xref: /linux/net/can/isotp.c (revision 29e31a8ee811f5d85274f0381f13cd6fe650aea4)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
3  *
4  * This implementation does not provide ISO-TP specific return values to the
5  * userspace.
6  *
7  * - RX path timeout of data reception leads to -ETIMEDOUT
8  * - RX path SN mismatch leads to -EILSEQ
9  * - RX path data reception with wrong padding leads to -EBADMSG
10  * - TX path flowcontrol reception timeout leads to -ECOMM
11  * - TX path flowcontrol reception overflow leads to -EMSGSIZE
12  * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
13  * - when a transfer (tx) is on the run the next write() blocks until it's done
14  * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
15  * - as we have static buffers the check whether the PDU fits into the buffer
16  *   is done at FF reception time (no support for sending 'wait frames')
17  *
18  * Copyright (c) 2020 Volkswagen Group Electronic Research
19  * All rights reserved.
20  *
21  * Redistribution and use in source and binary forms, with or without
22  * modification, are permitted provided that the following conditions
23  * are met:
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  * 3. Neither the name of Volkswagen nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * Alternatively, provided that this notice is retained in full, this
34  * software may be distributed under the terms of the GNU General
35  * Public License ("GPL") version 2, in which case the provisions of the
36  * GPL apply INSTEAD OF those given above.
37  *
38  * The provided data structures and external interfaces from this code
39  * are not restricted to be used by modules with a GPL compatible license.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52  * DAMAGE.
53  */
54 
55 #include <linux/module.h>
56 #include <linux/init.h>
57 #include <linux/interrupt.h>
58 #include <linux/spinlock.h>
59 #include <linux/hrtimer.h>
60 #include <linux/wait.h>
61 #include <linux/uio.h>
62 #include <linux/net.h>
63 #include <linux/netdevice.h>
64 #include <linux/socket.h>
65 #include <linux/if_arp.h>
66 #include <linux/skbuff.h>
67 #include <linux/can.h>
68 #include <linux/can/core.h>
69 #include <linux/can/skb.h>
70 #include <linux/can/isotp.h>
71 #include <linux/slab.h>
72 #include <net/sock.h>
73 #include <net/net_namespace.h>
74 
75 MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
76 MODULE_LICENSE("Dual BSD/GPL");
77 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
78 MODULE_ALIAS("can-proto-6");
79 
80 #define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
81 
82 #define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
83 			 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
84 			 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
85 
86 /* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
87  * take full 32 bit values (4 Gbyte). We would need some good concept to handle
88  * this between user space and kernel space. For now set the static buffer to
89  * something about 8 kbyte to be able to test this new functionality.
90  */
91 #define DEFAULT_MAX_PDU_SIZE 8300
92 
93 /* maximum PDU size before ISO 15765-2:2016 extension was 4095 */
94 #define MAX_12BIT_PDU_SIZE 4095
95 
96 /* limit the isotp pdu size from the optional module parameter to 1MByte */
97 #define MAX_PDU_SIZE (1025 * 1024U)
98 
99 static unsigned int max_pdu_size __read_mostly = DEFAULT_MAX_PDU_SIZE;
100 module_param(max_pdu_size, uint, 0444);
101 MODULE_PARM_DESC(max_pdu_size, "maximum isotp pdu size (default "
102 		 __stringify(DEFAULT_MAX_PDU_SIZE) ")");
103 
104 /* N_PCI type values in bits 7-4 of N_PCI bytes */
105 #define N_PCI_SF 0x00	/* single frame */
106 #define N_PCI_FF 0x10	/* first frame */
107 #define N_PCI_CF 0x20	/* consecutive frame */
108 #define N_PCI_FC 0x30	/* flow control */
109 
110 #define N_PCI_SZ 1	/* size of the PCI byte #1 */
111 #define SF_PCI_SZ4 1	/* size of SingleFrame PCI including 4 bit SF_DL */
112 #define SF_PCI_SZ8 2	/* size of SingleFrame PCI including 8 bit SF_DL */
113 #define FF_PCI_SZ12 2	/* size of FirstFrame PCI including 12 bit FF_DL */
114 #define FF_PCI_SZ32 6	/* size of FirstFrame PCI including 32 bit FF_DL */
115 #define FC_CONTENT_SZ 3	/* flow control content size in byte (FS/BS/STmin) */
116 
117 #define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
118 #define ISOTP_ALL_BC_FLAGS (CAN_ISOTP_SF_BROADCAST | CAN_ISOTP_CF_BROADCAST)
119 
120 /* Flow Status given in FC frame */
121 #define ISOTP_FC_CTS 0		/* clear to send */
122 #define ISOTP_FC_WT 1		/* wait */
123 #define ISOTP_FC_OVFLW 2	/* overflow */
124 
125 #define ISOTP_FC_TIMEOUT 1	/* 1 sec */
126 #define ISOTP_ECHO_TIMEOUT 2	/* 2 secs */
127 
128 enum {
129 	ISOTP_IDLE = 0,
130 	ISOTP_WAIT_FIRST_FC,
131 	ISOTP_WAIT_FC,
132 	ISOTP_WAIT_DATA,
133 	ISOTP_SENDING,
134 	ISOTP_SHUTDOWN,
135 };
136 
137 struct tpcon {
138 	u8 *buf;
139 	unsigned int buflen;
140 	unsigned int len;
141 	unsigned int idx;
142 	u32 state;
143 	u8 bs;
144 	u8 sn;
145 	u8 ll_dl;
146 	u8 sbuf[DEFAULT_MAX_PDU_SIZE];
147 };
148 
149 struct isotp_sock {
150 	struct sock sk;
151 	int bound;
152 	int ifindex;
153 	canid_t txid;
154 	canid_t rxid;
155 	ktime_t tx_gap;
156 	ktime_t lastrxcf_tstamp;
157 	struct hrtimer rxtimer, txtimer, txfrtimer;
158 	struct can_isotp_options opt;
159 	struct can_isotp_fc_options rxfc, txfc;
160 	struct can_isotp_ll_options ll;
161 	u32 frame_txtime;
162 	u32 force_tx_stmin;
163 	u32 force_rx_stmin;
164 	u32 cfecho; /* consecutive frame echo tag */
165 	struct tpcon rx, tx;
166 	struct list_head notifier;
167 	wait_queue_head_t wait;
168 	spinlock_t rx_lock; /* protect single thread state machine */
169 };
170 
171 static LIST_HEAD(isotp_notifier_list);
172 static DEFINE_SPINLOCK(isotp_notifier_lock);
173 static struct isotp_sock *isotp_busy_notifier;
174 
175 static inline struct isotp_sock *isotp_sk(const struct sock *sk)
176 {
177 	return (struct isotp_sock *)sk;
178 }
179 
180 static u32 isotp_bc_flags(struct isotp_sock *so)
181 {
182 	return so->opt.flags & ISOTP_ALL_BC_FLAGS;
183 }
184 
185 static bool isotp_register_rxid(struct isotp_sock *so)
186 {
187 	/* no broadcast modes => register rx_id for FC frame reception */
188 	return (isotp_bc_flags(so) == 0);
189 }
190 
191 static bool isotp_register_txecho(struct isotp_sock *so)
192 {
193 	/* all modes but SF_BROADCAST register for tx echo skbs */
194 	return (isotp_bc_flags(so) != CAN_ISOTP_SF_BROADCAST);
195 }
196 
197 static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
198 {
199 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
200 					     rxtimer);
201 	struct sock *sk = &so->sk;
202 
203 	if (so->rx.state == ISOTP_WAIT_DATA) {
204 		/* we did not get new data frames in time */
205 
206 		/* report 'connection timed out' */
207 		sk->sk_err = ETIMEDOUT;
208 		if (!sock_flag(sk, SOCK_DEAD))
209 			sk_error_report(sk);
210 
211 		/* reset rx state */
212 		so->rx.state = ISOTP_IDLE;
213 	}
214 
215 	return HRTIMER_NORESTART;
216 }
217 
218 static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
219 {
220 	struct net_device *dev;
221 	struct sk_buff *nskb;
222 	struct canfd_frame *ncf;
223 	struct isotp_sock *so = isotp_sk(sk);
224 	int can_send_ret;
225 
226 	nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
227 	if (!nskb)
228 		return 1;
229 
230 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
231 	if (!dev) {
232 		kfree_skb(nskb);
233 		return 1;
234 	}
235 
236 	can_skb_reserve(nskb);
237 	can_skb_prv(nskb)->ifindex = dev->ifindex;
238 	can_skb_prv(nskb)->skbcnt = 0;
239 
240 	nskb->dev = dev;
241 	can_skb_set_owner(nskb, sk);
242 	ncf = (struct canfd_frame *)nskb->data;
243 	skb_put_zero(nskb, so->ll.mtu);
244 
245 	/* create & send flow control reply */
246 	ncf->can_id = so->txid;
247 
248 	if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
249 		memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
250 		ncf->len = CAN_MAX_DLEN;
251 	} else {
252 		ncf->len = ae + FC_CONTENT_SZ;
253 	}
254 
255 	ncf->data[ae] = N_PCI_FC | flowstatus;
256 	ncf->data[ae + 1] = so->rxfc.bs;
257 	ncf->data[ae + 2] = so->rxfc.stmin;
258 
259 	if (ae)
260 		ncf->data[0] = so->opt.ext_address;
261 
262 	ncf->flags = so->ll.tx_flags;
263 
264 	can_send_ret = can_send(nskb, 1);
265 	if (can_send_ret)
266 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
267 			       __func__, ERR_PTR(can_send_ret));
268 
269 	dev_put(dev);
270 
271 	/* reset blocksize counter */
272 	so->rx.bs = 0;
273 
274 	/* reset last CF frame rx timestamp for rx stmin enforcement */
275 	so->lastrxcf_tstamp = ktime_set(0, 0);
276 
277 	/* start rx timeout watchdog */
278 	hrtimer_start(&so->rxtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
279 		      HRTIMER_MODE_REL_SOFT);
280 	return 0;
281 }
282 
283 static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
284 {
285 	struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
286 
287 	BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
288 
289 	memset(addr, 0, sizeof(*addr));
290 	addr->can_family = AF_CAN;
291 	addr->can_ifindex = skb->dev->ifindex;
292 
293 	if (sock_queue_rcv_skb(sk, skb) < 0)
294 		kfree_skb(skb);
295 }
296 
297 static u8 padlen(u8 datalen)
298 {
299 	static const u8 plen[] = {
300 		8, 8, 8, 8, 8, 8, 8, 8, 8,	/* 0 - 8 */
301 		12, 12, 12, 12,			/* 9 - 12 */
302 		16, 16, 16, 16,			/* 13 - 16 */
303 		20, 20, 20, 20,			/* 17 - 20 */
304 		24, 24, 24, 24,			/* 21 - 24 */
305 		32, 32, 32, 32, 32, 32, 32, 32,	/* 25 - 32 */
306 		48, 48, 48, 48, 48, 48, 48, 48,	/* 33 - 40 */
307 		48, 48, 48, 48, 48, 48, 48, 48	/* 41 - 48 */
308 	};
309 
310 	if (datalen > 48)
311 		return 64;
312 
313 	return plen[datalen];
314 }
315 
316 /* check for length optimization and return 1/true when the check fails */
317 static int check_optimized(struct canfd_frame *cf, int start_index)
318 {
319 	/* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
320 	 * padding would start at this point. E.g. if the padding would
321 	 * start at cf.data[7] cf->len has to be 7 to be optimal.
322 	 * Note: The data[] index starts with zero.
323 	 */
324 	if (cf->len <= CAN_MAX_DLEN)
325 		return (cf->len != start_index);
326 
327 	/* This relation is also valid in the non-linear DLC range, where
328 	 * we need to take care of the minimal next possible CAN_DL.
329 	 * The correct check would be (padlen(cf->len) != padlen(start_index)).
330 	 * But as cf->len can only take discrete values from 12, .., 64 at this
331 	 * point the padlen(cf->len) is always equal to cf->len.
332 	 */
333 	return (cf->len != padlen(start_index));
334 }
335 
336 /* check padding and return 1/true when the check fails */
337 static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
338 		     int start_index, u8 content)
339 {
340 	int i;
341 
342 	/* no RX_PADDING value => check length of optimized frame length */
343 	if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
344 		if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
345 			return check_optimized(cf, start_index);
346 
347 		/* no valid test against empty value => ignore frame */
348 		return 1;
349 	}
350 
351 	/* check datalength of correctly padded CAN frame */
352 	if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
353 	    cf->len != padlen(cf->len))
354 		return 1;
355 
356 	/* check padding content */
357 	if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
358 		for (i = start_index; i < cf->len; i++)
359 			if (cf->data[i] != content)
360 				return 1;
361 	}
362 	return 0;
363 }
364 
365 static void isotp_send_cframe(struct isotp_sock *so);
366 
367 static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
368 {
369 	struct sock *sk = &so->sk;
370 
371 	if (so->tx.state != ISOTP_WAIT_FC &&
372 	    so->tx.state != ISOTP_WAIT_FIRST_FC)
373 		return 0;
374 
375 	hrtimer_cancel(&so->txtimer);
376 
377 	if ((cf->len < ae + FC_CONTENT_SZ) ||
378 	    ((so->opt.flags & ISOTP_CHECK_PADDING) &&
379 	     check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
380 		/* malformed PDU - report 'not a data message' */
381 		sk->sk_err = EBADMSG;
382 		if (!sock_flag(sk, SOCK_DEAD))
383 			sk_error_report(sk);
384 
385 		so->tx.state = ISOTP_IDLE;
386 		wake_up_interruptible(&so->wait);
387 		return 1;
388 	}
389 
390 	/* get communication parameters only from the first FC frame */
391 	if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
392 		so->txfc.bs = cf->data[ae + 1];
393 		so->txfc.stmin = cf->data[ae + 2];
394 
395 		/* fix wrong STmin values according spec */
396 		if (so->txfc.stmin > 0x7F &&
397 		    (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
398 			so->txfc.stmin = 0x7F;
399 
400 		so->tx_gap = ktime_set(0, 0);
401 		/* add transmission time for CAN frame N_As */
402 		so->tx_gap = ktime_add_ns(so->tx_gap, so->frame_txtime);
403 		/* add waiting time for consecutive frames N_Cs */
404 		if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
405 			so->tx_gap = ktime_add_ns(so->tx_gap,
406 						  so->force_tx_stmin);
407 		else if (so->txfc.stmin < 0x80)
408 			so->tx_gap = ktime_add_ns(so->tx_gap,
409 						  so->txfc.stmin * 1000000);
410 		else
411 			so->tx_gap = ktime_add_ns(so->tx_gap,
412 						  (so->txfc.stmin - 0xF0)
413 						  * 100000);
414 		so->tx.state = ISOTP_WAIT_FC;
415 	}
416 
417 	switch (cf->data[ae] & 0x0F) {
418 	case ISOTP_FC_CTS:
419 		so->tx.bs = 0;
420 		so->tx.state = ISOTP_SENDING;
421 		/* send CF frame and enable echo timeout handling */
422 		hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
423 			      HRTIMER_MODE_REL_SOFT);
424 		isotp_send_cframe(so);
425 		break;
426 
427 	case ISOTP_FC_WT:
428 		/* start timer to wait for next FC frame */
429 		hrtimer_start(&so->txtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
430 			      HRTIMER_MODE_REL_SOFT);
431 		break;
432 
433 	case ISOTP_FC_OVFLW:
434 		/* overflow on receiver side - report 'message too long' */
435 		sk->sk_err = EMSGSIZE;
436 		if (!sock_flag(sk, SOCK_DEAD))
437 			sk_error_report(sk);
438 		fallthrough;
439 
440 	default:
441 		/* stop this tx job */
442 		so->tx.state = ISOTP_IDLE;
443 		wake_up_interruptible(&so->wait);
444 	}
445 	return 0;
446 }
447 
448 static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
449 			struct sk_buff *skb, int len)
450 {
451 	struct isotp_sock *so = isotp_sk(sk);
452 	struct sk_buff *nskb;
453 
454 	hrtimer_cancel(&so->rxtimer);
455 	so->rx.state = ISOTP_IDLE;
456 
457 	if (!len || len > cf->len - pcilen)
458 		return 1;
459 
460 	if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
461 	    check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
462 		/* malformed PDU - report 'not a data message' */
463 		sk->sk_err = EBADMSG;
464 		if (!sock_flag(sk, SOCK_DEAD))
465 			sk_error_report(sk);
466 		return 1;
467 	}
468 
469 	nskb = alloc_skb(len, gfp_any());
470 	if (!nskb)
471 		return 1;
472 
473 	memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
474 
475 	nskb->tstamp = skb->tstamp;
476 	nskb->dev = skb->dev;
477 	isotp_rcv_skb(nskb, sk);
478 	return 0;
479 }
480 
481 static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
482 {
483 	struct isotp_sock *so = isotp_sk(sk);
484 	int i;
485 	int off;
486 	int ff_pci_sz;
487 
488 	hrtimer_cancel(&so->rxtimer);
489 	so->rx.state = ISOTP_IDLE;
490 
491 	/* get the used sender LL_DL from the (first) CAN frame data length */
492 	so->rx.ll_dl = padlen(cf->len);
493 
494 	/* the first frame has to use the entire frame up to LL_DL length */
495 	if (cf->len != so->rx.ll_dl)
496 		return 1;
497 
498 	/* get the FF_DL */
499 	so->rx.len = (cf->data[ae] & 0x0F) << 8;
500 	so->rx.len += cf->data[ae + 1];
501 
502 	/* Check for FF_DL escape sequence supporting 32 bit PDU length */
503 	if (so->rx.len) {
504 		ff_pci_sz = FF_PCI_SZ12;
505 	} else {
506 		/* FF_DL = 0 => get real length from next 4 bytes */
507 		so->rx.len = cf->data[ae + 2] << 24;
508 		so->rx.len += cf->data[ae + 3] << 16;
509 		so->rx.len += cf->data[ae + 4] << 8;
510 		so->rx.len += cf->data[ae + 5];
511 		ff_pci_sz = FF_PCI_SZ32;
512 	}
513 
514 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
515 	off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
516 
517 	if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
518 		return 1;
519 
520 	/* PDU size > default => try max_pdu_size */
521 	if (so->rx.len > so->rx.buflen && so->rx.buflen < max_pdu_size) {
522 		u8 *newbuf = kmalloc(max_pdu_size, GFP_ATOMIC);
523 
524 		if (newbuf) {
525 			so->rx.buf = newbuf;
526 			so->rx.buflen = max_pdu_size;
527 		}
528 	}
529 
530 	if (so->rx.len > so->rx.buflen) {
531 		/* send FC frame with overflow status */
532 		isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
533 		return 1;
534 	}
535 
536 	/* copy the first received data bytes */
537 	so->rx.idx = 0;
538 	for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
539 		so->rx.buf[so->rx.idx++] = cf->data[i];
540 
541 	/* initial setup for this pdu reception */
542 	so->rx.sn = 1;
543 	so->rx.state = ISOTP_WAIT_DATA;
544 
545 	/* no creation of flow control frames */
546 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
547 		return 0;
548 
549 	/* send our first FC frame */
550 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
551 	return 0;
552 }
553 
554 static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
555 			struct sk_buff *skb)
556 {
557 	struct isotp_sock *so = isotp_sk(sk);
558 	struct sk_buff *nskb;
559 	int i;
560 
561 	if (so->rx.state != ISOTP_WAIT_DATA)
562 		return 0;
563 
564 	/* drop if timestamp gap is less than force_rx_stmin nano secs */
565 	if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
566 		if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
567 		    so->force_rx_stmin)
568 			return 0;
569 
570 		so->lastrxcf_tstamp = skb->tstamp;
571 	}
572 
573 	hrtimer_cancel(&so->rxtimer);
574 
575 	/* CFs are never longer than the FF */
576 	if (cf->len > so->rx.ll_dl)
577 		return 1;
578 
579 	/* CFs have usually the LL_DL length */
580 	if (cf->len < so->rx.ll_dl) {
581 		/* this is only allowed for the last CF */
582 		if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
583 			return 1;
584 	}
585 
586 	if ((cf->data[ae] & 0x0F) != so->rx.sn) {
587 		/* wrong sn detected - report 'illegal byte sequence' */
588 		sk->sk_err = EILSEQ;
589 		if (!sock_flag(sk, SOCK_DEAD))
590 			sk_error_report(sk);
591 
592 		/* reset rx state */
593 		so->rx.state = ISOTP_IDLE;
594 		return 1;
595 	}
596 	so->rx.sn++;
597 	so->rx.sn %= 16;
598 
599 	for (i = ae + N_PCI_SZ; i < cf->len; i++) {
600 		so->rx.buf[so->rx.idx++] = cf->data[i];
601 		if (so->rx.idx >= so->rx.len)
602 			break;
603 	}
604 
605 	if (so->rx.idx >= so->rx.len) {
606 		/* we are done */
607 		so->rx.state = ISOTP_IDLE;
608 
609 		if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
610 		    check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
611 			/* malformed PDU - report 'not a data message' */
612 			sk->sk_err = EBADMSG;
613 			if (!sock_flag(sk, SOCK_DEAD))
614 				sk_error_report(sk);
615 			return 1;
616 		}
617 
618 		nskb = alloc_skb(so->rx.len, gfp_any());
619 		if (!nskb)
620 			return 1;
621 
622 		memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
623 		       so->rx.len);
624 
625 		nskb->tstamp = skb->tstamp;
626 		nskb->dev = skb->dev;
627 		isotp_rcv_skb(nskb, sk);
628 		return 0;
629 	}
630 
631 	/* perform blocksize handling, if enabled */
632 	if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
633 		/* start rx timeout watchdog */
634 		hrtimer_start(&so->rxtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
635 			      HRTIMER_MODE_REL_SOFT);
636 		return 0;
637 	}
638 
639 	/* no creation of flow control frames */
640 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
641 		return 0;
642 
643 	/* we reached the specified blocksize so->rxfc.bs */
644 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
645 	return 0;
646 }
647 
648 static void isotp_rcv(struct sk_buff *skb, void *data)
649 {
650 	struct sock *sk = (struct sock *)data;
651 	struct isotp_sock *so = isotp_sk(sk);
652 	struct canfd_frame *cf;
653 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
654 	u8 n_pci_type, sf_dl;
655 
656 	/* Strictly receive only frames with the configured MTU size
657 	 * => clear separation of CAN2.0 / CAN FD transport channels
658 	 */
659 	if (skb->len != so->ll.mtu)
660 		return;
661 
662 	cf = (struct canfd_frame *)skb->data;
663 
664 	/* if enabled: check reception of my configured extended address */
665 	if (ae && cf->data[0] != so->opt.rx_ext_address)
666 		return;
667 
668 	n_pci_type = cf->data[ae] & 0xF0;
669 
670 	/* Make sure the state changes and data structures stay consistent at
671 	 * CAN frame reception time. This locking is not needed in real world
672 	 * use cases but the inconsistency can be triggered with syzkaller.
673 	 */
674 	spin_lock(&so->rx_lock);
675 
676 	if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
677 		/* check rx/tx path half duplex expectations */
678 		if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
679 		    (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
680 			goto out_unlock;
681 	}
682 
683 	switch (n_pci_type) {
684 	case N_PCI_FC:
685 		/* tx path: flow control frame containing the FC parameters */
686 		isotp_rcv_fc(so, cf, ae);
687 		break;
688 
689 	case N_PCI_SF:
690 		/* rx path: single frame
691 		 *
692 		 * As we do not have a rx.ll_dl configuration, we can only test
693 		 * if the CAN frames payload length matches the LL_DL == 8
694 		 * requirements - no matter if it's CAN 2.0 or CAN FD
695 		 */
696 
697 		/* get the SF_DL from the N_PCI byte */
698 		sf_dl = cf->data[ae] & 0x0F;
699 
700 		if (cf->len <= CAN_MAX_DLEN) {
701 			isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
702 		} else {
703 			if (can_is_canfd_skb(skb)) {
704 				/* We have a CAN FD frame and CAN_DL is greater than 8:
705 				 * Only frames with the SF_DL == 0 ESC value are valid.
706 				 *
707 				 * If so take care of the increased SF PCI size
708 				 * (SF_PCI_SZ8) to point to the message content behind
709 				 * the extended SF PCI info and get the real SF_DL
710 				 * length value from the formerly first data byte.
711 				 */
712 				if (sf_dl == 0)
713 					isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
714 						     cf->data[SF_PCI_SZ4 + ae]);
715 			}
716 		}
717 		break;
718 
719 	case N_PCI_FF:
720 		/* rx path: first frame */
721 		isotp_rcv_ff(sk, cf, ae);
722 		break;
723 
724 	case N_PCI_CF:
725 		/* rx path: consecutive frame */
726 		isotp_rcv_cf(sk, cf, ae, skb);
727 		break;
728 	}
729 
730 out_unlock:
731 	spin_unlock(&so->rx_lock);
732 }
733 
734 static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
735 				 int ae, int off)
736 {
737 	int pcilen = N_PCI_SZ + ae + off;
738 	int space = so->tx.ll_dl - pcilen;
739 	int num = min_t(int, so->tx.len - so->tx.idx, space);
740 	int i;
741 
742 	cf->can_id = so->txid;
743 	cf->len = num + pcilen;
744 
745 	if (num < space) {
746 		if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
747 			/* user requested padding */
748 			cf->len = padlen(cf->len);
749 			memset(cf->data, so->opt.txpad_content, cf->len);
750 		} else if (cf->len > CAN_MAX_DLEN) {
751 			/* mandatory padding for CAN FD frames */
752 			cf->len = padlen(cf->len);
753 			memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
754 			       cf->len);
755 		}
756 	}
757 
758 	for (i = 0; i < num; i++)
759 		cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
760 
761 	if (ae)
762 		cf->data[0] = so->opt.ext_address;
763 }
764 
765 static void isotp_send_cframe(struct isotp_sock *so)
766 {
767 	struct sock *sk = &so->sk;
768 	struct sk_buff *skb;
769 	struct net_device *dev;
770 	struct canfd_frame *cf;
771 	int can_send_ret;
772 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
773 
774 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
775 	if (!dev)
776 		return;
777 
778 	skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), GFP_ATOMIC);
779 	if (!skb) {
780 		dev_put(dev);
781 		return;
782 	}
783 
784 	can_skb_reserve(skb);
785 	can_skb_prv(skb)->ifindex = dev->ifindex;
786 	can_skb_prv(skb)->skbcnt = 0;
787 
788 	cf = (struct canfd_frame *)skb->data;
789 	skb_put_zero(skb, so->ll.mtu);
790 
791 	/* create consecutive frame */
792 	isotp_fill_dataframe(cf, so, ae, 0);
793 
794 	/* place consecutive frame N_PCI in appropriate index */
795 	cf->data[ae] = N_PCI_CF | so->tx.sn++;
796 	so->tx.sn %= 16;
797 	so->tx.bs++;
798 
799 	cf->flags = so->ll.tx_flags;
800 
801 	skb->dev = dev;
802 	can_skb_set_owner(skb, sk);
803 
804 	/* cfecho should have been zero'ed by init/isotp_rcv_echo() */
805 	if (so->cfecho)
806 		pr_notice_once("can-isotp: cfecho is %08X != 0\n", so->cfecho);
807 
808 	/* set consecutive frame echo tag */
809 	so->cfecho = *(u32 *)cf->data;
810 
811 	/* send frame with local echo enabled */
812 	can_send_ret = can_send(skb, 1);
813 	if (can_send_ret) {
814 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
815 			       __func__, ERR_PTR(can_send_ret));
816 		if (can_send_ret == -ENOBUFS)
817 			pr_notice_once("can-isotp: tx queue is full\n");
818 	}
819 	dev_put(dev);
820 }
821 
822 static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
823 				int ae)
824 {
825 	int i;
826 	int ff_pci_sz;
827 
828 	cf->can_id = so->txid;
829 	cf->len = so->tx.ll_dl;
830 	if (ae)
831 		cf->data[0] = so->opt.ext_address;
832 
833 	/* create N_PCI bytes with 12/32 bit FF_DL data length */
834 	if (so->tx.len > MAX_12BIT_PDU_SIZE) {
835 		/* use 32 bit FF_DL notation */
836 		cf->data[ae] = N_PCI_FF;
837 		cf->data[ae + 1] = 0;
838 		cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
839 		cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
840 		cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
841 		cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
842 		ff_pci_sz = FF_PCI_SZ32;
843 	} else {
844 		/* use 12 bit FF_DL notation */
845 		cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
846 		cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
847 		ff_pci_sz = FF_PCI_SZ12;
848 	}
849 
850 	/* add first data bytes depending on ae */
851 	for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
852 		cf->data[i] = so->tx.buf[so->tx.idx++];
853 
854 	so->tx.sn = 1;
855 }
856 
857 static void isotp_rcv_echo(struct sk_buff *skb, void *data)
858 {
859 	struct sock *sk = (struct sock *)data;
860 	struct isotp_sock *so = isotp_sk(sk);
861 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
862 
863 	/* only handle my own local echo CF/SF skb's (no FF!) */
864 	if (skb->sk != sk || so->cfecho != *(u32 *)cf->data)
865 		return;
866 
867 	/* cancel local echo timeout */
868 	hrtimer_cancel(&so->txtimer);
869 
870 	/* local echo skb with consecutive frame has been consumed */
871 	so->cfecho = 0;
872 
873 	if (so->tx.idx >= so->tx.len) {
874 		/* we are done */
875 		so->tx.state = ISOTP_IDLE;
876 		wake_up_interruptible(&so->wait);
877 		return;
878 	}
879 
880 	if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
881 		/* stop and wait for FC with timeout */
882 		so->tx.state = ISOTP_WAIT_FC;
883 		hrtimer_start(&so->txtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
884 			      HRTIMER_MODE_REL_SOFT);
885 		return;
886 	}
887 
888 	/* no gap between data frames needed => use burst mode */
889 	if (!so->tx_gap) {
890 		/* enable echo timeout handling */
891 		hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
892 			      HRTIMER_MODE_REL_SOFT);
893 		isotp_send_cframe(so);
894 		return;
895 	}
896 
897 	/* start timer to send next consecutive frame with correct delay */
898 	hrtimer_start(&so->txfrtimer, so->tx_gap, HRTIMER_MODE_REL_SOFT);
899 }
900 
901 static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
902 {
903 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
904 					     txtimer);
905 	struct sock *sk = &so->sk;
906 
907 	/* don't handle timeouts in IDLE or SHUTDOWN state */
908 	if (so->tx.state == ISOTP_IDLE || so->tx.state == ISOTP_SHUTDOWN)
909 		return HRTIMER_NORESTART;
910 
911 	/* we did not get any flow control or echo frame in time */
912 
913 	/* report 'communication error on send' */
914 	sk->sk_err = ECOMM;
915 	if (!sock_flag(sk, SOCK_DEAD))
916 		sk_error_report(sk);
917 
918 	/* reset tx state */
919 	so->tx.state = ISOTP_IDLE;
920 	wake_up_interruptible(&so->wait);
921 
922 	return HRTIMER_NORESTART;
923 }
924 
925 static enum hrtimer_restart isotp_txfr_timer_handler(struct hrtimer *hrtimer)
926 {
927 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
928 					     txfrtimer);
929 
930 	/* start echo timeout handling and cover below protocol error */
931 	hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
932 		      HRTIMER_MODE_REL_SOFT);
933 
934 	/* cfecho should be consumed by isotp_rcv_echo() here */
935 	if (so->tx.state == ISOTP_SENDING && !so->cfecho)
936 		isotp_send_cframe(so);
937 
938 	return HRTIMER_NORESTART;
939 }
940 
941 static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
942 {
943 	struct sock *sk = sock->sk;
944 	struct isotp_sock *so = isotp_sk(sk);
945 	struct sk_buff *skb;
946 	struct net_device *dev;
947 	struct canfd_frame *cf;
948 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
949 	int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
950 	s64 hrtimer_sec = ISOTP_ECHO_TIMEOUT;
951 	int off;
952 	int err;
953 
954 	if (!so->bound || so->tx.state == ISOTP_SHUTDOWN)
955 		return -EADDRNOTAVAIL;
956 
957 wait_free_buffer:
958 	/* we do not support multiple buffers - for now */
959 	if (wq_has_sleeper(&so->wait) && (msg->msg_flags & MSG_DONTWAIT))
960 		return -EAGAIN;
961 
962 	/* wait for complete transmission of current pdu */
963 	err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
964 	if (err)
965 		goto err_event_drop;
966 
967 	if (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE) {
968 		if (so->tx.state == ISOTP_SHUTDOWN)
969 			return -EADDRNOTAVAIL;
970 
971 		goto wait_free_buffer;
972 	}
973 
974 	/* PDU size > default => try max_pdu_size */
975 	if (size > so->tx.buflen && so->tx.buflen < max_pdu_size) {
976 		u8 *newbuf = kmalloc(max_pdu_size, GFP_KERNEL);
977 
978 		if (newbuf) {
979 			so->tx.buf = newbuf;
980 			so->tx.buflen = max_pdu_size;
981 		}
982 	}
983 
984 	if (!size || size > so->tx.buflen) {
985 		err = -EINVAL;
986 		goto err_out_drop;
987 	}
988 
989 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
990 	off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
991 
992 	/* does the given data fit into a single frame for SF_BROADCAST? */
993 	if ((isotp_bc_flags(so) == CAN_ISOTP_SF_BROADCAST) &&
994 	    (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
995 		err = -EINVAL;
996 		goto err_out_drop;
997 	}
998 
999 	err = memcpy_from_msg(so->tx.buf, msg, size);
1000 	if (err < 0)
1001 		goto err_out_drop;
1002 
1003 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
1004 	if (!dev) {
1005 		err = -ENXIO;
1006 		goto err_out_drop;
1007 	}
1008 
1009 	skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
1010 				  msg->msg_flags & MSG_DONTWAIT, &err);
1011 	if (!skb) {
1012 		dev_put(dev);
1013 		goto err_out_drop;
1014 	}
1015 
1016 	can_skb_reserve(skb);
1017 	can_skb_prv(skb)->ifindex = dev->ifindex;
1018 	can_skb_prv(skb)->skbcnt = 0;
1019 
1020 	so->tx.len = size;
1021 	so->tx.idx = 0;
1022 
1023 	cf = (struct canfd_frame *)skb->data;
1024 	skb_put_zero(skb, so->ll.mtu);
1025 
1026 	/* cfecho should have been zero'ed by init / former isotp_rcv_echo() */
1027 	if (so->cfecho)
1028 		pr_notice_once("can-isotp: uninit cfecho %08X\n", so->cfecho);
1029 
1030 	/* check for single frame transmission depending on TX_DL */
1031 	if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
1032 		/* The message size generally fits into a SingleFrame - good.
1033 		 *
1034 		 * SF_DL ESC offset optimization:
1035 		 *
1036 		 * When TX_DL is greater 8 but the message would still fit
1037 		 * into a 8 byte CAN frame, we can omit the offset.
1038 		 * This prevents a protocol caused length extension from
1039 		 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
1040 		 */
1041 		if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
1042 			off = 0;
1043 
1044 		isotp_fill_dataframe(cf, so, ae, off);
1045 
1046 		/* place single frame N_PCI w/o length in appropriate index */
1047 		cf->data[ae] = N_PCI_SF;
1048 
1049 		/* place SF_DL size value depending on the SF_DL ESC offset */
1050 		if (off)
1051 			cf->data[SF_PCI_SZ4 + ae] = size;
1052 		else
1053 			cf->data[ae] |= size;
1054 
1055 		/* set CF echo tag for isotp_rcv_echo() (SF-mode) */
1056 		so->cfecho = *(u32 *)cf->data;
1057 	} else {
1058 		/* send first frame */
1059 
1060 		isotp_create_fframe(cf, so, ae);
1061 
1062 		if (isotp_bc_flags(so) == CAN_ISOTP_CF_BROADCAST) {
1063 			/* set timer for FC-less operation (STmin = 0) */
1064 			if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
1065 				so->tx_gap = ktime_set(0, so->force_tx_stmin);
1066 			else
1067 				so->tx_gap = ktime_set(0, so->frame_txtime);
1068 
1069 			/* disable wait for FCs due to activated block size */
1070 			so->txfc.bs = 0;
1071 
1072 			/* set CF echo tag for isotp_rcv_echo() (CF-mode) */
1073 			so->cfecho = *(u32 *)cf->data;
1074 		} else {
1075 			/* standard flow control check */
1076 			so->tx.state = ISOTP_WAIT_FIRST_FC;
1077 
1078 			/* start timeout for FC */
1079 			hrtimer_sec = ISOTP_FC_TIMEOUT;
1080 
1081 			/* no CF echo tag for isotp_rcv_echo() (FF-mode) */
1082 			so->cfecho = 0;
1083 		}
1084 	}
1085 
1086 	hrtimer_start(&so->txtimer, ktime_set(hrtimer_sec, 0),
1087 		      HRTIMER_MODE_REL_SOFT);
1088 
1089 	/* send the first or only CAN frame */
1090 	cf->flags = so->ll.tx_flags;
1091 
1092 	skb->dev = dev;
1093 	skb->sk = sk;
1094 	err = can_send(skb, 1);
1095 	dev_put(dev);
1096 	if (err) {
1097 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
1098 			       __func__, ERR_PTR(err));
1099 
1100 		/* no transmission -> no timeout monitoring */
1101 		hrtimer_cancel(&so->txtimer);
1102 
1103 		/* reset consecutive frame echo tag */
1104 		so->cfecho = 0;
1105 
1106 		goto err_out_drop;
1107 	}
1108 
1109 	if (wait_tx_done) {
1110 		/* wait for complete transmission of current pdu */
1111 		err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1112 		if (err)
1113 			goto err_event_drop;
1114 
1115 		if (sk->sk_err)
1116 			return -sk->sk_err;
1117 	}
1118 
1119 	return size;
1120 
1121 err_event_drop:
1122 	/* got signal: force tx state machine to be idle */
1123 	so->tx.state = ISOTP_IDLE;
1124 	hrtimer_cancel(&so->txfrtimer);
1125 	hrtimer_cancel(&so->txtimer);
1126 err_out_drop:
1127 	/* drop this PDU and unlock a potential wait queue */
1128 	so->tx.state = ISOTP_IDLE;
1129 	wake_up_interruptible(&so->wait);
1130 
1131 	return err;
1132 }
1133 
1134 static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1135 			 int flags)
1136 {
1137 	struct sock *sk = sock->sk;
1138 	struct sk_buff *skb;
1139 	struct isotp_sock *so = isotp_sk(sk);
1140 	int ret = 0;
1141 
1142 	if (flags & ~(MSG_DONTWAIT | MSG_TRUNC | MSG_PEEK))
1143 		return -EINVAL;
1144 
1145 	if (!so->bound)
1146 		return -EADDRNOTAVAIL;
1147 
1148 	skb = skb_recv_datagram(sk, flags, &ret);
1149 	if (!skb)
1150 		return ret;
1151 
1152 	if (size < skb->len)
1153 		msg->msg_flags |= MSG_TRUNC;
1154 	else
1155 		size = skb->len;
1156 
1157 	ret = memcpy_to_msg(msg, skb->data, size);
1158 	if (ret < 0)
1159 		goto out_err;
1160 
1161 	sock_recv_cmsgs(msg, sk, skb);
1162 
1163 	if (msg->msg_name) {
1164 		__sockaddr_check_size(ISOTP_MIN_NAMELEN);
1165 		msg->msg_namelen = ISOTP_MIN_NAMELEN;
1166 		memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1167 	}
1168 
1169 	/* set length of return value */
1170 	ret = (flags & MSG_TRUNC) ? skb->len : size;
1171 
1172 out_err:
1173 	skb_free_datagram(sk, skb);
1174 
1175 	return ret;
1176 }
1177 
1178 static int isotp_release(struct socket *sock)
1179 {
1180 	struct sock *sk = sock->sk;
1181 	struct isotp_sock *so;
1182 	struct net *net;
1183 
1184 	if (!sk)
1185 		return 0;
1186 
1187 	so = isotp_sk(sk);
1188 	net = sock_net(sk);
1189 
1190 	/* wait for complete transmission of current pdu */
1191 	while (wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE) == 0 &&
1192 	       cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SHUTDOWN) != ISOTP_IDLE)
1193 		;
1194 
1195 	/* force state machines to be idle also when a signal occurred */
1196 	so->tx.state = ISOTP_SHUTDOWN;
1197 	so->rx.state = ISOTP_IDLE;
1198 
1199 	spin_lock(&isotp_notifier_lock);
1200 	while (isotp_busy_notifier == so) {
1201 		spin_unlock(&isotp_notifier_lock);
1202 		schedule_timeout_uninterruptible(1);
1203 		spin_lock(&isotp_notifier_lock);
1204 	}
1205 	list_del(&so->notifier);
1206 	spin_unlock(&isotp_notifier_lock);
1207 
1208 	lock_sock(sk);
1209 
1210 	/* remove current filters & unregister */
1211 	if (so->bound && isotp_register_txecho(so)) {
1212 		if (so->ifindex) {
1213 			struct net_device *dev;
1214 
1215 			dev = dev_get_by_index(net, so->ifindex);
1216 			if (dev) {
1217 				if (isotp_register_rxid(so))
1218 					can_rx_unregister(net, dev, so->rxid,
1219 							  SINGLE_MASK(so->rxid),
1220 							  isotp_rcv, sk);
1221 
1222 				can_rx_unregister(net, dev, so->txid,
1223 						  SINGLE_MASK(so->txid),
1224 						  isotp_rcv_echo, sk);
1225 				dev_put(dev);
1226 				synchronize_rcu();
1227 			}
1228 		}
1229 	}
1230 
1231 	hrtimer_cancel(&so->txfrtimer);
1232 	hrtimer_cancel(&so->txtimer);
1233 	hrtimer_cancel(&so->rxtimer);
1234 
1235 	so->ifindex = 0;
1236 	so->bound = 0;
1237 
1238 	if (so->rx.buf != so->rx.sbuf)
1239 		kfree(so->rx.buf);
1240 
1241 	if (so->tx.buf != so->tx.sbuf)
1242 		kfree(so->tx.buf);
1243 
1244 	sock_orphan(sk);
1245 	sock->sk = NULL;
1246 
1247 	release_sock(sk);
1248 	sock_put(sk);
1249 
1250 	return 0;
1251 }
1252 
1253 static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1254 {
1255 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1256 	struct sock *sk = sock->sk;
1257 	struct isotp_sock *so = isotp_sk(sk);
1258 	struct net *net = sock_net(sk);
1259 	int ifindex;
1260 	struct net_device *dev;
1261 	canid_t tx_id = addr->can_addr.tp.tx_id;
1262 	canid_t rx_id = addr->can_addr.tp.rx_id;
1263 	int err = 0;
1264 	int notify_enetdown = 0;
1265 
1266 	if (len < ISOTP_MIN_NAMELEN)
1267 		return -EINVAL;
1268 
1269 	if (addr->can_family != AF_CAN)
1270 		return -EINVAL;
1271 
1272 	/* sanitize tx CAN identifier */
1273 	if (tx_id & CAN_EFF_FLAG)
1274 		tx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1275 	else
1276 		tx_id &= CAN_SFF_MASK;
1277 
1278 	/* give feedback on wrong CAN-ID value */
1279 	if (tx_id != addr->can_addr.tp.tx_id)
1280 		return -EINVAL;
1281 
1282 	/* sanitize rx CAN identifier (if needed) */
1283 	if (isotp_register_rxid(so)) {
1284 		if (rx_id & CAN_EFF_FLAG)
1285 			rx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1286 		else
1287 			rx_id &= CAN_SFF_MASK;
1288 
1289 		/* give feedback on wrong CAN-ID value */
1290 		if (rx_id != addr->can_addr.tp.rx_id)
1291 			return -EINVAL;
1292 	}
1293 
1294 	if (!addr->can_ifindex)
1295 		return -ENODEV;
1296 
1297 	lock_sock(sk);
1298 
1299 	if (so->bound) {
1300 		err = -EINVAL;
1301 		goto out;
1302 	}
1303 
1304 	/* ensure different CAN IDs when the rx_id is to be registered */
1305 	if (isotp_register_rxid(so) && rx_id == tx_id) {
1306 		err = -EADDRNOTAVAIL;
1307 		goto out;
1308 	}
1309 
1310 	dev = dev_get_by_index(net, addr->can_ifindex);
1311 	if (!dev) {
1312 		err = -ENODEV;
1313 		goto out;
1314 	}
1315 	if (dev->type != ARPHRD_CAN) {
1316 		dev_put(dev);
1317 		err = -ENODEV;
1318 		goto out;
1319 	}
1320 	if (dev->mtu < so->ll.mtu) {
1321 		dev_put(dev);
1322 		err = -EINVAL;
1323 		goto out;
1324 	}
1325 	if (!(dev->flags & IFF_UP))
1326 		notify_enetdown = 1;
1327 
1328 	ifindex = dev->ifindex;
1329 
1330 	if (isotp_register_rxid(so))
1331 		can_rx_register(net, dev, rx_id, SINGLE_MASK(rx_id),
1332 				isotp_rcv, sk, "isotp", sk);
1333 
1334 	if (isotp_register_txecho(so)) {
1335 		/* no consecutive frame echo skb in flight */
1336 		so->cfecho = 0;
1337 
1338 		/* register for echo skb's */
1339 		can_rx_register(net, dev, tx_id, SINGLE_MASK(tx_id),
1340 				isotp_rcv_echo, sk, "isotpe", sk);
1341 	}
1342 
1343 	dev_put(dev);
1344 
1345 	/* switch to new settings */
1346 	so->ifindex = ifindex;
1347 	so->rxid = rx_id;
1348 	so->txid = tx_id;
1349 	so->bound = 1;
1350 
1351 out:
1352 	release_sock(sk);
1353 
1354 	if (notify_enetdown) {
1355 		sk->sk_err = ENETDOWN;
1356 		if (!sock_flag(sk, SOCK_DEAD))
1357 			sk_error_report(sk);
1358 	}
1359 
1360 	return err;
1361 }
1362 
1363 static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1364 {
1365 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1366 	struct sock *sk = sock->sk;
1367 	struct isotp_sock *so = isotp_sk(sk);
1368 
1369 	if (peer)
1370 		return -EOPNOTSUPP;
1371 
1372 	memset(addr, 0, ISOTP_MIN_NAMELEN);
1373 	addr->can_family = AF_CAN;
1374 	addr->can_ifindex = so->ifindex;
1375 	addr->can_addr.tp.rx_id = so->rxid;
1376 	addr->can_addr.tp.tx_id = so->txid;
1377 
1378 	return ISOTP_MIN_NAMELEN;
1379 }
1380 
1381 static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1382 			    sockptr_t optval, unsigned int optlen)
1383 {
1384 	struct sock *sk = sock->sk;
1385 	struct isotp_sock *so = isotp_sk(sk);
1386 	int ret = 0;
1387 
1388 	if (so->bound)
1389 		return -EISCONN;
1390 
1391 	switch (optname) {
1392 	case CAN_ISOTP_OPTS:
1393 		if (optlen != sizeof(struct can_isotp_options))
1394 			return -EINVAL;
1395 
1396 		if (copy_from_sockptr(&so->opt, optval, optlen))
1397 			return -EFAULT;
1398 
1399 		/* no separate rx_ext_address is given => use ext_address */
1400 		if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1401 			so->opt.rx_ext_address = so->opt.ext_address;
1402 
1403 		/* these broadcast flags are not allowed together */
1404 		if (isotp_bc_flags(so) == ISOTP_ALL_BC_FLAGS) {
1405 			/* CAN_ISOTP_SF_BROADCAST is prioritized */
1406 			so->opt.flags &= ~CAN_ISOTP_CF_BROADCAST;
1407 
1408 			/* give user feedback on wrong config attempt */
1409 			ret = -EINVAL;
1410 		}
1411 
1412 		/* check for frame_txtime changes (0 => no changes) */
1413 		if (so->opt.frame_txtime) {
1414 			if (so->opt.frame_txtime == CAN_ISOTP_FRAME_TXTIME_ZERO)
1415 				so->frame_txtime = 0;
1416 			else
1417 				so->frame_txtime = so->opt.frame_txtime;
1418 		}
1419 		break;
1420 
1421 	case CAN_ISOTP_RECV_FC:
1422 		if (optlen != sizeof(struct can_isotp_fc_options))
1423 			return -EINVAL;
1424 
1425 		if (copy_from_sockptr(&so->rxfc, optval, optlen))
1426 			return -EFAULT;
1427 		break;
1428 
1429 	case CAN_ISOTP_TX_STMIN:
1430 		if (optlen != sizeof(u32))
1431 			return -EINVAL;
1432 
1433 		if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1434 			return -EFAULT;
1435 		break;
1436 
1437 	case CAN_ISOTP_RX_STMIN:
1438 		if (optlen != sizeof(u32))
1439 			return -EINVAL;
1440 
1441 		if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1442 			return -EFAULT;
1443 		break;
1444 
1445 	case CAN_ISOTP_LL_OPTS:
1446 		if (optlen == sizeof(struct can_isotp_ll_options)) {
1447 			struct can_isotp_ll_options ll;
1448 
1449 			if (copy_from_sockptr(&ll, optval, optlen))
1450 				return -EFAULT;
1451 
1452 			/* check for correct ISO 11898-1 DLC data length */
1453 			if (ll.tx_dl != padlen(ll.tx_dl))
1454 				return -EINVAL;
1455 
1456 			if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1457 				return -EINVAL;
1458 
1459 			if (ll.mtu == CAN_MTU &&
1460 			    (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1461 				return -EINVAL;
1462 
1463 			memcpy(&so->ll, &ll, sizeof(ll));
1464 
1465 			/* set ll_dl for tx path to similar place as for rx */
1466 			so->tx.ll_dl = ll.tx_dl;
1467 		} else {
1468 			return -EINVAL;
1469 		}
1470 		break;
1471 
1472 	default:
1473 		ret = -ENOPROTOOPT;
1474 	}
1475 
1476 	return ret;
1477 }
1478 
1479 static int isotp_setsockopt(struct socket *sock, int level, int optname,
1480 			    sockptr_t optval, unsigned int optlen)
1481 
1482 {
1483 	struct sock *sk = sock->sk;
1484 	int ret;
1485 
1486 	if (level != SOL_CAN_ISOTP)
1487 		return -EINVAL;
1488 
1489 	lock_sock(sk);
1490 	ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1491 	release_sock(sk);
1492 	return ret;
1493 }
1494 
1495 static int isotp_getsockopt(struct socket *sock, int level, int optname,
1496 			    char __user *optval, int __user *optlen)
1497 {
1498 	struct sock *sk = sock->sk;
1499 	struct isotp_sock *so = isotp_sk(sk);
1500 	int len;
1501 	void *val;
1502 
1503 	if (level != SOL_CAN_ISOTP)
1504 		return -EINVAL;
1505 	if (get_user(len, optlen))
1506 		return -EFAULT;
1507 	if (len < 0)
1508 		return -EINVAL;
1509 
1510 	switch (optname) {
1511 	case CAN_ISOTP_OPTS:
1512 		len = min_t(int, len, sizeof(struct can_isotp_options));
1513 		val = &so->opt;
1514 		break;
1515 
1516 	case CAN_ISOTP_RECV_FC:
1517 		len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1518 		val = &so->rxfc;
1519 		break;
1520 
1521 	case CAN_ISOTP_TX_STMIN:
1522 		len = min_t(int, len, sizeof(u32));
1523 		val = &so->force_tx_stmin;
1524 		break;
1525 
1526 	case CAN_ISOTP_RX_STMIN:
1527 		len = min_t(int, len, sizeof(u32));
1528 		val = &so->force_rx_stmin;
1529 		break;
1530 
1531 	case CAN_ISOTP_LL_OPTS:
1532 		len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1533 		val = &so->ll;
1534 		break;
1535 
1536 	default:
1537 		return -ENOPROTOOPT;
1538 	}
1539 
1540 	if (put_user(len, optlen))
1541 		return -EFAULT;
1542 	if (copy_to_user(optval, val, len))
1543 		return -EFAULT;
1544 	return 0;
1545 }
1546 
1547 static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1548 			 struct net_device *dev)
1549 {
1550 	struct sock *sk = &so->sk;
1551 
1552 	if (!net_eq(dev_net(dev), sock_net(sk)))
1553 		return;
1554 
1555 	if (so->ifindex != dev->ifindex)
1556 		return;
1557 
1558 	switch (msg) {
1559 	case NETDEV_UNREGISTER:
1560 		lock_sock(sk);
1561 		/* remove current filters & unregister */
1562 		if (so->bound && isotp_register_txecho(so)) {
1563 			if (isotp_register_rxid(so))
1564 				can_rx_unregister(dev_net(dev), dev, so->rxid,
1565 						  SINGLE_MASK(so->rxid),
1566 						  isotp_rcv, sk);
1567 
1568 			can_rx_unregister(dev_net(dev), dev, so->txid,
1569 					  SINGLE_MASK(so->txid),
1570 					  isotp_rcv_echo, sk);
1571 		}
1572 
1573 		so->ifindex = 0;
1574 		so->bound  = 0;
1575 		release_sock(sk);
1576 
1577 		sk->sk_err = ENODEV;
1578 		if (!sock_flag(sk, SOCK_DEAD))
1579 			sk_error_report(sk);
1580 		break;
1581 
1582 	case NETDEV_DOWN:
1583 		sk->sk_err = ENETDOWN;
1584 		if (!sock_flag(sk, SOCK_DEAD))
1585 			sk_error_report(sk);
1586 		break;
1587 	}
1588 }
1589 
1590 static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1591 			  void *ptr)
1592 {
1593 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1594 
1595 	if (dev->type != ARPHRD_CAN)
1596 		return NOTIFY_DONE;
1597 	if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1598 		return NOTIFY_DONE;
1599 	if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1600 		return NOTIFY_DONE;
1601 
1602 	spin_lock(&isotp_notifier_lock);
1603 	list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1604 		spin_unlock(&isotp_notifier_lock);
1605 		isotp_notify(isotp_busy_notifier, msg, dev);
1606 		spin_lock(&isotp_notifier_lock);
1607 	}
1608 	isotp_busy_notifier = NULL;
1609 	spin_unlock(&isotp_notifier_lock);
1610 	return NOTIFY_DONE;
1611 }
1612 
1613 static int isotp_init(struct sock *sk)
1614 {
1615 	struct isotp_sock *so = isotp_sk(sk);
1616 
1617 	so->ifindex = 0;
1618 	so->bound = 0;
1619 
1620 	so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1621 	so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1622 	so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1623 	so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1624 	so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1625 	so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1626 	so->frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1627 	so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1628 	so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1629 	so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1630 	so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1631 	so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1632 	so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1633 
1634 	/* set ll_dl for tx path to similar place as for rx */
1635 	so->tx.ll_dl = so->ll.tx_dl;
1636 
1637 	so->rx.state = ISOTP_IDLE;
1638 	so->tx.state = ISOTP_IDLE;
1639 
1640 	so->rx.buf = so->rx.sbuf;
1641 	so->tx.buf = so->tx.sbuf;
1642 	so->rx.buflen = ARRAY_SIZE(so->rx.sbuf);
1643 	so->tx.buflen = ARRAY_SIZE(so->tx.sbuf);
1644 
1645 	hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1646 	so->rxtimer.function = isotp_rx_timer_handler;
1647 	hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1648 	so->txtimer.function = isotp_tx_timer_handler;
1649 	hrtimer_init(&so->txfrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1650 	so->txfrtimer.function = isotp_txfr_timer_handler;
1651 
1652 	init_waitqueue_head(&so->wait);
1653 	spin_lock_init(&so->rx_lock);
1654 
1655 	spin_lock(&isotp_notifier_lock);
1656 	list_add_tail(&so->notifier, &isotp_notifier_list);
1657 	spin_unlock(&isotp_notifier_lock);
1658 
1659 	return 0;
1660 }
1661 
1662 static __poll_t isotp_poll(struct file *file, struct socket *sock, poll_table *wait)
1663 {
1664 	struct sock *sk = sock->sk;
1665 	struct isotp_sock *so = isotp_sk(sk);
1666 
1667 	__poll_t mask = datagram_poll(file, sock, wait);
1668 	poll_wait(file, &so->wait, wait);
1669 
1670 	/* Check for false positives due to TX state */
1671 	if ((mask & EPOLLWRNORM) && (so->tx.state != ISOTP_IDLE))
1672 		mask &= ~(EPOLLOUT | EPOLLWRNORM);
1673 
1674 	return mask;
1675 }
1676 
1677 static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1678 				  unsigned long arg)
1679 {
1680 	/* no ioctls for socket layer -> hand it down to NIC layer */
1681 	return -ENOIOCTLCMD;
1682 }
1683 
1684 static const struct proto_ops isotp_ops = {
1685 	.family = PF_CAN,
1686 	.release = isotp_release,
1687 	.bind = isotp_bind,
1688 	.connect = sock_no_connect,
1689 	.socketpair = sock_no_socketpair,
1690 	.accept = sock_no_accept,
1691 	.getname = isotp_getname,
1692 	.poll = isotp_poll,
1693 	.ioctl = isotp_sock_no_ioctlcmd,
1694 	.gettstamp = sock_gettstamp,
1695 	.listen = sock_no_listen,
1696 	.shutdown = sock_no_shutdown,
1697 	.setsockopt = isotp_setsockopt,
1698 	.getsockopt = isotp_getsockopt,
1699 	.sendmsg = isotp_sendmsg,
1700 	.recvmsg = isotp_recvmsg,
1701 	.mmap = sock_no_mmap,
1702 	.sendpage = sock_no_sendpage,
1703 };
1704 
1705 static struct proto isotp_proto __read_mostly = {
1706 	.name = "CAN_ISOTP",
1707 	.owner = THIS_MODULE,
1708 	.obj_size = sizeof(struct isotp_sock),
1709 	.init = isotp_init,
1710 };
1711 
1712 static const struct can_proto isotp_can_proto = {
1713 	.type = SOCK_DGRAM,
1714 	.protocol = CAN_ISOTP,
1715 	.ops = &isotp_ops,
1716 	.prot = &isotp_proto,
1717 };
1718 
1719 static struct notifier_block canisotp_notifier = {
1720 	.notifier_call = isotp_notifier
1721 };
1722 
1723 static __init int isotp_module_init(void)
1724 {
1725 	int err;
1726 
1727 	max_pdu_size = max_t(unsigned int, max_pdu_size, MAX_12BIT_PDU_SIZE);
1728 	max_pdu_size = min_t(unsigned int, max_pdu_size, MAX_PDU_SIZE);
1729 
1730 	pr_info("can: isotp protocol (max_pdu_size %d)\n", max_pdu_size);
1731 
1732 	err = can_proto_register(&isotp_can_proto);
1733 	if (err < 0)
1734 		pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1735 	else
1736 		register_netdevice_notifier(&canisotp_notifier);
1737 
1738 	return err;
1739 }
1740 
1741 static __exit void isotp_module_exit(void)
1742 {
1743 	can_proto_unregister(&isotp_can_proto);
1744 	unregister_netdevice_notifier(&canisotp_notifier);
1745 }
1746 
1747 module_init(isotp_module_init);
1748 module_exit(isotp_module_exit);
1749