xref: /linux/net/can/af_can.c (revision af873fcecef567abf8a3468b06dd4e4aab46da6d)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64 
65 #include "af_can.h"
66 
67 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
68 MODULE_LICENSE("Dual BSD/GPL");
69 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
70 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
71 
72 MODULE_ALIAS_NETPROTO(PF_CAN);
73 
74 static int stats_timer __read_mostly = 1;
75 module_param(stats_timer, int, 0444);
76 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
77 
78 static struct kmem_cache *rcv_cache __read_mostly;
79 
80 /* table of registered CAN protocols */
81 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
82 static DEFINE_MUTEX(proto_tab_lock);
83 
84 static atomic_t skbcounter = ATOMIC_INIT(0);
85 
86 /*
87  * af_can socket functions
88  */
89 
90 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
91 {
92 	switch (cmd) {
93 	default:
94 		return -ENOIOCTLCMD;
95 	}
96 }
97 EXPORT_SYMBOL(can_ioctl);
98 
99 static void can_sock_destruct(struct sock *sk)
100 {
101 	skb_queue_purge(&sk->sk_receive_queue);
102 }
103 
104 static const struct can_proto *can_get_proto(int protocol)
105 {
106 	const struct can_proto *cp;
107 
108 	rcu_read_lock();
109 	cp = rcu_dereference(proto_tab[protocol]);
110 	if (cp && !try_module_get(cp->prot->owner))
111 		cp = NULL;
112 	rcu_read_unlock();
113 
114 	return cp;
115 }
116 
117 static inline void can_put_proto(const struct can_proto *cp)
118 {
119 	module_put(cp->prot->owner);
120 }
121 
122 static int can_create(struct net *net, struct socket *sock, int protocol,
123 		      int kern)
124 {
125 	struct sock *sk;
126 	const struct can_proto *cp;
127 	int err = 0;
128 
129 	sock->state = SS_UNCONNECTED;
130 
131 	if (protocol < 0 || protocol >= CAN_NPROTO)
132 		return -EINVAL;
133 
134 	cp = can_get_proto(protocol);
135 
136 #ifdef CONFIG_MODULES
137 	if (!cp) {
138 		/* try to load protocol module if kernel is modular */
139 
140 		err = request_module("can-proto-%d", protocol);
141 
142 		/*
143 		 * In case of error we only print a message but don't
144 		 * return the error code immediately.  Below we will
145 		 * return -EPROTONOSUPPORT
146 		 */
147 		if (err)
148 			printk_ratelimited(KERN_ERR "can: request_module "
149 			       "(can-proto-%d) failed.\n", protocol);
150 
151 		cp = can_get_proto(protocol);
152 	}
153 #endif
154 
155 	/* check for available protocol and correct usage */
156 
157 	if (!cp)
158 		return -EPROTONOSUPPORT;
159 
160 	if (cp->type != sock->type) {
161 		err = -EPROTOTYPE;
162 		goto errout;
163 	}
164 
165 	sock->ops = cp->ops;
166 
167 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
168 	if (!sk) {
169 		err = -ENOMEM;
170 		goto errout;
171 	}
172 
173 	sock_init_data(sock, sk);
174 	sk->sk_destruct = can_sock_destruct;
175 
176 	if (sk->sk_prot->init)
177 		err = sk->sk_prot->init(sk);
178 
179 	if (err) {
180 		/* release sk on errors */
181 		sock_orphan(sk);
182 		sock_put(sk);
183 	}
184 
185  errout:
186 	can_put_proto(cp);
187 	return err;
188 }
189 
190 /*
191  * af_can tx path
192  */
193 
194 /**
195  * can_send - transmit a CAN frame (optional with local loopback)
196  * @skb: pointer to socket buffer with CAN frame in data section
197  * @loop: loopback for listeners on local CAN sockets (recommended default!)
198  *
199  * Due to the loopback this routine must not be called from hardirq context.
200  *
201  * Return:
202  *  0 on success
203  *  -ENETDOWN when the selected interface is down
204  *  -ENOBUFS on full driver queue (see net_xmit_errno())
205  *  -ENOMEM when local loopback failed at calling skb_clone()
206  *  -EPERM when trying to send on a non-CAN interface
207  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
208  *  -EINVAL when the skb->data does not contain a valid CAN frame
209  */
210 int can_send(struct sk_buff *skb, int loop)
211 {
212 	struct sk_buff *newskb = NULL;
213 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
214 	struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats;
215 	int err = -EINVAL;
216 
217 	if (skb->len == CAN_MTU) {
218 		skb->protocol = htons(ETH_P_CAN);
219 		if (unlikely(cfd->len > CAN_MAX_DLEN))
220 			goto inval_skb;
221 	} else if (skb->len == CANFD_MTU) {
222 		skb->protocol = htons(ETH_P_CANFD);
223 		if (unlikely(cfd->len > CANFD_MAX_DLEN))
224 			goto inval_skb;
225 	} else
226 		goto inval_skb;
227 
228 	/*
229 	 * Make sure the CAN frame can pass the selected CAN netdevice.
230 	 * As structs can_frame and canfd_frame are similar, we can provide
231 	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
232 	 */
233 	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
234 		err = -EMSGSIZE;
235 		goto inval_skb;
236 	}
237 
238 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
239 		err = -EPERM;
240 		goto inval_skb;
241 	}
242 
243 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
244 		err = -ENETDOWN;
245 		goto inval_skb;
246 	}
247 
248 	skb->ip_summed = CHECKSUM_UNNECESSARY;
249 
250 	skb_reset_mac_header(skb);
251 	skb_reset_network_header(skb);
252 	skb_reset_transport_header(skb);
253 
254 	if (loop) {
255 		/* local loopback of sent CAN frames */
256 
257 		/* indication for the CAN driver: do loopback */
258 		skb->pkt_type = PACKET_LOOPBACK;
259 
260 		/*
261 		 * The reference to the originating sock may be required
262 		 * by the receiving socket to check whether the frame is
263 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
264 		 * Therefore we have to ensure that skb->sk remains the
265 		 * reference to the originating sock by restoring skb->sk
266 		 * after each skb_clone() or skb_orphan() usage.
267 		 */
268 
269 		if (!(skb->dev->flags & IFF_ECHO)) {
270 			/*
271 			 * If the interface is not capable to do loopback
272 			 * itself, we do it here.
273 			 */
274 			newskb = skb_clone(skb, GFP_ATOMIC);
275 			if (!newskb) {
276 				kfree_skb(skb);
277 				return -ENOMEM;
278 			}
279 
280 			can_skb_set_owner(newskb, skb->sk);
281 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
282 			newskb->pkt_type = PACKET_BROADCAST;
283 		}
284 	} else {
285 		/* indication for the CAN driver: no loopback required */
286 		skb->pkt_type = PACKET_HOST;
287 	}
288 
289 	/* send to netdevice */
290 	err = dev_queue_xmit(skb);
291 	if (err > 0)
292 		err = net_xmit_errno(err);
293 
294 	if (err) {
295 		kfree_skb(newskb);
296 		return err;
297 	}
298 
299 	if (newskb)
300 		netif_rx_ni(newskb);
301 
302 	/* update statistics */
303 	can_stats->tx_frames++;
304 	can_stats->tx_frames_delta++;
305 
306 	return 0;
307 
308 inval_skb:
309 	kfree_skb(skb);
310 	return err;
311 }
312 EXPORT_SYMBOL(can_send);
313 
314 /*
315  * af_can rx path
316  */
317 
318 static struct can_dev_rcv_lists *find_dev_rcv_lists(struct net *net,
319 						struct net_device *dev)
320 {
321 	if (!dev)
322 		return net->can.can_rx_alldev_list;
323 	else
324 		return (struct can_dev_rcv_lists *)dev->ml_priv;
325 }
326 
327 /**
328  * effhash - hash function for 29 bit CAN identifier reduction
329  * @can_id: 29 bit CAN identifier
330  *
331  * Description:
332  *  To reduce the linear traversal in one linked list of _single_ EFF CAN
333  *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
334  *  (see CAN_EFF_RCV_HASH_BITS definition)
335  *
336  * Return:
337  *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
338  */
339 static unsigned int effhash(canid_t can_id)
340 {
341 	unsigned int hash;
342 
343 	hash = can_id;
344 	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
345 	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
346 
347 	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
348 }
349 
350 /**
351  * find_rcv_list - determine optimal filterlist inside device filter struct
352  * @can_id: pointer to CAN identifier of a given can_filter
353  * @mask: pointer to CAN mask of a given can_filter
354  * @d: pointer to the device filter struct
355  *
356  * Description:
357  *  Returns the optimal filterlist to reduce the filter handling in the
358  *  receive path. This function is called by service functions that need
359  *  to register or unregister a can_filter in the filter lists.
360  *
361  *  A filter matches in general, when
362  *
363  *          <received_can_id> & mask == can_id & mask
364  *
365  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
366  *  relevant bits for the filter.
367  *
368  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
369  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
370  *  frames there is a special filterlist and a special rx path filter handling.
371  *
372  * Return:
373  *  Pointer to optimal filterlist for the given can_id/mask pair.
374  *  Constistency checked mask.
375  *  Reduced can_id to have a preprocessed filter compare value.
376  */
377 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
378 					struct can_dev_rcv_lists *d)
379 {
380 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
381 
382 	/* filter for error message frames in extra filterlist */
383 	if (*mask & CAN_ERR_FLAG) {
384 		/* clear CAN_ERR_FLAG in filter entry */
385 		*mask &= CAN_ERR_MASK;
386 		return &d->rx[RX_ERR];
387 	}
388 
389 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
390 
391 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
392 
393 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
394 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
395 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
396 
397 	/* reduce condition testing at receive time */
398 	*can_id &= *mask;
399 
400 	/* inverse can_id/can_mask filter */
401 	if (inv)
402 		return &d->rx[RX_INV];
403 
404 	/* mask == 0 => no condition testing at receive time */
405 	if (!(*mask))
406 		return &d->rx[RX_ALL];
407 
408 	/* extra filterlists for the subscription of a single non-RTR can_id */
409 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
410 	    !(*can_id & CAN_RTR_FLAG)) {
411 
412 		if (*can_id & CAN_EFF_FLAG) {
413 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
414 				return &d->rx_eff[effhash(*can_id)];
415 		} else {
416 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
417 				return &d->rx_sff[*can_id];
418 		}
419 	}
420 
421 	/* default: filter via can_id/can_mask */
422 	return &d->rx[RX_FIL];
423 }
424 
425 /**
426  * can_rx_register - subscribe CAN frames from a specific interface
427  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
428  * @can_id: CAN identifier (see description)
429  * @mask: CAN mask (see description)
430  * @func: callback function on filter match
431  * @data: returned parameter for callback function
432  * @ident: string for calling module identification
433  * @sk: socket pointer (might be NULL)
434  *
435  * Description:
436  *  Invokes the callback function with the received sk_buff and the given
437  *  parameter 'data' on a matching receive filter. A filter matches, when
438  *
439  *          <received_can_id> & mask == can_id & mask
440  *
441  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
442  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
443  *
444  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
445  *  the callback function is running. The callback function must *not* free
446  *  the given sk_buff while processing it's task. When the given sk_buff is
447  *  needed after the end of the callback function it must be cloned inside
448  *  the callback function with skb_clone().
449  *
450  * Return:
451  *  0 on success
452  *  -ENOMEM on missing cache mem to create subscription entry
453  *  -ENODEV unknown device
454  */
455 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
456 		    canid_t mask, void (*func)(struct sk_buff *, void *),
457 		    void *data, char *ident, struct sock *sk)
458 {
459 	struct receiver *r;
460 	struct hlist_head *rl;
461 	struct can_dev_rcv_lists *d;
462 	struct s_pstats *can_pstats = net->can.can_pstats;
463 	int err = 0;
464 
465 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
466 
467 	if (dev && dev->type != ARPHRD_CAN)
468 		return -ENODEV;
469 
470 	if (dev && !net_eq(net, dev_net(dev)))
471 		return -ENODEV;
472 
473 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
474 	if (!r)
475 		return -ENOMEM;
476 
477 	spin_lock(&net->can.can_rcvlists_lock);
478 
479 	d = find_dev_rcv_lists(net, dev);
480 	if (d) {
481 		rl = find_rcv_list(&can_id, &mask, d);
482 
483 		r->can_id  = can_id;
484 		r->mask    = mask;
485 		r->matches = 0;
486 		r->func    = func;
487 		r->data    = data;
488 		r->ident   = ident;
489 		r->sk      = sk;
490 
491 		hlist_add_head_rcu(&r->list, rl);
492 		d->entries++;
493 
494 		can_pstats->rcv_entries++;
495 		if (can_pstats->rcv_entries_max < can_pstats->rcv_entries)
496 			can_pstats->rcv_entries_max = can_pstats->rcv_entries;
497 	} else {
498 		kmem_cache_free(rcv_cache, r);
499 		err = -ENODEV;
500 	}
501 
502 	spin_unlock(&net->can.can_rcvlists_lock);
503 
504 	return err;
505 }
506 EXPORT_SYMBOL(can_rx_register);
507 
508 /*
509  * can_rx_delete_receiver - rcu callback for single receiver entry removal
510  */
511 static void can_rx_delete_receiver(struct rcu_head *rp)
512 {
513 	struct receiver *r = container_of(rp, struct receiver, rcu);
514 	struct sock *sk = r->sk;
515 
516 	kmem_cache_free(rcv_cache, r);
517 	if (sk)
518 		sock_put(sk);
519 }
520 
521 /**
522  * can_rx_unregister - unsubscribe CAN frames from a specific interface
523  * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
524  * @can_id: CAN identifier
525  * @mask: CAN mask
526  * @func: callback function on filter match
527  * @data: returned parameter for callback function
528  *
529  * Description:
530  *  Removes subscription entry depending on given (subscription) values.
531  */
532 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
533 		       canid_t mask, void (*func)(struct sk_buff *, void *),
534 		       void *data)
535 {
536 	struct receiver *r = NULL;
537 	struct hlist_head *rl;
538 	struct s_pstats *can_pstats = net->can.can_pstats;
539 	struct can_dev_rcv_lists *d;
540 
541 	if (dev && dev->type != ARPHRD_CAN)
542 		return;
543 
544 	if (dev && !net_eq(net, dev_net(dev)))
545 		return;
546 
547 	spin_lock(&net->can.can_rcvlists_lock);
548 
549 	d = find_dev_rcv_lists(net, dev);
550 	if (!d) {
551 		pr_err("BUG: receive list not found for "
552 		       "dev %s, id %03X, mask %03X\n",
553 		       DNAME(dev), can_id, mask);
554 		goto out;
555 	}
556 
557 	rl = find_rcv_list(&can_id, &mask, d);
558 
559 	/*
560 	 * Search the receiver list for the item to delete.  This should
561 	 * exist, since no receiver may be unregistered that hasn't
562 	 * been registered before.
563 	 */
564 
565 	hlist_for_each_entry_rcu(r, rl, list) {
566 		if (r->can_id == can_id && r->mask == mask &&
567 		    r->func == func && r->data == data)
568 			break;
569 	}
570 
571 	/*
572 	 * Check for bugs in CAN protocol implementations using af_can.c:
573 	 * 'r' will be NULL if no matching list item was found for removal.
574 	 */
575 
576 	if (!r) {
577 		WARN(1, "BUG: receive list entry not found for dev %s, "
578 		     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
579 		goto out;
580 	}
581 
582 	hlist_del_rcu(&r->list);
583 	d->entries--;
584 
585 	if (can_pstats->rcv_entries > 0)
586 		can_pstats->rcv_entries--;
587 
588 	/* remove device structure requested by NETDEV_UNREGISTER */
589 	if (d->remove_on_zero_entries && !d->entries) {
590 		kfree(d);
591 		dev->ml_priv = NULL;
592 	}
593 
594  out:
595 	spin_unlock(&net->can.can_rcvlists_lock);
596 
597 	/* schedule the receiver item for deletion */
598 	if (r) {
599 		if (r->sk)
600 			sock_hold(r->sk);
601 		call_rcu(&r->rcu, can_rx_delete_receiver);
602 	}
603 }
604 EXPORT_SYMBOL(can_rx_unregister);
605 
606 static inline void deliver(struct sk_buff *skb, struct receiver *r)
607 {
608 	r->func(skb, r->data);
609 	r->matches++;
610 }
611 
612 static int can_rcv_filter(struct can_dev_rcv_lists *d, struct sk_buff *skb)
613 {
614 	struct receiver *r;
615 	int matches = 0;
616 	struct can_frame *cf = (struct can_frame *)skb->data;
617 	canid_t can_id = cf->can_id;
618 
619 	if (d->entries == 0)
620 		return 0;
621 
622 	if (can_id & CAN_ERR_FLAG) {
623 		/* check for error message frame entries only */
624 		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
625 			if (can_id & r->mask) {
626 				deliver(skb, r);
627 				matches++;
628 			}
629 		}
630 		return matches;
631 	}
632 
633 	/* check for unfiltered entries */
634 	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
635 		deliver(skb, r);
636 		matches++;
637 	}
638 
639 	/* check for can_id/mask entries */
640 	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
641 		if ((can_id & r->mask) == r->can_id) {
642 			deliver(skb, r);
643 			matches++;
644 		}
645 	}
646 
647 	/* check for inverted can_id/mask entries */
648 	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
649 		if ((can_id & r->mask) != r->can_id) {
650 			deliver(skb, r);
651 			matches++;
652 		}
653 	}
654 
655 	/* check filterlists for single non-RTR can_ids */
656 	if (can_id & CAN_RTR_FLAG)
657 		return matches;
658 
659 	if (can_id & CAN_EFF_FLAG) {
660 		hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
661 			if (r->can_id == can_id) {
662 				deliver(skb, r);
663 				matches++;
664 			}
665 		}
666 	} else {
667 		can_id &= CAN_SFF_MASK;
668 		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
669 			deliver(skb, r);
670 			matches++;
671 		}
672 	}
673 
674 	return matches;
675 }
676 
677 static void can_receive(struct sk_buff *skb, struct net_device *dev)
678 {
679 	struct can_dev_rcv_lists *d;
680 	struct net *net = dev_net(dev);
681 	struct s_stats *can_stats = net->can.can_stats;
682 	int matches;
683 
684 	/* update statistics */
685 	can_stats->rx_frames++;
686 	can_stats->rx_frames_delta++;
687 
688 	/* create non-zero unique skb identifier together with *skb */
689 	while (!(can_skb_prv(skb)->skbcnt))
690 		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
691 
692 	rcu_read_lock();
693 
694 	/* deliver the packet to sockets listening on all devices */
695 	matches = can_rcv_filter(net->can.can_rx_alldev_list, skb);
696 
697 	/* find receive list for this device */
698 	d = find_dev_rcv_lists(net, dev);
699 	if (d)
700 		matches += can_rcv_filter(d, skb);
701 
702 	rcu_read_unlock();
703 
704 	/* consume the skbuff allocated by the netdevice driver */
705 	consume_skb(skb);
706 
707 	if (matches > 0) {
708 		can_stats->matches++;
709 		can_stats->matches_delta++;
710 	}
711 }
712 
713 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
714 		   struct packet_type *pt, struct net_device *orig_dev)
715 {
716 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
717 
718 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU ||
719 		     cfd->len > CAN_MAX_DLEN)) {
720 		pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n",
721 			     dev->type, skb->len, cfd->len);
722 		kfree_skb(skb);
723 		return NET_RX_DROP;
724 	}
725 
726 	can_receive(skb, dev);
727 	return NET_RX_SUCCESS;
728 }
729 
730 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
731 		   struct packet_type *pt, struct net_device *orig_dev)
732 {
733 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
734 
735 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU ||
736 		     cfd->len > CANFD_MAX_DLEN)) {
737 		pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n",
738 			     dev->type, skb->len, cfd->len);
739 		kfree_skb(skb);
740 		return NET_RX_DROP;
741 	}
742 
743 	can_receive(skb, dev);
744 	return NET_RX_SUCCESS;
745 }
746 
747 /*
748  * af_can protocol functions
749  */
750 
751 /**
752  * can_proto_register - register CAN transport protocol
753  * @cp: pointer to CAN protocol structure
754  *
755  * Return:
756  *  0 on success
757  *  -EINVAL invalid (out of range) protocol number
758  *  -EBUSY  protocol already in use
759  *  -ENOBUF if proto_register() fails
760  */
761 int can_proto_register(const struct can_proto *cp)
762 {
763 	int proto = cp->protocol;
764 	int err = 0;
765 
766 	if (proto < 0 || proto >= CAN_NPROTO) {
767 		pr_err("can: protocol number %d out of range\n", proto);
768 		return -EINVAL;
769 	}
770 
771 	err = proto_register(cp->prot, 0);
772 	if (err < 0)
773 		return err;
774 
775 	mutex_lock(&proto_tab_lock);
776 
777 	if (rcu_access_pointer(proto_tab[proto])) {
778 		pr_err("can: protocol %d already registered\n", proto);
779 		err = -EBUSY;
780 	} else
781 		RCU_INIT_POINTER(proto_tab[proto], cp);
782 
783 	mutex_unlock(&proto_tab_lock);
784 
785 	if (err < 0)
786 		proto_unregister(cp->prot);
787 
788 	return err;
789 }
790 EXPORT_SYMBOL(can_proto_register);
791 
792 /**
793  * can_proto_unregister - unregister CAN transport protocol
794  * @cp: pointer to CAN protocol structure
795  */
796 void can_proto_unregister(const struct can_proto *cp)
797 {
798 	int proto = cp->protocol;
799 
800 	mutex_lock(&proto_tab_lock);
801 	BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
802 	RCU_INIT_POINTER(proto_tab[proto], NULL);
803 	mutex_unlock(&proto_tab_lock);
804 
805 	synchronize_rcu();
806 
807 	proto_unregister(cp->prot);
808 }
809 EXPORT_SYMBOL(can_proto_unregister);
810 
811 /*
812  * af_can notifier to create/remove CAN netdevice specific structs
813  */
814 static int can_notifier(struct notifier_block *nb, unsigned long msg,
815 			void *ptr)
816 {
817 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
818 	struct can_dev_rcv_lists *d;
819 
820 	if (dev->type != ARPHRD_CAN)
821 		return NOTIFY_DONE;
822 
823 	switch (msg) {
824 
825 	case NETDEV_REGISTER:
826 
827 		/* create new dev_rcv_lists for this device */
828 		d = kzalloc(sizeof(*d), GFP_KERNEL);
829 		if (!d)
830 			return NOTIFY_DONE;
831 		BUG_ON(dev->ml_priv);
832 		dev->ml_priv = d;
833 
834 		break;
835 
836 	case NETDEV_UNREGISTER:
837 		spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
838 
839 		d = dev->ml_priv;
840 		if (d) {
841 			if (d->entries)
842 				d->remove_on_zero_entries = 1;
843 			else {
844 				kfree(d);
845 				dev->ml_priv = NULL;
846 			}
847 		} else
848 			pr_err("can: notifier: receive list not found for dev "
849 			       "%s\n", dev->name);
850 
851 		spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
852 
853 		break;
854 	}
855 
856 	return NOTIFY_DONE;
857 }
858 
859 static int can_pernet_init(struct net *net)
860 {
861 	spin_lock_init(&net->can.can_rcvlists_lock);
862 	net->can.can_rx_alldev_list =
863 		kzalloc(sizeof(struct can_dev_rcv_lists), GFP_KERNEL);
864 	if (!net->can.can_rx_alldev_list)
865 		goto out;
866 	net->can.can_stats = kzalloc(sizeof(struct s_stats), GFP_KERNEL);
867 	if (!net->can.can_stats)
868 		goto out_free_alldev_list;
869 	net->can.can_pstats = kzalloc(sizeof(struct s_pstats), GFP_KERNEL);
870 	if (!net->can.can_pstats)
871 		goto out_free_can_stats;
872 
873 	if (IS_ENABLED(CONFIG_PROC_FS)) {
874 		/* the statistics are updated every second (timer triggered) */
875 		if (stats_timer) {
876 			timer_setup(&net->can.can_stattimer, can_stat_update,
877 				    0);
878 			mod_timer(&net->can.can_stattimer,
879 				  round_jiffies(jiffies + HZ));
880 		}
881 		net->can.can_stats->jiffies_init = jiffies;
882 		can_init_proc(net);
883 	}
884 
885 	return 0;
886 
887  out_free_can_stats:
888 	kfree(net->can.can_stats);
889  out_free_alldev_list:
890 	kfree(net->can.can_rx_alldev_list);
891  out:
892 	return -ENOMEM;
893 }
894 
895 static void can_pernet_exit(struct net *net)
896 {
897 	struct net_device *dev;
898 
899 	if (IS_ENABLED(CONFIG_PROC_FS)) {
900 		can_remove_proc(net);
901 		if (stats_timer)
902 			del_timer_sync(&net->can.can_stattimer);
903 	}
904 
905 	/* remove created dev_rcv_lists from still registered CAN devices */
906 	rcu_read_lock();
907 	for_each_netdev_rcu(net, dev) {
908 		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
909 			struct can_dev_rcv_lists *d = dev->ml_priv;
910 
911 			BUG_ON(d->entries);
912 			kfree(d);
913 			dev->ml_priv = NULL;
914 		}
915 	}
916 	rcu_read_unlock();
917 
918 	kfree(net->can.can_rx_alldev_list);
919 	kfree(net->can.can_stats);
920 	kfree(net->can.can_pstats);
921 }
922 
923 /*
924  * af_can module init/exit functions
925  */
926 
927 static struct packet_type can_packet __read_mostly = {
928 	.type = cpu_to_be16(ETH_P_CAN),
929 	.func = can_rcv,
930 };
931 
932 static struct packet_type canfd_packet __read_mostly = {
933 	.type = cpu_to_be16(ETH_P_CANFD),
934 	.func = canfd_rcv,
935 };
936 
937 static const struct net_proto_family can_family_ops = {
938 	.family = PF_CAN,
939 	.create = can_create,
940 	.owner  = THIS_MODULE,
941 };
942 
943 /* notifier block for netdevice event */
944 static struct notifier_block can_netdev_notifier __read_mostly = {
945 	.notifier_call = can_notifier,
946 };
947 
948 static struct pernet_operations can_pernet_ops __read_mostly = {
949 	.init = can_pernet_init,
950 	.exit = can_pernet_exit,
951 };
952 
953 static __init int can_init(void)
954 {
955 	/* check for correct padding to be able to use the structs similarly */
956 	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
957 		     offsetof(struct canfd_frame, len) ||
958 		     offsetof(struct can_frame, data) !=
959 		     offsetof(struct canfd_frame, data));
960 
961 	pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
962 
963 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
964 				      0, 0, NULL);
965 	if (!rcv_cache)
966 		return -ENOMEM;
967 
968 	register_pernet_subsys(&can_pernet_ops);
969 
970 	/* protocol register */
971 	sock_register(&can_family_ops);
972 	register_netdevice_notifier(&can_netdev_notifier);
973 	dev_add_pack(&can_packet);
974 	dev_add_pack(&canfd_packet);
975 
976 	return 0;
977 }
978 
979 static __exit void can_exit(void)
980 {
981 	/* protocol unregister */
982 	dev_remove_pack(&canfd_packet);
983 	dev_remove_pack(&can_packet);
984 	unregister_netdevice_notifier(&can_netdev_notifier);
985 	sock_unregister(PF_CAN);
986 
987 	unregister_pernet_subsys(&can_pernet_ops);
988 
989 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
990 
991 	kmem_cache_destroy(rcv_cache);
992 }
993 
994 module_init(can_init);
995 module_exit(can_exit);
996