xref: /linux/net/can/af_can.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  * Send feedback to <socketcan-users@lists.berlios.de>
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/kmod.h>
48 #include <linux/slab.h>
49 #include <linux/list.h>
50 #include <linux/spinlock.h>
51 #include <linux/rcupdate.h>
52 #include <linux/uaccess.h>
53 #include <linux/net.h>
54 #include <linux/netdevice.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_arp.h>
58 #include <linux/skbuff.h>
59 #include <linux/can.h>
60 #include <linux/can/core.h>
61 #include <net/net_namespace.h>
62 #include <net/sock.h>
63 
64 #include "af_can.h"
65 
66 static __initdata const char banner[] = KERN_INFO
67 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
68 
69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
72 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
73 
74 MODULE_ALIAS_NETPROTO(PF_CAN);
75 
76 static int stats_timer __read_mostly = 1;
77 module_param(stats_timer, int, S_IRUGO);
78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
79 
80 HLIST_HEAD(can_rx_dev_list);
81 static struct dev_rcv_lists can_rx_alldev_list;
82 static DEFINE_SPINLOCK(can_rcvlists_lock);
83 
84 static struct kmem_cache *rcv_cache __read_mostly;
85 
86 /* table of registered CAN protocols */
87 static struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
88 static DEFINE_SPINLOCK(proto_tab_lock);
89 
90 struct timer_list can_stattimer;   /* timer for statistics update */
91 struct s_stats    can_stats;       /* packet statistics */
92 struct s_pstats   can_pstats;      /* receive list statistics */
93 
94 /*
95  * af_can socket functions
96  */
97 
98 static int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
99 {
100 	struct sock *sk = sock->sk;
101 
102 	switch (cmd) {
103 
104 	case SIOCGSTAMP:
105 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
106 
107 	default:
108 		return -ENOIOCTLCMD;
109 	}
110 }
111 
112 static void can_sock_destruct(struct sock *sk)
113 {
114 	skb_queue_purge(&sk->sk_receive_queue);
115 }
116 
117 static int can_create(struct net *net, struct socket *sock, int protocol)
118 {
119 	struct sock *sk;
120 	struct can_proto *cp;
121 	int err = 0;
122 
123 	sock->state = SS_UNCONNECTED;
124 
125 	if (protocol < 0 || protocol >= CAN_NPROTO)
126 		return -EINVAL;
127 
128 	if (net != &init_net)
129 		return -EAFNOSUPPORT;
130 
131 #ifdef CONFIG_MODULES
132 	/* try to load protocol module kernel is modular */
133 	if (!proto_tab[protocol]) {
134 		err = request_module("can-proto-%d", protocol);
135 
136 		/*
137 		 * In case of error we only print a message but don't
138 		 * return the error code immediately.  Below we will
139 		 * return -EPROTONOSUPPORT
140 		 */
141 		if (err && printk_ratelimit())
142 			printk(KERN_ERR "can: request_module "
143 			       "(can-proto-%d) failed.\n", protocol);
144 	}
145 #endif
146 
147 	spin_lock(&proto_tab_lock);
148 	cp = proto_tab[protocol];
149 	if (cp && !try_module_get(cp->prot->owner))
150 		cp = NULL;
151 	spin_unlock(&proto_tab_lock);
152 
153 	/* check for available protocol and correct usage */
154 
155 	if (!cp)
156 		return -EPROTONOSUPPORT;
157 
158 	if (cp->type != sock->type) {
159 		err = -EPROTONOSUPPORT;
160 		goto errout;
161 	}
162 
163 	if (cp->capability >= 0 && !capable(cp->capability)) {
164 		err = -EPERM;
165 		goto errout;
166 	}
167 
168 	sock->ops = cp->ops;
169 
170 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
171 	if (!sk) {
172 		err = -ENOMEM;
173 		goto errout;
174 	}
175 
176 	sock_init_data(sock, sk);
177 	sk->sk_destruct = can_sock_destruct;
178 
179 	if (sk->sk_prot->init)
180 		err = sk->sk_prot->init(sk);
181 
182 	if (err) {
183 		/* release sk on errors */
184 		sock_orphan(sk);
185 		sock_put(sk);
186 	}
187 
188  errout:
189 	module_put(cp->prot->owner);
190 	return err;
191 }
192 
193 /*
194  * af_can tx path
195  */
196 
197 /**
198  * can_send - transmit a CAN frame (optional with local loopback)
199  * @skb: pointer to socket buffer with CAN frame in data section
200  * @loop: loopback for listeners on local CAN sockets (recommended default!)
201  *
202  * Return:
203  *  0 on success
204  *  -ENETDOWN when the selected interface is down
205  *  -ENOBUFS on full driver queue (see net_xmit_errno())
206  *  -ENOMEM when local loopback failed at calling skb_clone()
207  *  -EPERM when trying to send on a non-CAN interface
208  *  -EINVAL when the skb->data does not contain a valid CAN frame
209  */
210 int can_send(struct sk_buff *skb, int loop)
211 {
212 	struct sk_buff *newskb = NULL;
213 	struct can_frame *cf = (struct can_frame *)skb->data;
214 	int err;
215 
216 	if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) {
217 		kfree_skb(skb);
218 		return -EINVAL;
219 	}
220 
221 	if (skb->dev->type != ARPHRD_CAN) {
222 		kfree_skb(skb);
223 		return -EPERM;
224 	}
225 
226 	if (!(skb->dev->flags & IFF_UP)) {
227 		kfree_skb(skb);
228 		return -ENETDOWN;
229 	}
230 
231 	skb->protocol = htons(ETH_P_CAN);
232 	skb_reset_network_header(skb);
233 	skb_reset_transport_header(skb);
234 
235 	if (loop) {
236 		/* local loopback of sent CAN frames */
237 
238 		/* indication for the CAN driver: do loopback */
239 		skb->pkt_type = PACKET_LOOPBACK;
240 
241 		/*
242 		 * The reference to the originating sock may be required
243 		 * by the receiving socket to check whether the frame is
244 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
245 		 * Therefore we have to ensure that skb->sk remains the
246 		 * reference to the originating sock by restoring skb->sk
247 		 * after each skb_clone() or skb_orphan() usage.
248 		 */
249 
250 		if (!(skb->dev->flags & IFF_ECHO)) {
251 			/*
252 			 * If the interface is not capable to do loopback
253 			 * itself, we do it here.
254 			 */
255 			newskb = skb_clone(skb, GFP_ATOMIC);
256 			if (!newskb) {
257 				kfree_skb(skb);
258 				return -ENOMEM;
259 			}
260 
261 			newskb->sk = skb->sk;
262 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
263 			newskb->pkt_type = PACKET_BROADCAST;
264 		}
265 	} else {
266 		/* indication for the CAN driver: no loopback required */
267 		skb->pkt_type = PACKET_HOST;
268 	}
269 
270 	/* send to netdevice */
271 	err = dev_queue_xmit(skb);
272 	if (err > 0)
273 		err = net_xmit_errno(err);
274 
275 	if (err) {
276 		kfree_skb(newskb);
277 		return err;
278 	}
279 
280 	if (newskb)
281 		netif_rx(newskb);
282 
283 	/* update statistics */
284 	can_stats.tx_frames++;
285 	can_stats.tx_frames_delta++;
286 
287 	return 0;
288 }
289 EXPORT_SYMBOL(can_send);
290 
291 /*
292  * af_can rx path
293  */
294 
295 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
296 {
297 	struct dev_rcv_lists *d = NULL;
298 	struct hlist_node *n;
299 
300 	/*
301 	 * find receive list for this device
302 	 *
303 	 * The hlist_for_each_entry*() macros curse through the list
304 	 * using the pointer variable n and set d to the containing
305 	 * struct in each list iteration.  Therefore, after list
306 	 * iteration, d is unmodified when the list is empty, and it
307 	 * points to last list element, when the list is non-empty
308 	 * but no match in the loop body is found.  I.e. d is *not*
309 	 * NULL when no match is found.  We can, however, use the
310 	 * cursor variable n to decide if a match was found.
311 	 */
312 
313 	hlist_for_each_entry_rcu(d, n, &can_rx_dev_list, list) {
314 		if (d->dev == dev)
315 			break;
316 	}
317 
318 	return n ? d : NULL;
319 }
320 
321 /**
322  * find_rcv_list - determine optimal filterlist inside device filter struct
323  * @can_id: pointer to CAN identifier of a given can_filter
324  * @mask: pointer to CAN mask of a given can_filter
325  * @d: pointer to the device filter struct
326  *
327  * Description:
328  *  Returns the optimal filterlist to reduce the filter handling in the
329  *  receive path. This function is called by service functions that need
330  *  to register or unregister a can_filter in the filter lists.
331  *
332  *  A filter matches in general, when
333  *
334  *          <received_can_id> & mask == can_id & mask
335  *
336  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
337  *  relevant bits for the filter.
338  *
339  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
340  *  filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames
341  *  there is a special filterlist and a special rx path filter handling.
342  *
343  * Return:
344  *  Pointer to optimal filterlist for the given can_id/mask pair.
345  *  Constistency checked mask.
346  *  Reduced can_id to have a preprocessed filter compare value.
347  */
348 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
349 					struct dev_rcv_lists *d)
350 {
351 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
352 
353 	/* filter for error frames in extra filterlist */
354 	if (*mask & CAN_ERR_FLAG) {
355 		/* clear CAN_ERR_FLAG in filter entry */
356 		*mask &= CAN_ERR_MASK;
357 		return &d->rx[RX_ERR];
358 	}
359 
360 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
361 
362 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
363 
364 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
365 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
366 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
367 
368 	/* reduce condition testing at receive time */
369 	*can_id &= *mask;
370 
371 	/* inverse can_id/can_mask filter */
372 	if (inv)
373 		return &d->rx[RX_INV];
374 
375 	/* mask == 0 => no condition testing at receive time */
376 	if (!(*mask))
377 		return &d->rx[RX_ALL];
378 
379 	/* extra filterlists for the subscription of a single non-RTR can_id */
380 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS)
381 	    && !(*can_id & CAN_RTR_FLAG)) {
382 
383 		if (*can_id & CAN_EFF_FLAG) {
384 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
385 				/* RFC: a future use-case for hash-tables? */
386 				return &d->rx[RX_EFF];
387 			}
388 		} else {
389 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
390 				return &d->rx_sff[*can_id];
391 		}
392 	}
393 
394 	/* default: filter via can_id/can_mask */
395 	return &d->rx[RX_FIL];
396 }
397 
398 /**
399  * can_rx_register - subscribe CAN frames from a specific interface
400  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
401  * @can_id: CAN identifier (see description)
402  * @mask: CAN mask (see description)
403  * @func: callback function on filter match
404  * @data: returned parameter for callback function
405  * @ident: string for calling module indentification
406  *
407  * Description:
408  *  Invokes the callback function with the received sk_buff and the given
409  *  parameter 'data' on a matching receive filter. A filter matches, when
410  *
411  *          <received_can_id> & mask == can_id & mask
412  *
413  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
414  *  filter for error frames (CAN_ERR_FLAG bit set in mask).
415  *
416  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
417  *  the callback function is running. The callback function must *not* free
418  *  the given sk_buff while processing it's task. When the given sk_buff is
419  *  needed after the end of the callback function it must be cloned inside
420  *  the callback function with skb_clone().
421  *
422  * Return:
423  *  0 on success
424  *  -ENOMEM on missing cache mem to create subscription entry
425  *  -ENODEV unknown device
426  */
427 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
428 		    void (*func)(struct sk_buff *, void *), void *data,
429 		    char *ident)
430 {
431 	struct receiver *r;
432 	struct hlist_head *rl;
433 	struct dev_rcv_lists *d;
434 	int err = 0;
435 
436 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
437 
438 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
439 	if (!r)
440 		return -ENOMEM;
441 
442 	spin_lock(&can_rcvlists_lock);
443 
444 	d = find_dev_rcv_lists(dev);
445 	if (d) {
446 		rl = find_rcv_list(&can_id, &mask, d);
447 
448 		r->can_id  = can_id;
449 		r->mask    = mask;
450 		r->matches = 0;
451 		r->func    = func;
452 		r->data    = data;
453 		r->ident   = ident;
454 
455 		hlist_add_head_rcu(&r->list, rl);
456 		d->entries++;
457 
458 		can_pstats.rcv_entries++;
459 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
460 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
461 	} else {
462 		kmem_cache_free(rcv_cache, r);
463 		err = -ENODEV;
464 	}
465 
466 	spin_unlock(&can_rcvlists_lock);
467 
468 	return err;
469 }
470 EXPORT_SYMBOL(can_rx_register);
471 
472 /*
473  * can_rx_delete_device - rcu callback for dev_rcv_lists structure removal
474  */
475 static void can_rx_delete_device(struct rcu_head *rp)
476 {
477 	struct dev_rcv_lists *d = container_of(rp, struct dev_rcv_lists, rcu);
478 
479 	kfree(d);
480 }
481 
482 /*
483  * can_rx_delete_receiver - rcu callback for single receiver entry removal
484  */
485 static void can_rx_delete_receiver(struct rcu_head *rp)
486 {
487 	struct receiver *r = container_of(rp, struct receiver, rcu);
488 
489 	kmem_cache_free(rcv_cache, r);
490 }
491 
492 /**
493  * can_rx_unregister - unsubscribe CAN frames from a specific interface
494  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
495  * @can_id: CAN identifier
496  * @mask: CAN mask
497  * @func: callback function on filter match
498  * @data: returned parameter for callback function
499  *
500  * Description:
501  *  Removes subscription entry depending on given (subscription) values.
502  */
503 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
504 		       void (*func)(struct sk_buff *, void *), void *data)
505 {
506 	struct receiver *r = NULL;
507 	struct hlist_head *rl;
508 	struct hlist_node *next;
509 	struct dev_rcv_lists *d;
510 
511 	spin_lock(&can_rcvlists_lock);
512 
513 	d = find_dev_rcv_lists(dev);
514 	if (!d) {
515 		printk(KERN_ERR "BUG: receive list not found for "
516 		       "dev %s, id %03X, mask %03X\n",
517 		       DNAME(dev), can_id, mask);
518 		goto out;
519 	}
520 
521 	rl = find_rcv_list(&can_id, &mask, d);
522 
523 	/*
524 	 * Search the receiver list for the item to delete.  This should
525 	 * exist, since no receiver may be unregistered that hasn't
526 	 * been registered before.
527 	 */
528 
529 	hlist_for_each_entry_rcu(r, next, rl, list) {
530 		if (r->can_id == can_id && r->mask == mask
531 		    && r->func == func && r->data == data)
532 			break;
533 	}
534 
535 	/*
536 	 * Check for bugs in CAN protocol implementations:
537 	 * If no matching list item was found, the list cursor variable next
538 	 * will be NULL, while r will point to the last item of the list.
539 	 */
540 
541 	if (!next) {
542 		printk(KERN_ERR "BUG: receive list entry not found for "
543 		       "dev %s, id %03X, mask %03X\n",
544 		       DNAME(dev), can_id, mask);
545 		r = NULL;
546 		d = NULL;
547 		goto out;
548 	}
549 
550 	hlist_del_rcu(&r->list);
551 	d->entries--;
552 
553 	if (can_pstats.rcv_entries > 0)
554 		can_pstats.rcv_entries--;
555 
556 	/* remove device structure requested by NETDEV_UNREGISTER */
557 	if (d->remove_on_zero_entries && !d->entries)
558 		hlist_del_rcu(&d->list);
559 	else
560 		d = NULL;
561 
562  out:
563 	spin_unlock(&can_rcvlists_lock);
564 
565 	/* schedule the receiver item for deletion */
566 	if (r)
567 		call_rcu(&r->rcu, can_rx_delete_receiver);
568 
569 	/* schedule the device structure for deletion */
570 	if (d)
571 		call_rcu(&d->rcu, can_rx_delete_device);
572 }
573 EXPORT_SYMBOL(can_rx_unregister);
574 
575 static inline void deliver(struct sk_buff *skb, struct receiver *r)
576 {
577 	r->func(skb, r->data);
578 	r->matches++;
579 }
580 
581 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
582 {
583 	struct receiver *r;
584 	struct hlist_node *n;
585 	int matches = 0;
586 	struct can_frame *cf = (struct can_frame *)skb->data;
587 	canid_t can_id = cf->can_id;
588 
589 	if (d->entries == 0)
590 		return 0;
591 
592 	if (can_id & CAN_ERR_FLAG) {
593 		/* check for error frame entries only */
594 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
595 			if (can_id & r->mask) {
596 				deliver(skb, r);
597 				matches++;
598 			}
599 		}
600 		return matches;
601 	}
602 
603 	/* check for unfiltered entries */
604 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
605 		deliver(skb, r);
606 		matches++;
607 	}
608 
609 	/* check for can_id/mask entries */
610 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
611 		if ((can_id & r->mask) == r->can_id) {
612 			deliver(skb, r);
613 			matches++;
614 		}
615 	}
616 
617 	/* check for inverted can_id/mask entries */
618 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
619 		if ((can_id & r->mask) != r->can_id) {
620 			deliver(skb, r);
621 			matches++;
622 		}
623 	}
624 
625 	/* check filterlists for single non-RTR can_ids */
626 	if (can_id & CAN_RTR_FLAG)
627 		return matches;
628 
629 	if (can_id & CAN_EFF_FLAG) {
630 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
631 			if (r->can_id == can_id) {
632 				deliver(skb, r);
633 				matches++;
634 			}
635 		}
636 	} else {
637 		can_id &= CAN_SFF_MASK;
638 		hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
639 			deliver(skb, r);
640 			matches++;
641 		}
642 	}
643 
644 	return matches;
645 }
646 
647 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
648 		   struct packet_type *pt, struct net_device *orig_dev)
649 {
650 	struct dev_rcv_lists *d;
651 	struct can_frame *cf = (struct can_frame *)skb->data;
652 	int matches;
653 
654 	if (dev->type != ARPHRD_CAN || !net_eq(dev_net(dev), &init_net)) {
655 		kfree_skb(skb);
656 		return 0;
657 	}
658 
659 	BUG_ON(skb->len != sizeof(struct can_frame) || cf->can_dlc > 8);
660 
661 	/* update statistics */
662 	can_stats.rx_frames++;
663 	can_stats.rx_frames_delta++;
664 
665 	rcu_read_lock();
666 
667 	/* deliver the packet to sockets listening on all devices */
668 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
669 
670 	/* find receive list for this device */
671 	d = find_dev_rcv_lists(dev);
672 	if (d)
673 		matches += can_rcv_filter(d, skb);
674 
675 	rcu_read_unlock();
676 
677 	/* free the skbuff allocated by the netdevice driver */
678 	kfree_skb(skb);
679 
680 	if (matches > 0) {
681 		can_stats.matches++;
682 		can_stats.matches_delta++;
683 	}
684 
685 	return 0;
686 }
687 
688 /*
689  * af_can protocol functions
690  */
691 
692 /**
693  * can_proto_register - register CAN transport protocol
694  * @cp: pointer to CAN protocol structure
695  *
696  * Return:
697  *  0 on success
698  *  -EINVAL invalid (out of range) protocol number
699  *  -EBUSY  protocol already in use
700  *  -ENOBUF if proto_register() fails
701  */
702 int can_proto_register(struct can_proto *cp)
703 {
704 	int proto = cp->protocol;
705 	int err = 0;
706 
707 	if (proto < 0 || proto >= CAN_NPROTO) {
708 		printk(KERN_ERR "can: protocol number %d out of range\n",
709 		       proto);
710 		return -EINVAL;
711 	}
712 
713 	err = proto_register(cp->prot, 0);
714 	if (err < 0)
715 		return err;
716 
717 	spin_lock(&proto_tab_lock);
718 	if (proto_tab[proto]) {
719 		printk(KERN_ERR "can: protocol %d already registered\n",
720 		       proto);
721 		err = -EBUSY;
722 	} else {
723 		proto_tab[proto] = cp;
724 
725 		/* use generic ioctl function if not defined by module */
726 		if (!cp->ops->ioctl)
727 			cp->ops->ioctl = can_ioctl;
728 	}
729 	spin_unlock(&proto_tab_lock);
730 
731 	if (err < 0)
732 		proto_unregister(cp->prot);
733 
734 	return err;
735 }
736 EXPORT_SYMBOL(can_proto_register);
737 
738 /**
739  * can_proto_unregister - unregister CAN transport protocol
740  * @cp: pointer to CAN protocol structure
741  */
742 void can_proto_unregister(struct can_proto *cp)
743 {
744 	int proto = cp->protocol;
745 
746 	spin_lock(&proto_tab_lock);
747 	if (!proto_tab[proto]) {
748 		printk(KERN_ERR "BUG: can: protocol %d is not registered\n",
749 		       proto);
750 	}
751 	proto_tab[proto] = NULL;
752 	spin_unlock(&proto_tab_lock);
753 
754 	proto_unregister(cp->prot);
755 }
756 EXPORT_SYMBOL(can_proto_unregister);
757 
758 /*
759  * af_can notifier to create/remove CAN netdevice specific structs
760  */
761 static int can_notifier(struct notifier_block *nb, unsigned long msg,
762 			void *data)
763 {
764 	struct net_device *dev = (struct net_device *)data;
765 	struct dev_rcv_lists *d;
766 
767 	if (!net_eq(dev_net(dev), &init_net))
768 		return NOTIFY_DONE;
769 
770 	if (dev->type != ARPHRD_CAN)
771 		return NOTIFY_DONE;
772 
773 	switch (msg) {
774 
775 	case NETDEV_REGISTER:
776 
777 		/*
778 		 * create new dev_rcv_lists for this device
779 		 *
780 		 * N.B. zeroing the struct is the correct initialization
781 		 * for the embedded hlist_head structs.
782 		 * Another list type, e.g. list_head, would require
783 		 * explicit initialization.
784 		 */
785 
786 		d = kzalloc(sizeof(*d), GFP_KERNEL);
787 		if (!d) {
788 			printk(KERN_ERR
789 			       "can: allocation of receive list failed\n");
790 			return NOTIFY_DONE;
791 		}
792 		d->dev = dev;
793 
794 		spin_lock(&can_rcvlists_lock);
795 		hlist_add_head_rcu(&d->list, &can_rx_dev_list);
796 		spin_unlock(&can_rcvlists_lock);
797 
798 		break;
799 
800 	case NETDEV_UNREGISTER:
801 		spin_lock(&can_rcvlists_lock);
802 
803 		d = find_dev_rcv_lists(dev);
804 		if (d) {
805 			if (d->entries) {
806 				d->remove_on_zero_entries = 1;
807 				d = NULL;
808 			} else
809 				hlist_del_rcu(&d->list);
810 		} else
811 			printk(KERN_ERR "can: notifier: receive list not "
812 			       "found for dev %s\n", dev->name);
813 
814 		spin_unlock(&can_rcvlists_lock);
815 
816 		if (d)
817 			call_rcu(&d->rcu, can_rx_delete_device);
818 
819 		break;
820 	}
821 
822 	return NOTIFY_DONE;
823 }
824 
825 /*
826  * af_can module init/exit functions
827  */
828 
829 static struct packet_type can_packet __read_mostly = {
830 	.type = cpu_to_be16(ETH_P_CAN),
831 	.dev  = NULL,
832 	.func = can_rcv,
833 };
834 
835 static struct net_proto_family can_family_ops __read_mostly = {
836 	.family = PF_CAN,
837 	.create = can_create,
838 	.owner  = THIS_MODULE,
839 };
840 
841 /* notifier block for netdevice event */
842 static struct notifier_block can_netdev_notifier __read_mostly = {
843 	.notifier_call = can_notifier,
844 };
845 
846 static __init int can_init(void)
847 {
848 	printk(banner);
849 
850 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
851 				      0, 0, NULL);
852 	if (!rcv_cache)
853 		return -ENOMEM;
854 
855 	/*
856 	 * Insert can_rx_alldev_list for reception on all devices.
857 	 * This struct is zero initialized which is correct for the
858 	 * embedded hlist heads, the dev pointer, and the entries counter.
859 	 */
860 
861 	spin_lock(&can_rcvlists_lock);
862 	hlist_add_head_rcu(&can_rx_alldev_list.list, &can_rx_dev_list);
863 	spin_unlock(&can_rcvlists_lock);
864 
865 	if (stats_timer) {
866 		/* the statistics are updated every second (timer triggered) */
867 		setup_timer(&can_stattimer, can_stat_update, 0);
868 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
869 	} else
870 		can_stattimer.function = NULL;
871 
872 	can_init_proc();
873 
874 	/* protocol register */
875 	sock_register(&can_family_ops);
876 	register_netdevice_notifier(&can_netdev_notifier);
877 	dev_add_pack(&can_packet);
878 
879 	return 0;
880 }
881 
882 static __exit void can_exit(void)
883 {
884 	struct dev_rcv_lists *d;
885 	struct hlist_node *n, *next;
886 
887 	if (stats_timer)
888 		del_timer(&can_stattimer);
889 
890 	can_remove_proc();
891 
892 	/* protocol unregister */
893 	dev_remove_pack(&can_packet);
894 	unregister_netdevice_notifier(&can_netdev_notifier);
895 	sock_unregister(PF_CAN);
896 
897 	/* remove can_rx_dev_list */
898 	spin_lock(&can_rcvlists_lock);
899 	hlist_del(&can_rx_alldev_list.list);
900 	hlist_for_each_entry_safe(d, n, next, &can_rx_dev_list, list) {
901 		hlist_del(&d->list);
902 		kfree(d);
903 	}
904 	spin_unlock(&can_rcvlists_lock);
905 
906 	kmem_cache_destroy(rcv_cache);
907 }
908 
909 module_init(can_init);
910 module_exit(can_exit);
911