xref: /linux/net/can/af_can.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/can/can-ml.h>
62 #include <linux/ratelimit.h>
63 #include <net/net_namespace.h>
64 #include <net/sock.h>
65 
66 #include "af_can.h"
67 
68 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69 MODULE_LICENSE("Dual BSD/GPL");
70 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
71 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
72 
73 MODULE_ALIAS_NETPROTO(PF_CAN);
74 
75 static int stats_timer __read_mostly = 1;
76 module_param(stats_timer, int, 0444);
77 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78 
79 static struct kmem_cache *rcv_cache __read_mostly;
80 
81 /* table of registered CAN protocols */
82 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
83 static DEFINE_MUTEX(proto_tab_lock);
84 
85 static atomic_t skbcounter = ATOMIC_INIT(0);
86 
87 /* af_can socket functions */
88 
89 void can_sock_destruct(struct sock *sk)
90 {
91 	skb_queue_purge(&sk->sk_receive_queue);
92 	skb_queue_purge(&sk->sk_error_queue);
93 }
94 EXPORT_SYMBOL(can_sock_destruct);
95 
96 static const struct can_proto *can_get_proto(int protocol)
97 {
98 	const struct can_proto *cp;
99 
100 	rcu_read_lock();
101 	cp = rcu_dereference(proto_tab[protocol]);
102 	if (cp && !try_module_get(cp->prot->owner))
103 		cp = NULL;
104 	rcu_read_unlock();
105 
106 	return cp;
107 }
108 
109 static inline void can_put_proto(const struct can_proto *cp)
110 {
111 	module_put(cp->prot->owner);
112 }
113 
114 static int can_create(struct net *net, struct socket *sock, int protocol,
115 		      int kern)
116 {
117 	struct sock *sk;
118 	const struct can_proto *cp;
119 	int err = 0;
120 
121 	sock->state = SS_UNCONNECTED;
122 
123 	if (protocol < 0 || protocol >= CAN_NPROTO)
124 		return -EINVAL;
125 
126 	cp = can_get_proto(protocol);
127 
128 #ifdef CONFIG_MODULES
129 	if (!cp) {
130 		/* try to load protocol module if kernel is modular */
131 
132 		err = request_module("can-proto-%d", protocol);
133 
134 		/* In case of error we only print a message but don't
135 		 * return the error code immediately.  Below we will
136 		 * return -EPROTONOSUPPORT
137 		 */
138 		if (err)
139 			pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
140 					   protocol);
141 
142 		cp = can_get_proto(protocol);
143 	}
144 #endif
145 
146 	/* check for available protocol and correct usage */
147 
148 	if (!cp)
149 		return -EPROTONOSUPPORT;
150 
151 	if (cp->type != sock->type) {
152 		err = -EPROTOTYPE;
153 		goto errout;
154 	}
155 
156 	sock->ops = cp->ops;
157 
158 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
159 	if (!sk) {
160 		err = -ENOMEM;
161 		goto errout;
162 	}
163 
164 	sock_init_data(sock, sk);
165 	sk->sk_destruct = can_sock_destruct;
166 
167 	if (sk->sk_prot->init)
168 		err = sk->sk_prot->init(sk);
169 
170 	if (err) {
171 		/* release sk on errors */
172 		sock_orphan(sk);
173 		sock_put(sk);
174 	}
175 
176  errout:
177 	can_put_proto(cp);
178 	return err;
179 }
180 
181 /* af_can tx path */
182 
183 /**
184  * can_send - transmit a CAN frame (optional with local loopback)
185  * @skb: pointer to socket buffer with CAN frame in data section
186  * @loop: loopback for listeners on local CAN sockets (recommended default!)
187  *
188  * Due to the loopback this routine must not be called from hardirq context.
189  *
190  * Return:
191  *  0 on success
192  *  -ENETDOWN when the selected interface is down
193  *  -ENOBUFS on full driver queue (see net_xmit_errno())
194  *  -ENOMEM when local loopback failed at calling skb_clone()
195  *  -EPERM when trying to send on a non-CAN interface
196  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
197  *  -EINVAL when the skb->data does not contain a valid CAN frame
198  */
199 int can_send(struct sk_buff *skb, int loop)
200 {
201 	struct sk_buff *newskb = NULL;
202 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
203 	struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats;
204 	int err = -EINVAL;
205 
206 	if (skb->len == CAN_MTU) {
207 		skb->protocol = htons(ETH_P_CAN);
208 		if (unlikely(cfd->len > CAN_MAX_DLEN))
209 			goto inval_skb;
210 	} else if (skb->len == CANFD_MTU) {
211 		skb->protocol = htons(ETH_P_CANFD);
212 		if (unlikely(cfd->len > CANFD_MAX_DLEN))
213 			goto inval_skb;
214 	} else {
215 		goto inval_skb;
216 	}
217 
218 	/* Make sure the CAN frame can pass the selected CAN netdevice.
219 	 * As structs can_frame and canfd_frame are similar, we can provide
220 	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
221 	 */
222 	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
223 		err = -EMSGSIZE;
224 		goto inval_skb;
225 	}
226 
227 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
228 		err = -EPERM;
229 		goto inval_skb;
230 	}
231 
232 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
233 		err = -ENETDOWN;
234 		goto inval_skb;
235 	}
236 
237 	skb->ip_summed = CHECKSUM_UNNECESSARY;
238 
239 	skb_reset_mac_header(skb);
240 	skb_reset_network_header(skb);
241 	skb_reset_transport_header(skb);
242 
243 	if (loop) {
244 		/* local loopback of sent CAN frames */
245 
246 		/* indication for the CAN driver: do loopback */
247 		skb->pkt_type = PACKET_LOOPBACK;
248 
249 		/* The reference to the originating sock may be required
250 		 * by the receiving socket to check whether the frame is
251 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
252 		 * Therefore we have to ensure that skb->sk remains the
253 		 * reference to the originating sock by restoring skb->sk
254 		 * after each skb_clone() or skb_orphan() usage.
255 		 */
256 
257 		if (!(skb->dev->flags & IFF_ECHO)) {
258 			/* If the interface is not capable to do loopback
259 			 * itself, we do it here.
260 			 */
261 			newskb = skb_clone(skb, GFP_ATOMIC);
262 			if (!newskb) {
263 				kfree_skb(skb);
264 				return -ENOMEM;
265 			}
266 
267 			can_skb_set_owner(newskb, skb->sk);
268 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
269 			newskb->pkt_type = PACKET_BROADCAST;
270 		}
271 	} else {
272 		/* indication for the CAN driver: no loopback required */
273 		skb->pkt_type = PACKET_HOST;
274 	}
275 
276 	/* send to netdevice */
277 	err = dev_queue_xmit(skb);
278 	if (err > 0)
279 		err = net_xmit_errno(err);
280 
281 	if (err) {
282 		kfree_skb(newskb);
283 		return err;
284 	}
285 
286 	if (newskb)
287 		netif_rx_ni(newskb);
288 
289 	/* update statistics */
290 	pkg_stats->tx_frames++;
291 	pkg_stats->tx_frames_delta++;
292 
293 	return 0;
294 
295 inval_skb:
296 	kfree_skb(skb);
297 	return err;
298 }
299 EXPORT_SYMBOL(can_send);
300 
301 /* af_can rx path */
302 
303 static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net,
304 							struct net_device *dev)
305 {
306 	if (dev) {
307 		struct can_ml_priv *ml_priv = dev->ml_priv;
308 		return &ml_priv->dev_rcv_lists;
309 	} else {
310 		return net->can.rx_alldev_list;
311 	}
312 }
313 
314 /**
315  * effhash - hash function for 29 bit CAN identifier reduction
316  * @can_id: 29 bit CAN identifier
317  *
318  * Description:
319  *  To reduce the linear traversal in one linked list of _single_ EFF CAN
320  *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
321  *  (see CAN_EFF_RCV_HASH_BITS definition)
322  *
323  * Return:
324  *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
325  */
326 static unsigned int effhash(canid_t can_id)
327 {
328 	unsigned int hash;
329 
330 	hash = can_id;
331 	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
332 	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
333 
334 	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
335 }
336 
337 /**
338  * can_rcv_list_find - determine optimal filterlist inside device filter struct
339  * @can_id: pointer to CAN identifier of a given can_filter
340  * @mask: pointer to CAN mask of a given can_filter
341  * @d: pointer to the device filter struct
342  *
343  * Description:
344  *  Returns the optimal filterlist to reduce the filter handling in the
345  *  receive path. This function is called by service functions that need
346  *  to register or unregister a can_filter in the filter lists.
347  *
348  *  A filter matches in general, when
349  *
350  *          <received_can_id> & mask == can_id & mask
351  *
352  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
353  *  relevant bits for the filter.
354  *
355  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
356  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
357  *  frames there is a special filterlist and a special rx path filter handling.
358  *
359  * Return:
360  *  Pointer to optimal filterlist for the given can_id/mask pair.
361  *  Constistency checked mask.
362  *  Reduced can_id to have a preprocessed filter compare value.
363  */
364 static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask,
365 					    struct can_dev_rcv_lists *dev_rcv_lists)
366 {
367 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
368 
369 	/* filter for error message frames in extra filterlist */
370 	if (*mask & CAN_ERR_FLAG) {
371 		/* clear CAN_ERR_FLAG in filter entry */
372 		*mask &= CAN_ERR_MASK;
373 		return &dev_rcv_lists->rx[RX_ERR];
374 	}
375 
376 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
377 
378 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
379 
380 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
381 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
382 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
383 
384 	/* reduce condition testing at receive time */
385 	*can_id &= *mask;
386 
387 	/* inverse can_id/can_mask filter */
388 	if (inv)
389 		return &dev_rcv_lists->rx[RX_INV];
390 
391 	/* mask == 0 => no condition testing at receive time */
392 	if (!(*mask))
393 		return &dev_rcv_lists->rx[RX_ALL];
394 
395 	/* extra filterlists for the subscription of a single non-RTR can_id */
396 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
397 	    !(*can_id & CAN_RTR_FLAG)) {
398 		if (*can_id & CAN_EFF_FLAG) {
399 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
400 				return &dev_rcv_lists->rx_eff[effhash(*can_id)];
401 		} else {
402 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
403 				return &dev_rcv_lists->rx_sff[*can_id];
404 		}
405 	}
406 
407 	/* default: filter via can_id/can_mask */
408 	return &dev_rcv_lists->rx[RX_FIL];
409 }
410 
411 /**
412  * can_rx_register - subscribe CAN frames from a specific interface
413  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
414  * @can_id: CAN identifier (see description)
415  * @mask: CAN mask (see description)
416  * @func: callback function on filter match
417  * @data: returned parameter for callback function
418  * @ident: string for calling module identification
419  * @sk: socket pointer (might be NULL)
420  *
421  * Description:
422  *  Invokes the callback function with the received sk_buff and the given
423  *  parameter 'data' on a matching receive filter. A filter matches, when
424  *
425  *          <received_can_id> & mask == can_id & mask
426  *
427  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
428  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
429  *
430  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
431  *  the callback function is running. The callback function must *not* free
432  *  the given sk_buff while processing it's task. When the given sk_buff is
433  *  needed after the end of the callback function it must be cloned inside
434  *  the callback function with skb_clone().
435  *
436  * Return:
437  *  0 on success
438  *  -ENOMEM on missing cache mem to create subscription entry
439  *  -ENODEV unknown device
440  */
441 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
442 		    canid_t mask, void (*func)(struct sk_buff *, void *),
443 		    void *data, char *ident, struct sock *sk)
444 {
445 	struct receiver *rcv;
446 	struct hlist_head *rcv_list;
447 	struct can_dev_rcv_lists *dev_rcv_lists;
448 	struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
449 	int err = 0;
450 
451 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
452 
453 	if (dev && dev->type != ARPHRD_CAN)
454 		return -ENODEV;
455 
456 	if (dev && !net_eq(net, dev_net(dev)))
457 		return -ENODEV;
458 
459 	rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
460 	if (!rcv)
461 		return -ENOMEM;
462 
463 	spin_lock_bh(&net->can.rcvlists_lock);
464 
465 	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
466 	rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
467 
468 	rcv->can_id = can_id;
469 	rcv->mask = mask;
470 	rcv->matches = 0;
471 	rcv->func = func;
472 	rcv->data = data;
473 	rcv->ident = ident;
474 	rcv->sk = sk;
475 
476 	hlist_add_head_rcu(&rcv->list, rcv_list);
477 	dev_rcv_lists->entries++;
478 
479 	rcv_lists_stats->rcv_entries++;
480 	rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max,
481 					       rcv_lists_stats->rcv_entries);
482 	spin_unlock_bh(&net->can.rcvlists_lock);
483 
484 	return err;
485 }
486 EXPORT_SYMBOL(can_rx_register);
487 
488 /* can_rx_delete_receiver - rcu callback for single receiver entry removal */
489 static void can_rx_delete_receiver(struct rcu_head *rp)
490 {
491 	struct receiver *rcv = container_of(rp, struct receiver, rcu);
492 	struct sock *sk = rcv->sk;
493 
494 	kmem_cache_free(rcv_cache, rcv);
495 	if (sk)
496 		sock_put(sk);
497 }
498 
499 /**
500  * can_rx_unregister - unsubscribe CAN frames from a specific interface
501  * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
502  * @can_id: CAN identifier
503  * @mask: CAN mask
504  * @func: callback function on filter match
505  * @data: returned parameter for callback function
506  *
507  * Description:
508  *  Removes subscription entry depending on given (subscription) values.
509  */
510 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
511 		       canid_t mask, void (*func)(struct sk_buff *, void *),
512 		       void *data)
513 {
514 	struct receiver *rcv = NULL;
515 	struct hlist_head *rcv_list;
516 	struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
517 	struct can_dev_rcv_lists *dev_rcv_lists;
518 
519 	if (dev && dev->type != ARPHRD_CAN)
520 		return;
521 
522 	if (dev && !net_eq(net, dev_net(dev)))
523 		return;
524 
525 	spin_lock_bh(&net->can.rcvlists_lock);
526 
527 	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
528 	rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
529 
530 	/* Search the receiver list for the item to delete.  This should
531 	 * exist, since no receiver may be unregistered that hasn't
532 	 * been registered before.
533 	 */
534 	hlist_for_each_entry_rcu(rcv, rcv_list, list) {
535 		if (rcv->can_id == can_id && rcv->mask == mask &&
536 		    rcv->func == func && rcv->data == data)
537 			break;
538 	}
539 
540 	/* Check for bugs in CAN protocol implementations using af_can.c:
541 	 * 'rcv' will be NULL if no matching list item was found for removal.
542 	 */
543 	if (!rcv) {
544 		WARN(1, "BUG: receive list entry not found for dev %s, id %03X, mask %03X\n",
545 		     DNAME(dev), can_id, mask);
546 		goto out;
547 	}
548 
549 	hlist_del_rcu(&rcv->list);
550 	dev_rcv_lists->entries--;
551 
552 	if (rcv_lists_stats->rcv_entries > 0)
553 		rcv_lists_stats->rcv_entries--;
554 
555  out:
556 	spin_unlock_bh(&net->can.rcvlists_lock);
557 
558 	/* schedule the receiver item for deletion */
559 	if (rcv) {
560 		if (rcv->sk)
561 			sock_hold(rcv->sk);
562 		call_rcu(&rcv->rcu, can_rx_delete_receiver);
563 	}
564 }
565 EXPORT_SYMBOL(can_rx_unregister);
566 
567 static inline void deliver(struct sk_buff *skb, struct receiver *rcv)
568 {
569 	rcv->func(skb, rcv->data);
570 	rcv->matches++;
571 }
572 
573 static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb)
574 {
575 	struct receiver *rcv;
576 	int matches = 0;
577 	struct can_frame *cf = (struct can_frame *)skb->data;
578 	canid_t can_id = cf->can_id;
579 
580 	if (dev_rcv_lists->entries == 0)
581 		return 0;
582 
583 	if (can_id & CAN_ERR_FLAG) {
584 		/* check for error message frame entries only */
585 		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) {
586 			if (can_id & rcv->mask) {
587 				deliver(skb, rcv);
588 				matches++;
589 			}
590 		}
591 		return matches;
592 	}
593 
594 	/* check for unfiltered entries */
595 	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) {
596 		deliver(skb, rcv);
597 		matches++;
598 	}
599 
600 	/* check for can_id/mask entries */
601 	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) {
602 		if ((can_id & rcv->mask) == rcv->can_id) {
603 			deliver(skb, rcv);
604 			matches++;
605 		}
606 	}
607 
608 	/* check for inverted can_id/mask entries */
609 	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) {
610 		if ((can_id & rcv->mask) != rcv->can_id) {
611 			deliver(skb, rcv);
612 			matches++;
613 		}
614 	}
615 
616 	/* check filterlists for single non-RTR can_ids */
617 	if (can_id & CAN_RTR_FLAG)
618 		return matches;
619 
620 	if (can_id & CAN_EFF_FLAG) {
621 		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) {
622 			if (rcv->can_id == can_id) {
623 				deliver(skb, rcv);
624 				matches++;
625 			}
626 		}
627 	} else {
628 		can_id &= CAN_SFF_MASK;
629 		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) {
630 			deliver(skb, rcv);
631 			matches++;
632 		}
633 	}
634 
635 	return matches;
636 }
637 
638 static void can_receive(struct sk_buff *skb, struct net_device *dev)
639 {
640 	struct can_dev_rcv_lists *dev_rcv_lists;
641 	struct net *net = dev_net(dev);
642 	struct can_pkg_stats *pkg_stats = net->can.pkg_stats;
643 	int matches;
644 
645 	/* update statistics */
646 	pkg_stats->rx_frames++;
647 	pkg_stats->rx_frames_delta++;
648 
649 	/* create non-zero unique skb identifier together with *skb */
650 	while (!(can_skb_prv(skb)->skbcnt))
651 		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
652 
653 	rcu_read_lock();
654 
655 	/* deliver the packet to sockets listening on all devices */
656 	matches = can_rcv_filter(net->can.rx_alldev_list, skb);
657 
658 	/* find receive list for this device */
659 	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
660 	matches += can_rcv_filter(dev_rcv_lists, skb);
661 
662 	rcu_read_unlock();
663 
664 	/* consume the skbuff allocated by the netdevice driver */
665 	consume_skb(skb);
666 
667 	if (matches > 0) {
668 		pkg_stats->matches++;
669 		pkg_stats->matches_delta++;
670 	}
671 }
672 
673 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
674 		   struct packet_type *pt, struct net_device *orig_dev)
675 {
676 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
677 
678 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU ||
679 		     cfd->len > CAN_MAX_DLEN)) {
680 		pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n",
681 			     dev->type, skb->len, cfd->len);
682 		kfree_skb(skb);
683 		return NET_RX_DROP;
684 	}
685 
686 	can_receive(skb, dev);
687 	return NET_RX_SUCCESS;
688 }
689 
690 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
691 		     struct packet_type *pt, struct net_device *orig_dev)
692 {
693 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
694 
695 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU ||
696 		     cfd->len > CANFD_MAX_DLEN)) {
697 		pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n",
698 			     dev->type, skb->len, cfd->len);
699 		kfree_skb(skb);
700 		return NET_RX_DROP;
701 	}
702 
703 	can_receive(skb, dev);
704 	return NET_RX_SUCCESS;
705 }
706 
707 /* af_can protocol functions */
708 
709 /**
710  * can_proto_register - register CAN transport protocol
711  * @cp: pointer to CAN protocol structure
712  *
713  * Return:
714  *  0 on success
715  *  -EINVAL invalid (out of range) protocol number
716  *  -EBUSY  protocol already in use
717  *  -ENOBUF if proto_register() fails
718  */
719 int can_proto_register(const struct can_proto *cp)
720 {
721 	int proto = cp->protocol;
722 	int err = 0;
723 
724 	if (proto < 0 || proto >= CAN_NPROTO) {
725 		pr_err("can: protocol number %d out of range\n", proto);
726 		return -EINVAL;
727 	}
728 
729 	err = proto_register(cp->prot, 0);
730 	if (err < 0)
731 		return err;
732 
733 	mutex_lock(&proto_tab_lock);
734 
735 	if (rcu_access_pointer(proto_tab[proto])) {
736 		pr_err("can: protocol %d already registered\n", proto);
737 		err = -EBUSY;
738 	} else {
739 		RCU_INIT_POINTER(proto_tab[proto], cp);
740 	}
741 
742 	mutex_unlock(&proto_tab_lock);
743 
744 	if (err < 0)
745 		proto_unregister(cp->prot);
746 
747 	return err;
748 }
749 EXPORT_SYMBOL(can_proto_register);
750 
751 /**
752  * can_proto_unregister - unregister CAN transport protocol
753  * @cp: pointer to CAN protocol structure
754  */
755 void can_proto_unregister(const struct can_proto *cp)
756 {
757 	int proto = cp->protocol;
758 
759 	mutex_lock(&proto_tab_lock);
760 	BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
761 	RCU_INIT_POINTER(proto_tab[proto], NULL);
762 	mutex_unlock(&proto_tab_lock);
763 
764 	synchronize_rcu();
765 
766 	proto_unregister(cp->prot);
767 }
768 EXPORT_SYMBOL(can_proto_unregister);
769 
770 /* af_can notifier to create/remove CAN netdevice specific structs */
771 static int can_notifier(struct notifier_block *nb, unsigned long msg,
772 			void *ptr)
773 {
774 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
775 
776 	if (dev->type != ARPHRD_CAN)
777 		return NOTIFY_DONE;
778 
779 	switch (msg) {
780 	case NETDEV_REGISTER:
781 		WARN(!dev->ml_priv,
782 		     "No CAN mid layer private allocated, please fix your driver and use alloc_candev()!\n");
783 		break;
784 	}
785 
786 	return NOTIFY_DONE;
787 }
788 
789 static int can_pernet_init(struct net *net)
790 {
791 	spin_lock_init(&net->can.rcvlists_lock);
792 	net->can.rx_alldev_list =
793 		kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL);
794 	if (!net->can.rx_alldev_list)
795 		goto out;
796 	net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL);
797 	if (!net->can.pkg_stats)
798 		goto out_free_rx_alldev_list;
799 	net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL);
800 	if (!net->can.rcv_lists_stats)
801 		goto out_free_pkg_stats;
802 
803 	if (IS_ENABLED(CONFIG_PROC_FS)) {
804 		/* the statistics are updated every second (timer triggered) */
805 		if (stats_timer) {
806 			timer_setup(&net->can.stattimer, can_stat_update,
807 				    0);
808 			mod_timer(&net->can.stattimer,
809 				  round_jiffies(jiffies + HZ));
810 		}
811 		net->can.pkg_stats->jiffies_init = jiffies;
812 		can_init_proc(net);
813 	}
814 
815 	return 0;
816 
817  out_free_pkg_stats:
818 	kfree(net->can.pkg_stats);
819  out_free_rx_alldev_list:
820 	kfree(net->can.rx_alldev_list);
821  out:
822 	return -ENOMEM;
823 }
824 
825 static void can_pernet_exit(struct net *net)
826 {
827 	if (IS_ENABLED(CONFIG_PROC_FS)) {
828 		can_remove_proc(net);
829 		if (stats_timer)
830 			del_timer_sync(&net->can.stattimer);
831 	}
832 
833 	kfree(net->can.rx_alldev_list);
834 	kfree(net->can.pkg_stats);
835 	kfree(net->can.rcv_lists_stats);
836 }
837 
838 /* af_can module init/exit functions */
839 
840 static struct packet_type can_packet __read_mostly = {
841 	.type = cpu_to_be16(ETH_P_CAN),
842 	.func = can_rcv,
843 };
844 
845 static struct packet_type canfd_packet __read_mostly = {
846 	.type = cpu_to_be16(ETH_P_CANFD),
847 	.func = canfd_rcv,
848 };
849 
850 static const struct net_proto_family can_family_ops = {
851 	.family = PF_CAN,
852 	.create = can_create,
853 	.owner  = THIS_MODULE,
854 };
855 
856 /* notifier block for netdevice event */
857 static struct notifier_block can_netdev_notifier __read_mostly = {
858 	.notifier_call = can_notifier,
859 };
860 
861 static struct pernet_operations can_pernet_ops __read_mostly = {
862 	.init = can_pernet_init,
863 	.exit = can_pernet_exit,
864 };
865 
866 static __init int can_init(void)
867 {
868 	int err;
869 
870 	/* check for correct padding to be able to use the structs similarly */
871 	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
872 		     offsetof(struct canfd_frame, len) ||
873 		     offsetof(struct can_frame, data) !=
874 		     offsetof(struct canfd_frame, data));
875 
876 	pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
877 
878 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
879 				      0, 0, NULL);
880 	if (!rcv_cache)
881 		return -ENOMEM;
882 
883 	err = register_pernet_subsys(&can_pernet_ops);
884 	if (err)
885 		goto out_pernet;
886 
887 	/* protocol register */
888 	err = sock_register(&can_family_ops);
889 	if (err)
890 		goto out_sock;
891 	err = register_netdevice_notifier(&can_netdev_notifier);
892 	if (err)
893 		goto out_notifier;
894 
895 	dev_add_pack(&can_packet);
896 	dev_add_pack(&canfd_packet);
897 
898 	return 0;
899 
900 out_notifier:
901 	sock_unregister(PF_CAN);
902 out_sock:
903 	unregister_pernet_subsys(&can_pernet_ops);
904 out_pernet:
905 	kmem_cache_destroy(rcv_cache);
906 
907 	return err;
908 }
909 
910 static __exit void can_exit(void)
911 {
912 	/* protocol unregister */
913 	dev_remove_pack(&canfd_packet);
914 	dev_remove_pack(&can_packet);
915 	unregister_netdevice_notifier(&can_netdev_notifier);
916 	sock_unregister(PF_CAN);
917 
918 	unregister_pernet_subsys(&can_pernet_ops);
919 
920 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
921 
922 	kmem_cache_destroy(rcv_cache);
923 }
924 
925 module_init(can_init);
926 module_exit(can_exit);
927