xref: /linux/net/can/af_can.c (revision 4b024225c4a8245e6ecc66ce1df1eaf2ebeb4acb)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/can/can-ml.h>
62 #include <linux/ratelimit.h>
63 #include <net/net_namespace.h>
64 #include <net/sock.h>
65 
66 #include "af_can.h"
67 
68 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69 MODULE_LICENSE("Dual BSD/GPL");
70 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
71 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
72 
73 MODULE_ALIAS_NETPROTO(PF_CAN);
74 
75 static int stats_timer __read_mostly = 1;
76 module_param(stats_timer, int, 0444);
77 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78 
79 static struct kmem_cache *rcv_cache __read_mostly;
80 
81 /* table of registered CAN protocols */
82 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
83 static DEFINE_MUTEX(proto_tab_lock);
84 
85 static atomic_t skbcounter = ATOMIC_INIT(0);
86 
87 /* af_can socket functions */
88 
89 static void can_sock_destruct(struct sock *sk)
90 {
91 	skb_queue_purge(&sk->sk_receive_queue);
92 	skb_queue_purge(&sk->sk_error_queue);
93 }
94 
95 static const struct can_proto *can_get_proto(int protocol)
96 {
97 	const struct can_proto *cp;
98 
99 	rcu_read_lock();
100 	cp = rcu_dereference(proto_tab[protocol]);
101 	if (cp && !try_module_get(cp->prot->owner))
102 		cp = NULL;
103 	rcu_read_unlock();
104 
105 	return cp;
106 }
107 
108 static inline void can_put_proto(const struct can_proto *cp)
109 {
110 	module_put(cp->prot->owner);
111 }
112 
113 static int can_create(struct net *net, struct socket *sock, int protocol,
114 		      int kern)
115 {
116 	struct sock *sk;
117 	const struct can_proto *cp;
118 	int err = 0;
119 
120 	sock->state = SS_UNCONNECTED;
121 
122 	if (protocol < 0 || protocol >= CAN_NPROTO)
123 		return -EINVAL;
124 
125 	cp = can_get_proto(protocol);
126 
127 #ifdef CONFIG_MODULES
128 	if (!cp) {
129 		/* try to load protocol module if kernel is modular */
130 
131 		err = request_module("can-proto-%d", protocol);
132 
133 		/* In case of error we only print a message but don't
134 		 * return the error code immediately.  Below we will
135 		 * return -EPROTONOSUPPORT
136 		 */
137 		if (err)
138 			pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
139 					   protocol);
140 
141 		cp = can_get_proto(protocol);
142 	}
143 #endif
144 
145 	/* check for available protocol and correct usage */
146 
147 	if (!cp)
148 		return -EPROTONOSUPPORT;
149 
150 	if (cp->type != sock->type) {
151 		err = -EPROTOTYPE;
152 		goto errout;
153 	}
154 
155 	sock->ops = cp->ops;
156 
157 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
158 	if (!sk) {
159 		err = -ENOMEM;
160 		goto errout;
161 	}
162 
163 	sock_init_data(sock, sk);
164 	sk->sk_destruct = can_sock_destruct;
165 
166 	if (sk->sk_prot->init)
167 		err = sk->sk_prot->init(sk);
168 
169 	if (err) {
170 		/* release sk on errors */
171 		sock_orphan(sk);
172 		sock_put(sk);
173 	}
174 
175  errout:
176 	can_put_proto(cp);
177 	return err;
178 }
179 
180 /* af_can tx path */
181 
182 /**
183  * can_send - transmit a CAN frame (optional with local loopback)
184  * @skb: pointer to socket buffer with CAN frame in data section
185  * @loop: loopback for listeners on local CAN sockets (recommended default!)
186  *
187  * Due to the loopback this routine must not be called from hardirq context.
188  *
189  * Return:
190  *  0 on success
191  *  -ENETDOWN when the selected interface is down
192  *  -ENOBUFS on full driver queue (see net_xmit_errno())
193  *  -ENOMEM when local loopback failed at calling skb_clone()
194  *  -EPERM when trying to send on a non-CAN interface
195  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
196  *  -EINVAL when the skb->data does not contain a valid CAN frame
197  */
198 int can_send(struct sk_buff *skb, int loop)
199 {
200 	struct sk_buff *newskb = NULL;
201 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
202 	struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats;
203 	int err = -EINVAL;
204 
205 	if (skb->len == CAN_MTU) {
206 		skb->protocol = htons(ETH_P_CAN);
207 		if (unlikely(cfd->len > CAN_MAX_DLEN))
208 			goto inval_skb;
209 	} else if (skb->len == CANFD_MTU) {
210 		skb->protocol = htons(ETH_P_CANFD);
211 		if (unlikely(cfd->len > CANFD_MAX_DLEN))
212 			goto inval_skb;
213 	} else {
214 		goto inval_skb;
215 	}
216 
217 	/* Make sure the CAN frame can pass the selected CAN netdevice.
218 	 * As structs can_frame and canfd_frame are similar, we can provide
219 	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
220 	 */
221 	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
222 		err = -EMSGSIZE;
223 		goto inval_skb;
224 	}
225 
226 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
227 		err = -EPERM;
228 		goto inval_skb;
229 	}
230 
231 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
232 		err = -ENETDOWN;
233 		goto inval_skb;
234 	}
235 
236 	skb->ip_summed = CHECKSUM_UNNECESSARY;
237 
238 	skb_reset_mac_header(skb);
239 	skb_reset_network_header(skb);
240 	skb_reset_transport_header(skb);
241 
242 	if (loop) {
243 		/* local loopback of sent CAN frames */
244 
245 		/* indication for the CAN driver: do loopback */
246 		skb->pkt_type = PACKET_LOOPBACK;
247 
248 		/* The reference to the originating sock may be required
249 		 * by the receiving socket to check whether the frame is
250 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
251 		 * Therefore we have to ensure that skb->sk remains the
252 		 * reference to the originating sock by restoring skb->sk
253 		 * after each skb_clone() or skb_orphan() usage.
254 		 */
255 
256 		if (!(skb->dev->flags & IFF_ECHO)) {
257 			/* If the interface is not capable to do loopback
258 			 * itself, we do it here.
259 			 */
260 			newskb = skb_clone(skb, GFP_ATOMIC);
261 			if (!newskb) {
262 				kfree_skb(skb);
263 				return -ENOMEM;
264 			}
265 
266 			can_skb_set_owner(newskb, skb->sk);
267 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
268 			newskb->pkt_type = PACKET_BROADCAST;
269 		}
270 	} else {
271 		/* indication for the CAN driver: no loopback required */
272 		skb->pkt_type = PACKET_HOST;
273 	}
274 
275 	/* send to netdevice */
276 	err = dev_queue_xmit(skb);
277 	if (err > 0)
278 		err = net_xmit_errno(err);
279 
280 	if (err) {
281 		kfree_skb(newskb);
282 		return err;
283 	}
284 
285 	if (newskb)
286 		netif_rx_ni(newskb);
287 
288 	/* update statistics */
289 	pkg_stats->tx_frames++;
290 	pkg_stats->tx_frames_delta++;
291 
292 	return 0;
293 
294 inval_skb:
295 	kfree_skb(skb);
296 	return err;
297 }
298 EXPORT_SYMBOL(can_send);
299 
300 /* af_can rx path */
301 
302 static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net,
303 							struct net_device *dev)
304 {
305 	if (dev) {
306 		struct can_ml_priv *ml_priv = dev->ml_priv;
307 		return &ml_priv->dev_rcv_lists;
308 	} else {
309 		return net->can.rx_alldev_list;
310 	}
311 }
312 
313 /**
314  * effhash - hash function for 29 bit CAN identifier reduction
315  * @can_id: 29 bit CAN identifier
316  *
317  * Description:
318  *  To reduce the linear traversal in one linked list of _single_ EFF CAN
319  *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
320  *  (see CAN_EFF_RCV_HASH_BITS definition)
321  *
322  * Return:
323  *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
324  */
325 static unsigned int effhash(canid_t can_id)
326 {
327 	unsigned int hash;
328 
329 	hash = can_id;
330 	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
331 	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
332 
333 	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
334 }
335 
336 /**
337  * can_rcv_list_find - determine optimal filterlist inside device filter struct
338  * @can_id: pointer to CAN identifier of a given can_filter
339  * @mask: pointer to CAN mask of a given can_filter
340  * @d: pointer to the device filter struct
341  *
342  * Description:
343  *  Returns the optimal filterlist to reduce the filter handling in the
344  *  receive path. This function is called by service functions that need
345  *  to register or unregister a can_filter in the filter lists.
346  *
347  *  A filter matches in general, when
348  *
349  *          <received_can_id> & mask == can_id & mask
350  *
351  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
352  *  relevant bits for the filter.
353  *
354  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
355  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
356  *  frames there is a special filterlist and a special rx path filter handling.
357  *
358  * Return:
359  *  Pointer to optimal filterlist for the given can_id/mask pair.
360  *  Constistency checked mask.
361  *  Reduced can_id to have a preprocessed filter compare value.
362  */
363 static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask,
364 					    struct can_dev_rcv_lists *dev_rcv_lists)
365 {
366 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
367 
368 	/* filter for error message frames in extra filterlist */
369 	if (*mask & CAN_ERR_FLAG) {
370 		/* clear CAN_ERR_FLAG in filter entry */
371 		*mask &= CAN_ERR_MASK;
372 		return &dev_rcv_lists->rx[RX_ERR];
373 	}
374 
375 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
376 
377 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
378 
379 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
380 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
381 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
382 
383 	/* reduce condition testing at receive time */
384 	*can_id &= *mask;
385 
386 	/* inverse can_id/can_mask filter */
387 	if (inv)
388 		return &dev_rcv_lists->rx[RX_INV];
389 
390 	/* mask == 0 => no condition testing at receive time */
391 	if (!(*mask))
392 		return &dev_rcv_lists->rx[RX_ALL];
393 
394 	/* extra filterlists for the subscription of a single non-RTR can_id */
395 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
396 	    !(*can_id & CAN_RTR_FLAG)) {
397 		if (*can_id & CAN_EFF_FLAG) {
398 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
399 				return &dev_rcv_lists->rx_eff[effhash(*can_id)];
400 		} else {
401 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
402 				return &dev_rcv_lists->rx_sff[*can_id];
403 		}
404 	}
405 
406 	/* default: filter via can_id/can_mask */
407 	return &dev_rcv_lists->rx[RX_FIL];
408 }
409 
410 /**
411  * can_rx_register - subscribe CAN frames from a specific interface
412  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
413  * @can_id: CAN identifier (see description)
414  * @mask: CAN mask (see description)
415  * @func: callback function on filter match
416  * @data: returned parameter for callback function
417  * @ident: string for calling module identification
418  * @sk: socket pointer (might be NULL)
419  *
420  * Description:
421  *  Invokes the callback function with the received sk_buff and the given
422  *  parameter 'data' on a matching receive filter. A filter matches, when
423  *
424  *          <received_can_id> & mask == can_id & mask
425  *
426  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
427  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
428  *
429  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
430  *  the callback function is running. The callback function must *not* free
431  *  the given sk_buff while processing it's task. When the given sk_buff is
432  *  needed after the end of the callback function it must be cloned inside
433  *  the callback function with skb_clone().
434  *
435  * Return:
436  *  0 on success
437  *  -ENOMEM on missing cache mem to create subscription entry
438  *  -ENODEV unknown device
439  */
440 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
441 		    canid_t mask, void (*func)(struct sk_buff *, void *),
442 		    void *data, char *ident, struct sock *sk)
443 {
444 	struct receiver *rcv;
445 	struct hlist_head *rcv_list;
446 	struct can_dev_rcv_lists *dev_rcv_lists;
447 	struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
448 	int err = 0;
449 
450 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
451 
452 	if (dev && dev->type != ARPHRD_CAN)
453 		return -ENODEV;
454 
455 	if (dev && !net_eq(net, dev_net(dev)))
456 		return -ENODEV;
457 
458 	rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
459 	if (!rcv)
460 		return -ENOMEM;
461 
462 	spin_lock_bh(&net->can.rcvlists_lock);
463 
464 	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
465 	rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
466 
467 	rcv->can_id = can_id;
468 	rcv->mask = mask;
469 	rcv->matches = 0;
470 	rcv->func = func;
471 	rcv->data = data;
472 	rcv->ident = ident;
473 	rcv->sk = sk;
474 
475 	hlist_add_head_rcu(&rcv->list, rcv_list);
476 	dev_rcv_lists->entries++;
477 
478 	rcv_lists_stats->rcv_entries++;
479 	rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max,
480 					       rcv_lists_stats->rcv_entries);
481 	spin_unlock_bh(&net->can.rcvlists_lock);
482 
483 	return err;
484 }
485 EXPORT_SYMBOL(can_rx_register);
486 
487 /* can_rx_delete_receiver - rcu callback for single receiver entry removal */
488 static void can_rx_delete_receiver(struct rcu_head *rp)
489 {
490 	struct receiver *rcv = container_of(rp, struct receiver, rcu);
491 	struct sock *sk = rcv->sk;
492 
493 	kmem_cache_free(rcv_cache, rcv);
494 	if (sk)
495 		sock_put(sk);
496 }
497 
498 /**
499  * can_rx_unregister - unsubscribe CAN frames from a specific interface
500  * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
501  * @can_id: CAN identifier
502  * @mask: CAN mask
503  * @func: callback function on filter match
504  * @data: returned parameter for callback function
505  *
506  * Description:
507  *  Removes subscription entry depending on given (subscription) values.
508  */
509 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
510 		       canid_t mask, void (*func)(struct sk_buff *, void *),
511 		       void *data)
512 {
513 	struct receiver *rcv = NULL;
514 	struct hlist_head *rcv_list;
515 	struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
516 	struct can_dev_rcv_lists *dev_rcv_lists;
517 
518 	if (dev && dev->type != ARPHRD_CAN)
519 		return;
520 
521 	if (dev && !net_eq(net, dev_net(dev)))
522 		return;
523 
524 	spin_lock_bh(&net->can.rcvlists_lock);
525 
526 	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
527 	rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
528 
529 	/* Search the receiver list for the item to delete.  This should
530 	 * exist, since no receiver may be unregistered that hasn't
531 	 * been registered before.
532 	 */
533 	hlist_for_each_entry_rcu(rcv, rcv_list, list) {
534 		if (rcv->can_id == can_id && rcv->mask == mask &&
535 		    rcv->func == func && rcv->data == data)
536 			break;
537 	}
538 
539 	/* Check for bugs in CAN protocol implementations using af_can.c:
540 	 * 'rcv' will be NULL if no matching list item was found for removal.
541 	 */
542 	if (!rcv) {
543 		WARN(1, "BUG: receive list entry not found for dev %s, id %03X, mask %03X\n",
544 		     DNAME(dev), can_id, mask);
545 		goto out;
546 	}
547 
548 	hlist_del_rcu(&rcv->list);
549 	dev_rcv_lists->entries--;
550 
551 	if (rcv_lists_stats->rcv_entries > 0)
552 		rcv_lists_stats->rcv_entries--;
553 
554  out:
555 	spin_unlock_bh(&net->can.rcvlists_lock);
556 
557 	/* schedule the receiver item for deletion */
558 	if (rcv) {
559 		if (rcv->sk)
560 			sock_hold(rcv->sk);
561 		call_rcu(&rcv->rcu, can_rx_delete_receiver);
562 	}
563 }
564 EXPORT_SYMBOL(can_rx_unregister);
565 
566 static inline void deliver(struct sk_buff *skb, struct receiver *rcv)
567 {
568 	rcv->func(skb, rcv->data);
569 	rcv->matches++;
570 }
571 
572 static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb)
573 {
574 	struct receiver *rcv;
575 	int matches = 0;
576 	struct can_frame *cf = (struct can_frame *)skb->data;
577 	canid_t can_id = cf->can_id;
578 
579 	if (dev_rcv_lists->entries == 0)
580 		return 0;
581 
582 	if (can_id & CAN_ERR_FLAG) {
583 		/* check for error message frame entries only */
584 		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) {
585 			if (can_id & rcv->mask) {
586 				deliver(skb, rcv);
587 				matches++;
588 			}
589 		}
590 		return matches;
591 	}
592 
593 	/* check for unfiltered entries */
594 	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) {
595 		deliver(skb, rcv);
596 		matches++;
597 	}
598 
599 	/* check for can_id/mask entries */
600 	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) {
601 		if ((can_id & rcv->mask) == rcv->can_id) {
602 			deliver(skb, rcv);
603 			matches++;
604 		}
605 	}
606 
607 	/* check for inverted can_id/mask entries */
608 	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) {
609 		if ((can_id & rcv->mask) != rcv->can_id) {
610 			deliver(skb, rcv);
611 			matches++;
612 		}
613 	}
614 
615 	/* check filterlists for single non-RTR can_ids */
616 	if (can_id & CAN_RTR_FLAG)
617 		return matches;
618 
619 	if (can_id & CAN_EFF_FLAG) {
620 		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) {
621 			if (rcv->can_id == can_id) {
622 				deliver(skb, rcv);
623 				matches++;
624 			}
625 		}
626 	} else {
627 		can_id &= CAN_SFF_MASK;
628 		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) {
629 			deliver(skb, rcv);
630 			matches++;
631 		}
632 	}
633 
634 	return matches;
635 }
636 
637 static void can_receive(struct sk_buff *skb, struct net_device *dev)
638 {
639 	struct can_dev_rcv_lists *dev_rcv_lists;
640 	struct net *net = dev_net(dev);
641 	struct can_pkg_stats *pkg_stats = net->can.pkg_stats;
642 	int matches;
643 
644 	/* update statistics */
645 	pkg_stats->rx_frames++;
646 	pkg_stats->rx_frames_delta++;
647 
648 	/* create non-zero unique skb identifier together with *skb */
649 	while (!(can_skb_prv(skb)->skbcnt))
650 		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
651 
652 	rcu_read_lock();
653 
654 	/* deliver the packet to sockets listening on all devices */
655 	matches = can_rcv_filter(net->can.rx_alldev_list, skb);
656 
657 	/* find receive list for this device */
658 	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
659 	matches += can_rcv_filter(dev_rcv_lists, skb);
660 
661 	rcu_read_unlock();
662 
663 	/* consume the skbuff allocated by the netdevice driver */
664 	consume_skb(skb);
665 
666 	if (matches > 0) {
667 		pkg_stats->matches++;
668 		pkg_stats->matches_delta++;
669 	}
670 }
671 
672 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
673 		   struct packet_type *pt, struct net_device *orig_dev)
674 {
675 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
676 
677 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU ||
678 		     cfd->len > CAN_MAX_DLEN)) {
679 		pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n",
680 			     dev->type, skb->len, cfd->len);
681 		kfree_skb(skb);
682 		return NET_RX_DROP;
683 	}
684 
685 	can_receive(skb, dev);
686 	return NET_RX_SUCCESS;
687 }
688 
689 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
690 		     struct packet_type *pt, struct net_device *orig_dev)
691 {
692 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
693 
694 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU ||
695 		     cfd->len > CANFD_MAX_DLEN)) {
696 		pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n",
697 			     dev->type, skb->len, cfd->len);
698 		kfree_skb(skb);
699 		return NET_RX_DROP;
700 	}
701 
702 	can_receive(skb, dev);
703 	return NET_RX_SUCCESS;
704 }
705 
706 /* af_can protocol functions */
707 
708 /**
709  * can_proto_register - register CAN transport protocol
710  * @cp: pointer to CAN protocol structure
711  *
712  * Return:
713  *  0 on success
714  *  -EINVAL invalid (out of range) protocol number
715  *  -EBUSY  protocol already in use
716  *  -ENOBUF if proto_register() fails
717  */
718 int can_proto_register(const struct can_proto *cp)
719 {
720 	int proto = cp->protocol;
721 	int err = 0;
722 
723 	if (proto < 0 || proto >= CAN_NPROTO) {
724 		pr_err("can: protocol number %d out of range\n", proto);
725 		return -EINVAL;
726 	}
727 
728 	err = proto_register(cp->prot, 0);
729 	if (err < 0)
730 		return err;
731 
732 	mutex_lock(&proto_tab_lock);
733 
734 	if (rcu_access_pointer(proto_tab[proto])) {
735 		pr_err("can: protocol %d already registered\n", proto);
736 		err = -EBUSY;
737 	} else {
738 		RCU_INIT_POINTER(proto_tab[proto], cp);
739 	}
740 
741 	mutex_unlock(&proto_tab_lock);
742 
743 	if (err < 0)
744 		proto_unregister(cp->prot);
745 
746 	return err;
747 }
748 EXPORT_SYMBOL(can_proto_register);
749 
750 /**
751  * can_proto_unregister - unregister CAN transport protocol
752  * @cp: pointer to CAN protocol structure
753  */
754 void can_proto_unregister(const struct can_proto *cp)
755 {
756 	int proto = cp->protocol;
757 
758 	mutex_lock(&proto_tab_lock);
759 	BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
760 	RCU_INIT_POINTER(proto_tab[proto], NULL);
761 	mutex_unlock(&proto_tab_lock);
762 
763 	synchronize_rcu();
764 
765 	proto_unregister(cp->prot);
766 }
767 EXPORT_SYMBOL(can_proto_unregister);
768 
769 /* af_can notifier to create/remove CAN netdevice specific structs */
770 static int can_notifier(struct notifier_block *nb, unsigned long msg,
771 			void *ptr)
772 {
773 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
774 
775 	if (dev->type != ARPHRD_CAN)
776 		return NOTIFY_DONE;
777 
778 	switch (msg) {
779 	case NETDEV_REGISTER:
780 		WARN(!dev->ml_priv,
781 		     "No CAN mid layer private allocated, please fix your driver and use alloc_candev()!\n");
782 		break;
783 	}
784 
785 	return NOTIFY_DONE;
786 }
787 
788 static int can_pernet_init(struct net *net)
789 {
790 	spin_lock_init(&net->can.rcvlists_lock);
791 	net->can.rx_alldev_list =
792 		kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL);
793 	if (!net->can.rx_alldev_list)
794 		goto out;
795 	net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL);
796 	if (!net->can.pkg_stats)
797 		goto out_free_rx_alldev_list;
798 	net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL);
799 	if (!net->can.rcv_lists_stats)
800 		goto out_free_pkg_stats;
801 
802 	if (IS_ENABLED(CONFIG_PROC_FS)) {
803 		/* the statistics are updated every second (timer triggered) */
804 		if (stats_timer) {
805 			timer_setup(&net->can.stattimer, can_stat_update,
806 				    0);
807 			mod_timer(&net->can.stattimer,
808 				  round_jiffies(jiffies + HZ));
809 		}
810 		net->can.pkg_stats->jiffies_init = jiffies;
811 		can_init_proc(net);
812 	}
813 
814 	return 0;
815 
816  out_free_pkg_stats:
817 	kfree(net->can.pkg_stats);
818  out_free_rx_alldev_list:
819 	kfree(net->can.rx_alldev_list);
820  out:
821 	return -ENOMEM;
822 }
823 
824 static void can_pernet_exit(struct net *net)
825 {
826 	if (IS_ENABLED(CONFIG_PROC_FS)) {
827 		can_remove_proc(net);
828 		if (stats_timer)
829 			del_timer_sync(&net->can.stattimer);
830 	}
831 
832 	kfree(net->can.rx_alldev_list);
833 	kfree(net->can.pkg_stats);
834 	kfree(net->can.rcv_lists_stats);
835 }
836 
837 /* af_can module init/exit functions */
838 
839 static struct packet_type can_packet __read_mostly = {
840 	.type = cpu_to_be16(ETH_P_CAN),
841 	.func = can_rcv,
842 };
843 
844 static struct packet_type canfd_packet __read_mostly = {
845 	.type = cpu_to_be16(ETH_P_CANFD),
846 	.func = canfd_rcv,
847 };
848 
849 static const struct net_proto_family can_family_ops = {
850 	.family = PF_CAN,
851 	.create = can_create,
852 	.owner  = THIS_MODULE,
853 };
854 
855 /* notifier block for netdevice event */
856 static struct notifier_block can_netdev_notifier __read_mostly = {
857 	.notifier_call = can_notifier,
858 };
859 
860 static struct pernet_operations can_pernet_ops __read_mostly = {
861 	.init = can_pernet_init,
862 	.exit = can_pernet_exit,
863 };
864 
865 static __init int can_init(void)
866 {
867 	int err;
868 
869 	/* check for correct padding to be able to use the structs similarly */
870 	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
871 		     offsetof(struct canfd_frame, len) ||
872 		     offsetof(struct can_frame, data) !=
873 		     offsetof(struct canfd_frame, data));
874 
875 	pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
876 
877 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
878 				      0, 0, NULL);
879 	if (!rcv_cache)
880 		return -ENOMEM;
881 
882 	err = register_pernet_subsys(&can_pernet_ops);
883 	if (err)
884 		goto out_pernet;
885 
886 	/* protocol register */
887 	err = sock_register(&can_family_ops);
888 	if (err)
889 		goto out_sock;
890 	err = register_netdevice_notifier(&can_netdev_notifier);
891 	if (err)
892 		goto out_notifier;
893 
894 	dev_add_pack(&can_packet);
895 	dev_add_pack(&canfd_packet);
896 
897 	return 0;
898 
899 out_notifier:
900 	sock_unregister(PF_CAN);
901 out_sock:
902 	unregister_pernet_subsys(&can_pernet_ops);
903 out_pernet:
904 	kmem_cache_destroy(rcv_cache);
905 
906 	return err;
907 }
908 
909 static __exit void can_exit(void)
910 {
911 	/* protocol unregister */
912 	dev_remove_pack(&canfd_packet);
913 	dev_remove_pack(&can_packet);
914 	unregister_netdevice_notifier(&can_netdev_notifier);
915 	sock_unregister(PF_CAN);
916 
917 	unregister_pernet_subsys(&can_pernet_ops);
918 
919 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
920 
921 	kmem_cache_destroy(rcv_cache);
922 }
923 
924 module_init(can_init);
925 module_exit(can_exit);
926