xref: /linux/net/can/isotp.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
3  *
4  * This implementation does not provide ISO-TP specific return values to the
5  * userspace.
6  *
7  * - RX path timeout of data reception leads to -ETIMEDOUT
8  * - RX path SN mismatch leads to -EILSEQ
9  * - RX path data reception with wrong padding leads to -EBADMSG
10  * - TX path flowcontrol reception timeout leads to -ECOMM
11  * - TX path flowcontrol reception overflow leads to -EMSGSIZE
12  * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
13  * - when a transfer (tx) is on the run the next write() blocks until it's done
14  * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
15  * - as we have static buffers the check whether the PDU fits into the buffer
16  *   is done at FF reception time (no support for sending 'wait frames')
17  * - take care of the tx-queue-len as traffic shaping is still on the TODO list
18  *
19  * Copyright (c) 2020 Volkswagen Group Electronic Research
20  * All rights reserved.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the above copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. Neither the name of Volkswagen nor the names of its contributors
31  *    may be used to endorse or promote products derived from this software
32  *    without specific prior written permission.
33  *
34  * Alternatively, provided that this notice is retained in full, this
35  * software may be distributed under the terms of the GNU General
36  * Public License ("GPL") version 2, in which case the provisions of the
37  * GPL apply INSTEAD OF those given above.
38  *
39  * The provided data structures and external interfaces from this code
40  * are not restricted to be used by modules with a GPL compatible license.
41  *
42  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
43  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
44  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
45  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
46  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
48  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
49  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
50  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
51  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
52  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
53  * DAMAGE.
54  */
55 
56 #include <linux/module.h>
57 #include <linux/init.h>
58 #include <linux/interrupt.h>
59 #include <linux/hrtimer.h>
60 #include <linux/wait.h>
61 #include <linux/uio.h>
62 #include <linux/net.h>
63 #include <linux/netdevice.h>
64 #include <linux/socket.h>
65 #include <linux/if_arp.h>
66 #include <linux/skbuff.h>
67 #include <linux/can.h>
68 #include <linux/can/core.h>
69 #include <linux/can/skb.h>
70 #include <linux/can/isotp.h>
71 #include <linux/slab.h>
72 #include <net/sock.h>
73 #include <net/net_namespace.h>
74 
75 MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
76 MODULE_LICENSE("Dual BSD/GPL");
77 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
78 MODULE_ALIAS("can-proto-6");
79 
80 #define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
81 
82 #define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
83 			 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
84 			 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
85 
86 /* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
87  * take full 32 bit values (4 Gbyte). We would need some good concept to handle
88  * this between user space and kernel space. For now increase the static buffer
89  * to something about 8 kbyte to be able to test this new functionality.
90  */
91 #define MAX_MSG_LENGTH 8200
92 
93 /* N_PCI type values in bits 7-4 of N_PCI bytes */
94 #define N_PCI_SF 0x00	/* single frame */
95 #define N_PCI_FF 0x10	/* first frame */
96 #define N_PCI_CF 0x20	/* consecutive frame */
97 #define N_PCI_FC 0x30	/* flow control */
98 
99 #define N_PCI_SZ 1	/* size of the PCI byte #1 */
100 #define SF_PCI_SZ4 1	/* size of SingleFrame PCI including 4 bit SF_DL */
101 #define SF_PCI_SZ8 2	/* size of SingleFrame PCI including 8 bit SF_DL */
102 #define FF_PCI_SZ12 2	/* size of FirstFrame PCI including 12 bit FF_DL */
103 #define FF_PCI_SZ32 6	/* size of FirstFrame PCI including 32 bit FF_DL */
104 #define FC_CONTENT_SZ 3	/* flow control content size in byte (FS/BS/STmin) */
105 
106 #define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
107 
108 /* Flow Status given in FC frame */
109 #define ISOTP_FC_CTS 0		/* clear to send */
110 #define ISOTP_FC_WT 1		/* wait */
111 #define ISOTP_FC_OVFLW 2	/* overflow */
112 
113 enum {
114 	ISOTP_IDLE = 0,
115 	ISOTP_WAIT_FIRST_FC,
116 	ISOTP_WAIT_FC,
117 	ISOTP_WAIT_DATA,
118 	ISOTP_SENDING
119 };
120 
121 struct tpcon {
122 	int idx;
123 	int len;
124 	u8 state;
125 	u8 bs;
126 	u8 sn;
127 	u8 ll_dl;
128 	u8 buf[MAX_MSG_LENGTH + 1];
129 };
130 
131 struct isotp_sock {
132 	struct sock sk;
133 	int bound;
134 	int ifindex;
135 	canid_t txid;
136 	canid_t rxid;
137 	ktime_t tx_gap;
138 	ktime_t lastrxcf_tstamp;
139 	struct hrtimer rxtimer, txtimer;
140 	struct can_isotp_options opt;
141 	struct can_isotp_fc_options rxfc, txfc;
142 	struct can_isotp_ll_options ll;
143 	u32 force_tx_stmin;
144 	u32 force_rx_stmin;
145 	struct tpcon rx, tx;
146 	struct list_head notifier;
147 	wait_queue_head_t wait;
148 };
149 
150 static LIST_HEAD(isotp_notifier_list);
151 static DEFINE_SPINLOCK(isotp_notifier_lock);
152 static struct isotp_sock *isotp_busy_notifier;
153 
154 static inline struct isotp_sock *isotp_sk(const struct sock *sk)
155 {
156 	return (struct isotp_sock *)sk;
157 }
158 
159 static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
160 {
161 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
162 					     rxtimer);
163 	struct sock *sk = &so->sk;
164 
165 	if (so->rx.state == ISOTP_WAIT_DATA) {
166 		/* we did not get new data frames in time */
167 
168 		/* report 'connection timed out' */
169 		sk->sk_err = ETIMEDOUT;
170 		if (!sock_flag(sk, SOCK_DEAD))
171 			sk_error_report(sk);
172 
173 		/* reset rx state */
174 		so->rx.state = ISOTP_IDLE;
175 	}
176 
177 	return HRTIMER_NORESTART;
178 }
179 
180 static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
181 {
182 	struct net_device *dev;
183 	struct sk_buff *nskb;
184 	struct canfd_frame *ncf;
185 	struct isotp_sock *so = isotp_sk(sk);
186 	int can_send_ret;
187 
188 	nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
189 	if (!nskb)
190 		return 1;
191 
192 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
193 	if (!dev) {
194 		kfree_skb(nskb);
195 		return 1;
196 	}
197 
198 	can_skb_reserve(nskb);
199 	can_skb_prv(nskb)->ifindex = dev->ifindex;
200 	can_skb_prv(nskb)->skbcnt = 0;
201 
202 	nskb->dev = dev;
203 	can_skb_set_owner(nskb, sk);
204 	ncf = (struct canfd_frame *)nskb->data;
205 	skb_put_zero(nskb, so->ll.mtu);
206 
207 	/* create & send flow control reply */
208 	ncf->can_id = so->txid;
209 
210 	if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
211 		memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
212 		ncf->len = CAN_MAX_DLEN;
213 	} else {
214 		ncf->len = ae + FC_CONTENT_SZ;
215 	}
216 
217 	ncf->data[ae] = N_PCI_FC | flowstatus;
218 	ncf->data[ae + 1] = so->rxfc.bs;
219 	ncf->data[ae + 2] = so->rxfc.stmin;
220 
221 	if (ae)
222 		ncf->data[0] = so->opt.ext_address;
223 
224 	ncf->flags = so->ll.tx_flags;
225 
226 	can_send_ret = can_send(nskb, 1);
227 	if (can_send_ret)
228 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
229 			       __func__, ERR_PTR(can_send_ret));
230 
231 	dev_put(dev);
232 
233 	/* reset blocksize counter */
234 	so->rx.bs = 0;
235 
236 	/* reset last CF frame rx timestamp for rx stmin enforcement */
237 	so->lastrxcf_tstamp = ktime_set(0, 0);
238 
239 	/* start rx timeout watchdog */
240 	hrtimer_start(&so->rxtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
241 	return 0;
242 }
243 
244 static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
245 {
246 	struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
247 
248 	BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
249 
250 	memset(addr, 0, sizeof(*addr));
251 	addr->can_family = AF_CAN;
252 	addr->can_ifindex = skb->dev->ifindex;
253 
254 	if (sock_queue_rcv_skb(sk, skb) < 0)
255 		kfree_skb(skb);
256 }
257 
258 static u8 padlen(u8 datalen)
259 {
260 	static const u8 plen[] = {
261 		8, 8, 8, 8, 8, 8, 8, 8, 8,	/* 0 - 8 */
262 		12, 12, 12, 12,			/* 9 - 12 */
263 		16, 16, 16, 16,			/* 13 - 16 */
264 		20, 20, 20, 20,			/* 17 - 20 */
265 		24, 24, 24, 24,			/* 21 - 24 */
266 		32, 32, 32, 32, 32, 32, 32, 32,	/* 25 - 32 */
267 		48, 48, 48, 48, 48, 48, 48, 48,	/* 33 - 40 */
268 		48, 48, 48, 48, 48, 48, 48, 48	/* 41 - 48 */
269 	};
270 
271 	if (datalen > 48)
272 		return 64;
273 
274 	return plen[datalen];
275 }
276 
277 /* check for length optimization and return 1/true when the check fails */
278 static int check_optimized(struct canfd_frame *cf, int start_index)
279 {
280 	/* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
281 	 * padding would start at this point. E.g. if the padding would
282 	 * start at cf.data[7] cf->len has to be 7 to be optimal.
283 	 * Note: The data[] index starts with zero.
284 	 */
285 	if (cf->len <= CAN_MAX_DLEN)
286 		return (cf->len != start_index);
287 
288 	/* This relation is also valid in the non-linear DLC range, where
289 	 * we need to take care of the minimal next possible CAN_DL.
290 	 * The correct check would be (padlen(cf->len) != padlen(start_index)).
291 	 * But as cf->len can only take discrete values from 12, .., 64 at this
292 	 * point the padlen(cf->len) is always equal to cf->len.
293 	 */
294 	return (cf->len != padlen(start_index));
295 }
296 
297 /* check padding and return 1/true when the check fails */
298 static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
299 		     int start_index, u8 content)
300 {
301 	int i;
302 
303 	/* no RX_PADDING value => check length of optimized frame length */
304 	if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
305 		if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
306 			return check_optimized(cf, start_index);
307 
308 		/* no valid test against empty value => ignore frame */
309 		return 1;
310 	}
311 
312 	/* check datalength of correctly padded CAN frame */
313 	if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
314 	    cf->len != padlen(cf->len))
315 		return 1;
316 
317 	/* check padding content */
318 	if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
319 		for (i = start_index; i < cf->len; i++)
320 			if (cf->data[i] != content)
321 				return 1;
322 	}
323 	return 0;
324 }
325 
326 static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
327 {
328 	struct sock *sk = &so->sk;
329 
330 	if (so->tx.state != ISOTP_WAIT_FC &&
331 	    so->tx.state != ISOTP_WAIT_FIRST_FC)
332 		return 0;
333 
334 	hrtimer_cancel(&so->txtimer);
335 
336 	if ((cf->len < ae + FC_CONTENT_SZ) ||
337 	    ((so->opt.flags & ISOTP_CHECK_PADDING) &&
338 	     check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
339 		/* malformed PDU - report 'not a data message' */
340 		sk->sk_err = EBADMSG;
341 		if (!sock_flag(sk, SOCK_DEAD))
342 			sk_error_report(sk);
343 
344 		so->tx.state = ISOTP_IDLE;
345 		wake_up_interruptible(&so->wait);
346 		return 1;
347 	}
348 
349 	/* get communication parameters only from the first FC frame */
350 	if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
351 		so->txfc.bs = cf->data[ae + 1];
352 		so->txfc.stmin = cf->data[ae + 2];
353 
354 		/* fix wrong STmin values according spec */
355 		if (so->txfc.stmin > 0x7F &&
356 		    (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
357 			so->txfc.stmin = 0x7F;
358 
359 		so->tx_gap = ktime_set(0, 0);
360 		/* add transmission time for CAN frame N_As */
361 		so->tx_gap = ktime_add_ns(so->tx_gap, so->opt.frame_txtime);
362 		/* add waiting time for consecutive frames N_Cs */
363 		if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
364 			so->tx_gap = ktime_add_ns(so->tx_gap,
365 						  so->force_tx_stmin);
366 		else if (so->txfc.stmin < 0x80)
367 			so->tx_gap = ktime_add_ns(so->tx_gap,
368 						  so->txfc.stmin * 1000000);
369 		else
370 			so->tx_gap = ktime_add_ns(so->tx_gap,
371 						  (so->txfc.stmin - 0xF0)
372 						  * 100000);
373 		so->tx.state = ISOTP_WAIT_FC;
374 	}
375 
376 	switch (cf->data[ae] & 0x0F) {
377 	case ISOTP_FC_CTS:
378 		so->tx.bs = 0;
379 		so->tx.state = ISOTP_SENDING;
380 		/* start cyclic timer for sending CF frame */
381 		hrtimer_start(&so->txtimer, so->tx_gap,
382 			      HRTIMER_MODE_REL_SOFT);
383 		break;
384 
385 	case ISOTP_FC_WT:
386 		/* start timer to wait for next FC frame */
387 		hrtimer_start(&so->txtimer, ktime_set(1, 0),
388 			      HRTIMER_MODE_REL_SOFT);
389 		break;
390 
391 	case ISOTP_FC_OVFLW:
392 		/* overflow on receiver side - report 'message too long' */
393 		sk->sk_err = EMSGSIZE;
394 		if (!sock_flag(sk, SOCK_DEAD))
395 			sk_error_report(sk);
396 		fallthrough;
397 
398 	default:
399 		/* stop this tx job */
400 		so->tx.state = ISOTP_IDLE;
401 		wake_up_interruptible(&so->wait);
402 	}
403 	return 0;
404 }
405 
406 static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
407 			struct sk_buff *skb, int len)
408 {
409 	struct isotp_sock *so = isotp_sk(sk);
410 	struct sk_buff *nskb;
411 
412 	hrtimer_cancel(&so->rxtimer);
413 	so->rx.state = ISOTP_IDLE;
414 
415 	if (!len || len > cf->len - pcilen)
416 		return 1;
417 
418 	if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
419 	    check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
420 		/* malformed PDU - report 'not a data message' */
421 		sk->sk_err = EBADMSG;
422 		if (!sock_flag(sk, SOCK_DEAD))
423 			sk_error_report(sk);
424 		return 1;
425 	}
426 
427 	nskb = alloc_skb(len, gfp_any());
428 	if (!nskb)
429 		return 1;
430 
431 	memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
432 
433 	nskb->tstamp = skb->tstamp;
434 	nskb->dev = skb->dev;
435 	isotp_rcv_skb(nskb, sk);
436 	return 0;
437 }
438 
439 static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
440 {
441 	struct isotp_sock *so = isotp_sk(sk);
442 	int i;
443 	int off;
444 	int ff_pci_sz;
445 
446 	hrtimer_cancel(&so->rxtimer);
447 	so->rx.state = ISOTP_IDLE;
448 
449 	/* get the used sender LL_DL from the (first) CAN frame data length */
450 	so->rx.ll_dl = padlen(cf->len);
451 
452 	/* the first frame has to use the entire frame up to LL_DL length */
453 	if (cf->len != so->rx.ll_dl)
454 		return 1;
455 
456 	/* get the FF_DL */
457 	so->rx.len = (cf->data[ae] & 0x0F) << 8;
458 	so->rx.len += cf->data[ae + 1];
459 
460 	/* Check for FF_DL escape sequence supporting 32 bit PDU length */
461 	if (so->rx.len) {
462 		ff_pci_sz = FF_PCI_SZ12;
463 	} else {
464 		/* FF_DL = 0 => get real length from next 4 bytes */
465 		so->rx.len = cf->data[ae + 2] << 24;
466 		so->rx.len += cf->data[ae + 3] << 16;
467 		so->rx.len += cf->data[ae + 4] << 8;
468 		so->rx.len += cf->data[ae + 5];
469 		ff_pci_sz = FF_PCI_SZ32;
470 	}
471 
472 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
473 	off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
474 
475 	if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
476 		return 1;
477 
478 	if (so->rx.len > MAX_MSG_LENGTH) {
479 		/* send FC frame with overflow status */
480 		isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
481 		return 1;
482 	}
483 
484 	/* copy the first received data bytes */
485 	so->rx.idx = 0;
486 	for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
487 		so->rx.buf[so->rx.idx++] = cf->data[i];
488 
489 	/* initial setup for this pdu reception */
490 	so->rx.sn = 1;
491 	so->rx.state = ISOTP_WAIT_DATA;
492 
493 	/* no creation of flow control frames */
494 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
495 		return 0;
496 
497 	/* send our first FC frame */
498 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
499 	return 0;
500 }
501 
502 static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
503 			struct sk_buff *skb)
504 {
505 	struct isotp_sock *so = isotp_sk(sk);
506 	struct sk_buff *nskb;
507 	int i;
508 
509 	if (so->rx.state != ISOTP_WAIT_DATA)
510 		return 0;
511 
512 	/* drop if timestamp gap is less than force_rx_stmin nano secs */
513 	if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
514 		if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
515 		    so->force_rx_stmin)
516 			return 0;
517 
518 		so->lastrxcf_tstamp = skb->tstamp;
519 	}
520 
521 	hrtimer_cancel(&so->rxtimer);
522 
523 	/* CFs are never longer than the FF */
524 	if (cf->len > so->rx.ll_dl)
525 		return 1;
526 
527 	/* CFs have usually the LL_DL length */
528 	if (cf->len < so->rx.ll_dl) {
529 		/* this is only allowed for the last CF */
530 		if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
531 			return 1;
532 	}
533 
534 	if ((cf->data[ae] & 0x0F) != so->rx.sn) {
535 		/* wrong sn detected - report 'illegal byte sequence' */
536 		sk->sk_err = EILSEQ;
537 		if (!sock_flag(sk, SOCK_DEAD))
538 			sk_error_report(sk);
539 
540 		/* reset rx state */
541 		so->rx.state = ISOTP_IDLE;
542 		return 1;
543 	}
544 	so->rx.sn++;
545 	so->rx.sn %= 16;
546 
547 	for (i = ae + N_PCI_SZ; i < cf->len; i++) {
548 		so->rx.buf[so->rx.idx++] = cf->data[i];
549 		if (so->rx.idx >= so->rx.len)
550 			break;
551 	}
552 
553 	if (so->rx.idx >= so->rx.len) {
554 		/* we are done */
555 		so->rx.state = ISOTP_IDLE;
556 
557 		if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
558 		    check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
559 			/* malformed PDU - report 'not a data message' */
560 			sk->sk_err = EBADMSG;
561 			if (!sock_flag(sk, SOCK_DEAD))
562 				sk_error_report(sk);
563 			return 1;
564 		}
565 
566 		nskb = alloc_skb(so->rx.len, gfp_any());
567 		if (!nskb)
568 			return 1;
569 
570 		memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
571 		       so->rx.len);
572 
573 		nskb->tstamp = skb->tstamp;
574 		nskb->dev = skb->dev;
575 		isotp_rcv_skb(nskb, sk);
576 		return 0;
577 	}
578 
579 	/* perform blocksize handling, if enabled */
580 	if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
581 		/* start rx timeout watchdog */
582 		hrtimer_start(&so->rxtimer, ktime_set(1, 0),
583 			      HRTIMER_MODE_REL_SOFT);
584 		return 0;
585 	}
586 
587 	/* no creation of flow control frames */
588 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
589 		return 0;
590 
591 	/* we reached the specified blocksize so->rxfc.bs */
592 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
593 	return 0;
594 }
595 
596 static void isotp_rcv(struct sk_buff *skb, void *data)
597 {
598 	struct sock *sk = (struct sock *)data;
599 	struct isotp_sock *so = isotp_sk(sk);
600 	struct canfd_frame *cf;
601 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
602 	u8 n_pci_type, sf_dl;
603 
604 	/* Strictly receive only frames with the configured MTU size
605 	 * => clear separation of CAN2.0 / CAN FD transport channels
606 	 */
607 	if (skb->len != so->ll.mtu)
608 		return;
609 
610 	cf = (struct canfd_frame *)skb->data;
611 
612 	/* if enabled: check reception of my configured extended address */
613 	if (ae && cf->data[0] != so->opt.rx_ext_address)
614 		return;
615 
616 	n_pci_type = cf->data[ae] & 0xF0;
617 
618 	if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
619 		/* check rx/tx path half duplex expectations */
620 		if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
621 		    (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
622 			return;
623 	}
624 
625 	switch (n_pci_type) {
626 	case N_PCI_FC:
627 		/* tx path: flow control frame containing the FC parameters */
628 		isotp_rcv_fc(so, cf, ae);
629 		break;
630 
631 	case N_PCI_SF:
632 		/* rx path: single frame
633 		 *
634 		 * As we do not have a rx.ll_dl configuration, we can only test
635 		 * if the CAN frames payload length matches the LL_DL == 8
636 		 * requirements - no matter if it's CAN 2.0 or CAN FD
637 		 */
638 
639 		/* get the SF_DL from the N_PCI byte */
640 		sf_dl = cf->data[ae] & 0x0F;
641 
642 		if (cf->len <= CAN_MAX_DLEN) {
643 			isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
644 		} else {
645 			if (skb->len == CANFD_MTU) {
646 				/* We have a CAN FD frame and CAN_DL is greater than 8:
647 				 * Only frames with the SF_DL == 0 ESC value are valid.
648 				 *
649 				 * If so take care of the increased SF PCI size
650 				 * (SF_PCI_SZ8) to point to the message content behind
651 				 * the extended SF PCI info and get the real SF_DL
652 				 * length value from the formerly first data byte.
653 				 */
654 				if (sf_dl == 0)
655 					isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
656 						     cf->data[SF_PCI_SZ4 + ae]);
657 			}
658 		}
659 		break;
660 
661 	case N_PCI_FF:
662 		/* rx path: first frame */
663 		isotp_rcv_ff(sk, cf, ae);
664 		break;
665 
666 	case N_PCI_CF:
667 		/* rx path: consecutive frame */
668 		isotp_rcv_cf(sk, cf, ae, skb);
669 		break;
670 	}
671 }
672 
673 static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
674 				 int ae, int off)
675 {
676 	int pcilen = N_PCI_SZ + ae + off;
677 	int space = so->tx.ll_dl - pcilen;
678 	int num = min_t(int, so->tx.len - so->tx.idx, space);
679 	int i;
680 
681 	cf->can_id = so->txid;
682 	cf->len = num + pcilen;
683 
684 	if (num < space) {
685 		if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
686 			/* user requested padding */
687 			cf->len = padlen(cf->len);
688 			memset(cf->data, so->opt.txpad_content, cf->len);
689 		} else if (cf->len > CAN_MAX_DLEN) {
690 			/* mandatory padding for CAN FD frames */
691 			cf->len = padlen(cf->len);
692 			memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
693 			       cf->len);
694 		}
695 	}
696 
697 	for (i = 0; i < num; i++)
698 		cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
699 
700 	if (ae)
701 		cf->data[0] = so->opt.ext_address;
702 }
703 
704 static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
705 				int ae)
706 {
707 	int i;
708 	int ff_pci_sz;
709 
710 	cf->can_id = so->txid;
711 	cf->len = so->tx.ll_dl;
712 	if (ae)
713 		cf->data[0] = so->opt.ext_address;
714 
715 	/* create N_PCI bytes with 12/32 bit FF_DL data length */
716 	if (so->tx.len > 4095) {
717 		/* use 32 bit FF_DL notation */
718 		cf->data[ae] = N_PCI_FF;
719 		cf->data[ae + 1] = 0;
720 		cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
721 		cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
722 		cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
723 		cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
724 		ff_pci_sz = FF_PCI_SZ32;
725 	} else {
726 		/* use 12 bit FF_DL notation */
727 		cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
728 		cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
729 		ff_pci_sz = FF_PCI_SZ12;
730 	}
731 
732 	/* add first data bytes depending on ae */
733 	for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
734 		cf->data[i] = so->tx.buf[so->tx.idx++];
735 
736 	so->tx.sn = 1;
737 	so->tx.state = ISOTP_WAIT_FIRST_FC;
738 }
739 
740 static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
741 {
742 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
743 					     txtimer);
744 	struct sock *sk = &so->sk;
745 	struct sk_buff *skb;
746 	struct net_device *dev;
747 	struct canfd_frame *cf;
748 	enum hrtimer_restart restart = HRTIMER_NORESTART;
749 	int can_send_ret;
750 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
751 
752 	switch (so->tx.state) {
753 	case ISOTP_WAIT_FC:
754 	case ISOTP_WAIT_FIRST_FC:
755 
756 		/* we did not get any flow control frame in time */
757 
758 		/* report 'communication error on send' */
759 		sk->sk_err = ECOMM;
760 		if (!sock_flag(sk, SOCK_DEAD))
761 			sk_error_report(sk);
762 
763 		/* reset tx state */
764 		so->tx.state = ISOTP_IDLE;
765 		wake_up_interruptible(&so->wait);
766 		break;
767 
768 	case ISOTP_SENDING:
769 
770 		/* push out the next segmented pdu */
771 		dev = dev_get_by_index(sock_net(sk), so->ifindex);
772 		if (!dev)
773 			break;
774 
775 isotp_tx_burst:
776 		skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv),
777 				GFP_ATOMIC);
778 		if (!skb) {
779 			dev_put(dev);
780 			break;
781 		}
782 
783 		can_skb_reserve(skb);
784 		can_skb_prv(skb)->ifindex = dev->ifindex;
785 		can_skb_prv(skb)->skbcnt = 0;
786 
787 		cf = (struct canfd_frame *)skb->data;
788 		skb_put_zero(skb, so->ll.mtu);
789 
790 		/* create consecutive frame */
791 		isotp_fill_dataframe(cf, so, ae, 0);
792 
793 		/* place consecutive frame N_PCI in appropriate index */
794 		cf->data[ae] = N_PCI_CF | so->tx.sn++;
795 		so->tx.sn %= 16;
796 		so->tx.bs++;
797 
798 		cf->flags = so->ll.tx_flags;
799 
800 		skb->dev = dev;
801 		can_skb_set_owner(skb, sk);
802 
803 		can_send_ret = can_send(skb, 1);
804 		if (can_send_ret) {
805 			pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
806 				       __func__, ERR_PTR(can_send_ret));
807 			if (can_send_ret == -ENOBUFS)
808 				pr_notice_once("can-isotp: tx queue is full, increasing txqueuelen may prevent this error\n");
809 		}
810 		if (so->tx.idx >= so->tx.len) {
811 			/* we are done */
812 			so->tx.state = ISOTP_IDLE;
813 			dev_put(dev);
814 			wake_up_interruptible(&so->wait);
815 			break;
816 		}
817 
818 		if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
819 			/* stop and wait for FC */
820 			so->tx.state = ISOTP_WAIT_FC;
821 			dev_put(dev);
822 			hrtimer_set_expires(&so->txtimer,
823 					    ktime_add(ktime_get(),
824 						      ktime_set(1, 0)));
825 			restart = HRTIMER_RESTART;
826 			break;
827 		}
828 
829 		/* no gap between data frames needed => use burst mode */
830 		if (!so->tx_gap)
831 			goto isotp_tx_burst;
832 
833 		/* start timer to send next data frame with correct delay */
834 		dev_put(dev);
835 		hrtimer_set_expires(&so->txtimer,
836 				    ktime_add(ktime_get(), so->tx_gap));
837 		restart = HRTIMER_RESTART;
838 		break;
839 
840 	default:
841 		WARN_ON_ONCE(1);
842 	}
843 
844 	return restart;
845 }
846 
847 static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
848 {
849 	struct sock *sk = sock->sk;
850 	struct isotp_sock *so = isotp_sk(sk);
851 	struct sk_buff *skb;
852 	struct net_device *dev;
853 	struct canfd_frame *cf;
854 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
855 	int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
856 	int off;
857 	int err;
858 
859 	if (!so->bound)
860 		return -EADDRNOTAVAIL;
861 
862 	/* we do not support multiple buffers - for now */
863 	if (so->tx.state != ISOTP_IDLE || wq_has_sleeper(&so->wait)) {
864 		if (msg->msg_flags & MSG_DONTWAIT)
865 			return -EAGAIN;
866 
867 		/* wait for complete transmission of current pdu */
868 		wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
869 	}
870 
871 	if (!size || size > MAX_MSG_LENGTH)
872 		return -EINVAL;
873 
874 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
875 	off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
876 
877 	/* does the given data fit into a single frame for SF_BROADCAST? */
878 	if ((so->opt.flags & CAN_ISOTP_SF_BROADCAST) &&
879 	    (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off))
880 		return -EINVAL;
881 
882 	err = memcpy_from_msg(so->tx.buf, msg, size);
883 	if (err < 0)
884 		return err;
885 
886 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
887 	if (!dev)
888 		return -ENXIO;
889 
890 	skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
891 				  msg->msg_flags & MSG_DONTWAIT, &err);
892 	if (!skb) {
893 		dev_put(dev);
894 		return err;
895 	}
896 
897 	can_skb_reserve(skb);
898 	can_skb_prv(skb)->ifindex = dev->ifindex;
899 	can_skb_prv(skb)->skbcnt = 0;
900 
901 	so->tx.state = ISOTP_SENDING;
902 	so->tx.len = size;
903 	so->tx.idx = 0;
904 
905 	cf = (struct canfd_frame *)skb->data;
906 	skb_put_zero(skb, so->ll.mtu);
907 
908 	/* check for single frame transmission depending on TX_DL */
909 	if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
910 		/* The message size generally fits into a SingleFrame - good.
911 		 *
912 		 * SF_DL ESC offset optimization:
913 		 *
914 		 * When TX_DL is greater 8 but the message would still fit
915 		 * into a 8 byte CAN frame, we can omit the offset.
916 		 * This prevents a protocol caused length extension from
917 		 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
918 		 */
919 		if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
920 			off = 0;
921 
922 		isotp_fill_dataframe(cf, so, ae, off);
923 
924 		/* place single frame N_PCI w/o length in appropriate index */
925 		cf->data[ae] = N_PCI_SF;
926 
927 		/* place SF_DL size value depending on the SF_DL ESC offset */
928 		if (off)
929 			cf->data[SF_PCI_SZ4 + ae] = size;
930 		else
931 			cf->data[ae] |= size;
932 
933 		so->tx.state = ISOTP_IDLE;
934 		wake_up_interruptible(&so->wait);
935 
936 		/* don't enable wait queue for a single frame transmission */
937 		wait_tx_done = 0;
938 	} else {
939 		/* send first frame and wait for FC */
940 
941 		isotp_create_fframe(cf, so, ae);
942 
943 		/* start timeout for FC */
944 		hrtimer_start(&so->txtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
945 	}
946 
947 	/* send the first or only CAN frame */
948 	cf->flags = so->ll.tx_flags;
949 
950 	skb->dev = dev;
951 	skb->sk = sk;
952 	err = can_send(skb, 1);
953 	dev_put(dev);
954 	if (err) {
955 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
956 			       __func__, ERR_PTR(err));
957 		return err;
958 	}
959 
960 	if (wait_tx_done) {
961 		/* wait for complete transmission of current pdu */
962 		wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
963 	}
964 
965 	return size;
966 }
967 
968 static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
969 			 int flags)
970 {
971 	struct sock *sk = sock->sk;
972 	struct sk_buff *skb;
973 	int err = 0;
974 	int noblock;
975 
976 	noblock = flags & MSG_DONTWAIT;
977 	flags &= ~MSG_DONTWAIT;
978 
979 	skb = skb_recv_datagram(sk, flags, noblock, &err);
980 	if (!skb)
981 		return err;
982 
983 	if (size < skb->len)
984 		msg->msg_flags |= MSG_TRUNC;
985 	else
986 		size = skb->len;
987 
988 	err = memcpy_to_msg(msg, skb->data, size);
989 	if (err < 0) {
990 		skb_free_datagram(sk, skb);
991 		return err;
992 	}
993 
994 	sock_recv_timestamp(msg, sk, skb);
995 
996 	if (msg->msg_name) {
997 		__sockaddr_check_size(ISOTP_MIN_NAMELEN);
998 		msg->msg_namelen = ISOTP_MIN_NAMELEN;
999 		memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1000 	}
1001 
1002 	skb_free_datagram(sk, skb);
1003 
1004 	return size;
1005 }
1006 
1007 static int isotp_release(struct socket *sock)
1008 {
1009 	struct sock *sk = sock->sk;
1010 	struct isotp_sock *so;
1011 	struct net *net;
1012 
1013 	if (!sk)
1014 		return 0;
1015 
1016 	so = isotp_sk(sk);
1017 	net = sock_net(sk);
1018 
1019 	/* wait for complete transmission of current pdu */
1020 	wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1021 
1022 	spin_lock(&isotp_notifier_lock);
1023 	while (isotp_busy_notifier == so) {
1024 		spin_unlock(&isotp_notifier_lock);
1025 		schedule_timeout_uninterruptible(1);
1026 		spin_lock(&isotp_notifier_lock);
1027 	}
1028 	list_del(&so->notifier);
1029 	spin_unlock(&isotp_notifier_lock);
1030 
1031 	lock_sock(sk);
1032 
1033 	/* remove current filters & unregister */
1034 	if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST))) {
1035 		if (so->ifindex) {
1036 			struct net_device *dev;
1037 
1038 			dev = dev_get_by_index(net, so->ifindex);
1039 			if (dev) {
1040 				can_rx_unregister(net, dev, so->rxid,
1041 						  SINGLE_MASK(so->rxid),
1042 						  isotp_rcv, sk);
1043 				dev_put(dev);
1044 				synchronize_rcu();
1045 			}
1046 		}
1047 	}
1048 
1049 	hrtimer_cancel(&so->txtimer);
1050 	hrtimer_cancel(&so->rxtimer);
1051 
1052 	so->ifindex = 0;
1053 	so->bound = 0;
1054 
1055 	sock_orphan(sk);
1056 	sock->sk = NULL;
1057 
1058 	release_sock(sk);
1059 	sock_put(sk);
1060 
1061 	return 0;
1062 }
1063 
1064 static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1065 {
1066 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1067 	struct sock *sk = sock->sk;
1068 	struct isotp_sock *so = isotp_sk(sk);
1069 	struct net *net = sock_net(sk);
1070 	int ifindex;
1071 	struct net_device *dev;
1072 	int err = 0;
1073 	int notify_enetdown = 0;
1074 	int do_rx_reg = 1;
1075 
1076 	if (len < ISOTP_MIN_NAMELEN)
1077 		return -EINVAL;
1078 
1079 	if (addr->can_addr.tp.tx_id & (CAN_ERR_FLAG | CAN_RTR_FLAG))
1080 		return -EADDRNOTAVAIL;
1081 
1082 	if (!addr->can_ifindex)
1083 		return -ENODEV;
1084 
1085 	lock_sock(sk);
1086 
1087 	/* do not register frame reception for functional addressing */
1088 	if (so->opt.flags & CAN_ISOTP_SF_BROADCAST)
1089 		do_rx_reg = 0;
1090 
1091 	/* do not validate rx address for functional addressing */
1092 	if (do_rx_reg) {
1093 		if (addr->can_addr.tp.rx_id == addr->can_addr.tp.tx_id) {
1094 			err = -EADDRNOTAVAIL;
1095 			goto out;
1096 		}
1097 
1098 		if (addr->can_addr.tp.rx_id & (CAN_ERR_FLAG | CAN_RTR_FLAG)) {
1099 			err = -EADDRNOTAVAIL;
1100 			goto out;
1101 		}
1102 	}
1103 
1104 	if (so->bound && addr->can_ifindex == so->ifindex &&
1105 	    addr->can_addr.tp.rx_id == so->rxid &&
1106 	    addr->can_addr.tp.tx_id == so->txid)
1107 		goto out;
1108 
1109 	dev = dev_get_by_index(net, addr->can_ifindex);
1110 	if (!dev) {
1111 		err = -ENODEV;
1112 		goto out;
1113 	}
1114 	if (dev->type != ARPHRD_CAN) {
1115 		dev_put(dev);
1116 		err = -ENODEV;
1117 		goto out;
1118 	}
1119 	if (dev->mtu < so->ll.mtu) {
1120 		dev_put(dev);
1121 		err = -EINVAL;
1122 		goto out;
1123 	}
1124 	if (!(dev->flags & IFF_UP))
1125 		notify_enetdown = 1;
1126 
1127 	ifindex = dev->ifindex;
1128 
1129 	if (do_rx_reg)
1130 		can_rx_register(net, dev, addr->can_addr.tp.rx_id,
1131 				SINGLE_MASK(addr->can_addr.tp.rx_id),
1132 				isotp_rcv, sk, "isotp", sk);
1133 
1134 	dev_put(dev);
1135 
1136 	if (so->bound && do_rx_reg) {
1137 		/* unregister old filter */
1138 		if (so->ifindex) {
1139 			dev = dev_get_by_index(net, so->ifindex);
1140 			if (dev) {
1141 				can_rx_unregister(net, dev, so->rxid,
1142 						  SINGLE_MASK(so->rxid),
1143 						  isotp_rcv, sk);
1144 				dev_put(dev);
1145 			}
1146 		}
1147 	}
1148 
1149 	/* switch to new settings */
1150 	so->ifindex = ifindex;
1151 	so->rxid = addr->can_addr.tp.rx_id;
1152 	so->txid = addr->can_addr.tp.tx_id;
1153 	so->bound = 1;
1154 
1155 out:
1156 	release_sock(sk);
1157 
1158 	if (notify_enetdown) {
1159 		sk->sk_err = ENETDOWN;
1160 		if (!sock_flag(sk, SOCK_DEAD))
1161 			sk_error_report(sk);
1162 	}
1163 
1164 	return err;
1165 }
1166 
1167 static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1168 {
1169 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1170 	struct sock *sk = sock->sk;
1171 	struct isotp_sock *so = isotp_sk(sk);
1172 
1173 	if (peer)
1174 		return -EOPNOTSUPP;
1175 
1176 	memset(addr, 0, ISOTP_MIN_NAMELEN);
1177 	addr->can_family = AF_CAN;
1178 	addr->can_ifindex = so->ifindex;
1179 	addr->can_addr.tp.rx_id = so->rxid;
1180 	addr->can_addr.tp.tx_id = so->txid;
1181 
1182 	return ISOTP_MIN_NAMELEN;
1183 }
1184 
1185 static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1186 			    sockptr_t optval, unsigned int optlen)
1187 {
1188 	struct sock *sk = sock->sk;
1189 	struct isotp_sock *so = isotp_sk(sk);
1190 	int ret = 0;
1191 
1192 	if (so->bound)
1193 		return -EISCONN;
1194 
1195 	switch (optname) {
1196 	case CAN_ISOTP_OPTS:
1197 		if (optlen != sizeof(struct can_isotp_options))
1198 			return -EINVAL;
1199 
1200 		if (copy_from_sockptr(&so->opt, optval, optlen))
1201 			return -EFAULT;
1202 
1203 		/* no separate rx_ext_address is given => use ext_address */
1204 		if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1205 			so->opt.rx_ext_address = so->opt.ext_address;
1206 		break;
1207 
1208 	case CAN_ISOTP_RECV_FC:
1209 		if (optlen != sizeof(struct can_isotp_fc_options))
1210 			return -EINVAL;
1211 
1212 		if (copy_from_sockptr(&so->rxfc, optval, optlen))
1213 			return -EFAULT;
1214 		break;
1215 
1216 	case CAN_ISOTP_TX_STMIN:
1217 		if (optlen != sizeof(u32))
1218 			return -EINVAL;
1219 
1220 		if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1221 			return -EFAULT;
1222 		break;
1223 
1224 	case CAN_ISOTP_RX_STMIN:
1225 		if (optlen != sizeof(u32))
1226 			return -EINVAL;
1227 
1228 		if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1229 			return -EFAULT;
1230 		break;
1231 
1232 	case CAN_ISOTP_LL_OPTS:
1233 		if (optlen == sizeof(struct can_isotp_ll_options)) {
1234 			struct can_isotp_ll_options ll;
1235 
1236 			if (copy_from_sockptr(&ll, optval, optlen))
1237 				return -EFAULT;
1238 
1239 			/* check for correct ISO 11898-1 DLC data length */
1240 			if (ll.tx_dl != padlen(ll.tx_dl))
1241 				return -EINVAL;
1242 
1243 			if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1244 				return -EINVAL;
1245 
1246 			if (ll.mtu == CAN_MTU &&
1247 			    (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1248 				return -EINVAL;
1249 
1250 			memcpy(&so->ll, &ll, sizeof(ll));
1251 
1252 			/* set ll_dl for tx path to similar place as for rx */
1253 			so->tx.ll_dl = ll.tx_dl;
1254 		} else {
1255 			return -EINVAL;
1256 		}
1257 		break;
1258 
1259 	default:
1260 		ret = -ENOPROTOOPT;
1261 	}
1262 
1263 	return ret;
1264 }
1265 
1266 static int isotp_setsockopt(struct socket *sock, int level, int optname,
1267 			    sockptr_t optval, unsigned int optlen)
1268 
1269 {
1270 	struct sock *sk = sock->sk;
1271 	int ret;
1272 
1273 	if (level != SOL_CAN_ISOTP)
1274 		return -EINVAL;
1275 
1276 	lock_sock(sk);
1277 	ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1278 	release_sock(sk);
1279 	return ret;
1280 }
1281 
1282 static int isotp_getsockopt(struct socket *sock, int level, int optname,
1283 			    char __user *optval, int __user *optlen)
1284 {
1285 	struct sock *sk = sock->sk;
1286 	struct isotp_sock *so = isotp_sk(sk);
1287 	int len;
1288 	void *val;
1289 
1290 	if (level != SOL_CAN_ISOTP)
1291 		return -EINVAL;
1292 	if (get_user(len, optlen))
1293 		return -EFAULT;
1294 	if (len < 0)
1295 		return -EINVAL;
1296 
1297 	switch (optname) {
1298 	case CAN_ISOTP_OPTS:
1299 		len = min_t(int, len, sizeof(struct can_isotp_options));
1300 		val = &so->opt;
1301 		break;
1302 
1303 	case CAN_ISOTP_RECV_FC:
1304 		len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1305 		val = &so->rxfc;
1306 		break;
1307 
1308 	case CAN_ISOTP_TX_STMIN:
1309 		len = min_t(int, len, sizeof(u32));
1310 		val = &so->force_tx_stmin;
1311 		break;
1312 
1313 	case CAN_ISOTP_RX_STMIN:
1314 		len = min_t(int, len, sizeof(u32));
1315 		val = &so->force_rx_stmin;
1316 		break;
1317 
1318 	case CAN_ISOTP_LL_OPTS:
1319 		len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1320 		val = &so->ll;
1321 		break;
1322 
1323 	default:
1324 		return -ENOPROTOOPT;
1325 	}
1326 
1327 	if (put_user(len, optlen))
1328 		return -EFAULT;
1329 	if (copy_to_user(optval, val, len))
1330 		return -EFAULT;
1331 	return 0;
1332 }
1333 
1334 static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1335 			 struct net_device *dev)
1336 {
1337 	struct sock *sk = &so->sk;
1338 
1339 	if (!net_eq(dev_net(dev), sock_net(sk)))
1340 		return;
1341 
1342 	if (so->ifindex != dev->ifindex)
1343 		return;
1344 
1345 	switch (msg) {
1346 	case NETDEV_UNREGISTER:
1347 		lock_sock(sk);
1348 		/* remove current filters & unregister */
1349 		if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST)))
1350 			can_rx_unregister(dev_net(dev), dev, so->rxid,
1351 					  SINGLE_MASK(so->rxid),
1352 					  isotp_rcv, sk);
1353 
1354 		so->ifindex = 0;
1355 		so->bound  = 0;
1356 		release_sock(sk);
1357 
1358 		sk->sk_err = ENODEV;
1359 		if (!sock_flag(sk, SOCK_DEAD))
1360 			sk_error_report(sk);
1361 		break;
1362 
1363 	case NETDEV_DOWN:
1364 		sk->sk_err = ENETDOWN;
1365 		if (!sock_flag(sk, SOCK_DEAD))
1366 			sk_error_report(sk);
1367 		break;
1368 	}
1369 }
1370 
1371 static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1372 			  void *ptr)
1373 {
1374 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1375 
1376 	if (dev->type != ARPHRD_CAN)
1377 		return NOTIFY_DONE;
1378 	if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1379 		return NOTIFY_DONE;
1380 	if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1381 		return NOTIFY_DONE;
1382 
1383 	spin_lock(&isotp_notifier_lock);
1384 	list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1385 		spin_unlock(&isotp_notifier_lock);
1386 		isotp_notify(isotp_busy_notifier, msg, dev);
1387 		spin_lock(&isotp_notifier_lock);
1388 	}
1389 	isotp_busy_notifier = NULL;
1390 	spin_unlock(&isotp_notifier_lock);
1391 	return NOTIFY_DONE;
1392 }
1393 
1394 static int isotp_init(struct sock *sk)
1395 {
1396 	struct isotp_sock *so = isotp_sk(sk);
1397 
1398 	so->ifindex = 0;
1399 	so->bound = 0;
1400 
1401 	so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1402 	so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1403 	so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1404 	so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1405 	so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1406 	so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1407 	so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1408 	so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1409 	so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1410 	so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1411 	so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1412 	so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1413 
1414 	/* set ll_dl for tx path to similar place as for rx */
1415 	so->tx.ll_dl = so->ll.tx_dl;
1416 
1417 	so->rx.state = ISOTP_IDLE;
1418 	so->tx.state = ISOTP_IDLE;
1419 
1420 	hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1421 	so->rxtimer.function = isotp_rx_timer_handler;
1422 	hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1423 	so->txtimer.function = isotp_tx_timer_handler;
1424 
1425 	init_waitqueue_head(&so->wait);
1426 
1427 	spin_lock(&isotp_notifier_lock);
1428 	list_add_tail(&so->notifier, &isotp_notifier_list);
1429 	spin_unlock(&isotp_notifier_lock);
1430 
1431 	return 0;
1432 }
1433 
1434 static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1435 				  unsigned long arg)
1436 {
1437 	/* no ioctls for socket layer -> hand it down to NIC layer */
1438 	return -ENOIOCTLCMD;
1439 }
1440 
1441 static const struct proto_ops isotp_ops = {
1442 	.family = PF_CAN,
1443 	.release = isotp_release,
1444 	.bind = isotp_bind,
1445 	.connect = sock_no_connect,
1446 	.socketpair = sock_no_socketpair,
1447 	.accept = sock_no_accept,
1448 	.getname = isotp_getname,
1449 	.poll = datagram_poll,
1450 	.ioctl = isotp_sock_no_ioctlcmd,
1451 	.gettstamp = sock_gettstamp,
1452 	.listen = sock_no_listen,
1453 	.shutdown = sock_no_shutdown,
1454 	.setsockopt = isotp_setsockopt,
1455 	.getsockopt = isotp_getsockopt,
1456 	.sendmsg = isotp_sendmsg,
1457 	.recvmsg = isotp_recvmsg,
1458 	.mmap = sock_no_mmap,
1459 	.sendpage = sock_no_sendpage,
1460 };
1461 
1462 static struct proto isotp_proto __read_mostly = {
1463 	.name = "CAN_ISOTP",
1464 	.owner = THIS_MODULE,
1465 	.obj_size = sizeof(struct isotp_sock),
1466 	.init = isotp_init,
1467 };
1468 
1469 static const struct can_proto isotp_can_proto = {
1470 	.type = SOCK_DGRAM,
1471 	.protocol = CAN_ISOTP,
1472 	.ops = &isotp_ops,
1473 	.prot = &isotp_proto,
1474 };
1475 
1476 static struct notifier_block canisotp_notifier = {
1477 	.notifier_call = isotp_notifier
1478 };
1479 
1480 static __init int isotp_module_init(void)
1481 {
1482 	int err;
1483 
1484 	pr_info("can: isotp protocol\n");
1485 
1486 	err = can_proto_register(&isotp_can_proto);
1487 	if (err < 0)
1488 		pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1489 	else
1490 		register_netdevice_notifier(&canisotp_notifier);
1491 
1492 	return err;
1493 }
1494 
1495 static __exit void isotp_module_exit(void)
1496 {
1497 	can_proto_unregister(&isotp_can_proto);
1498 	unregister_netdevice_notifier(&canisotp_notifier);
1499 }
1500 
1501 module_init(isotp_module_init);
1502 module_exit(isotp_module_exit);
1503