xref: /linux/net/can/af_can.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64 
65 #include "af_can.h"
66 
67 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
68 MODULE_LICENSE("Dual BSD/GPL");
69 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
70 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
71 
72 MODULE_ALIAS_NETPROTO(PF_CAN);
73 
74 static int stats_timer __read_mostly = 1;
75 module_param(stats_timer, int, S_IRUGO);
76 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
77 
78 static struct kmem_cache *rcv_cache __read_mostly;
79 
80 /* table of registered CAN protocols */
81 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
82 static DEFINE_MUTEX(proto_tab_lock);
83 
84 static atomic_t skbcounter = ATOMIC_INIT(0);
85 
86 /*
87  * af_can socket functions
88  */
89 
90 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
91 {
92 	struct sock *sk = sock->sk;
93 
94 	switch (cmd) {
95 
96 	case SIOCGSTAMP:
97 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
98 
99 	default:
100 		return -ENOIOCTLCMD;
101 	}
102 }
103 EXPORT_SYMBOL(can_ioctl);
104 
105 static void can_sock_destruct(struct sock *sk)
106 {
107 	skb_queue_purge(&sk->sk_receive_queue);
108 }
109 
110 static const struct can_proto *can_get_proto(int protocol)
111 {
112 	const struct can_proto *cp;
113 
114 	rcu_read_lock();
115 	cp = rcu_dereference(proto_tab[protocol]);
116 	if (cp && !try_module_get(cp->prot->owner))
117 		cp = NULL;
118 	rcu_read_unlock();
119 
120 	return cp;
121 }
122 
123 static inline void can_put_proto(const struct can_proto *cp)
124 {
125 	module_put(cp->prot->owner);
126 }
127 
128 static int can_create(struct net *net, struct socket *sock, int protocol,
129 		      int kern)
130 {
131 	struct sock *sk;
132 	const struct can_proto *cp;
133 	int err = 0;
134 
135 	sock->state = SS_UNCONNECTED;
136 
137 	if (protocol < 0 || protocol >= CAN_NPROTO)
138 		return -EINVAL;
139 
140 	cp = can_get_proto(protocol);
141 
142 #ifdef CONFIG_MODULES
143 	if (!cp) {
144 		/* try to load protocol module if kernel is modular */
145 
146 		err = request_module("can-proto-%d", protocol);
147 
148 		/*
149 		 * In case of error we only print a message but don't
150 		 * return the error code immediately.  Below we will
151 		 * return -EPROTONOSUPPORT
152 		 */
153 		if (err)
154 			printk_ratelimited(KERN_ERR "can: request_module "
155 			       "(can-proto-%d) failed.\n", protocol);
156 
157 		cp = can_get_proto(protocol);
158 	}
159 #endif
160 
161 	/* check for available protocol and correct usage */
162 
163 	if (!cp)
164 		return -EPROTONOSUPPORT;
165 
166 	if (cp->type != sock->type) {
167 		err = -EPROTOTYPE;
168 		goto errout;
169 	}
170 
171 	sock->ops = cp->ops;
172 
173 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
174 	if (!sk) {
175 		err = -ENOMEM;
176 		goto errout;
177 	}
178 
179 	sock_init_data(sock, sk);
180 	sk->sk_destruct = can_sock_destruct;
181 
182 	if (sk->sk_prot->init)
183 		err = sk->sk_prot->init(sk);
184 
185 	if (err) {
186 		/* release sk on errors */
187 		sock_orphan(sk);
188 		sock_put(sk);
189 	}
190 
191  errout:
192 	can_put_proto(cp);
193 	return err;
194 }
195 
196 /*
197  * af_can tx path
198  */
199 
200 /**
201  * can_send - transmit a CAN frame (optional with local loopback)
202  * @skb: pointer to socket buffer with CAN frame in data section
203  * @loop: loopback for listeners on local CAN sockets (recommended default!)
204  *
205  * Due to the loopback this routine must not be called from hardirq context.
206  *
207  * Return:
208  *  0 on success
209  *  -ENETDOWN when the selected interface is down
210  *  -ENOBUFS on full driver queue (see net_xmit_errno())
211  *  -ENOMEM when local loopback failed at calling skb_clone()
212  *  -EPERM when trying to send on a non-CAN interface
213  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
214  *  -EINVAL when the skb->data does not contain a valid CAN frame
215  */
216 int can_send(struct sk_buff *skb, int loop)
217 {
218 	struct sk_buff *newskb = NULL;
219 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
220 	struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats;
221 	int err = -EINVAL;
222 
223 	if (skb->len == CAN_MTU) {
224 		skb->protocol = htons(ETH_P_CAN);
225 		if (unlikely(cfd->len > CAN_MAX_DLEN))
226 			goto inval_skb;
227 	} else if (skb->len == CANFD_MTU) {
228 		skb->protocol = htons(ETH_P_CANFD);
229 		if (unlikely(cfd->len > CANFD_MAX_DLEN))
230 			goto inval_skb;
231 	} else
232 		goto inval_skb;
233 
234 	/*
235 	 * Make sure the CAN frame can pass the selected CAN netdevice.
236 	 * As structs can_frame and canfd_frame are similar, we can provide
237 	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
238 	 */
239 	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
240 		err = -EMSGSIZE;
241 		goto inval_skb;
242 	}
243 
244 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
245 		err = -EPERM;
246 		goto inval_skb;
247 	}
248 
249 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
250 		err = -ENETDOWN;
251 		goto inval_skb;
252 	}
253 
254 	skb->ip_summed = CHECKSUM_UNNECESSARY;
255 
256 	skb_reset_mac_header(skb);
257 	skb_reset_network_header(skb);
258 	skb_reset_transport_header(skb);
259 
260 	if (loop) {
261 		/* local loopback of sent CAN frames */
262 
263 		/* indication for the CAN driver: do loopback */
264 		skb->pkt_type = PACKET_LOOPBACK;
265 
266 		/*
267 		 * The reference to the originating sock may be required
268 		 * by the receiving socket to check whether the frame is
269 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
270 		 * Therefore we have to ensure that skb->sk remains the
271 		 * reference to the originating sock by restoring skb->sk
272 		 * after each skb_clone() or skb_orphan() usage.
273 		 */
274 
275 		if (!(skb->dev->flags & IFF_ECHO)) {
276 			/*
277 			 * If the interface is not capable to do loopback
278 			 * itself, we do it here.
279 			 */
280 			newskb = skb_clone(skb, GFP_ATOMIC);
281 			if (!newskb) {
282 				kfree_skb(skb);
283 				return -ENOMEM;
284 			}
285 
286 			can_skb_set_owner(newskb, skb->sk);
287 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
288 			newskb->pkt_type = PACKET_BROADCAST;
289 		}
290 	} else {
291 		/* indication for the CAN driver: no loopback required */
292 		skb->pkt_type = PACKET_HOST;
293 	}
294 
295 	/* send to netdevice */
296 	err = dev_queue_xmit(skb);
297 	if (err > 0)
298 		err = net_xmit_errno(err);
299 
300 	if (err) {
301 		kfree_skb(newskb);
302 		return err;
303 	}
304 
305 	if (newskb)
306 		netif_rx_ni(newskb);
307 
308 	/* update statistics */
309 	can_stats->tx_frames++;
310 	can_stats->tx_frames_delta++;
311 
312 	return 0;
313 
314 inval_skb:
315 	kfree_skb(skb);
316 	return err;
317 }
318 EXPORT_SYMBOL(can_send);
319 
320 /*
321  * af_can rx path
322  */
323 
324 static struct can_dev_rcv_lists *find_dev_rcv_lists(struct net *net,
325 						struct net_device *dev)
326 {
327 	if (!dev)
328 		return net->can.can_rx_alldev_list;
329 	else
330 		return (struct can_dev_rcv_lists *)dev->ml_priv;
331 }
332 
333 /**
334  * effhash - hash function for 29 bit CAN identifier reduction
335  * @can_id: 29 bit CAN identifier
336  *
337  * Description:
338  *  To reduce the linear traversal in one linked list of _single_ EFF CAN
339  *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
340  *  (see CAN_EFF_RCV_HASH_BITS definition)
341  *
342  * Return:
343  *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
344  */
345 static unsigned int effhash(canid_t can_id)
346 {
347 	unsigned int hash;
348 
349 	hash = can_id;
350 	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
351 	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
352 
353 	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
354 }
355 
356 /**
357  * find_rcv_list - determine optimal filterlist inside device filter struct
358  * @can_id: pointer to CAN identifier of a given can_filter
359  * @mask: pointer to CAN mask of a given can_filter
360  * @d: pointer to the device filter struct
361  *
362  * Description:
363  *  Returns the optimal filterlist to reduce the filter handling in the
364  *  receive path. This function is called by service functions that need
365  *  to register or unregister a can_filter in the filter lists.
366  *
367  *  A filter matches in general, when
368  *
369  *          <received_can_id> & mask == can_id & mask
370  *
371  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
372  *  relevant bits for the filter.
373  *
374  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
375  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
376  *  frames there is a special filterlist and a special rx path filter handling.
377  *
378  * Return:
379  *  Pointer to optimal filterlist for the given can_id/mask pair.
380  *  Constistency checked mask.
381  *  Reduced can_id to have a preprocessed filter compare value.
382  */
383 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
384 					struct can_dev_rcv_lists *d)
385 {
386 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
387 
388 	/* filter for error message frames in extra filterlist */
389 	if (*mask & CAN_ERR_FLAG) {
390 		/* clear CAN_ERR_FLAG in filter entry */
391 		*mask &= CAN_ERR_MASK;
392 		return &d->rx[RX_ERR];
393 	}
394 
395 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
396 
397 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
398 
399 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
400 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
401 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
402 
403 	/* reduce condition testing at receive time */
404 	*can_id &= *mask;
405 
406 	/* inverse can_id/can_mask filter */
407 	if (inv)
408 		return &d->rx[RX_INV];
409 
410 	/* mask == 0 => no condition testing at receive time */
411 	if (!(*mask))
412 		return &d->rx[RX_ALL];
413 
414 	/* extra filterlists for the subscription of a single non-RTR can_id */
415 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
416 	    !(*can_id & CAN_RTR_FLAG)) {
417 
418 		if (*can_id & CAN_EFF_FLAG) {
419 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
420 				return &d->rx_eff[effhash(*can_id)];
421 		} else {
422 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
423 				return &d->rx_sff[*can_id];
424 		}
425 	}
426 
427 	/* default: filter via can_id/can_mask */
428 	return &d->rx[RX_FIL];
429 }
430 
431 /**
432  * can_rx_register - subscribe CAN frames from a specific interface
433  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
434  * @can_id: CAN identifier (see description)
435  * @mask: CAN mask (see description)
436  * @func: callback function on filter match
437  * @data: returned parameter for callback function
438  * @ident: string for calling module identification
439  * @sk: socket pointer (might be NULL)
440  *
441  * Description:
442  *  Invokes the callback function with the received sk_buff and the given
443  *  parameter 'data' on a matching receive filter. A filter matches, when
444  *
445  *          <received_can_id> & mask == can_id & mask
446  *
447  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
448  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
449  *
450  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
451  *  the callback function is running. The callback function must *not* free
452  *  the given sk_buff while processing it's task. When the given sk_buff is
453  *  needed after the end of the callback function it must be cloned inside
454  *  the callback function with skb_clone().
455  *
456  * Return:
457  *  0 on success
458  *  -ENOMEM on missing cache mem to create subscription entry
459  *  -ENODEV unknown device
460  */
461 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
462 		    canid_t mask, void (*func)(struct sk_buff *, void *),
463 		    void *data, char *ident, struct sock *sk)
464 {
465 	struct receiver *r;
466 	struct hlist_head *rl;
467 	struct can_dev_rcv_lists *d;
468 	struct s_pstats *can_pstats = net->can.can_pstats;
469 	int err = 0;
470 
471 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
472 
473 	if (dev && dev->type != ARPHRD_CAN)
474 		return -ENODEV;
475 
476 	if (dev && !net_eq(net, dev_net(dev)))
477 		return -ENODEV;
478 
479 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
480 	if (!r)
481 		return -ENOMEM;
482 
483 	spin_lock(&net->can.can_rcvlists_lock);
484 
485 	d = find_dev_rcv_lists(net, dev);
486 	if (d) {
487 		rl = find_rcv_list(&can_id, &mask, d);
488 
489 		r->can_id  = can_id;
490 		r->mask    = mask;
491 		r->matches = 0;
492 		r->func    = func;
493 		r->data    = data;
494 		r->ident   = ident;
495 		r->sk      = sk;
496 
497 		hlist_add_head_rcu(&r->list, rl);
498 		d->entries++;
499 
500 		can_pstats->rcv_entries++;
501 		if (can_pstats->rcv_entries_max < can_pstats->rcv_entries)
502 			can_pstats->rcv_entries_max = can_pstats->rcv_entries;
503 	} else {
504 		kmem_cache_free(rcv_cache, r);
505 		err = -ENODEV;
506 	}
507 
508 	spin_unlock(&net->can.can_rcvlists_lock);
509 
510 	return err;
511 }
512 EXPORT_SYMBOL(can_rx_register);
513 
514 /*
515  * can_rx_delete_receiver - rcu callback for single receiver entry removal
516  */
517 static void can_rx_delete_receiver(struct rcu_head *rp)
518 {
519 	struct receiver *r = container_of(rp, struct receiver, rcu);
520 	struct sock *sk = r->sk;
521 
522 	kmem_cache_free(rcv_cache, r);
523 	if (sk)
524 		sock_put(sk);
525 }
526 
527 /**
528  * can_rx_unregister - unsubscribe CAN frames from a specific interface
529  * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
530  * @can_id: CAN identifier
531  * @mask: CAN mask
532  * @func: callback function on filter match
533  * @data: returned parameter for callback function
534  *
535  * Description:
536  *  Removes subscription entry depending on given (subscription) values.
537  */
538 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
539 		       canid_t mask, void (*func)(struct sk_buff *, void *),
540 		       void *data)
541 {
542 	struct receiver *r = NULL;
543 	struct hlist_head *rl;
544 	struct s_pstats *can_pstats = net->can.can_pstats;
545 	struct can_dev_rcv_lists *d;
546 
547 	if (dev && dev->type != ARPHRD_CAN)
548 		return;
549 
550 	if (dev && !net_eq(net, dev_net(dev)))
551 		return;
552 
553 	spin_lock(&net->can.can_rcvlists_lock);
554 
555 	d = find_dev_rcv_lists(net, dev);
556 	if (!d) {
557 		pr_err("BUG: receive list not found for "
558 		       "dev %s, id %03X, mask %03X\n",
559 		       DNAME(dev), can_id, mask);
560 		goto out;
561 	}
562 
563 	rl = find_rcv_list(&can_id, &mask, d);
564 
565 	/*
566 	 * Search the receiver list for the item to delete.  This should
567 	 * exist, since no receiver may be unregistered that hasn't
568 	 * been registered before.
569 	 */
570 
571 	hlist_for_each_entry_rcu(r, rl, list) {
572 		if (r->can_id == can_id && r->mask == mask &&
573 		    r->func == func && r->data == data)
574 			break;
575 	}
576 
577 	/*
578 	 * Check for bugs in CAN protocol implementations using af_can.c:
579 	 * 'r' will be NULL if no matching list item was found for removal.
580 	 */
581 
582 	if (!r) {
583 		WARN(1, "BUG: receive list entry not found for dev %s, "
584 		     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
585 		goto out;
586 	}
587 
588 	hlist_del_rcu(&r->list);
589 	d->entries--;
590 
591 	if (can_pstats->rcv_entries > 0)
592 		can_pstats->rcv_entries--;
593 
594 	/* remove device structure requested by NETDEV_UNREGISTER */
595 	if (d->remove_on_zero_entries && !d->entries) {
596 		kfree(d);
597 		dev->ml_priv = NULL;
598 	}
599 
600  out:
601 	spin_unlock(&net->can.can_rcvlists_lock);
602 
603 	/* schedule the receiver item for deletion */
604 	if (r) {
605 		if (r->sk)
606 			sock_hold(r->sk);
607 		call_rcu(&r->rcu, can_rx_delete_receiver);
608 	}
609 }
610 EXPORT_SYMBOL(can_rx_unregister);
611 
612 static inline void deliver(struct sk_buff *skb, struct receiver *r)
613 {
614 	r->func(skb, r->data);
615 	r->matches++;
616 }
617 
618 static int can_rcv_filter(struct can_dev_rcv_lists *d, struct sk_buff *skb)
619 {
620 	struct receiver *r;
621 	int matches = 0;
622 	struct can_frame *cf = (struct can_frame *)skb->data;
623 	canid_t can_id = cf->can_id;
624 
625 	if (d->entries == 0)
626 		return 0;
627 
628 	if (can_id & CAN_ERR_FLAG) {
629 		/* check for error message frame entries only */
630 		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
631 			if (can_id & r->mask) {
632 				deliver(skb, r);
633 				matches++;
634 			}
635 		}
636 		return matches;
637 	}
638 
639 	/* check for unfiltered entries */
640 	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
641 		deliver(skb, r);
642 		matches++;
643 	}
644 
645 	/* check for can_id/mask entries */
646 	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
647 		if ((can_id & r->mask) == r->can_id) {
648 			deliver(skb, r);
649 			matches++;
650 		}
651 	}
652 
653 	/* check for inverted can_id/mask entries */
654 	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
655 		if ((can_id & r->mask) != r->can_id) {
656 			deliver(skb, r);
657 			matches++;
658 		}
659 	}
660 
661 	/* check filterlists for single non-RTR can_ids */
662 	if (can_id & CAN_RTR_FLAG)
663 		return matches;
664 
665 	if (can_id & CAN_EFF_FLAG) {
666 		hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
667 			if (r->can_id == can_id) {
668 				deliver(skb, r);
669 				matches++;
670 			}
671 		}
672 	} else {
673 		can_id &= CAN_SFF_MASK;
674 		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
675 			deliver(skb, r);
676 			matches++;
677 		}
678 	}
679 
680 	return matches;
681 }
682 
683 static void can_receive(struct sk_buff *skb, struct net_device *dev)
684 {
685 	struct can_dev_rcv_lists *d;
686 	struct net *net = dev_net(dev);
687 	struct s_stats *can_stats = net->can.can_stats;
688 	int matches;
689 
690 	/* update statistics */
691 	can_stats->rx_frames++;
692 	can_stats->rx_frames_delta++;
693 
694 	/* create non-zero unique skb identifier together with *skb */
695 	while (!(can_skb_prv(skb)->skbcnt))
696 		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
697 
698 	rcu_read_lock();
699 
700 	/* deliver the packet to sockets listening on all devices */
701 	matches = can_rcv_filter(net->can.can_rx_alldev_list, skb);
702 
703 	/* find receive list for this device */
704 	d = find_dev_rcv_lists(net, dev);
705 	if (d)
706 		matches += can_rcv_filter(d, skb);
707 
708 	rcu_read_unlock();
709 
710 	/* consume the skbuff allocated by the netdevice driver */
711 	consume_skb(skb);
712 
713 	if (matches > 0) {
714 		can_stats->matches++;
715 		can_stats->matches_delta++;
716 	}
717 }
718 
719 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
720 		   struct packet_type *pt, struct net_device *orig_dev)
721 {
722 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
723 
724 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU ||
725 		     cfd->len > CAN_MAX_DLEN)) {
726 		pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n",
727 			     dev->type, skb->len, cfd->len);
728 		kfree_skb(skb);
729 		return NET_RX_DROP;
730 	}
731 
732 	can_receive(skb, dev);
733 	return NET_RX_SUCCESS;
734 }
735 
736 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
737 		   struct packet_type *pt, struct net_device *orig_dev)
738 {
739 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
740 
741 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU ||
742 		     cfd->len > CANFD_MAX_DLEN)) {
743 		pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n",
744 			     dev->type, skb->len, cfd->len);
745 		kfree_skb(skb);
746 		return NET_RX_DROP;
747 	}
748 
749 	can_receive(skb, dev);
750 	return NET_RX_SUCCESS;
751 }
752 
753 /*
754  * af_can protocol functions
755  */
756 
757 /**
758  * can_proto_register - register CAN transport protocol
759  * @cp: pointer to CAN protocol structure
760  *
761  * Return:
762  *  0 on success
763  *  -EINVAL invalid (out of range) protocol number
764  *  -EBUSY  protocol already in use
765  *  -ENOBUF if proto_register() fails
766  */
767 int can_proto_register(const struct can_proto *cp)
768 {
769 	int proto = cp->protocol;
770 	int err = 0;
771 
772 	if (proto < 0 || proto >= CAN_NPROTO) {
773 		pr_err("can: protocol number %d out of range\n", proto);
774 		return -EINVAL;
775 	}
776 
777 	err = proto_register(cp->prot, 0);
778 	if (err < 0)
779 		return err;
780 
781 	mutex_lock(&proto_tab_lock);
782 
783 	if (rcu_access_pointer(proto_tab[proto])) {
784 		pr_err("can: protocol %d already registered\n", proto);
785 		err = -EBUSY;
786 	} else
787 		RCU_INIT_POINTER(proto_tab[proto], cp);
788 
789 	mutex_unlock(&proto_tab_lock);
790 
791 	if (err < 0)
792 		proto_unregister(cp->prot);
793 
794 	return err;
795 }
796 EXPORT_SYMBOL(can_proto_register);
797 
798 /**
799  * can_proto_unregister - unregister CAN transport protocol
800  * @cp: pointer to CAN protocol structure
801  */
802 void can_proto_unregister(const struct can_proto *cp)
803 {
804 	int proto = cp->protocol;
805 
806 	mutex_lock(&proto_tab_lock);
807 	BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
808 	RCU_INIT_POINTER(proto_tab[proto], NULL);
809 	mutex_unlock(&proto_tab_lock);
810 
811 	synchronize_rcu();
812 
813 	proto_unregister(cp->prot);
814 }
815 EXPORT_SYMBOL(can_proto_unregister);
816 
817 /*
818  * af_can notifier to create/remove CAN netdevice specific structs
819  */
820 static int can_notifier(struct notifier_block *nb, unsigned long msg,
821 			void *ptr)
822 {
823 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
824 	struct can_dev_rcv_lists *d;
825 
826 	if (dev->type != ARPHRD_CAN)
827 		return NOTIFY_DONE;
828 
829 	switch (msg) {
830 
831 	case NETDEV_REGISTER:
832 
833 		/* create new dev_rcv_lists for this device */
834 		d = kzalloc(sizeof(*d), GFP_KERNEL);
835 		if (!d)
836 			return NOTIFY_DONE;
837 		BUG_ON(dev->ml_priv);
838 		dev->ml_priv = d;
839 
840 		break;
841 
842 	case NETDEV_UNREGISTER:
843 		spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
844 
845 		d = dev->ml_priv;
846 		if (d) {
847 			if (d->entries)
848 				d->remove_on_zero_entries = 1;
849 			else {
850 				kfree(d);
851 				dev->ml_priv = NULL;
852 			}
853 		} else
854 			pr_err("can: notifier: receive list not found for dev "
855 			       "%s\n", dev->name);
856 
857 		spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
858 
859 		break;
860 	}
861 
862 	return NOTIFY_DONE;
863 }
864 
865 static int can_pernet_init(struct net *net)
866 {
867 	spin_lock_init(&net->can.can_rcvlists_lock);
868 	net->can.can_rx_alldev_list =
869 		kzalloc(sizeof(struct can_dev_rcv_lists), GFP_KERNEL);
870 	if (!net->can.can_rx_alldev_list)
871 		goto out;
872 	net->can.can_stats = kzalloc(sizeof(struct s_stats), GFP_KERNEL);
873 	if (!net->can.can_stats)
874 		goto out_free_alldev_list;
875 	net->can.can_pstats = kzalloc(sizeof(struct s_pstats), GFP_KERNEL);
876 	if (!net->can.can_pstats)
877 		goto out_free_can_stats;
878 
879 	if (IS_ENABLED(CONFIG_PROC_FS)) {
880 		/* the statistics are updated every second (timer triggered) */
881 		if (stats_timer) {
882 			timer_setup(&net->can.can_stattimer, can_stat_update,
883 				    0);
884 			mod_timer(&net->can.can_stattimer,
885 				  round_jiffies(jiffies + HZ));
886 		}
887 		net->can.can_stats->jiffies_init = jiffies;
888 		can_init_proc(net);
889 	}
890 
891 	return 0;
892 
893  out_free_can_stats:
894 	kfree(net->can.can_stats);
895  out_free_alldev_list:
896 	kfree(net->can.can_rx_alldev_list);
897  out:
898 	return -ENOMEM;
899 }
900 
901 static void can_pernet_exit(struct net *net)
902 {
903 	struct net_device *dev;
904 
905 	if (IS_ENABLED(CONFIG_PROC_FS)) {
906 		can_remove_proc(net);
907 		if (stats_timer)
908 			del_timer_sync(&net->can.can_stattimer);
909 	}
910 
911 	/* remove created dev_rcv_lists from still registered CAN devices */
912 	rcu_read_lock();
913 	for_each_netdev_rcu(net, dev) {
914 		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
915 			struct can_dev_rcv_lists *d = dev->ml_priv;
916 
917 			BUG_ON(d->entries);
918 			kfree(d);
919 			dev->ml_priv = NULL;
920 		}
921 	}
922 	rcu_read_unlock();
923 
924 	kfree(net->can.can_rx_alldev_list);
925 	kfree(net->can.can_stats);
926 	kfree(net->can.can_pstats);
927 }
928 
929 /*
930  * af_can module init/exit functions
931  */
932 
933 static struct packet_type can_packet __read_mostly = {
934 	.type = cpu_to_be16(ETH_P_CAN),
935 	.func = can_rcv,
936 };
937 
938 static struct packet_type canfd_packet __read_mostly = {
939 	.type = cpu_to_be16(ETH_P_CANFD),
940 	.func = canfd_rcv,
941 };
942 
943 static const struct net_proto_family can_family_ops = {
944 	.family = PF_CAN,
945 	.create = can_create,
946 	.owner  = THIS_MODULE,
947 };
948 
949 /* notifier block for netdevice event */
950 static struct notifier_block can_netdev_notifier __read_mostly = {
951 	.notifier_call = can_notifier,
952 };
953 
954 static struct pernet_operations can_pernet_ops __read_mostly = {
955 	.init = can_pernet_init,
956 	.exit = can_pernet_exit,
957 };
958 
959 static __init int can_init(void)
960 {
961 	/* check for correct padding to be able to use the structs similarly */
962 	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
963 		     offsetof(struct canfd_frame, len) ||
964 		     offsetof(struct can_frame, data) !=
965 		     offsetof(struct canfd_frame, data));
966 
967 	pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
968 
969 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
970 				      0, 0, NULL);
971 	if (!rcv_cache)
972 		return -ENOMEM;
973 
974 	register_pernet_subsys(&can_pernet_ops);
975 
976 	/* protocol register */
977 	sock_register(&can_family_ops);
978 	register_netdevice_notifier(&can_netdev_notifier);
979 	dev_add_pack(&can_packet);
980 	dev_add_pack(&canfd_packet);
981 
982 	return 0;
983 }
984 
985 static __exit void can_exit(void)
986 {
987 	/* protocol unregister */
988 	dev_remove_pack(&canfd_packet);
989 	dev_remove_pack(&can_packet);
990 	unregister_netdevice_notifier(&can_netdev_notifier);
991 	sock_unregister(PF_CAN);
992 
993 	unregister_pernet_subsys(&can_pernet_ops);
994 
995 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
996 
997 	kmem_cache_destroy(rcv_cache);
998 }
999 
1000 module_init(can_init);
1001 module_exit(can_exit);
1002