xref: /linux/net/can/isotp.c (revision 87c9c16317882dd6dbbc07e349bc3223e14f3244)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
3  *
4  * This implementation does not provide ISO-TP specific return values to the
5  * userspace.
6  *
7  * - RX path timeout of data reception leads to -ETIMEDOUT
8  * - RX path SN mismatch leads to -EILSEQ
9  * - RX path data reception with wrong padding leads to -EBADMSG
10  * - TX path flowcontrol reception timeout leads to -ECOMM
11  * - TX path flowcontrol reception overflow leads to -EMSGSIZE
12  * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
13  * - when a transfer (tx) is on the run the next write() blocks until it's done
14  * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
15  * - as we have static buffers the check whether the PDU fits into the buffer
16  *   is done at FF reception time (no support for sending 'wait frames')
17  * - take care of the tx-queue-len as traffic shaping is still on the TODO list
18  *
19  * Copyright (c) 2020 Volkswagen Group Electronic Research
20  * All rights reserved.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the above copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. Neither the name of Volkswagen nor the names of its contributors
31  *    may be used to endorse or promote products derived from this software
32  *    without specific prior written permission.
33  *
34  * Alternatively, provided that this notice is retained in full, this
35  * software may be distributed under the terms of the GNU General
36  * Public License ("GPL") version 2, in which case the provisions of the
37  * GPL apply INSTEAD OF those given above.
38  *
39  * The provided data structures and external interfaces from this code
40  * are not restricted to be used by modules with a GPL compatible license.
41  *
42  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
43  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
44  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
45  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
46  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
48  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
49  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
50  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
51  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
52  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
53  * DAMAGE.
54  */
55 
56 #include <linux/module.h>
57 #include <linux/init.h>
58 #include <linux/interrupt.h>
59 #include <linux/hrtimer.h>
60 #include <linux/wait.h>
61 #include <linux/uio.h>
62 #include <linux/net.h>
63 #include <linux/netdevice.h>
64 #include <linux/socket.h>
65 #include <linux/if_arp.h>
66 #include <linux/skbuff.h>
67 #include <linux/can.h>
68 #include <linux/can/core.h>
69 #include <linux/can/skb.h>
70 #include <linux/can/isotp.h>
71 #include <linux/slab.h>
72 #include <net/sock.h>
73 #include <net/net_namespace.h>
74 
75 MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
76 MODULE_LICENSE("Dual BSD/GPL");
77 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
78 MODULE_ALIAS("can-proto-6");
79 
80 #define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
81 
82 #define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
83 			 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
84 			 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
85 
86 /* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
87  * take full 32 bit values (4 Gbyte). We would need some good concept to handle
88  * this between user space and kernel space. For now increase the static buffer
89  * to something about 8 kbyte to be able to test this new functionality.
90  */
91 #define MAX_MSG_LENGTH 8200
92 
93 /* N_PCI type values in bits 7-4 of N_PCI bytes */
94 #define N_PCI_SF 0x00	/* single frame */
95 #define N_PCI_FF 0x10	/* first frame */
96 #define N_PCI_CF 0x20	/* consecutive frame */
97 #define N_PCI_FC 0x30	/* flow control */
98 
99 #define N_PCI_SZ 1	/* size of the PCI byte #1 */
100 #define SF_PCI_SZ4 1	/* size of SingleFrame PCI including 4 bit SF_DL */
101 #define SF_PCI_SZ8 2	/* size of SingleFrame PCI including 8 bit SF_DL */
102 #define FF_PCI_SZ12 2	/* size of FirstFrame PCI including 12 bit FF_DL */
103 #define FF_PCI_SZ32 6	/* size of FirstFrame PCI including 32 bit FF_DL */
104 #define FC_CONTENT_SZ 3	/* flow control content size in byte (FS/BS/STmin) */
105 
106 #define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
107 
108 /* Flow Status given in FC frame */
109 #define ISOTP_FC_CTS 0		/* clear to send */
110 #define ISOTP_FC_WT 1		/* wait */
111 #define ISOTP_FC_OVFLW 2	/* overflow */
112 
113 enum {
114 	ISOTP_IDLE = 0,
115 	ISOTP_WAIT_FIRST_FC,
116 	ISOTP_WAIT_FC,
117 	ISOTP_WAIT_DATA,
118 	ISOTP_SENDING
119 };
120 
121 struct tpcon {
122 	int idx;
123 	int len;
124 	u8 state;
125 	u8 bs;
126 	u8 sn;
127 	u8 ll_dl;
128 	u8 buf[MAX_MSG_LENGTH + 1];
129 };
130 
131 struct isotp_sock {
132 	struct sock sk;
133 	int bound;
134 	int ifindex;
135 	canid_t txid;
136 	canid_t rxid;
137 	ktime_t tx_gap;
138 	ktime_t lastrxcf_tstamp;
139 	struct hrtimer rxtimer, txtimer;
140 	struct can_isotp_options opt;
141 	struct can_isotp_fc_options rxfc, txfc;
142 	struct can_isotp_ll_options ll;
143 	u32 force_tx_stmin;
144 	u32 force_rx_stmin;
145 	struct tpcon rx, tx;
146 	struct notifier_block notifier;
147 	wait_queue_head_t wait;
148 };
149 
150 static inline struct isotp_sock *isotp_sk(const struct sock *sk)
151 {
152 	return (struct isotp_sock *)sk;
153 }
154 
155 static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
156 {
157 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
158 					     rxtimer);
159 	struct sock *sk = &so->sk;
160 
161 	if (so->rx.state == ISOTP_WAIT_DATA) {
162 		/* we did not get new data frames in time */
163 
164 		/* report 'connection timed out' */
165 		sk->sk_err = ETIMEDOUT;
166 		if (!sock_flag(sk, SOCK_DEAD))
167 			sk->sk_error_report(sk);
168 
169 		/* reset rx state */
170 		so->rx.state = ISOTP_IDLE;
171 	}
172 
173 	return HRTIMER_NORESTART;
174 }
175 
176 static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
177 {
178 	struct net_device *dev;
179 	struct sk_buff *nskb;
180 	struct canfd_frame *ncf;
181 	struct isotp_sock *so = isotp_sk(sk);
182 	int can_send_ret;
183 
184 	nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
185 	if (!nskb)
186 		return 1;
187 
188 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
189 	if (!dev) {
190 		kfree_skb(nskb);
191 		return 1;
192 	}
193 
194 	can_skb_reserve(nskb);
195 	can_skb_prv(nskb)->ifindex = dev->ifindex;
196 	can_skb_prv(nskb)->skbcnt = 0;
197 
198 	nskb->dev = dev;
199 	can_skb_set_owner(nskb, sk);
200 	ncf = (struct canfd_frame *)nskb->data;
201 	skb_put_zero(nskb, so->ll.mtu);
202 
203 	/* create & send flow control reply */
204 	ncf->can_id = so->txid;
205 
206 	if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
207 		memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
208 		ncf->len = CAN_MAX_DLEN;
209 	} else {
210 		ncf->len = ae + FC_CONTENT_SZ;
211 	}
212 
213 	ncf->data[ae] = N_PCI_FC | flowstatus;
214 	ncf->data[ae + 1] = so->rxfc.bs;
215 	ncf->data[ae + 2] = so->rxfc.stmin;
216 
217 	if (ae)
218 		ncf->data[0] = so->opt.ext_address;
219 
220 	ncf->flags = so->ll.tx_flags;
221 
222 	can_send_ret = can_send(nskb, 1);
223 	if (can_send_ret)
224 		pr_notice_once("can-isotp: %s: can_send_ret %d\n",
225 			       __func__, can_send_ret);
226 
227 	dev_put(dev);
228 
229 	/* reset blocksize counter */
230 	so->rx.bs = 0;
231 
232 	/* reset last CF frame rx timestamp for rx stmin enforcement */
233 	so->lastrxcf_tstamp = ktime_set(0, 0);
234 
235 	/* start rx timeout watchdog */
236 	hrtimer_start(&so->rxtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
237 	return 0;
238 }
239 
240 static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
241 {
242 	struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
243 
244 	BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
245 
246 	memset(addr, 0, sizeof(*addr));
247 	addr->can_family = AF_CAN;
248 	addr->can_ifindex = skb->dev->ifindex;
249 
250 	if (sock_queue_rcv_skb(sk, skb) < 0)
251 		kfree_skb(skb);
252 }
253 
254 static u8 padlen(u8 datalen)
255 {
256 	static const u8 plen[] = {
257 		8, 8, 8, 8, 8, 8, 8, 8, 8,	/* 0 - 8 */
258 		12, 12, 12, 12,			/* 9 - 12 */
259 		16, 16, 16, 16,			/* 13 - 16 */
260 		20, 20, 20, 20,			/* 17 - 20 */
261 		24, 24, 24, 24,			/* 21 - 24 */
262 		32, 32, 32, 32, 32, 32, 32, 32,	/* 25 - 32 */
263 		48, 48, 48, 48, 48, 48, 48, 48,	/* 33 - 40 */
264 		48, 48, 48, 48, 48, 48, 48, 48	/* 41 - 48 */
265 	};
266 
267 	if (datalen > 48)
268 		return 64;
269 
270 	return plen[datalen];
271 }
272 
273 /* check for length optimization and return 1/true when the check fails */
274 static int check_optimized(struct canfd_frame *cf, int start_index)
275 {
276 	/* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
277 	 * padding would start at this point. E.g. if the padding would
278 	 * start at cf.data[7] cf->len has to be 7 to be optimal.
279 	 * Note: The data[] index starts with zero.
280 	 */
281 	if (cf->len <= CAN_MAX_DLEN)
282 		return (cf->len != start_index);
283 
284 	/* This relation is also valid in the non-linear DLC range, where
285 	 * we need to take care of the minimal next possible CAN_DL.
286 	 * The correct check would be (padlen(cf->len) != padlen(start_index)).
287 	 * But as cf->len can only take discrete values from 12, .., 64 at this
288 	 * point the padlen(cf->len) is always equal to cf->len.
289 	 */
290 	return (cf->len != padlen(start_index));
291 }
292 
293 /* check padding and return 1/true when the check fails */
294 static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
295 		     int start_index, u8 content)
296 {
297 	int i;
298 
299 	/* no RX_PADDING value => check length of optimized frame length */
300 	if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
301 		if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
302 			return check_optimized(cf, start_index);
303 
304 		/* no valid test against empty value => ignore frame */
305 		return 1;
306 	}
307 
308 	/* check datalength of correctly padded CAN frame */
309 	if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
310 	    cf->len != padlen(cf->len))
311 		return 1;
312 
313 	/* check padding content */
314 	if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
315 		for (i = start_index; i < cf->len; i++)
316 			if (cf->data[i] != content)
317 				return 1;
318 	}
319 	return 0;
320 }
321 
322 static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
323 {
324 	struct sock *sk = &so->sk;
325 
326 	if (so->tx.state != ISOTP_WAIT_FC &&
327 	    so->tx.state != ISOTP_WAIT_FIRST_FC)
328 		return 0;
329 
330 	hrtimer_cancel(&so->txtimer);
331 
332 	if ((cf->len < ae + FC_CONTENT_SZ) ||
333 	    ((so->opt.flags & ISOTP_CHECK_PADDING) &&
334 	     check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
335 		/* malformed PDU - report 'not a data message' */
336 		sk->sk_err = EBADMSG;
337 		if (!sock_flag(sk, SOCK_DEAD))
338 			sk->sk_error_report(sk);
339 
340 		so->tx.state = ISOTP_IDLE;
341 		wake_up_interruptible(&so->wait);
342 		return 1;
343 	}
344 
345 	/* get communication parameters only from the first FC frame */
346 	if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
347 		so->txfc.bs = cf->data[ae + 1];
348 		so->txfc.stmin = cf->data[ae + 2];
349 
350 		/* fix wrong STmin values according spec */
351 		if (so->txfc.stmin > 0x7F &&
352 		    (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
353 			so->txfc.stmin = 0x7F;
354 
355 		so->tx_gap = ktime_set(0, 0);
356 		/* add transmission time for CAN frame N_As */
357 		so->tx_gap = ktime_add_ns(so->tx_gap, so->opt.frame_txtime);
358 		/* add waiting time for consecutive frames N_Cs */
359 		if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
360 			so->tx_gap = ktime_add_ns(so->tx_gap,
361 						  so->force_tx_stmin);
362 		else if (so->txfc.stmin < 0x80)
363 			so->tx_gap = ktime_add_ns(so->tx_gap,
364 						  so->txfc.stmin * 1000000);
365 		else
366 			so->tx_gap = ktime_add_ns(so->tx_gap,
367 						  (so->txfc.stmin - 0xF0)
368 						  * 100000);
369 		so->tx.state = ISOTP_WAIT_FC;
370 	}
371 
372 	switch (cf->data[ae] & 0x0F) {
373 	case ISOTP_FC_CTS:
374 		so->tx.bs = 0;
375 		so->tx.state = ISOTP_SENDING;
376 		/* start cyclic timer for sending CF frame */
377 		hrtimer_start(&so->txtimer, so->tx_gap,
378 			      HRTIMER_MODE_REL_SOFT);
379 		break;
380 
381 	case ISOTP_FC_WT:
382 		/* start timer to wait for next FC frame */
383 		hrtimer_start(&so->txtimer, ktime_set(1, 0),
384 			      HRTIMER_MODE_REL_SOFT);
385 		break;
386 
387 	case ISOTP_FC_OVFLW:
388 		/* overflow on receiver side - report 'message too long' */
389 		sk->sk_err = EMSGSIZE;
390 		if (!sock_flag(sk, SOCK_DEAD))
391 			sk->sk_error_report(sk);
392 		fallthrough;
393 
394 	default:
395 		/* stop this tx job */
396 		so->tx.state = ISOTP_IDLE;
397 		wake_up_interruptible(&so->wait);
398 	}
399 	return 0;
400 }
401 
402 static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
403 			struct sk_buff *skb, int len)
404 {
405 	struct isotp_sock *so = isotp_sk(sk);
406 	struct sk_buff *nskb;
407 
408 	hrtimer_cancel(&so->rxtimer);
409 	so->rx.state = ISOTP_IDLE;
410 
411 	if (!len || len > cf->len - pcilen)
412 		return 1;
413 
414 	if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
415 	    check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
416 		/* malformed PDU - report 'not a data message' */
417 		sk->sk_err = EBADMSG;
418 		if (!sock_flag(sk, SOCK_DEAD))
419 			sk->sk_error_report(sk);
420 		return 1;
421 	}
422 
423 	nskb = alloc_skb(len, gfp_any());
424 	if (!nskb)
425 		return 1;
426 
427 	memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
428 
429 	nskb->tstamp = skb->tstamp;
430 	nskb->dev = skb->dev;
431 	isotp_rcv_skb(nskb, sk);
432 	return 0;
433 }
434 
435 static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
436 {
437 	struct isotp_sock *so = isotp_sk(sk);
438 	int i;
439 	int off;
440 	int ff_pci_sz;
441 
442 	hrtimer_cancel(&so->rxtimer);
443 	so->rx.state = ISOTP_IDLE;
444 
445 	/* get the used sender LL_DL from the (first) CAN frame data length */
446 	so->rx.ll_dl = padlen(cf->len);
447 
448 	/* the first frame has to use the entire frame up to LL_DL length */
449 	if (cf->len != so->rx.ll_dl)
450 		return 1;
451 
452 	/* get the FF_DL */
453 	so->rx.len = (cf->data[ae] & 0x0F) << 8;
454 	so->rx.len += cf->data[ae + 1];
455 
456 	/* Check for FF_DL escape sequence supporting 32 bit PDU length */
457 	if (so->rx.len) {
458 		ff_pci_sz = FF_PCI_SZ12;
459 	} else {
460 		/* FF_DL = 0 => get real length from next 4 bytes */
461 		so->rx.len = cf->data[ae + 2] << 24;
462 		so->rx.len += cf->data[ae + 3] << 16;
463 		so->rx.len += cf->data[ae + 4] << 8;
464 		so->rx.len += cf->data[ae + 5];
465 		ff_pci_sz = FF_PCI_SZ32;
466 	}
467 
468 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
469 	off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
470 
471 	if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
472 		return 1;
473 
474 	if (so->rx.len > MAX_MSG_LENGTH) {
475 		/* send FC frame with overflow status */
476 		isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
477 		return 1;
478 	}
479 
480 	/* copy the first received data bytes */
481 	so->rx.idx = 0;
482 	for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
483 		so->rx.buf[so->rx.idx++] = cf->data[i];
484 
485 	/* initial setup for this pdu reception */
486 	so->rx.sn = 1;
487 	so->rx.state = ISOTP_WAIT_DATA;
488 
489 	/* no creation of flow control frames */
490 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
491 		return 0;
492 
493 	/* send our first FC frame */
494 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
495 	return 0;
496 }
497 
498 static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
499 			struct sk_buff *skb)
500 {
501 	struct isotp_sock *so = isotp_sk(sk);
502 	struct sk_buff *nskb;
503 	int i;
504 
505 	if (so->rx.state != ISOTP_WAIT_DATA)
506 		return 0;
507 
508 	/* drop if timestamp gap is less than force_rx_stmin nano secs */
509 	if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
510 		if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
511 		    so->force_rx_stmin)
512 			return 0;
513 
514 		so->lastrxcf_tstamp = skb->tstamp;
515 	}
516 
517 	hrtimer_cancel(&so->rxtimer);
518 
519 	/* CFs are never longer than the FF */
520 	if (cf->len > so->rx.ll_dl)
521 		return 1;
522 
523 	/* CFs have usually the LL_DL length */
524 	if (cf->len < so->rx.ll_dl) {
525 		/* this is only allowed for the last CF */
526 		if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
527 			return 1;
528 	}
529 
530 	if ((cf->data[ae] & 0x0F) != so->rx.sn) {
531 		/* wrong sn detected - report 'illegal byte sequence' */
532 		sk->sk_err = EILSEQ;
533 		if (!sock_flag(sk, SOCK_DEAD))
534 			sk->sk_error_report(sk);
535 
536 		/* reset rx state */
537 		so->rx.state = ISOTP_IDLE;
538 		return 1;
539 	}
540 	so->rx.sn++;
541 	so->rx.sn %= 16;
542 
543 	for (i = ae + N_PCI_SZ; i < cf->len; i++) {
544 		so->rx.buf[so->rx.idx++] = cf->data[i];
545 		if (so->rx.idx >= so->rx.len)
546 			break;
547 	}
548 
549 	if (so->rx.idx >= so->rx.len) {
550 		/* we are done */
551 		so->rx.state = ISOTP_IDLE;
552 
553 		if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
554 		    check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
555 			/* malformed PDU - report 'not a data message' */
556 			sk->sk_err = EBADMSG;
557 			if (!sock_flag(sk, SOCK_DEAD))
558 				sk->sk_error_report(sk);
559 			return 1;
560 		}
561 
562 		nskb = alloc_skb(so->rx.len, gfp_any());
563 		if (!nskb)
564 			return 1;
565 
566 		memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
567 		       so->rx.len);
568 
569 		nskb->tstamp = skb->tstamp;
570 		nskb->dev = skb->dev;
571 		isotp_rcv_skb(nskb, sk);
572 		return 0;
573 	}
574 
575 	/* perform blocksize handling, if enabled */
576 	if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
577 		/* start rx timeout watchdog */
578 		hrtimer_start(&so->rxtimer, ktime_set(1, 0),
579 			      HRTIMER_MODE_REL_SOFT);
580 		return 0;
581 	}
582 
583 	/* no creation of flow control frames */
584 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
585 		return 0;
586 
587 	/* we reached the specified blocksize so->rxfc.bs */
588 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
589 	return 0;
590 }
591 
592 static void isotp_rcv(struct sk_buff *skb, void *data)
593 {
594 	struct sock *sk = (struct sock *)data;
595 	struct isotp_sock *so = isotp_sk(sk);
596 	struct canfd_frame *cf;
597 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
598 	u8 n_pci_type, sf_dl;
599 
600 	/* Strictly receive only frames with the configured MTU size
601 	 * => clear separation of CAN2.0 / CAN FD transport channels
602 	 */
603 	if (skb->len != so->ll.mtu)
604 		return;
605 
606 	cf = (struct canfd_frame *)skb->data;
607 
608 	/* if enabled: check reception of my configured extended address */
609 	if (ae && cf->data[0] != so->opt.rx_ext_address)
610 		return;
611 
612 	n_pci_type = cf->data[ae] & 0xF0;
613 
614 	if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
615 		/* check rx/tx path half duplex expectations */
616 		if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
617 		    (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
618 			return;
619 	}
620 
621 	switch (n_pci_type) {
622 	case N_PCI_FC:
623 		/* tx path: flow control frame containing the FC parameters */
624 		isotp_rcv_fc(so, cf, ae);
625 		break;
626 
627 	case N_PCI_SF:
628 		/* rx path: single frame
629 		 *
630 		 * As we do not have a rx.ll_dl configuration, we can only test
631 		 * if the CAN frames payload length matches the LL_DL == 8
632 		 * requirements - no matter if it's CAN 2.0 or CAN FD
633 		 */
634 
635 		/* get the SF_DL from the N_PCI byte */
636 		sf_dl = cf->data[ae] & 0x0F;
637 
638 		if (cf->len <= CAN_MAX_DLEN) {
639 			isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
640 		} else {
641 			if (skb->len == CANFD_MTU) {
642 				/* We have a CAN FD frame and CAN_DL is greater than 8:
643 				 * Only frames with the SF_DL == 0 ESC value are valid.
644 				 *
645 				 * If so take care of the increased SF PCI size
646 				 * (SF_PCI_SZ8) to point to the message content behind
647 				 * the extended SF PCI info and get the real SF_DL
648 				 * length value from the formerly first data byte.
649 				 */
650 				if (sf_dl == 0)
651 					isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
652 						     cf->data[SF_PCI_SZ4 + ae]);
653 			}
654 		}
655 		break;
656 
657 	case N_PCI_FF:
658 		/* rx path: first frame */
659 		isotp_rcv_ff(sk, cf, ae);
660 		break;
661 
662 	case N_PCI_CF:
663 		/* rx path: consecutive frame */
664 		isotp_rcv_cf(sk, cf, ae, skb);
665 		break;
666 	}
667 }
668 
669 static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
670 				 int ae, int off)
671 {
672 	int pcilen = N_PCI_SZ + ae + off;
673 	int space = so->tx.ll_dl - pcilen;
674 	int num = min_t(int, so->tx.len - so->tx.idx, space);
675 	int i;
676 
677 	cf->can_id = so->txid;
678 	cf->len = num + pcilen;
679 
680 	if (num < space) {
681 		if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
682 			/* user requested padding */
683 			cf->len = padlen(cf->len);
684 			memset(cf->data, so->opt.txpad_content, cf->len);
685 		} else if (cf->len > CAN_MAX_DLEN) {
686 			/* mandatory padding for CAN FD frames */
687 			cf->len = padlen(cf->len);
688 			memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
689 			       cf->len);
690 		}
691 	}
692 
693 	for (i = 0; i < num; i++)
694 		cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
695 
696 	if (ae)
697 		cf->data[0] = so->opt.ext_address;
698 }
699 
700 static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
701 				int ae)
702 {
703 	int i;
704 	int ff_pci_sz;
705 
706 	cf->can_id = so->txid;
707 	cf->len = so->tx.ll_dl;
708 	if (ae)
709 		cf->data[0] = so->opt.ext_address;
710 
711 	/* create N_PCI bytes with 12/32 bit FF_DL data length */
712 	if (so->tx.len > 4095) {
713 		/* use 32 bit FF_DL notation */
714 		cf->data[ae] = N_PCI_FF;
715 		cf->data[ae + 1] = 0;
716 		cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
717 		cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
718 		cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
719 		cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
720 		ff_pci_sz = FF_PCI_SZ32;
721 	} else {
722 		/* use 12 bit FF_DL notation */
723 		cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
724 		cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
725 		ff_pci_sz = FF_PCI_SZ12;
726 	}
727 
728 	/* add first data bytes depending on ae */
729 	for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
730 		cf->data[i] = so->tx.buf[so->tx.idx++];
731 
732 	so->tx.sn = 1;
733 	so->tx.state = ISOTP_WAIT_FIRST_FC;
734 }
735 
736 static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
737 {
738 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
739 					     txtimer);
740 	struct sock *sk = &so->sk;
741 	struct sk_buff *skb;
742 	struct net_device *dev;
743 	struct canfd_frame *cf;
744 	enum hrtimer_restart restart = HRTIMER_NORESTART;
745 	int can_send_ret;
746 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
747 
748 	switch (so->tx.state) {
749 	case ISOTP_WAIT_FC:
750 	case ISOTP_WAIT_FIRST_FC:
751 
752 		/* we did not get any flow control frame in time */
753 
754 		/* report 'communication error on send' */
755 		sk->sk_err = ECOMM;
756 		if (!sock_flag(sk, SOCK_DEAD))
757 			sk->sk_error_report(sk);
758 
759 		/* reset tx state */
760 		so->tx.state = ISOTP_IDLE;
761 		wake_up_interruptible(&so->wait);
762 		break;
763 
764 	case ISOTP_SENDING:
765 
766 		/* push out the next segmented pdu */
767 		dev = dev_get_by_index(sock_net(sk), so->ifindex);
768 		if (!dev)
769 			break;
770 
771 isotp_tx_burst:
772 		skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv),
773 				GFP_ATOMIC);
774 		if (!skb) {
775 			dev_put(dev);
776 			break;
777 		}
778 
779 		can_skb_reserve(skb);
780 		can_skb_prv(skb)->ifindex = dev->ifindex;
781 		can_skb_prv(skb)->skbcnt = 0;
782 
783 		cf = (struct canfd_frame *)skb->data;
784 		skb_put_zero(skb, so->ll.mtu);
785 
786 		/* create consecutive frame */
787 		isotp_fill_dataframe(cf, so, ae, 0);
788 
789 		/* place consecutive frame N_PCI in appropriate index */
790 		cf->data[ae] = N_PCI_CF | so->tx.sn++;
791 		so->tx.sn %= 16;
792 		so->tx.bs++;
793 
794 		cf->flags = so->ll.tx_flags;
795 
796 		skb->dev = dev;
797 		can_skb_set_owner(skb, sk);
798 
799 		can_send_ret = can_send(skb, 1);
800 		if (can_send_ret)
801 			pr_notice_once("can-isotp: %s: can_send_ret %d\n",
802 				       __func__, can_send_ret);
803 
804 		if (so->tx.idx >= so->tx.len) {
805 			/* we are done */
806 			so->tx.state = ISOTP_IDLE;
807 			dev_put(dev);
808 			wake_up_interruptible(&so->wait);
809 			break;
810 		}
811 
812 		if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
813 			/* stop and wait for FC */
814 			so->tx.state = ISOTP_WAIT_FC;
815 			dev_put(dev);
816 			hrtimer_set_expires(&so->txtimer,
817 					    ktime_add(ktime_get(),
818 						      ktime_set(1, 0)));
819 			restart = HRTIMER_RESTART;
820 			break;
821 		}
822 
823 		/* no gap between data frames needed => use burst mode */
824 		if (!so->tx_gap)
825 			goto isotp_tx_burst;
826 
827 		/* start timer to send next data frame with correct delay */
828 		dev_put(dev);
829 		hrtimer_set_expires(&so->txtimer,
830 				    ktime_add(ktime_get(), so->tx_gap));
831 		restart = HRTIMER_RESTART;
832 		break;
833 
834 	default:
835 		WARN_ON_ONCE(1);
836 	}
837 
838 	return restart;
839 }
840 
841 static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
842 {
843 	struct sock *sk = sock->sk;
844 	struct isotp_sock *so = isotp_sk(sk);
845 	struct sk_buff *skb;
846 	struct net_device *dev;
847 	struct canfd_frame *cf;
848 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
849 	int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
850 	int off;
851 	int err;
852 
853 	if (!so->bound)
854 		return -EADDRNOTAVAIL;
855 
856 	/* we do not support multiple buffers - for now */
857 	if (so->tx.state != ISOTP_IDLE || wq_has_sleeper(&so->wait)) {
858 		if (msg->msg_flags & MSG_DONTWAIT)
859 			return -EAGAIN;
860 
861 		/* wait for complete transmission of current pdu */
862 		wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
863 	}
864 
865 	if (!size || size > MAX_MSG_LENGTH)
866 		return -EINVAL;
867 
868 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
869 	off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
870 
871 	/* does the given data fit into a single frame for SF_BROADCAST? */
872 	if ((so->opt.flags & CAN_ISOTP_SF_BROADCAST) &&
873 	    (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off))
874 		return -EINVAL;
875 
876 	err = memcpy_from_msg(so->tx.buf, msg, size);
877 	if (err < 0)
878 		return err;
879 
880 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
881 	if (!dev)
882 		return -ENXIO;
883 
884 	skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
885 				  msg->msg_flags & MSG_DONTWAIT, &err);
886 	if (!skb) {
887 		dev_put(dev);
888 		return err;
889 	}
890 
891 	can_skb_reserve(skb);
892 	can_skb_prv(skb)->ifindex = dev->ifindex;
893 	can_skb_prv(skb)->skbcnt = 0;
894 
895 	so->tx.state = ISOTP_SENDING;
896 	so->tx.len = size;
897 	so->tx.idx = 0;
898 
899 	cf = (struct canfd_frame *)skb->data;
900 	skb_put_zero(skb, so->ll.mtu);
901 
902 	/* check for single frame transmission depending on TX_DL */
903 	if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
904 		/* The message size generally fits into a SingleFrame - good.
905 		 *
906 		 * SF_DL ESC offset optimization:
907 		 *
908 		 * When TX_DL is greater 8 but the message would still fit
909 		 * into a 8 byte CAN frame, we can omit the offset.
910 		 * This prevents a protocol caused length extension from
911 		 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
912 		 */
913 		if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
914 			off = 0;
915 
916 		isotp_fill_dataframe(cf, so, ae, off);
917 
918 		/* place single frame N_PCI w/o length in appropriate index */
919 		cf->data[ae] = N_PCI_SF;
920 
921 		/* place SF_DL size value depending on the SF_DL ESC offset */
922 		if (off)
923 			cf->data[SF_PCI_SZ4 + ae] = size;
924 		else
925 			cf->data[ae] |= size;
926 
927 		so->tx.state = ISOTP_IDLE;
928 		wake_up_interruptible(&so->wait);
929 
930 		/* don't enable wait queue for a single frame transmission */
931 		wait_tx_done = 0;
932 	} else {
933 		/* send first frame and wait for FC */
934 
935 		isotp_create_fframe(cf, so, ae);
936 
937 		/* start timeout for FC */
938 		hrtimer_start(&so->txtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
939 	}
940 
941 	/* send the first or only CAN frame */
942 	cf->flags = so->ll.tx_flags;
943 
944 	skb->dev = dev;
945 	skb->sk = sk;
946 	err = can_send(skb, 1);
947 	dev_put(dev);
948 	if (err) {
949 		pr_notice_once("can-isotp: %s: can_send_ret %d\n",
950 			       __func__, err);
951 		return err;
952 	}
953 
954 	if (wait_tx_done) {
955 		/* wait for complete transmission of current pdu */
956 		wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
957 	}
958 
959 	return size;
960 }
961 
962 static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
963 			 int flags)
964 {
965 	struct sock *sk = sock->sk;
966 	struct sk_buff *skb;
967 	int err = 0;
968 	int noblock;
969 
970 	noblock = flags & MSG_DONTWAIT;
971 	flags &= ~MSG_DONTWAIT;
972 
973 	skb = skb_recv_datagram(sk, flags, noblock, &err);
974 	if (!skb)
975 		return err;
976 
977 	if (size < skb->len)
978 		msg->msg_flags |= MSG_TRUNC;
979 	else
980 		size = skb->len;
981 
982 	err = memcpy_to_msg(msg, skb->data, size);
983 	if (err < 0) {
984 		skb_free_datagram(sk, skb);
985 		return err;
986 	}
987 
988 	sock_recv_timestamp(msg, sk, skb);
989 
990 	if (msg->msg_name) {
991 		__sockaddr_check_size(ISOTP_MIN_NAMELEN);
992 		msg->msg_namelen = ISOTP_MIN_NAMELEN;
993 		memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
994 	}
995 
996 	skb_free_datagram(sk, skb);
997 
998 	return size;
999 }
1000 
1001 static int isotp_release(struct socket *sock)
1002 {
1003 	struct sock *sk = sock->sk;
1004 	struct isotp_sock *so;
1005 	struct net *net;
1006 
1007 	if (!sk)
1008 		return 0;
1009 
1010 	so = isotp_sk(sk);
1011 	net = sock_net(sk);
1012 
1013 	/* wait for complete transmission of current pdu */
1014 	wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1015 
1016 	unregister_netdevice_notifier(&so->notifier);
1017 
1018 	lock_sock(sk);
1019 
1020 	hrtimer_cancel(&so->txtimer);
1021 	hrtimer_cancel(&so->rxtimer);
1022 
1023 	/* remove current filters & unregister */
1024 	if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST))) {
1025 		if (so->ifindex) {
1026 			struct net_device *dev;
1027 
1028 			dev = dev_get_by_index(net, so->ifindex);
1029 			if (dev) {
1030 				can_rx_unregister(net, dev, so->rxid,
1031 						  SINGLE_MASK(so->rxid),
1032 						  isotp_rcv, sk);
1033 				dev_put(dev);
1034 			}
1035 		}
1036 	}
1037 
1038 	so->ifindex = 0;
1039 	so->bound = 0;
1040 
1041 	sock_orphan(sk);
1042 	sock->sk = NULL;
1043 
1044 	release_sock(sk);
1045 	sock_put(sk);
1046 
1047 	return 0;
1048 }
1049 
1050 static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1051 {
1052 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1053 	struct sock *sk = sock->sk;
1054 	struct isotp_sock *so = isotp_sk(sk);
1055 	struct net *net = sock_net(sk);
1056 	int ifindex;
1057 	struct net_device *dev;
1058 	int err = 0;
1059 	int notify_enetdown = 0;
1060 	int do_rx_reg = 1;
1061 
1062 	if (len < ISOTP_MIN_NAMELEN)
1063 		return -EINVAL;
1064 
1065 	/* do not register frame reception for functional addressing */
1066 	if (so->opt.flags & CAN_ISOTP_SF_BROADCAST)
1067 		do_rx_reg = 0;
1068 
1069 	/* do not validate rx address for functional addressing */
1070 	if (do_rx_reg) {
1071 		if (addr->can_addr.tp.rx_id == addr->can_addr.tp.tx_id)
1072 			return -EADDRNOTAVAIL;
1073 
1074 		if (addr->can_addr.tp.rx_id & (CAN_ERR_FLAG | CAN_RTR_FLAG))
1075 			return -EADDRNOTAVAIL;
1076 	}
1077 
1078 	if (addr->can_addr.tp.tx_id & (CAN_ERR_FLAG | CAN_RTR_FLAG))
1079 		return -EADDRNOTAVAIL;
1080 
1081 	if (!addr->can_ifindex)
1082 		return -ENODEV;
1083 
1084 	lock_sock(sk);
1085 
1086 	if (so->bound && addr->can_ifindex == so->ifindex &&
1087 	    addr->can_addr.tp.rx_id == so->rxid &&
1088 	    addr->can_addr.tp.tx_id == so->txid)
1089 		goto out;
1090 
1091 	dev = dev_get_by_index(net, addr->can_ifindex);
1092 	if (!dev) {
1093 		err = -ENODEV;
1094 		goto out;
1095 	}
1096 	if (dev->type != ARPHRD_CAN) {
1097 		dev_put(dev);
1098 		err = -ENODEV;
1099 		goto out;
1100 	}
1101 	if (dev->mtu < so->ll.mtu) {
1102 		dev_put(dev);
1103 		err = -EINVAL;
1104 		goto out;
1105 	}
1106 	if (!(dev->flags & IFF_UP))
1107 		notify_enetdown = 1;
1108 
1109 	ifindex = dev->ifindex;
1110 
1111 	if (do_rx_reg)
1112 		can_rx_register(net, dev, addr->can_addr.tp.rx_id,
1113 				SINGLE_MASK(addr->can_addr.tp.rx_id),
1114 				isotp_rcv, sk, "isotp", sk);
1115 
1116 	dev_put(dev);
1117 
1118 	if (so->bound && do_rx_reg) {
1119 		/* unregister old filter */
1120 		if (so->ifindex) {
1121 			dev = dev_get_by_index(net, so->ifindex);
1122 			if (dev) {
1123 				can_rx_unregister(net, dev, so->rxid,
1124 						  SINGLE_MASK(so->rxid),
1125 						  isotp_rcv, sk);
1126 				dev_put(dev);
1127 			}
1128 		}
1129 	}
1130 
1131 	/* switch to new settings */
1132 	so->ifindex = ifindex;
1133 	so->rxid = addr->can_addr.tp.rx_id;
1134 	so->txid = addr->can_addr.tp.tx_id;
1135 	so->bound = 1;
1136 
1137 out:
1138 	release_sock(sk);
1139 
1140 	if (notify_enetdown) {
1141 		sk->sk_err = ENETDOWN;
1142 		if (!sock_flag(sk, SOCK_DEAD))
1143 			sk->sk_error_report(sk);
1144 	}
1145 
1146 	return err;
1147 }
1148 
1149 static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1150 {
1151 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1152 	struct sock *sk = sock->sk;
1153 	struct isotp_sock *so = isotp_sk(sk);
1154 
1155 	if (peer)
1156 		return -EOPNOTSUPP;
1157 
1158 	memset(addr, 0, ISOTP_MIN_NAMELEN);
1159 	addr->can_family = AF_CAN;
1160 	addr->can_ifindex = so->ifindex;
1161 	addr->can_addr.tp.rx_id = so->rxid;
1162 	addr->can_addr.tp.tx_id = so->txid;
1163 
1164 	return ISOTP_MIN_NAMELEN;
1165 }
1166 
1167 static int isotp_setsockopt(struct socket *sock, int level, int optname,
1168 			    sockptr_t optval, unsigned int optlen)
1169 {
1170 	struct sock *sk = sock->sk;
1171 	struct isotp_sock *so = isotp_sk(sk);
1172 	int ret = 0;
1173 
1174 	if (level != SOL_CAN_ISOTP)
1175 		return -EINVAL;
1176 
1177 	if (so->bound)
1178 		return -EISCONN;
1179 
1180 	switch (optname) {
1181 	case CAN_ISOTP_OPTS:
1182 		if (optlen != sizeof(struct can_isotp_options))
1183 			return -EINVAL;
1184 
1185 		if (copy_from_sockptr(&so->opt, optval, optlen))
1186 			return -EFAULT;
1187 
1188 		/* no separate rx_ext_address is given => use ext_address */
1189 		if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1190 			so->opt.rx_ext_address = so->opt.ext_address;
1191 		break;
1192 
1193 	case CAN_ISOTP_RECV_FC:
1194 		if (optlen != sizeof(struct can_isotp_fc_options))
1195 			return -EINVAL;
1196 
1197 		if (copy_from_sockptr(&so->rxfc, optval, optlen))
1198 			return -EFAULT;
1199 		break;
1200 
1201 	case CAN_ISOTP_TX_STMIN:
1202 		if (optlen != sizeof(u32))
1203 			return -EINVAL;
1204 
1205 		if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1206 			return -EFAULT;
1207 		break;
1208 
1209 	case CAN_ISOTP_RX_STMIN:
1210 		if (optlen != sizeof(u32))
1211 			return -EINVAL;
1212 
1213 		if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1214 			return -EFAULT;
1215 		break;
1216 
1217 	case CAN_ISOTP_LL_OPTS:
1218 		if (optlen == sizeof(struct can_isotp_ll_options)) {
1219 			struct can_isotp_ll_options ll;
1220 
1221 			if (copy_from_sockptr(&ll, optval, optlen))
1222 				return -EFAULT;
1223 
1224 			/* check for correct ISO 11898-1 DLC data length */
1225 			if (ll.tx_dl != padlen(ll.tx_dl))
1226 				return -EINVAL;
1227 
1228 			if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1229 				return -EINVAL;
1230 
1231 			if (ll.mtu == CAN_MTU &&
1232 			    (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1233 				return -EINVAL;
1234 
1235 			memcpy(&so->ll, &ll, sizeof(ll));
1236 
1237 			/* set ll_dl for tx path to similar place as for rx */
1238 			so->tx.ll_dl = ll.tx_dl;
1239 		} else {
1240 			return -EINVAL;
1241 		}
1242 		break;
1243 
1244 	default:
1245 		ret = -ENOPROTOOPT;
1246 	}
1247 
1248 	return ret;
1249 }
1250 
1251 static int isotp_getsockopt(struct socket *sock, int level, int optname,
1252 			    char __user *optval, int __user *optlen)
1253 {
1254 	struct sock *sk = sock->sk;
1255 	struct isotp_sock *so = isotp_sk(sk);
1256 	int len;
1257 	void *val;
1258 
1259 	if (level != SOL_CAN_ISOTP)
1260 		return -EINVAL;
1261 	if (get_user(len, optlen))
1262 		return -EFAULT;
1263 	if (len < 0)
1264 		return -EINVAL;
1265 
1266 	switch (optname) {
1267 	case CAN_ISOTP_OPTS:
1268 		len = min_t(int, len, sizeof(struct can_isotp_options));
1269 		val = &so->opt;
1270 		break;
1271 
1272 	case CAN_ISOTP_RECV_FC:
1273 		len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1274 		val = &so->rxfc;
1275 		break;
1276 
1277 	case CAN_ISOTP_TX_STMIN:
1278 		len = min_t(int, len, sizeof(u32));
1279 		val = &so->force_tx_stmin;
1280 		break;
1281 
1282 	case CAN_ISOTP_RX_STMIN:
1283 		len = min_t(int, len, sizeof(u32));
1284 		val = &so->force_rx_stmin;
1285 		break;
1286 
1287 	case CAN_ISOTP_LL_OPTS:
1288 		len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1289 		val = &so->ll;
1290 		break;
1291 
1292 	default:
1293 		return -ENOPROTOOPT;
1294 	}
1295 
1296 	if (put_user(len, optlen))
1297 		return -EFAULT;
1298 	if (copy_to_user(optval, val, len))
1299 		return -EFAULT;
1300 	return 0;
1301 }
1302 
1303 static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1304 			  void *ptr)
1305 {
1306 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1307 	struct isotp_sock *so = container_of(nb, struct isotp_sock, notifier);
1308 	struct sock *sk = &so->sk;
1309 
1310 	if (!net_eq(dev_net(dev), sock_net(sk)))
1311 		return NOTIFY_DONE;
1312 
1313 	if (dev->type != ARPHRD_CAN)
1314 		return NOTIFY_DONE;
1315 
1316 	if (so->ifindex != dev->ifindex)
1317 		return NOTIFY_DONE;
1318 
1319 	switch (msg) {
1320 	case NETDEV_UNREGISTER:
1321 		lock_sock(sk);
1322 		/* remove current filters & unregister */
1323 		if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST)))
1324 			can_rx_unregister(dev_net(dev), dev, so->rxid,
1325 					  SINGLE_MASK(so->rxid),
1326 					  isotp_rcv, sk);
1327 
1328 		so->ifindex = 0;
1329 		so->bound  = 0;
1330 		release_sock(sk);
1331 
1332 		sk->sk_err = ENODEV;
1333 		if (!sock_flag(sk, SOCK_DEAD))
1334 			sk->sk_error_report(sk);
1335 		break;
1336 
1337 	case NETDEV_DOWN:
1338 		sk->sk_err = ENETDOWN;
1339 		if (!sock_flag(sk, SOCK_DEAD))
1340 			sk->sk_error_report(sk);
1341 		break;
1342 	}
1343 
1344 	return NOTIFY_DONE;
1345 }
1346 
1347 static int isotp_init(struct sock *sk)
1348 {
1349 	struct isotp_sock *so = isotp_sk(sk);
1350 
1351 	so->ifindex = 0;
1352 	so->bound = 0;
1353 
1354 	so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1355 	so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1356 	so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1357 	so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1358 	so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1359 	so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1360 	so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1361 	so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1362 	so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1363 	so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1364 	so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1365 	so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1366 
1367 	/* set ll_dl for tx path to similar place as for rx */
1368 	so->tx.ll_dl = so->ll.tx_dl;
1369 
1370 	so->rx.state = ISOTP_IDLE;
1371 	so->tx.state = ISOTP_IDLE;
1372 
1373 	hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1374 	so->rxtimer.function = isotp_rx_timer_handler;
1375 	hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1376 	so->txtimer.function = isotp_tx_timer_handler;
1377 
1378 	init_waitqueue_head(&so->wait);
1379 
1380 	so->notifier.notifier_call = isotp_notifier;
1381 	register_netdevice_notifier(&so->notifier);
1382 
1383 	return 0;
1384 }
1385 
1386 static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1387 				  unsigned long arg)
1388 {
1389 	/* no ioctls for socket layer -> hand it down to NIC layer */
1390 	return -ENOIOCTLCMD;
1391 }
1392 
1393 static const struct proto_ops isotp_ops = {
1394 	.family = PF_CAN,
1395 	.release = isotp_release,
1396 	.bind = isotp_bind,
1397 	.connect = sock_no_connect,
1398 	.socketpair = sock_no_socketpair,
1399 	.accept = sock_no_accept,
1400 	.getname = isotp_getname,
1401 	.poll = datagram_poll,
1402 	.ioctl = isotp_sock_no_ioctlcmd,
1403 	.gettstamp = sock_gettstamp,
1404 	.listen = sock_no_listen,
1405 	.shutdown = sock_no_shutdown,
1406 	.setsockopt = isotp_setsockopt,
1407 	.getsockopt = isotp_getsockopt,
1408 	.sendmsg = isotp_sendmsg,
1409 	.recvmsg = isotp_recvmsg,
1410 	.mmap = sock_no_mmap,
1411 	.sendpage = sock_no_sendpage,
1412 };
1413 
1414 static struct proto isotp_proto __read_mostly = {
1415 	.name = "CAN_ISOTP",
1416 	.owner = THIS_MODULE,
1417 	.obj_size = sizeof(struct isotp_sock),
1418 	.init = isotp_init,
1419 };
1420 
1421 static const struct can_proto isotp_can_proto = {
1422 	.type = SOCK_DGRAM,
1423 	.protocol = CAN_ISOTP,
1424 	.ops = &isotp_ops,
1425 	.prot = &isotp_proto,
1426 };
1427 
1428 static __init int isotp_module_init(void)
1429 {
1430 	int err;
1431 
1432 	pr_info("can: isotp protocol\n");
1433 
1434 	err = can_proto_register(&isotp_can_proto);
1435 	if (err < 0)
1436 		pr_err("can: registration of isotp protocol failed\n");
1437 
1438 	return err;
1439 }
1440 
1441 static __exit void isotp_module_exit(void)
1442 {
1443 	can_proto_unregister(&isotp_can_proto);
1444 }
1445 
1446 module_init(isotp_module_init);
1447 module_exit(isotp_module_exit);
1448