266 	if (err_mask)
267 		can_rx_unregister(net, dev, 0, err_mask | CAN_ERR_FLAG,
268 				  raw_rcv, sk);
269 }
270 
271 static inline void raw_disable_allfilters(struct net *net,
272 					  struct net_device *dev,
273 					  struct sock *sk)
274 {
275 	struct raw_sock *ro = raw_sk(sk);
276 
277 	raw_disable_filters(net, dev, sk, ro->filter, ro->count);
278 	raw_disable_errfilter(net, dev, sk, ro->err_mask);
279 }
280 
281 static int raw_enable_allfilters(struct net *net, struct net_device *dev,
282 				 struct sock *sk)
283 {
284 	struct raw_sock *ro = raw_sk(sk);
285 	int err;
286 
287 	err = raw_enable_filters(net, dev, sk, ro->filter, ro->count);
288 	if (!err) {
289 		err = raw_enable_errfilter(net, dev, sk, ro->err_mask);
290 		if (err)
291 			raw_disable_filters(net, dev, sk, ro->filter,
292 					    ro->count);
293 	}
294 
295 	return err;
296 }
297 
298 static void raw_notify(struct raw_sock *ro, unsigned long msg,
299 		       struct net_device *dev)
300 {
301 	struct sock *sk = &ro->sk;
302 
303 	if (!net_eq(dev_net(dev), sock_net(sk)))
304 		return;
305 
306 	if (ro->dev != dev)
307 		return;
308 
309 	switch (msg) {
310 	case NETDEV_UNREGISTER:
311 		lock_sock(sk);
312 		/* remove current filters & unregister */
313 		if (ro->bound) {
314 			raw_disable_allfilters(dev_net(dev), dev, sk);
315 			netdev_put(dev, &ro->dev_tracker);
316 		}
317 
318 		if (ro->count > 1)
319 			kfree(ro->filter);
320 
321 		ro->ifindex = 0;
322 		ro->bound = 0;
323 		ro->dev = NULL;
324 		ro->count = 0;
325 		release_sock(sk);
326 
327 		sk->sk_err = ENODEV;
328 		if (!sock_flag(sk, SOCK_DEAD))
329 			sk_error_report(sk);
330 		break;
331 
332 	case NETDEV_DOWN:
333 		sk->sk_err = ENETDOWN;
334 		if (!sock_flag(sk, SOCK_DEAD))
335 			sk_error_report(sk);
336 		break;
337 	}
338 }
339 
340 static int raw_notifier(struct notifier_block *nb, unsigned long msg,
341 			void *ptr)
342 {
343 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
344 
345 	if (dev->type != ARPHRD_CAN)
346 		return NOTIFY_DONE;
347 	if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
348 		return NOTIFY_DONE;
349 	if (unlikely(raw_busy_notifier)) /* Check for reentrant bug. */
350 		return NOTIFY_DONE;
351 
352 	spin_lock(&raw_notifier_lock);
353 	list_for_each_entry(raw_busy_notifier, &raw_notifier_list, notifier) {
354 		spin_unlock(&raw_notifier_lock);
355 		raw_notify(raw_busy_notifier, msg, dev);
356 		spin_lock(&raw_notifier_lock);
357 	}
358 	raw_busy_notifier = NULL;
359 	spin_unlock(&raw_notifier_lock);
360 	return NOTIFY_DONE;
361 }
362 
363 static int raw_init(struct sock *sk)
364 {
365 	struct raw_sock *ro = raw_sk(sk);
366 
367 	ro->bound            = 0;
368 	ro->ifindex          = 0;
369 	ro->dev              = NULL;
370 
371 	/* set default filter to single entry dfilter */
372 	ro->dfilter.can_id   = 0;
373 	ro->dfilter.can_mask = MASK_ALL;
374 	ro->filter           = &ro->dfilter;
375 	ro->count            = 1;
376 
377 	/* set default loopback behaviour */
378 	ro->loopback         = 1;
379 	ro->recv_own_msgs    = 0;
380 	ro->fd_frames        = 0;
381 	ro->xl_frames        = 0;
382 	ro->join_filters     = 0;
383 
384 	/* alloc_percpu provides zero'ed memory */
385 	ro->uniq = alloc_percpu(struct uniqframe);
386 	if (unlikely(!ro->uniq))
387 		return -ENOMEM;
388 
389 	/* set notifier */
390 	spin_lock(&raw_notifier_lock);
391 	list_add_tail(&ro->notifier, &raw_notifier_list);
392 	spin_unlock(&raw_notifier_lock);
393 
394 	return 0;
395 }
396 
397 static int raw_release(struct socket *sock)
398 {
399 	struct sock *sk = sock->sk;
400 	struct raw_sock *ro;
401 	struct net *net;
402 
403 	if (!sk)
404 		return 0;
405 
406 	ro = raw_sk(sk);
407 	net = sock_net(sk);
408 
409 	spin_lock(&raw_notifier_lock);
410 	while (raw_busy_notifier == ro) {
411 		spin_unlock(&raw_notifier_lock);
412 		schedule_timeout_uninterruptible(1);
413 		spin_lock(&raw_notifier_lock);
414 	}
415 	list_del(&ro->notifier);
416 	spin_unlock(&raw_notifier_lock);
417 
418 	rtnl_lock();
419 	lock_sock(sk);
420 
421 	/* remove current filters & unregister */
422 	if (ro->bound) {
423 		if (ro->dev) {
424 			raw_disable_allfilters(dev_net(ro->dev), ro->dev, sk);
425 			netdev_put(ro->dev, &ro->dev_tracker);
426 		} else {
427 			raw_disable_allfilters(net, NULL, sk);
428 		}
429 	}
430 
431 	if (ro->count > 1)
432 		kfree(ro->filter);
433 
434 	ro->ifindex = 0;
435 	ro->bound = 0;
436 	ro->dev = NULL;
437 	ro->count = 0;
438 	free_percpu(ro->uniq);
439 
440 	sock_orphan(sk);
441 	sock->sk = NULL;
442 
443 	release_sock(sk);
444 	rtnl_unlock();
445 
446 	sock_prot_inuse_add(net, sk->sk_prot, -1);
447 	sock_put(sk);
448 
449 	return 0;
450 }
451 
452 static int raw_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int len)
453 {
454 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
455 	struct sock *sk = sock->sk;
456 	struct raw_sock *ro = raw_sk(sk);
457 	struct net_device *dev = NULL;
458 	int ifindex;
459 	int err = 0;
460 	int notify_enetdown = 0;
461 
462 	if (len < RAW_MIN_NAMELEN)
463 		return -EINVAL;
464 	if (addr->can_family != AF_CAN)
465 		return -EINVAL;
466 
467 	rtnl_lock();
468 	lock_sock(sk);
469 
470 	if (ro->bound && addr->can_ifindex == ro->ifindex)
471 		goto out;
472 
473 	if (addr->can_ifindex) {
474 		dev = dev_get_by_index(sock_net(sk), addr->can_ifindex);
475 		if (!dev) {
476 			err = -ENODEV;
477 			goto out;
478 		}
479 		if (dev->type != ARPHRD_CAN) {
480 			err = -ENODEV;
481 			goto out_put_dev;
482 		}
483 
484 		if (!(dev->flags & IFF_UP))
485 			notify_enetdown = 1;
486 
487 		ifindex = dev->ifindex;
488 
489 		/* filters set by default/setsockopt */
490 		err = raw_enable_allfilters(sock_net(sk), dev, sk);
491 		if (err)
492 			goto out_put_dev;
493 
494 	} else {
495 		ifindex = 0;
496 
497 		/* filters set by default/setsockopt */
498 		err = raw_enable_allfilters(sock_net(sk), NULL, sk);
499 	}
500 
501 	if (!err) {
502 		if (ro->bound) {
503 			/* unregister old filters */
504 			if (ro->dev) {
505 				raw_disable_allfilters(dev_net(ro->dev),
506 						       ro->dev, sk);
507 				/* drop reference to old ro->dev */
508 				netdev_put(ro->dev, &ro->dev_tracker);
509 			} else {
510 				raw_disable_allfilters(sock_net(sk), NULL, sk);
511 			}
512 		}
513 		ro->ifindex = ifindex;
514 		ro->bound = 1;
515 		/* bind() ok -> hold a reference for new ro->dev */
516 		ro->dev = dev;
517 		if (ro->dev)
518 			netdev_hold(ro->dev, &ro->dev_tracker, GFP_KERNEL);
519 	}
520 
521 out_put_dev:
522 	/* remove potential reference from dev_get_by_index() */
523 	dev_put(dev);
524 out:
525 	release_sock(sk);
526 	rtnl_unlock();
527 
528 	if (notify_enetdown) {
529 		sk->sk_err = ENETDOWN;
530 		if (!sock_flag(sk, SOCK_DEAD))
531 			sk_error_report(sk);
532 	}
533 
534 	return err;
535 }
536 
537 static int raw_getname(struct socket *sock, struct sockaddr *uaddr,
538 		       int peer)
539 {
540 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
541 	struct sock *sk = sock->sk;
542 	struct raw_sock *ro = raw_sk(sk);
543 
544 	if (peer)
545 		return -EOPNOTSUPP;
546 
547 	memset(addr, 0, RAW_MIN_NAMELEN);
548 	addr->can_family  = AF_CAN;
549 	addr->can_ifindex = ro->ifindex;
550 
551 	return RAW_MIN_NAMELEN;
552 }
553 
554 static int raw_setsockopt(struct socket *sock, int level, int optname,
555 			  sockptr_t optval, unsigned int optlen)
556 {
557 	struct sock *sk = sock->sk;
558 	struct raw_sock *ro = raw_sk(sk);
559 	struct can_filter *filter = NULL;  /* dyn. alloc'ed filters */
560 	struct can_filter sfilter;         /* single filter */
561 	struct net_device *dev = NULL;
562 	can_err_mask_t err_mask = 0;
563 	int count = 0;
564 	int flag;
565 	int err = 0;
566 
567 	if (level != SOL_CAN_RAW)
568 		return -EINVAL;
569 
570 	switch (optname) {
571 	case CAN_RAW_FILTER:
572 		if (optlen % sizeof(struct can_filter) != 0)
573 			return -EINVAL;
574 
575 		if (optlen > CAN_RAW_FILTER_MAX * sizeof(struct can_filter))
576 			return -EINVAL;
577 
578 		count = optlen / sizeof(struct can_filter);
579 
580 		if (count > 1) {
581 			/* filter does not fit into dfilter => alloc space */
582 			filter = memdup_sockptr(optval, optlen);
583 			if (IS_ERR(filter))
584 				return PTR_ERR(filter);
585 		} else if (count == 1) {
586 			if (copy_from_sockptr(&sfilter, optval, sizeof(sfilter)))
587 				return -EFAULT;
588 		}
589 
590 		rtnl_lock();
591 		lock_sock(sk);
592 
593 		dev = ro->dev;
594 		if (ro->bound && dev) {
595 			if (dev->reg_state != NETREG_REGISTERED) {
596 				if (count > 1)
597 					kfree(filter);
598 				err = -ENODEV;
599 				goto out_fil;
600 			}
601 		}
602 
603 		if (ro->bound) {
604 			/* (try to) register the new filters */
605 			if (count == 1)
606 				err = raw_enable_filters(sock_net(sk), dev, sk,
607 							 &sfilter, 1);
608 			else
609 				err = raw_enable_filters(sock_net(sk), dev, sk,
610 							 filter, count);
611 			if (err) {
612 				if (count > 1)
613 					kfree(filter);
614 				goto out_fil;
615 			}
616 
617 			/* remove old filter registrations */
618 			raw_disable_filters(sock_net(sk), dev, sk, ro->filter,
619 					    ro->count);
620 		}
621 
622 		/* remove old filter space */
623 		if (ro->count > 1)
624 			kfree(ro->filter);
625 
626 		/* link new filters to the socket */
627 		if (count == 1) {
628 			/* copy filter data for single filter */
629 			ro->dfilter = sfilter;
630 			filter = &ro->dfilter;
631 		}
632 		ro->filter = filter;
633 		ro->count  = count;
634 
635  out_fil:
636 		release_sock(sk);
637 		rtnl_unlock();
638 
639 		break;
640 
641 	case CAN_RAW_ERR_FILTER:
642 		if (optlen != sizeof(err_mask))
643 			return -EINVAL;
644 
645 		if (copy_from_sockptr(&err_mask, optval, optlen))
646 			return -EFAULT;
647 
648 		err_mask &= CAN_ERR_MASK;
649 
650 		rtnl_lock();
651 		lock_sock(sk);
652 
653 		dev = ro->dev;
654 		if (ro->bound && dev) {
655 			if (dev->reg_state != NETREG_REGISTERED) {
656 				err = -ENODEV;
657 				goto out_err;
658 			}
659 		}
660 
661 		/* remove current error mask */
662 		if (ro->bound) {
663 			/* (try to) register the new err_mask */
664 			err = raw_enable_errfilter(sock_net(sk), dev, sk,
665 						   err_mask);
666 
667 			if (err)
668 				goto out_err;
669 
670 			/* remove old err_mask registration */
671 			raw_disable_errfilter(sock_net(sk), dev, sk,
672 					      ro->err_mask);
673 		}
674 
675 		/* link new err_mask to the socket */
676 		ro->err_mask = err_mask;
677 
678  out_err:
679 		release_sock(sk);
680 		rtnl_unlock();
681 
682 		break;
683 
684 	case CAN_RAW_LOOPBACK:
685 		if (optlen != sizeof(flag))
686 			return -EINVAL;
687 
688 		if (copy_from_sockptr(&flag, optval, optlen))
689 			return -EFAULT;
690 
691 		ro->loopback = !!flag;
692 		break;
693 
694 	case CAN_RAW_RECV_OWN_MSGS:
695 		if (optlen != sizeof(flag))
696 			return -EINVAL;
697 
698 		if (copy_from_sockptr(&flag, optval, optlen))
699 			return -EFAULT;
700 
701 		ro->recv_own_msgs = !!flag;
702 		break;
703 
704 	case CAN_RAW_FD_FRAMES:
705 		if (optlen != sizeof(flag))
706 			return -EINVAL;
707 
708 		if (copy_from_sockptr(&flag, optval, optlen))
709 			return -EFAULT;
710 
711 		/* Enabling CAN XL includes CAN FD */
712 		if (ro->xl_frames && !flag)
713 			return -EINVAL;
714 
715 		ro->fd_frames = !!flag;
716 		break;
717 
718 	case CAN_RAW_XL_FRAMES:
719 		if (optlen != sizeof(flag))
720 			return -EINVAL;
721 
722 		if (copy_from_sockptr(&flag, optval, optlen))
723 			return -EFAULT;
724 
725 		ro->xl_frames = !!flag;
726 
727 		/* Enabling CAN XL includes CAN FD */
728 		if (ro->xl_frames)
729 			ro->fd_frames = ro->xl_frames;
730 		break;
731 
732 	case CAN_RAW_XL_VCID_OPTS:
733 		if (optlen != sizeof(ro->raw_vcid_opts))
734 			return -EINVAL;
735 
736 		if (copy_from_sockptr(&ro->raw_vcid_opts, optval, optlen))
737 			return -EFAULT;
738 
739 		/* prepare 32 bit values for handling in hot path */
740 		ro->tx_vcid_shifted = ro->raw_vcid_opts.tx_vcid << CANXL_VCID_OFFSET;
741 		ro->rx_vcid_shifted = ro->raw_vcid_opts.rx_vcid << CANXL_VCID_OFFSET;
742 		ro->rx_vcid_mask_shifted = ro->raw_vcid_opts.rx_vcid_mask << CANXL_VCID_OFFSET;
743 		break;
744 
745 	case CAN_RAW_JOIN_FILTERS:
746 		if (optlen != sizeof(flag))
747 			return -EINVAL;
748 
749 		if (copy_from_sockptr(&flag, optval, optlen))
750 			return -EFAULT;
751 
752 		ro->join_filters = !!flag;
753 		break;
754 
755 	default:
756 		return -ENOPROTOOPT;
757 	}
758 	return err;
759 }
760 
761 static int raw_getsockopt(struct socket *sock, int level, int optname,
762 			  char __user *optval, int __user *optlen)
763 {
764 	struct sock *sk = sock->sk;
765 	struct raw_sock *ro = raw_sk(sk);
766 	int flag;
767 	int len;
768 	void *val;
769 
770 	if (level != SOL_CAN_RAW)
771 		return -EINVAL;
772 	if (get_user(len, optlen))
773 		return -EFAULT;
774 	if (len < 0)
775 		return -EINVAL;
776 
777 	switch (optname) {
778 	case CAN_RAW_FILTER: {
779 		int err = 0;
780 
781 		lock_sock(sk);
782 		if (ro->count > 0) {
783 			int fsize = ro->count * sizeof(struct can_filter);
784 
785 			/* user space buffer to small for filter list? */
786 			if (len < fsize) {
787 				/* return -ERANGE and needed space in optlen */
788 				err = -ERANGE;
789 				if (put_user(fsize, optlen))
790 					err = -EFAULT;
791 			} else {
792 				if (len > fsize)
793 					len = fsize;
794 				if (copy_to_user(optval, ro->filter, len))
795 					err = -EFAULT;
796 			}
797 		} else {
798 			len = 0;
799 		}
800 		release_sock(sk);
801 
802 		if (!err)
803 			err = put_user(len, optlen);
804 		return err;
805 	}
806 	case CAN_RAW_ERR_FILTER:
807 		if (len > sizeof(can_err_mask_t))
808 			len = sizeof(can_err_mask_t);
809 		val = &ro->err_mask;
810 		break;
811 
812 	case CAN_RAW_LOOPBACK:
813 		if (len > sizeof(int))
814 			len = sizeof(int);
815 		flag = ro->loopback;
816 		val = &flag;
817 		break;
818 
819 	case CAN_RAW_RECV_OWN_MSGS:
820 		if (len > sizeof(int))
821 			len = sizeof(int);
822 		flag = ro->recv_own_msgs;
823 		val = &flag;
824 		break;
825 
826 	case CAN_RAW_FD_FRAMES:
827 		if (len > sizeof(int))
828 			len = sizeof(int);
829 		flag = ro->fd_frames;
830 		val = &flag;
831 		break;
832 
833 	case CAN_RAW_XL_FRAMES:
834 		if (len > sizeof(int))
835 			len = sizeof(int);
836 		flag = ro->xl_frames;
837 		val = &flag;
838 		break;
839 
840 	case CAN_RAW_XL_VCID_OPTS: {
841 		int err = 0;
842 
843 		/* user space buffer to small for VCID opts? */
844 		if (len < sizeof(ro->raw_vcid_opts)) {
845 			/* return -ERANGE and needed space in optlen */
846 			err = -ERANGE;
847 			if (put_user(sizeof(ro->raw_vcid_opts), optlen))
848 				err = -EFAULT;
849 		} else {
850 			if (len > sizeof(ro->raw_vcid_opts))
851 				len = sizeof(ro->raw_vcid_opts);
852 			if (copy_to_user(optval, &ro->raw_vcid_opts, len))
853 				err = -EFAULT;
854 		}
855 		if (!err)
856 			err = put_user(len, optlen);
857 		return err;
858 	}
859 	case CAN_RAW_JOIN_FILTERS:
860 		if (len > sizeof(int))
861 			len = sizeof(int);
862 		flag = ro->join_filters;
863 		val = &flag;
864 		break;
865 
866 	default:
867 		return -ENOPROTOOPT;
868 	}
869 
870 	if (put_user(len, optlen))
871 		return -EFAULT;
872 	if (copy_to_user(optval, val, len))
873 		return -EFAULT;
874 	return 0;
875 }
876 
877 static void raw_put_canxl_vcid(struct raw_sock *ro, struct sk_buff *skb)
878 {
879 	struct canxl_frame *cxl = (struct canxl_frame *)skb->data;
880 
881 	/* sanitize non CAN XL bits */
882 	cxl->prio &= (CANXL_PRIO_MASK | CANXL_VCID_MASK);
883 
884 	/* clear VCID in CAN XL frame if pass through is disabled */
885 	if (!(ro->raw_vcid_opts.flags & CAN_RAW_XL_VCID_TX_PASS))
886 		cxl->prio &= CANXL_PRIO_MASK;
887 
888 	/* set VCID in CAN XL frame if enabled */
889 	if (ro->raw_vcid_opts.flags & CAN_RAW_XL_VCID_TX_SET) {
890 		cxl->prio &= CANXL_PRIO_MASK;
891 		cxl->prio |= ro->tx_vcid_shifted;
892 	}
893 }
894 
895 static inline bool raw_dev_cc_enabled(struct net_device *dev,
896 				      struct can_priv *priv)
897 {
898 	/* The CANXL-only mode disables error-signalling on the CAN bus
899 	 * which is needed to send CAN CC/FD frames
900 	 */
901 	if (priv)
902 		return !can_dev_in_xl_only_mode(priv);
903 
904 	/* virtual CAN interfaces always support CAN CC */
905 	return true;
906 }
907 
908 static inline bool raw_dev_fd_enabled(struct net_device *dev,
909 				      struct can_priv *priv)
910 {
911 	/* check FD ctrlmode on real CAN interfaces */
912 	if (priv)
913 		return (priv->ctrlmode & CAN_CTRLMODE_FD);
914 
915 	/* check MTU for virtual CAN FD interfaces */
916 	return (READ_ONCE(dev->mtu) >= CANFD_MTU);
917 }
918 
919 static inline bool raw_dev_xl_enabled(struct net_device *dev,
920 				      struct can_priv *priv)
921 {
922 	/* check XL ctrlmode on real CAN interfaces */
923 	if (priv)
924 		return (priv->ctrlmode & CAN_CTRLMODE_XL);
925 
926 	/* check MTU for virtual CAN XL interfaces */
927 	return can_is_canxl_dev_mtu(READ_ONCE(dev->mtu));
928 }
929 
930 static unsigned int raw_check_txframe(struct raw_sock *ro, struct sk_buff *skb,
931 				      struct net_device *dev)
932 {
933 	struct can_priv *priv = safe_candev_priv(dev);
934 
935 	/* Classical CAN */
936 	if (can_is_can_skb(skb) && raw_dev_cc_enabled(dev, priv))
937 		return CAN_MTU;
938 
939 	/* CAN FD */
940 	if (ro->fd_frames && can_is_canfd_skb(skb) &&
941 	    raw_dev_fd_enabled(dev, priv))
942 		return CANFD_MTU;
943 
944 	/* CAN XL */
945 	if (ro->xl_frames && can_is_canxl_skb(skb) &&
946 	    raw_dev_xl_enabled(dev, priv))
947 		return CANXL_MTU;
948 
949 	return 0;
950 }
951 
952 static int raw_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
953 {
954 	struct sock *sk = sock->sk;
955 	struct raw_sock *ro = raw_sk(sk);
956 	struct sockcm_cookie sockc;
957 	struct sk_buff *skb;
958 	struct net_device *dev;
959 	unsigned int txmtu;
960 	int ifindex;
961 	int err = -EINVAL;
962 
963 	/* check for valid CAN frame sizes */
964 	if (size < CANXL_HDR_SIZE + CANXL_MIN_DLEN || size > CANXL_MTU)
965 		return -EINVAL;
966 
967 	if (msg->msg_name) {
968 		DECLARE_SOCKADDR(struct sockaddr_can *, addr, msg->msg_name);
969 
970 		if (msg->msg_namelen < RAW_MIN_NAMELEN)
971 			return -EINVAL;
972 
973 		if (addr->can_family != AF_CAN)
974 			return -EINVAL;
975 
976 		ifindex = addr->can_ifindex;
977 	} else {
978 		ifindex = ro->ifindex;
979 	}
980 
981 	dev = dev_get_by_index(sock_net(sk), ifindex);
982 	if (!dev)
983 		return -ENXIO;
984 
985 	skb = sock_alloc_send_skb(sk, size + sizeof(struct can_skb_priv),
986 				  msg->msg_flags & MSG_DONTWAIT, &err);
987 	if (!skb)
988 		goto put_dev;
989 
990 	can_skb_reserve(skb);
991 	can_skb_prv(skb)->ifindex = dev->ifindex;
992 	can_skb_prv(skb)->skbcnt = 0;
993 
994 	/* fill the skb before testing for valid CAN frames */
995 	err = memcpy_from_msg(skb_put(skb, size), msg, size);
996 	if (err < 0)
997 		goto free_skb;
998 
999 	err = -EINVAL;
1000 
1001 	/* check for valid CAN (CC/FD/XL) frame content */
1002 	txmtu = raw_check_txframe(ro, skb, dev);
1003 	if (!txmtu)
1004 		goto free_skb;
1005 
1006 	/* only CANXL: clear/forward/set VCID value */
1007 	if (txmtu == CANXL_MTU)
1008 		raw_put_canxl_vcid(ro, skb);
1009 
1010 	sockcm_init(&sockc, sk);
1011 	if (msg->msg_controllen) {
1012 		err = sock_cmsg_send(sk, msg, &sockc);
1013 		if (unlikely(err))
1014 			goto free_skb;
1015 	}
1016 
1017 	skb->dev = dev;
1018 	skb->priority = sockc.priority;
1019 	skb->mark = sockc.mark;
1020 	skb->tstamp = sockc.transmit_time;
1021 
1022 	skb_setup_tx_timestamp(skb, &sockc);
1023 
1024 	err = can_send(skb, ro->loopback);
1025 
1026 	dev_put(dev);
1027 
1028 	if (err)
1029 		goto send_failed;
1030 
1031 	return size;
1032 
1033 free_skb:
1034 	kfree_skb(skb);
1035 put_dev:
1036 	dev_put(dev);
1037 send_failed:
1038 	return err;
1039 }
1040 
1041 static int raw_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1042 		       int flags)
1043 {
1044 	struct sock *sk = sock->sk;
1045 	struct sk_buff *skb;
1046 	int err = 0;
1047 
1048 	if (flags & MSG_ERRQUEUE)
1049 		return sock_recv_errqueue(sk, msg, size,
1050 					  SOL_CAN_RAW, SCM_CAN_RAW_ERRQUEUE);
1051 
1052 	skb = skb_recv_datagram(sk, flags, &err);
1053 	if (!skb)
1054 		return err;
1055 
1056 	if (size < skb->len)
1057 		msg->msg_flags |= MSG_TRUNC;
1058 	else
1059 		size = skb->len;
1060 
1061 	err = memcpy_to_msg(msg, skb->data, size);
1062 	if (err < 0) {
1063 		skb_free_datagram(sk, skb);
1064 		return err;
1065 	}
1066 
1067 	sock_recv_cmsgs(msg, sk, skb);
1068 
1069 	if (msg->msg_name) {
1070 		__sockaddr_check_size(RAW_MIN_NAMELEN);
1071 		msg->msg_namelen = RAW_MIN_NAMELEN;
1072 		memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1073 	}
1074 
1075 	/* assign the flags that have been recorded in raw_rcv() */
1076 	msg->msg_flags |= *(raw_flags(skb));
1077 
1078 	skb_free_datagram(sk, skb);
1079 
1080 	return size;
1081 }
1082 
1083 static int raw_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1084 				unsigned long arg)
1085 {
1086 	/* no ioctls for socket layer -> hand it down to NIC layer */
1087 	return -ENOIOCTLCMD;
1088 }
1089 
1090 static const struct proto_ops raw_ops = {
1091 	.family        = PF_CAN,
1092 	.release       = raw_release,
1093 	.bind          = raw_bind,
1094 	.connect       = sock_no_connect,
1095 	.socketpair    = sock_no_socketpair,
1096 	.accept        = sock_no_accept,
1097 	.getname       = raw_getname,
1098 	.poll          = datagram_poll,
1099 	.ioctl         = raw_sock_no_ioctlcmd,
1100 	.gettstamp     = sock_gettstamp,
1101 	.listen        = sock_no_listen,
1102 	.shutdown      = sock_no_shutdown,
1103 	.setsockopt    = raw_setsockopt,
1104 	.getsockopt    = raw_getsockopt,
1105 	.sendmsg       = raw_sendmsg,
1106 	.recvmsg       = raw_recvmsg,
1107 	.mmap          = sock_no_mmap,
1108 };
1109 
1110 static struct proto raw_proto __read_mostly = {
1111 	.name       = "CAN_RAW",
1112 	.owner      = THIS_MODULE,
1113 	.obj_size   = sizeof(struct raw_sock),
1114 	.init       = raw_init,
1115 };
1116 
1117 static const struct can_proto raw_can_proto = {
1118 	.type       = SOCK_RAW,
1119 	.protocol   = CAN_RAW,
1120 	.ops        = &raw_ops,
1121 	.prot       = &raw_proto,
1122 };
1123 
1124 static struct notifier_block canraw_notifier = {
1125 	.notifier_call = raw_notifier
1126 };
1127 
1128 static __init int raw_module_init(void)
1129 {
1130 	int err;
1131 
1132 	pr_info("can: raw protocol\n");
1133 
1134 	err = register_netdevice_notifier(&canraw_notifier);
1135 	if (err)
1136 		return err;
1137 
1138 	err = can_proto_register(&raw_can_proto);
1139 	if (err < 0) {
1140 		pr_err("can: registration of raw protocol failed\n");
1141 		goto register_proto_failed;
1142 	}
1143 
1144 	return 0;
1145 
1146 register_proto_failed:
1147 	unregister_netdevice_notifier(&canraw_notifier);
1148 	return err;
1149 }
1150 
1151 static __exit void raw_module_exit(void)
1152 {
1153 	can_proto_unregister(&raw_can_proto);
1154 	unregister_netdevice_notifier(&canraw_notifier);
1155 }
1156 
1157 module_init(raw_module_init);
1158 module_exit(raw_module_exit);
1159